1
|
Khadka NK, Haemmerle D, Davis PH, Mainali L. Mechanical Properties of Eye Lens Cortical and Nuclear Membranes and the Whole Lens. Invest Ophthalmol Vis Sci 2025; 66:27. [PMID: 39792072 PMCID: PMC11730892 DOI: 10.1167/iovs.66.1.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025] Open
Abstract
Purpose To elucidate the mechanical properties of the bovine lens cortical membrane (CM), the nuclear membrane (NM) containing cholesterol bilayer domains (CBDs), and whole bovine lenses. Methods The total lipids (lipids plus cholesterol) from the cortex and nucleus of a single bovine lens were isolated using the monophasic methanol extraction method. Supported CMs and NMs were prepared from total lipids extracted from the cortex and nucleus, respectively, using a rapid solvent exchange method and probe-tip sonication, followed by the fusion of unilamellar vesicles on a flat, freshly cleaved mica surface. Topographical images and force curves for the CMs and NMs were obtained via atomic force microscopy (AFM) in a fluid cell. Whole bovine lenses were affixed to custom-built glass Petri dishes, and an AFM was used to obtain force curves. Force curves were analyzed to estimate the breakthrough force, membrane stiffness (KA and Em), and lens stiffness (EL). Results The NMs containing CBDs exhibited significantly lower breakthrough force, KA, and Em than the CMs without CBDs. The Em values for CMs and NMs were significantly higher than the EL for the whole lens. Conclusions The significantly higher stiffness of the CM and NM compared to the stiffness of the whole lens suggests that slight modulation in CM and NM composition may play a crucial role in altering the overall lens stiffness. Furthermore, the NMs containing CBDs were less stiff than CMs without CBDs, suggesting that CBDs decrease lens membrane stiffness and possibly protect against lens hardening and presbyopia.
Collapse
Affiliation(s)
- Nawal K. Khadka
- Department of Physics, Boise State University, Boise, Idaho, United States
| | - Dieter Haemmerle
- Department of Physics, Boise State University, Boise, Idaho, United States
| | - Paul H. Davis
- Micron School of Materials Science and Engineering, Boise State University, Boise, Idaho, United States
| | - Laxman Mainali
- Department of Physics, Boise State University, Boise, Idaho, United States
- Biomolecular Sciences Graduate Program, Boise State University, Boise, Idaho, United States
| |
Collapse
|
2
|
Szumny D, Kucharska AZ, Czajor K, Bernacka K, Ziółkowska S, Krzyżanowska-Berkowska P, Magdalan J, Misiuk-Hojło M, Sozański T, Szeląg A. Extract from Aronia melanocarpa, Lonicera caerulea, and Vaccinium myrtillus Improves near Visual Acuity in People with Presbyopia. Nutrients 2024; 16:926. [PMID: 38612968 PMCID: PMC11013737 DOI: 10.3390/nu16070926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Presbyopia is a global problem with an estimated 1.3 billion patients worldwide. In the area of functional food applications, dietary supplements or herbs, there are very few reports describing the positive effects of their use. In the available literature, there is a lack of studies in humans as well as on an animal model of extracts containing, simultaneously, compounds from the polyphenol group (in particular, anthocyanins) and iridoids, so we undertook a study of the effects of a preparation composed of these compounds on a condition of the organ of vision. Our previous experience on a rabbit model proved the positive effect of taking an oral extract of Cornus mas in stabilizing the intraocular pressure of the eye. The purpose of this study was to evaluate the effect of an orally administered ternary compound preparation on the status of physiological parameters of the ocular organ. The preparation contained an extract of the chokeberry Aronia melanocarpa, the honeysuckle berry Lonicera caerulea L., and the bilberry Vaccinium myrtillus (hereafter AKB) standardized for anthocyanins and iridoids, as bioactive compounds known from the literature. A randomized, double-blind, cross-over study lasting with a "wash-out" period of 17 weeks evaluated a group of 23 people over the age of 50, who were subjects with presbyopia and burdened by prolonged work in front of screen monitors. The group of volunteers was recruited from people who perform white-collar jobs on a daily basis. The effects of the test substances contained in the preparation on visual acuity for distance and near, sense of contrast for distance and near, intraocular pressure, and conjunctival lubrication, tested by Schirmer test, LIPCOF index and TBUT test, and visual field test were evaluated. Anthocyanins (including cyanidin 3-O-galactoside, delphinidin 3-O-arabinoside, cyanidin 3-O-glucoside, cyanidin 3-O-rutinoside, cyanidin 3-O-arabinoside) and iridoids (including loganin, sweroside, loganic acid) were identified as substances present in the extract obtained by HPLC-MS. The preliminary results showed that the composition of AKB applied orally does not change visual acuity in the first 6 weeks of administration. Only in the next cycle of the study was an improvement in near visual acuity observed in 92.3% of the patients. This may indicate potential to correct near vision in presbyopic patients. On the other hand, an improvement in conjunctival wetting was observed in the Schirmer test at the beginning of week 6 of administration in 80% of patients. This effect was weakened in subsequent weeks of conducting the experiment to 61.5%. The improvement in conjunctival hydration in the Schirmer test shows the potential beneficial effect of the AKB formulation in a group of patients with dry eye syndrome. This is the first study of a preparation based on natural, standardized extracts of chokeberry, honeysuckle berry, and bilberry. Preliminary studies show an improvement in near visual acuity and conjunctival hydration on the Schirmer test, but this needs to be confirmed in further studies.
Collapse
Affiliation(s)
- Dorota Szumny
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (J.M.); (A.S.)
- Ophthalmology Clinic, University Clinical Hospital, Borowska 213, 50-556 Wrocław, Poland; (K.C.); (S.Z.); (P.K.-B.); (M.M.-H.)
| | - Alicja Zofia Kucharska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland; (A.Z.K.); (K.B.)
| | - Karolina Czajor
- Ophthalmology Clinic, University Clinical Hospital, Borowska 213, 50-556 Wrocław, Poland; (K.C.); (S.Z.); (P.K.-B.); (M.M.-H.)
- Department of Ophthalmology, Wroclaw Medical University, Borowska 213, 50-556 Wrocław, Poland
| | - Karolina Bernacka
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland; (A.Z.K.); (K.B.)
| | - Sabina Ziółkowska
- Ophthalmology Clinic, University Clinical Hospital, Borowska 213, 50-556 Wrocław, Poland; (K.C.); (S.Z.); (P.K.-B.); (M.M.-H.)
| | - Patrycja Krzyżanowska-Berkowska
- Ophthalmology Clinic, University Clinical Hospital, Borowska 213, 50-556 Wrocław, Poland; (K.C.); (S.Z.); (P.K.-B.); (M.M.-H.)
- Department of Ophthalmology, Wroclaw Medical University, Borowska 213, 50-556 Wrocław, Poland
| | - Jan Magdalan
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (J.M.); (A.S.)
| | - Marta Misiuk-Hojło
- Ophthalmology Clinic, University Clinical Hospital, Borowska 213, 50-556 Wrocław, Poland; (K.C.); (S.Z.); (P.K.-B.); (M.M.-H.)
- Department of Ophthalmology, Wroclaw Medical University, Borowska 213, 50-556 Wrocław, Poland
| | - Tomasz Sozański
- Department of Preclinical Sciences, Pharmacology and Medical Diagnostics, Faculty of Medicine, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Adam Szeląg
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (J.M.); (A.S.)
| |
Collapse
|
3
|
Vejarano F, Alió J, Iribarren R. Review of Pharmacological Treatments for Presbyopia. CURRENT OPHTHALMOLOGY REPORTS 2023. [DOI: 10.1007/s40135-023-00307-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
4
|
Paidi SK, Zhang Q, Yang Y, Xia CH, Ji N, Gong X. Adaptive optical two-photon fluorescence microscopy probes cellular organization of ocular lenses in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.524320. [PMID: 36711806 PMCID: PMC9882239 DOI: 10.1101/2023.01.17.524320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The mammalian ocular lens is an avascular multicellular organ that grows continuously throughout life. Traditionally, its cellular organization is investigated using dissected lenses, which eliminates in vivo environmental and structural support. Here, we demonstrated that two-photon fluorescence microscopy (2PFM) can visualize lens cells in vivo. To maintain subcellular resolution at depth, we employed adaptive optics (AO) to correct aberrations due to ocular and lens tissues, which led to substantial signal and resolution improvements. Imaging lens cells up to 980 μm deep, we observed novel cellular organizations including suture-associated voids, enlarged vacuoles, and large cavities, contrary to the conventional view of a highly ordered organization. We tracked these features longitudinally over weeks and observed the incorporation of new cells during growth. Taken together, non-invasive longitudinal in vivo imaging of lens morphology using AO 2PFM will allow us to directly observe the development or alterations of lens cellular organization in living animals.
Collapse
Affiliation(s)
- Santosh Kumar Paidi
- School of Optometry, University of California, Berkeley, California 94720, USA
| | - Qinrong Zhang
- Department of Physics, University of California, Berkeley, California 94720, USA,Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Yuhan Yang
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - Chun-Hong Xia
- School of Optometry, University of California, Berkeley, California 94720, USA,Vision Science Program, University of California, Berkeley, California 94720, USA
| | - Na Ji
- Department of Physics, University of California, Berkeley, California 94720, USA,Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA,Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA,Corresponding authors: Xiaohua Gong () and Na Ji ()
| | - Xiaohua Gong
- School of Optometry, University of California, Berkeley, California 94720, USA,Vision Science Program, University of California, Berkeley, California 94720, USA,Corresponding authors: Xiaohua Gong () and Na Ji ()
| |
Collapse
|
5
|
Ben Moussa O, Talbi A, Poinard S, Garcin T, Gauthier AS, Thuret G, Gain P, Maurer A, Sedao X, Mauclair C. Characterization of Femtosecond Laser and Porcine Crystalline Lens Interactions by Optical Microscopy. MICROMACHINES 2022; 13:2128. [PMID: 36557426 PMCID: PMC9786683 DOI: 10.3390/mi13122128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The use of ultrafast laser pulses for eye anterior segment surgery has seen a tremendous growth of interest as the technique has revolutionized the field, from the treatment of myopia, hyperopia, and presbyopia in the cornea to laser-assisted cataract surgery of the crystalline lens. For the latter, a comprehensive understanding of the laser-tissue interaction has yet to be achieved, mainly because of the challenge of observing the interaction zone in situ with sufficient spatial and temporal resolution in the complex and multi-layered tissue of the crystalline lens. We report here on the dedicated characterization results of the laser-tissue interaction zone in the ex vivo porcine lens using three different methods: in situ and real-time microscopy, wide-field optical imaging, and phase-contrast microscopy of the histological cross sections. These complementary approaches together revealed new physical and biological consequences of laser irradiation: a low-energy interaction regime (pulse energy below ~1 µJ) with very limited cavitation effects and a stronger photo-disruption regime (pulse energy above 1 µJ) with a long cavitation duration from seconds to minutes, resulting in elongated spots. These advances in the understanding of the ultrafast laser's interactions with the lens are of the utmost importance for the preparation of the next-generation treatments that will be applied to the lens.
Collapse
Affiliation(s)
- Olfa Ben Moussa
- Laboratory Biology, Engineering and Imaging for Ophthalmology, BiiO, Faculty of Medicine, Health Innovation Campus, Jean Monnet University, 42000 Saint-Étienne, France
| | - Abderazek Talbi
- Laboratory Biology, Engineering and Imaging for Ophthalmology, BiiO, Faculty of Medicine, Health Innovation Campus, Jean Monnet University, 42000 Saint-Étienne, France
- Laboratoire Hubert Curien, UMR 5516 CNRS, Université Jean Monnet, 42000 Saint-Étienne, France
| | - Sylvain Poinard
- Laboratory Biology, Engineering and Imaging for Ophthalmology, BiiO, Faculty of Medicine, Health Innovation Campus, Jean Monnet University, 42000 Saint-Étienne, France
| | - Thibaud Garcin
- Laboratory Biology, Engineering and Imaging for Ophthalmology, BiiO, Faculty of Medicine, Health Innovation Campus, Jean Monnet University, 42000 Saint-Étienne, France
| | - Anne-Sophie Gauthier
- Laboratory Biology, Engineering and Imaging for Ophthalmology, BiiO, Faculty of Medicine, Health Innovation Campus, Jean Monnet University, 42000 Saint-Étienne, France
| | - Gilles Thuret
- Laboratory Biology, Engineering and Imaging for Ophthalmology, BiiO, Faculty of Medicine, Health Innovation Campus, Jean Monnet University, 42000 Saint-Étienne, France
| | - Philippe Gain
- Laboratory Biology, Engineering and Imaging for Ophthalmology, BiiO, Faculty of Medicine, Health Innovation Campus, Jean Monnet University, 42000 Saint-Étienne, France
| | | | - Xxx Sedao
- Laboratoire Hubert Curien, UMR 5516 CNRS, Université Jean Monnet, 42000 Saint-Étienne, France
| | - Cyril Mauclair
- Laboratoire Hubert Curien, UMR 5516 CNRS, Université Jean Monnet, 42000 Saint-Étienne, France
| |
Collapse
|
6
|
An AFM Approach Applied in a Study of α-Crystallin Membrane Association: New Insights into Lens Hardening and Presbyopia Development. MEMBRANES 2022; 12:membranes12050522. [PMID: 35629848 PMCID: PMC9146655 DOI: 10.3390/membranes12050522] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022]
Abstract
The lens of the eye loses elasticity with age, while α-crystallin association with the lens membrane increases with age. It is unclear whether there is any correlation between α-crystallin association with the lens membrane and loss in lens elasticity. This research investigated α-crystallin membrane association using atomic force microscopy (AFM) for the first time to study topographical images and mechanical properties (breakthrough force and membrane area compressibility modulus (KA), as measures of elasticity) of the membrane. α-Crystallin extracted from the bovine lens cortex was incubated with a supported lipid membrane (SLM) prepared on a flat mica surface. The AFM images showed the time-dependent interaction of α-crystallin with the SLM. Force spectroscopy revealed the presence of breakthrough events in the force curves obtained in the membrane regions where no α-crystallin was associated, which suggests that the membrane’s elasticity was maintained. The force curves in the α-crystallin submerged region and the close vicinity of the α-crystallin associated region in the membrane showed no breakthrough event within the defined peak force threshold, indicating loss of membrane elasticity. Our results showed that the association of α-crystallin with the membrane deteriorates membrane elasticity, providing new insights into understanding the molecular basis of lens hardening and presbyopia.
Collapse
|
7
|
Khadka NK, Mortimer MF, Marosvari M, Timsina R, Mainali L. Membrane elasticity modulated by cholesterol in model of porcine eye lens-lipid membrane. Exp Eye Res 2022; 220:109131. [PMID: 35636489 PMCID: PMC10131281 DOI: 10.1016/j.exer.2022.109131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/08/2022] [Accepted: 05/22/2022] [Indexed: 11/29/2022]
Abstract
Experimental evidence shows that the eye lens loses its elasticity dramatically with age. It has also been reported that the cholesterol (Chol) content in the eye lens fiber cell plasma membrane increases significantly with age. High Chol content leads to the formation of cholesterol bilayer domains (CBDs) in the lens membrane. The role of high Chol associated with lens elasticity is unclear. The purpose of this research is to investigate the membrane elasticity of the model of porcine lens-lipid (MPLL) membrane with increasing Chol content to elucidate the role of high Chol in lens membrane elasticity. In this study, we used atomic force microscopy (AFM) to study the mechanical properties (breakthrough force and area compressibility modulus (KA)) of the MPLL membrane with increasing Chol content where KA is the measure of membrane elasticity. We varied Chol concentration in Chol/MPLL membrane from 0 to ∼71 mol%. Supported Chol/MPLL membranes were prepared by fusion of small unilamellar vesicles (SUVs) on top of a flat mica surface. SUVs of the Chol/MPLL lipid mixture were prepared with the rapid solvent exchange method followed by probe-tip sonication. For the Chol/MPLL mixing ratio of 0, AFM image showed the formation of two distinct phases of the membrane, i.e., liquid-disordered phase (ld) and solid-ordered phase (so) membrane. However, with Chol/MPLL mixing ratio of 0.5 and above, only liquid-ordered phase (lo) membrane was formed. Also, two distinct breakthrough forces corresponding to ld and so were observed for Chol/MPLL mixing ratio of 0, whereas only one breakthrough force was observed for membranes with Chol/MPLL mixing ratio of 0.5 and above. No significant difference in the membrane surface roughness was measured with increasing Chol content for these membranes; however, breakthrough force and KA for lo membrane increased when Chol/MPLL mixing ratio was increased from 0.5 to 1. Interestingly above the Chol/MPLL mixing ratio of 1, both breakthrough force and KA decreased, indicating the formation of CBDs. Furthermore, these results showed that membrane elasticity increases at high Chol content, suggesting that high Chol content in lens membrane might be responsible for maintaining lens membrane elasticity.
Collapse
Affiliation(s)
- Nawal K Khadka
- Department of Physics, Boise State University, Boise, ID, USA
| | | | - Mason Marosvari
- Department of Physics, Boise State University, Boise, ID, USA
| | - Raju Timsina
- Department of Physics, Boise State University, Boise, ID, USA
| | - Laxman Mainali
- Department of Physics, Boise State University, Boise, ID, USA; Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, USA.
| |
Collapse
|
8
|
Wolffsohn JS, Dhallu S, Aujla M, Laughton D, Tempany K, Powell D, Gifford K, Gifford P, Wan K, Cho P, Stahl U, Woods J. International multi-centre study of potential benefits of ultraviolet radiation protection using contact lenses. Cont Lens Anterior Eye 2022; 45:101593. [DOI: 10.1016/j.clae.2022.101593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 11/03/2022]
|
9
|
Stopka W, Libby T, Lin S, Wang E, Xia CH, Gong X. Age-related changes of lens stiffness in wild-type and Cx46 knockout mice. Exp Eye Res 2021; 212:108777. [PMID: 34597677 PMCID: PMC10054276 DOI: 10.1016/j.exer.2021.108777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
We have investigated how connexin 46 (Cx46) regulates lens stiffness by studying different Cx46 knockout (Cx46KO) mice. A modified muscle lever system was used to determine the lens stiffness of wild-type (WT) and Cx46KO mice at the C57BL/6J (B6) and the 129SvJae (129) strain backgrounds according to total lens displacement at the point of maximum force when fresh lenses were compressed with a maximum of 2 mN of force. In comparison to B6-WT controls, young and old B6-Cx46KO lenses showed 23% and 28% reductions in lens displacement, respectively. Comparing to 129-WT controls, old 129-Cx46KO lenses showed 50% reduction in the lens displacement while young 129-Cx46KO lenses displayed similar displacement. Old B6-Cx46KO and old 129-Cx46KO lenses showed almost identical lens displacement, 128 μm versus 127 μm. Morphological data revealed unique changes of peripheral fiber cell shapes in young B6-WT lenses but not in young B6-Cx46KO, 129-WT and 129-Cx46KO lenses. This work reveals Cx46 deletion increases the lens stiffness in both young and old mice at B6 strain background but only in old mice at 129 strain background which contains intermediate filament CP49 gene deletion. Cx46 impairment increases old mouse lens stiffness and may contribute to the development of presbyopia.
Collapse
Affiliation(s)
- Wiktor Stopka
- UC Berkeley - UCSF Graduate Program in Bioengineering, University of California, Berkeley, CA, USA
| | - Tom Libby
- Center for Biological Inspiration in Education and Research (CiBER), University of California, Berkeley, CA, USA
| | - Stephanie Lin
- School of Optometry and Vision Science Program, University of California, Berkeley, CA, USA
| | - Eddie Wang
- School of Optometry and Vision Science Program, University of California, Berkeley, CA, USA
| | - Chun-Hong Xia
- School of Optometry and Vision Science Program, University of California, Berkeley, CA, USA
| | - Xiaohua Gong
- UC Berkeley - UCSF Graduate Program in Bioengineering, University of California, Berkeley, CA, USA; School of Optometry and Vision Science Program, University of California, Berkeley, CA, USA.
| |
Collapse
|
10
|
Timsina R, Mainali L. Association of Alpha-Crystallin with Fiber Cell Plasma Membrane of the Eye Lens Accompanied by Light Scattering and Cataract Formation. MEMBRANES 2021; 11:447. [PMID: 34203836 PMCID: PMC8232717 DOI: 10.3390/membranes11060447] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 02/04/2023]
Abstract
α-crystallin is a major protein found in the mammalian eye lens that works as a molecular chaperone by preventing the aggregation of proteins and providing tolerance to stress in the eye lens. These functions of α-crystallin are significant for maintaining lens transparency. However, with age and cataract formation, the concentration of α-crystallin in the eye lens cytoplasm decreases with a corresponding increase in the membrane-bound α-crystallin, accompanied by increased light scattering. The purpose of this review is to summarize previous and recent findings of the role of the: (1) lens membrane components, i.e., the major phospholipids (PLs) and sphingolipids, cholesterol (Chol), cholesterol bilayer domains (CBDs), and the integral membrane proteins aquaporin-0 (AQP0; formally MIP26) and connexins, and (2) α-crystallin mutations and post-translational modifications (PTMs) in the association of α-crystallin to the eye lens's fiber cell plasma membrane, providing thorough insights into a molecular basis of such an association. Furthermore, this review highlights the current knowledge and need for further studies to understand the fundamental molecular processes involved in the association of α-crystallin to the lens membrane, potentially leading to new avenues for preventing cataract formation and progression.
Collapse
Affiliation(s)
- Raju Timsina
- Department of Physics, Boise State University, Boise, ID 83725, USA;
| | - Laxman Mainali
- Department of Physics, Boise State University, Boise, ID 83725, USA;
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA
| |
Collapse
|
11
|
Khadka NK, Timsina R, Rowe E, O'Dell M, Mainali L. Mechanical properties of the high cholesterol-containing membrane: An AFM study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183625. [PMID: 33891910 DOI: 10.1016/j.bbamem.2021.183625] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/02/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022]
Abstract
Cholesterol (Chol) content in most cellular membranes does not exceed 50 mol%, only in the eye lens's fiber cell plasma membrane, its content surpasses 50 mol%. At this high concentration, Chol induces the formation of pure cholesterol bilayer domains (CBDs), which coexist with the surrounding phospholipid-cholesterol domain (PCD). Here, we applied atomic force microscopy to study the mechanical properties of Chol/phosphatidylcholine membranes where the Chol content was increased from 0 to 75 mol%, relevant to eye lens membranes. The surface roughness of the membrane decreases with an increase of Chol content until it reaches 60 mol%, and roughness increases with a further increment in Chol content. We propose that the increased roughness at higher Chol content results from the formation of CBDs. Force spectroscopy on the membrane with Chol content of 50 mol% or lesser exhibited single breakthrough events, whereas two distinct puncture events were observed for membranes with the Chol content greater than 50 mol%. We propose that the first puncture force corresponds to the membranes containing coexisting PCD and CBDs. In contrast, the second puncture force corresponds to the "CBD water pocket" formed due to coexisting CBDs and PCD. Membrane area compressibility modulus (KA) increases with an increase in Chol content until it reaches 60 mol%, and with further increment in Chol content, CBDs are formed, and KA starts to decrease. Our results report the increase in membrane roughness and decrease KA at very high Chol content (>60 mol%) relevant to the eye lens membrane.
Collapse
Affiliation(s)
- Nawal K Khadka
- Department of Physics, Boise State University, Boise, ID, USA
| | - Raju Timsina
- Department of Physics, Boise State University, Boise, ID, USA
| | - Erica Rowe
- Department of Biology, Boise State University, Boise, ID, USA
| | - Matthew O'Dell
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, USA
| | - Laxman Mainali
- Department of Physics, Boise State University, Boise, ID, USA; Biomolecular Sciences Graduate Program, Boise State University, Boise, ID, USA.
| |
Collapse
|
12
|
Nandi SK, Rankenberg J, Glomb MA, Nagaraj RH. Transient elevation of temperature promotes cross-linking of α-crystallin-client proteins through formation of advanced glycation endproducts: A potential role in presbyopia and cataracts. Biochem Biophys Res Commun 2020; 533:1352-1358. [PMID: 33081971 DOI: 10.1016/j.bbrc.2020.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/09/2020] [Indexed: 01/02/2023]
Abstract
The chaperone activity of α-crystallin is important for maintaining the transparency of the human lens. αB-crystallin (αBC) is a long-lived protein in the lens that accumulates chemical modifications during aging. The formation of advanced glycation end products (AGEs) through glycation is one such modification. αBC is a small heat shock protein that exhibits chaperone activity. We have previously shown that αBC-client protein complexes can undergo AGE-mediated interprotein cross-linking. Here, we demonstrate that short-term (1 h) exposure to elevated temperatures and methylglyoxal (MGO) during the chaperoning of client proteins by αBC promotes AGE-mediated interprotein cross-linking. Liquid chromatography/mass spectrometry (LC-MS/MS) analyses revealed the rapid formation of AGEs by MGO. Interestingly, we found that despite protein cross-linking, the chaperone activity of αBC increased during the transient elevation of temperature in the presence of MGO. Together, these results imply that transient and subtle elevation of temperature in the lens of the eye can promote protein cross-linking through AGEs, and if this phenomenon recurs over a period of many years, it could lead to early onset of presbyopia and age-related cataracts.
Collapse
Affiliation(s)
- Sandip K Nandi
- Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Johanna Rankenberg
- Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Marcus A Glomb
- Institute of Chemistry-Food Chemistry, Martin-Luther-University Halle-Wittenberg, 06120, Halle/Saale, Germany
| | - Ram H Nagaraj
- Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA; Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
13
|
Greiner JV, Glonek T. Hydrotropic function of ATP in the crystalline lens. Exp Eye Res 2019; 190:107862. [PMID: 31669043 DOI: 10.1016/j.exer.2019.107862] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/09/2019] [Accepted: 10/23/2019] [Indexed: 12/28/2022]
Abstract
The hypothesis proposed herein is presented to explain the unexpectedly high concentration of ATP and provide evidence to support its hydrotropic function in the crystalline lens determined using 31P NMR. The lens, historically considered to be a metabolically quiescent organ, has the requisite machinery to synthesize ATP, such that the homeostatic level is maintained at about 3 mM. This relatively high concentration of ATP has been found to be consistent among multiple mammalian species including humans. This millimolar quantity is many times greater than the micromolar amounts required for the other known functions of ATP. The recent postulation that ATP at millimolar concentrations functions as a hydrotrope in various cell/tissue homogenates preventing protein aggregation coupled with observations presented herein, provide support for extending the hypothesis that ATP functions as a hydrotrope not only in homogenates but in an intact functioning organ, the crystalline lens. Concentrations of ATP of this magnitude are hypothesized to be required to maintain protein solubility and effectively prevent protein aggregation. This concept is important considering protein aggregation is the etiology for age-related cataractogenesis. ATP is a common ubiquitous intracellular molecule possessing the requisite hydrotropic properties for maintaining intracellular proteins in a fluid, non-aggregated state. It is proposed that the amphiphilic ATP molecule shields the hydrophobic regions on intralenticular fiber cell protein molecules and provides a hydrophilic interfacial surface comprised of the ATP negatively charged triphosphate side chain. Evidence is presented that this side chain is exposed to and has been reported to organize intracellular interstitial water to form an interfacial rheologically dynamic water layer. Such organization of water is substantiated with the effect of deuterium oxide (heavy water) on ATP line widths of the side chain phosphates measured ex vivo by 31P NMR. A novel model is presented to propose how this water layer separates adjacent lens fiber cell proteins, keeping them from aggregating. This hypothesis proposes that ATP can prevent protein aggregation in normal intact lenses, and with declining concentrations can be related to the disease process in age-related cataractogenesis, an affliction that affects every older human being.
Collapse
Affiliation(s)
- Jack V Greiner
- The Schepens Eye Research Institute of Massachusetts Eye & Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA. http://
| | - Thomas Glonek
- Magnetic Resonance Laboratory, Midwestern University, Downers Grove, IL, USA
| |
Collapse
|
14
|
Han X, Lee PY, Liu C, He M. Distribution and progression of add power among people in need of near correction. Clin Exp Ophthalmol 2018; 46:882-887. [PMID: 29663613 DOI: 10.1111/ceo.13301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 12/01/2022]
Abstract
IMPORTANCE This study helps to better understand the need and trend in presbyopic add power in the aging society. BACKGROUND Distribution and progression of presbyopic add power in East Asian population is largely unknown. DESIGN Prospective cohort study. PARTICIPANTS About 303 participants from a population-based study of residents aged 35 years and older in Guangzhou, China. METHODS Visual acuity (VA) test and non-cycloplegic automated refraction were performed at baseline in 2008 and the 6-year follow-up per standardized protocol. Participants with presenting near VA ≤ 20/40 underwent distance subjective refraction and add power measurement by increasing plus lens at a standard distance of 40 cm at each visit. MAIN OUTCOME MEASURES Add power at baseline and follow-ups. RESULTS Mean (standard deviation) age of the study participants was 57.6 (11.1) years and 50.2% were female. The mean add power at baseline was 1.43, 1.73, 2.03 and 2.20 diopters (D) for individuals in the age groups of 35-44, 45-54, 55-64 and 65+ years, respectively. Participants with older age and lower educational level had significantly higher add power requirements (P < 0.001). The overall 6-year increase in add power was 0.15D (95% CI: 0.06 to 0.25), and was smaller in myopic subjects (P = 0.03). Baseline age and add power, but not changes in biometric factors, were associated with longitudinal change in add power (P < 0.001). CONCLUSIONS AND RELEVANCE Distribution and progression of add power in Chinese was different from that previously suggested by Caucasian studies. More studies are needed to establish up-to-date age-related add power prescription norms for population of different ethnicities.
Collapse
Affiliation(s)
- Xiaotong Han
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China.,Centre for Eye Research Australia, Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Southeastern Australia, Australia
| | - Pei Ying Lee
- Centre for Eye Research Australia, Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Southeastern Australia, Australia
| | - Chi Liu
- Guangzhou Healgoo Interactive Medical Technology Co. Ltd., Guangzhou, China
| | - Mingguang He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China.,Centre for Eye Research Australia, Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Southeastern Australia, Australia
| |
Collapse
|
15
|
Han X, Lee PY, Keel S, He M. Prevalence and incidence of presbyopia in urban Southern China. Br J Ophthalmol 2018; 102:1538-1542. [PMID: 29367202 DOI: 10.1136/bjophthalmol-2017-311073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/29/2017] [Accepted: 01/10/2018] [Indexed: 11/03/2022]
Abstract
AIMS To investigate the prevalence and incidence of presbyopia in an urban Chinese population. METHODS 1817 subjects aged ≥35 years were identified by random cluster sampling in Yuexiu District, Guangzhou, China, at baseline in 2008, and all were invited for the follow-up examination in 2014. Distance and near visual acuity (VA) tests, as well as non-cycloplegic automated refraction were performed at each examination as per standardised protocol. Participants with presenting near VA ≤20/40 were further tested with add power at a standard distance of 40 cm to obtain their best-corrected near VA. Functional presbyopia was defined as near VA under presenting distance refraction correction of <20/50 and could be improved by at least one line with add power. RESULTS A total of 1191 (83.5% of the 2014 follow-up) participants were included in the current analysis with a mean (SD) age of 50.4 (9.7) years, and 52.9% were female. Prevalence of functional presbyopia at baseline was 25.2% (95% CI 21.5 to 28.9) and the 6-year incidence was 42.8% (95% CI 39.4 to 50.1). Older and more hyperopic subjects had both higher prevalence and incidence of presbyopia (P<0.001). Average presbyopic correction coverage (PCC) was 87.7% at baseline and was significantly lower in myopic participants (P=0.006). CONCLUSIONS Prevalence of functional presbyopia in urban China is relatively lower along with a higher PCC compared with previous population-based rural cohorts. We identified a high presbyopia incidence, and further studies are needed to understand longitudinal presbyopia progression as well as the urban-rural gap in presbyopia to throw light on future strategic planning.
Collapse
Affiliation(s)
- Xiaotong Han
- Department of Preventive Ophthalmology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong, China.,Department of Surgery (Ophthalmology), Centre for Eye Research Australia, University of Melbourne, Melbourne, Australia
| | - Pei Ying Lee
- Department of Surgery (Ophthalmology), Centre for Eye Research Australia, University of Melbourne, Melbourne, Australia
| | - Stuart Keel
- Department of Surgery (Ophthalmology), Centre for Eye Research Australia, University of Melbourne, Melbourne, Australia
| | - Mingguang He
- Department of Preventive Ophthalmology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong, China.,Department of Surgery (Ophthalmology), Centre for Eye Research Australia, University of Melbourne, Melbourne, Australia
| |
Collapse
|
16
|
Progression of Near Vision Loss and Incidence of Near Vision Impairment in an Adult Chinese Population. Ophthalmology 2017; 124:734-742. [PMID: 28336059 DOI: 10.1016/j.ophtha.2017.01.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/04/2016] [Accepted: 01/09/2017] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To investigate the progression of near vision loss and the cumulative incidence of near vision impairment (NVI) 6 years after initial examination of an urban Chinese cohort. DESIGN Population-based, prospective cohort study. PARTICIPANTS People aged ≥35 years examined at baseline in the Yuexiu District of Guangzhou, China. METHODS Participants examined at baseline were invited for 2-year and 6-year follow-up examinations in 2010 and 2014, respectively. Examinations included noncycloplegic autorefraction and binocular near visual acuity (NVA) with and without current near correction measured at 40 cm using a LogMAR ETDRS near vision tumbling E chart. Those with uncorrected binocular NVA (UCNVA) ≤20/40 underwent subjective refraction to obtain best-corrected binocular NVA (BCNVA). MAIN OUTCOME MEASURES Change in UCNVA between baseline and 2014 follow-up examinations and the 6-year cumulative incidence of vision impairment based on 3 definitions: NVA ≤20/40, ≤20/50, and ≤20/63. RESULTS Among the 1817 baseline participants, 1595 (87.8%) were reexamined in 2010 and 1427 (78.5%) in 2014. Mean vision loss between baseline and the 2014 follow-up was 1.54 (±1.74) lines of UCNVA. Vision loss was associated with age 80 years or older, less education, and better baseline UCNVA. The 6-year cumulative incidence of uncorrected binocular NVI (UCNVI) across the 3 vision impairment definitions was 55.2% (95% confidence interval [CI], 46.1%-64.3%), 51.3% (95% CI, 44.0%-58.7%), and 42.4% (95% CI, 35.5%-49.3%), respectively. With best-corrected binocular NVI (BCNVI), incidence was 6.89% (95% CI, 4.28%-9.50%), 5.17% (95% CI, 2.89%-7.44%), and 2.62% (95% CI, 1.11%-4.12%), respectively. A higher incidence of UCNVI was associated with worse baseline UCNVA for all 3 impairment definitions. Similarly, incidence of BCNVI was associated with worse baseline BCNVA, but also with older age and education at the primary level or less. Gender was not significant for either UCNVI or BCNVI. CONCLUSIONS Approximately half of those aged 35 years or older develop UCNVI in 6 years, the overwhelming majority of whom can be corrected with spectacles. Cost-effective strategies to provide spectacles to this at-risk population remains an issue requiring further study.
Collapse
|
17
|
Subczynski WK, Mainali L, Raguz M, O'Brien WJ. Organization of lipids in fiber-cell plasma membranes of the eye lens. Exp Eye Res 2016; 156:79-86. [PMID: 26988627 DOI: 10.1016/j.exer.2016.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/02/2016] [Accepted: 03/07/2016] [Indexed: 11/15/2022]
Abstract
The plasma membrane together with the cytoskeleton forms the only supramolecular structure of the matured fiber cell which accounts for mostly all fiber cell lipids. The purpose of this review is to inform researchers about the importance of the lipid bilayer portion of the lens fiber cell plasma membranes in the maintaining lens homeostasis, and thus protecting against cataract development.
Collapse
Affiliation(s)
- Witold K Subczynski
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Laxman Mainali
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Marija Raguz
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Medical Physics and Biophysics, School of Medicine, University of Split, Split, Croatia
| | - William J O'Brien
- Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
18
|
Datiles MB, Ansari RR, Yoshida J, Brown H, Zambrano AI, Tian J, Vitale S, Zigler JS, Ferris FL, West SK, Stark WJ. Longitudinal Study of Age-Related Cataract Using Dynamic Light Scattering: Loss of α-Crystallin Leads to Nuclear Cataract Development. Ophthalmology 2016; 123:248-254. [PMID: 26545319 PMCID: PMC4724511 DOI: 10.1016/j.ophtha.2015.10.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 10/04/2015] [Accepted: 10/06/2015] [Indexed: 01/14/2023] Open
Abstract
PURPOSE To conduct a longitudinal study on age-related nuclear cataracts using dynamic light scattering (DLS) to determine if cataract progression is associated with loss of the unbound form of the lens molecular chaperone protein, α-crystallin. DESIGN Natural history and cohort study. PARTICIPANTS Patients 30 years of age or older of either gender seeking treatment at the Wilmer Eye Institute Cornea-Cataract Department. METHODS All patients underwent a comprehensive dilated eye examination every 6 months, including slit-lamp grading of their lenses using the Age-Related Eye Disease Study (AREDS) clinical lens grading system and obtaining an estimate of unbound α-crystallin level in the nucleus, the α-crystallin index (ACI), using the National Aeronautics and Space Administration-National Eye Institute DLS device. We used a random effects statistical model to examine the relationship of lens opacity changes over time with ACI changes. MAIN OUTCOME MEASURES α-Crystallin Index (ACI) and AREDS nuclear cataract grade. RESULTS Forty-five patients (66 eyes) 34 to 79 years of age with AREDS nuclear lens grades of 0 to 3.0 were followed up every 6 months for a mean of 19 months (range, 6-36 months). We found that lenses with the lowest baseline levels of ACI had the most rapid progression of cataracts, whereas lenses with higher ACI at baseline had no or slower cataract progression. Lenses that lost α-crystallin at the highest rates during the study also had faster progression of nuclear cataracts than lenses with a slower rate of ACI loss. Kaplan-Meier survival curves showed that lenses with the lowest initial ACI had the highest risk of undergoing cataract surgery. CONCLUSIONS This longitudinal study corroborates our previous cross-sectional study finding that higher levels of unbound α-crystallin as assessed by ACI are associated with lower risk of cataract formation and that loss of ACI over time is associated with cataract formation and progression. This study suggested that assessment of ACI with the DLS device could be used as a surrogate for lens opacity risk in clinical studies, and for assessing nuclear cataract events in studies where cataract development may be a side effect of a drug or device.
Collapse
Affiliation(s)
- Manuel B Datiles
- National Eye Institute, National Institutes of Health, Bethesda, Maryland.
| | - Rafat R Ansari
- National Aeronautics and Space Administration-John H. Glenn Research Center, Cleveland, Ohio
| | - Junko Yoshida
- The Wilmer Eye Institute, Johns Hopkins University Hospital, Baltimore, Maryland; Department of Ophthalmology, University of Tokyo, Tokyo, Japan
| | - Holly Brown
- The Wilmer Eye Institute, Johns Hopkins University Hospital, Baltimore, Maryland
| | - Andrea I Zambrano
- The Wilmer Eye Institute, Johns Hopkins University Hospital, Baltimore, Maryland
| | - Jing Tian
- The Wilmer Eye Institute, Johns Hopkins University Hospital, Baltimore, Maryland
| | - Susan Vitale
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - J Samuel Zigler
- The Wilmer Eye Institute, Johns Hopkins University Hospital, Baltimore, Maryland
| | - Frederick L Ferris
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Sheila K West
- The Wilmer Eye Institute, Johns Hopkins University Hospital, Baltimore, Maryland
| | - Walter J Stark
- The Wilmer Eye Institute, Johns Hopkins University Hospital, Baltimore, Maryland
| |
Collapse
|
19
|
Reilly MA, Martius P, Kumar S, Burd HJ, Stachs O. The mechanical response of the porcine lens to a spinning test. Z Med Phys 2016; 26:127-35. [PMID: 26777319 DOI: 10.1016/j.zemedi.2015.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 12/08/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
Abstract
The pig lens has been used as a model for presbyopia as pigs lack accommodative ability. Previous studies using microindentation have indicated that the shear modulus distribution is qualitatively similar to that of the aged human lens and that the lens does not alter its refractive power due to equatorial stretching. A lens spinning test was used to determine whether prior lens stiffness data obtained from a sectioned porcine lens were reliable and whether the testing conditions significantly influence the lens' mechanical properties. The elastic modulus distribution determined for fresh lenses closely matched that measured previously using a microindentation test. Confocal scanning laser microscopy was used to evaluate changes to the lens' structure arising from mechanical stress and following storage for up to one week.
Collapse
Affiliation(s)
- Matthew A Reilly
- Department of Biomedical Engineering, Ohio State University, 270 Bevis Hall, 1080 Carmack Rd, Columbus, OH 43210, United States.
| | - Philipp Martius
- Department of Ophthalmology, University of Rostock, Doberaner Strasse 140, 18057 Rostock, Germany
| | - Saurav Kumar
- Department of Biomedical Engineering, Ohio State University, 270 Bevis Hall, 1080 Carmack Rd, Columbus, OH 43210, United States
| | - Harvey J Burd
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom
| | - Oliver Stachs
- Department of Ophthalmology, University of Rostock, Doberaner Strasse 140, 18057 Rostock, Germany
| |
Collapse
|
20
|
Affiliation(s)
- Roy A Quinlan
- Biophysical Sciences Institute, School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, UK.
| |
Collapse
|
21
|
Iribarren R. Crystalline lens and refractive development. Prog Retin Eye Res 2015; 47:86-106. [PMID: 25683786 DOI: 10.1016/j.preteyeres.2015.02.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 01/30/2015] [Accepted: 02/02/2015] [Indexed: 10/24/2022]
Abstract
Individual refractive errors usually change along lifespan. Most children are hyperopic in early life. This hyperopia is usually lost during growth years, leading to emmetropia in adults, but myopia also develops in children during school years or during early adult life. Those subjects who remain emmetropic are prone to have hyperopic shifts in middle life. And even later, at older ages, myopic shifts are developed with nuclear cataract. The eye grows from 15 mm in premature newborns to approximately 24 mm in early adult years, but, in most cases, refractions are maintained stable in a clustered distribution. This growth in axial length would represent a refractive change of more than 40 diopters, which is compensated by changes in corneal and lens powers. The process which maintains the balance between the ocular components of refraction during growth is still under study. As the lens power cannot be measured in vivo, but can only be calculated based on the other ocular components, there have not been many studies of lens power in humans. Yet, recent studies have confirmed that the lens loses power during growth in children, and that hyperopic and myopic shifts in adulthood may be also produced by changes in the lens. These studies in children and adults give a picture of the changing power of the lens along lifespan. Other recent studies about the growth of the lens and the complexity of its internal structure give clues about how these changes in lens power are produced along life.
Collapse
Affiliation(s)
- Rafael Iribarren
- Department of Ophthalmology, San Luis Medical Center, Buenos Aires, Argentina.
| |
Collapse
|
22
|
Hammond BR, Johnson BA, George ER. Oxidative photodegradation of ocular tissues: beneficial effects of filtering and exogenous antioxidants. Exp Eye Res 2014; 129:135-50. [PMID: 25236792 DOI: 10.1016/j.exer.2014.09.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/11/2014] [Accepted: 09/13/2014] [Indexed: 01/17/2023]
Abstract
The fact that light is necessary for life is generally accepted as an axiom. The extent to which light interacts and influences human biology, however, is often not fully appreciated. Exposure to sunlight, for instance, can both promote and degrade human health. There is now general scientific consensus that, although the eye evolved to respond to light, it is also damaged by excessive exposure. Light-mediated ocular damage is involved in the pathophysiology of many common forms of blindness. The type of ocular tissue damage induced by light exposure depends on the extent of exposure and wavelength. The tissues of the lens, cornea, and retina contain specific chemical moieties that have been proven to exhibit light-mediated oxidative degradation. Proteins and lipids present in the cornea, lens, and retina, meet all of the physical requirements known to initiate the process of oxidative photodegradation upon exposure to solar radiation. As such, different mechanisms have evolved in the lens, cornea, and retina to ameliorate such light-mediated oxidative damage. It appears, however, that such mechanisms are ill-matched to handle modern conditions: namely, poor diet and longer life-spans (and the degenerative diseases that accompany them). Hence, steps must be taken to protect the eye from the damaging effects of light. Preventative measures include minimizing actinic light exposure, providing exogenous filtering (e.g., through the use of protective lenses), and enhancing antioxidant defenses (e.g., through increased dietary intake of antioxidants). These strategies may yield long-term benefits in terms of reducing oxidative photodegradation of the ocular tissues.
Collapse
Affiliation(s)
- Billy R Hammond
- Vision Sciences Laboratory, University of Georgia, Athens, GA 30602-3013, USA.
| | - Bart A Johnson
- Johnson & Johnson Vision Care, Inc., 7500 Centurion Parkway, R&D 3rd Floor W3A, Jacksonville, FL 33256, USA
| | - Eric R George
- Johnson & Johnson Vision Care, Inc., 7500 Centurion Parkway, R&D 3rd Floor W3A, Jacksonville, FL 33256, USA.
| |
Collapse
|
23
|
Stem Cells and the Ocular Lens: Implications for Cataract Research and Therapy. STEM CELL BIOLOGY AND REGENERATIVE MEDICINE 2014. [DOI: 10.1007/978-1-4939-0787-8_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Behar-Cohen F, Baillet G, de Ayguavives T, Garcia PO, Krutmann J, Peña-García P, Reme C, Wolffsohn JS. Ultraviolet damage to the eye revisited: eye-sun protection factor (E-SPF®), a new ultraviolet protection label for eyewear. Clin Ophthalmol 2013; 8:87-104. [PMID: 24379652 PMCID: PMC3872277 DOI: 10.2147/opth.s46189] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Ultraviolet (UV) radiation potentially damages the skin, the immune system, and structures of the eye. A useful UV sun protection for the skin has been established. Since a remarkable body of evidence shows an association between UV radiation and damage to structures of the eye, eye protection is important, but a reliable and practical tool to assess and compare the UV-protective properties of lenses has been lacking. Among the general lay public, misconceptions on eye-sun protection have been identified. For example, sun protection is mainly ascribed to sunglasses, but less so to clear lenses. Skin malignancies in the periorbital region are frequent, but usual topical skin protection does not include the lids. Recent research utilized exact dosimetry and demonstrated relevant differences in UV burden to the eye and skin at a given ambient irradiation. Chronic UV effects on the cornea and lens are cumulative, so effective UV protection of the eyes is important for all age groups and should be used systematically. Protection of children's eyes is especially important, because UV transmittance is higher at a very young age, allowing higher levels of UV radiation to reach the crystalline lens and even the retina. Sunglasses as well as clear lenses (plano and prescription) effectively reduce transmittance of UV radiation. However, an important share of the UV burden to the eye is explained by back reflection of radiation from lenses to the eye. UV radiation incident from an angle of 135°-150° behind a lens wearer is reflected from the back side of lenses. The usual antireflective coatings considerably increase reflection of UV radiation. To provide reliable labeling of the protective potential of lenses, an eye-sun protection factor (E-SPF®) has been developed. It integrates UV transmission as well as UV reflectance of lenses. The E-SPF® compares well with established skin-sun protection factors and provides clear messages to eye health care providers and to lay consumers.
Collapse
Affiliation(s)
- Francine Behar-Cohen
- French Institute of Health and Medical Research, Team 17, Centre de Recherche des Cordeliers, France
| | - Gilles Baillet
- Research and Development Center, Essilor International, Saint Maur des Fossés, France
| | - Tito de Ayguavives
- Research and Development Center, Essilor International, Saint Maur des Fossés, France
| | | | - Jean Krutmann
- IUF Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Pablo Peña-García
- Department of Research, Fundacion Jorge Alio, Alicante, Spain
- Division of Ophthalmology, University Miguel Hernández, Alicante, Spain
| | - Charlotte Reme
- Laboratory of Retinal Cell Biology, Department of Ophthalmology, University of Zurich, Switzerland
| | - James S Wolffsohn
- Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| |
Collapse
|
25
|
Al-Ubaidi MR, Naash MI, Conley SM. A perspective on the role of the extracellular matrix in progressive retinal degenerative disorders. Invest Ophthalmol Vis Sci 2013; 54:8119-24. [PMID: 24346621 DOI: 10.1167/iovs.13-13536] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Progressive inherited retinal degenerative disorders (PIRDDs) are the leading cause of blindness in developed countries, with AMD and RP constituting the majority of PIRDDs. Currently, over 8 million Americans have PIRDDs, and that number is estimated to drastically increase by the end of this decade. Although a mutant protein is expressed starting early during retinal development in patients with PIRDDs, symptoms of retinal degeneration do not manifest until much later. Historically, research has focused on understanding the role a mutation has in the function of a protein and what role the mutant protein has in the disease process. However, it remains unknown why the disease, irrespective of the mutation, manifests clinically much later in life, while cellular indicators of disease (e.g., accumulation of toxic protein products and cell death) occur throughout early and middle life. Herein, we propose that there exists a time point at which the degenerative process is accelerated, leading to the appearance of clinical symptoms. This point is defined by structural disruptions of the extracellular matrix (ECM). Death of a critical number of ECM-maintaining mutant protein-expressing retinal cells contributes to that break point in the degenerative process. Therefore, it is important to understand the changes occurring at the ECM during PIRDDs and to take that into account when therapeutic approaches are designed.
Collapse
Affiliation(s)
- Muayyad R Al-Ubaidi
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | | | | |
Collapse
|
26
|
Ehrlich JR, Laoh A, Kourgialis N, Prasetyanti W, Zakiyah R, Faillace S, Friedman DS. Uncorrected refractive error and presbyopia among junior high school teachers in Jakarta, Indonesia. Ophthalmic Epidemiol 2013; 20:369-74. [PMID: 24168702 DOI: 10.3109/09286586.2013.848456] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To report on the frequency of observed refractive and accommodative errors among junior high school teachers in Jakarta, Indonesia, who participated in a Helen Keller International screening, refraction and spectacle distribution program. METHODS A total of 965 teachers from 19 schools were eligible for screening; those with uncorrected distance visual acuity (VA) ≤ 6/12-3 and teachers ≥ 35 years old with uncorrected end-point print size >Jaeger (J) 6 were referred. Autorefraction and subjective refraction were performed for teachers with confirmed decreased VA. Refractive error was considered present if sphere ≤-0.75 diopters (D), sphere ≥+0.25D or cylinder ≤-0.50 D resulted in ≥ 2 lines of improvement in VA. Presbyopia was considered present if an end-point print size >J6 improved by ≥ 1 optotype with the use of a lens ≥+1.00 D. RESULTS Overall, 866 teachers were screened (89.7% of those eligible) with complete screening data available for 858 (99.0%), among whom 762 failed screening. Distance refraction data were available for 666 of 762 (87.4%) and near refraction data for 520 of 686 (75.8%) teachers who failed screening. Of those screened, 76.2 ± 9.0% of teachers had refractive and/or accommodative error and 57.1 ± 7.6% had uncorrected refractive and/or accommodative error. Overall and uncorrected distance refractive error affected 44.2 ± 3.7% and 36.0 ± 3.6%, respectively; overall and uncorrected presbyopia affected 66.4 ± 8.1% and 41.0 ± 6.6%, respectively. CONCLUSION As defined in this program, refractive and accommodative errors were common among teachers in Jakarta.
Collapse
|
27
|
Abstract
Recent discoveries suggest that aging is neither driven by accumulation of molecular damage of any cause, nor by random damage of any kind. Some predictions of a new theory, quasi-programmed hyperfunction, have already been confirmed and a clinically-available drug slows aging and delays diseases in animals. The relationship between diseases and aging becomes easily apparent. Yet, the essence of aging turns out to be so startling that the theory cannot be instantly accepted and any possible arguments are raised for its disposal. I discuss that these arguments actually support a new theory. Are any questions remaining? And might accumulation of molecular damage still play a peculiar role in aging?
Collapse
Affiliation(s)
- Mikhail V Blagosklonny
- Department of Cell Stress Biology, Roswell Park Cancer Institute, BLSC, L3-312, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| |
Collapse
|
28
|
The eye as a model of ageing in translational research--molecular, epigenetic and clinical aspects. Ageing Res Rev 2013; 12:490-508. [PMID: 23274270 DOI: 10.1016/j.arr.2012.11.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 11/16/2012] [Accepted: 11/19/2012] [Indexed: 12/13/2022]
Abstract
The eye and visual system are valuable in many areas of translational research such as stem cell therapy, transplantation research and gene therapy. Changes in many ocular tissues can be measured directly, easily and objectively in vivo (e.g. lens transparency; retinal blood vessel calibre; corneal endothelial cell counts) and so the eye may also be a uniquely useful site as a model of ageing. This review details cellular, molecular and epigenetic mechanisms related to ageing within the eye, and describes ocular parameters that can be directly measured clinically and which might be of value in ageing research as the translational "window to the rest of the body". The eye is likely to provide a valuable model for validating biomarkers of ageing at molecular, epigenetic, cellular and clinical levels. A research agenda to definitively establish the relationship between biomarkers of ageing and ocular parameters is proposed.
Collapse
|
29
|
Hooi MYS, Raftery MJ, Truscott RJW. Accelerated aging of Asp 58 in αA crystallin and human cataract formation. Exp Eye Res 2012; 106:34-9. [PMID: 23142040 DOI: 10.1016/j.exer.2012.10.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/24/2012] [Accepted: 10/25/2012] [Indexed: 01/10/2023]
Abstract
Racemisation of amino acids is one of the most abundant modifications in long-lived proteins. In this study racemisation of Asp 58 in the small heat shock protein, αA crystallin, was investigated. In normal human lenses, levels of l-isoAsp, d-isoAsp and d-Asp increased with age, such that by age 70 they accounted for approximately half of the total Asp at this site. Levels of d-isoAsp were significantly higher in all cataract lenses than age-matched normal lenses. The introduction of d-isoAsp in αA crystallin could therefore be associated with the development of cataract. Its more rapid formation in cataract lenses may represent an example of accelerated protein aging leading to a human age-related disease.
Collapse
Affiliation(s)
- Michelle Y S Hooi
- Save Sight Institute, Sydney Eye Hospital, University of Sydney, 8 Macquarie Street, Sydney, New South Wales 2000, Australia
| | | | | |
Collapse
|
30
|
Sousounis K, Tsonis PA. Patterns of gene expression in microarrays and expressed sequence tags from normal and cataractous lenses. Hum Genomics 2012; 6:14. [PMID: 23244575 PMCID: PMC3563465 DOI: 10.1186/1479-7364-6-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 05/14/2012] [Indexed: 11/30/2022] Open
Abstract
In this contribution, we have examined the patterns of gene expression in normal and cataractous lenses as presented in five different papers using microarrays and expressed sequence tags. The purpose was to evaluate unique and common patterns of gene expression during development, aging and cataracts.
Collapse
Affiliation(s)
- Konstantinos Sousounis
- Department of Biology and Center for Tissue Regeneration and Engineering, University of Dayton, Dayton, OH 45469-2320, USA
| | | |
Collapse
|
31
|
Hughes JR, Deeley JM, Blanksby SJ, Leisch F, Ellis SR, Truscott RJW, Mitchell TW. Instability of the cellular lipidome with age. AGE (DORDRECHT, NETHERLANDS) 2012; 34:935-47. [PMID: 21894448 PMCID: PMC3682067 DOI: 10.1007/s11357-011-9293-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 07/25/2011] [Indexed: 05/31/2023]
Abstract
The human lens nucleus is formed in utero, and from birth onwards, there appears to be no significant turnover of intracellular proteins or membrane components. Since, in adults, this region also lacks active enzymes, it offers the opportunity to examine the intrinsic stability of macromolecules under physiological conditions. Fifty seven human lenses, ranging in age from 12 to 82 years, were dissected into nucleus and cortex, and the nuclear lipids analyzed by electrospray ionization tandem mass spectrometry. In the first four decades of life, glycerophospholipids (with the exception of lysophosphatidylethanolamines) declined rapidly, such that by age 40, their content became negligible. In contrast the level of ceramides and dihydroceramides, which were undetectable prior to age 30, increased approximately 100-fold. The concentration of sphingomyelins and dihydrosphingomyelins remained unchanged over the whole life span. As a consequence of this marked alteration in composition, the properties of fiber cell membranes in the centre of young lenses are likely to be very different from those in older lenses. Interestingly, the identification of age 40 years as a time of transition in the lipid composition of the nucleus coincides with previously reported macroscopic changes in lens properties (e.g., a massive age-related increase in lens stiffness) and related pathologies such as presbyopia. The underlying reasons for the dramatic change in the lipid profile of the human lens with age are not known, but are most likely linked to the stability of some membrane lipids in a physiological environment.
Collapse
Affiliation(s)
- Jessica R. Hughes
- />Graduate School of Medicine, University of Wollongong, Wollongong, 2522 NSW Australia
| | - Jane M. Deeley
- />ARC Centre of Excellence for Free Radical Chemistry, School of Chemistry, University of Wollongong, Wollongong, 2522 NSW Australia
| | - Stephen J. Blanksby
- />ARC Centre of Excellence for Free Radical Chemistry, School of Chemistry, University of Wollongong, Wollongong, 2522 NSW Australia
| | - Friedrich Leisch
- />Institute of Applied Statistics and Computing, University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| | - Shane R. Ellis
- />ARC Centre of Excellence for Free Radical Chemistry, School of Chemistry, University of Wollongong, Wollongong, 2522 NSW Australia
| | - Roger J. W. Truscott
- />Save Sight Institute, University of Sydney, Macquarie Street, Sydney, NSW 2001 Australia
| | - Todd W. Mitchell
- />School of Health Sciences, University of Wollongong, Wollongong, 2522 NSW Australia
| |
Collapse
|
32
|
Hao X, Jeffery JL, Le TPT, McFarland G, Johnson G, Mulder RJ, Garrett Q, Manns F, Nankivil D, Arrieta E, Ho A, Parel JM, Hughes TC. High refractive index polysiloxane as injectable, in situ curable accommodating intraocular lens. Biomaterials 2012; 33:5659-71. [PMID: 22594975 DOI: 10.1016/j.biomaterials.2012.04.052] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 04/21/2012] [Indexed: 01/19/2023]
Abstract
Functionalised siloxane macromonomers, with properties designed for application as an injectable, in situ curable accommodating intraocular lens (A-IOL), were prepared via re-equilibration of a phenyl group-containing polysiloxane of very high molecular weight with octamethylcyclotetrasiloxane (D₄) and 2,4,6,8-tetra(n-propyl-3-methacrylate)-2,4,6,8-tetramethyl-cyclotetrasiloxane (D₄(AM)) in toluene using trifluoromethanesulfonic acid as a catalyst. Hexaethyldisiloxane was used as an end group to control the molecular weight of the polymer. The generated polymers had a consistency suitable for injection into the empty lens capsule. The polymers contained a low ratio of polymerisable groups so that, in the presence of a photo-initiator, they could be cured on demand in situ within 5 min under irradiation of blue light to form an intraocular lens within the lens capsule. All resulting polysiloxane soft gels had a low elastic modulus and thus should be able to restore accommodation. The pre-cure viscosity and post-cure modulus of the generated polysiloxanes were controlled by the end group and D₄(AM) concentrations respectively in the re-equilibration reactions. The refractive index could be precisely controlled by adjusting the aromatic ratio in the polymer to suit such application as an artificial lens. Lens stretching experiments with both human and non-human primate cadaver lenses of different ages refilled with polysiloxane polymers provided a significant increase in amplitude of accommodation (up to 4 D more than that of the respective natural lens). Both in vitro cytotoxicity study using L929 cell lines and in vivo biocompatibility study in rabbit models demonstrated the non-cytotoxicity and ocular biocompatibility of the polymer.
Collapse
Affiliation(s)
- Xiaojuan Hao
- Materials Science and Engineering, CSIRO, Bayview Avenue, Clayton, VIC 3168, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
McKee CT, Wood JA, Ly I, Russell P, Murphy CJ. The influence of a biologically relevant substratum topography on human aortic and umbilical vein endothelial cells. Biophys J 2012; 102:1224-33. [PMID: 22404945 DOI: 10.1016/j.bpj.2012.01.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/12/2012] [Accepted: 01/31/2012] [Indexed: 01/08/2023] Open
Abstract
A topographically patterned substrate with stochastic surface order that closely mimics the topographic features of native basement membranes has been fabricated to investigate the influence of topographic biophysical cueing on human aortic and umbilical vein endothelial cells. The stochastic substrate was fabricated by first generating a highly porous polyelectrolyte multilayer film of poly(acrylic acid) and poly(allylamine hydrochloride) followed by replicate production of this biomimetic topography via soft lithography. These substrates, which are easy to prepare and replicate, possess a number of prominent features associated with in vivo vascular basement membrane (interwoven ridges and grooves, bumps, and pores), which have typically been studied as singular features that frequently possess anisotropic surface order (e.g., alternating ridges and grooves). When compared to a flat surface of identical chemistry, these biomimetic topographies influenced a number of important cellular behaviors associated with the homeostasis and degradation of vascular tissues. These include modulating cell migration rate and directional persistence, proliferation rate, and gene expression associated with regulation and remodeling of vascular tissues as well as inflammation.
Collapse
Affiliation(s)
- Clayton T McKee
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California, USA.
| | | | | | | | | |
Collapse
|
34
|
McKee CT, Raghunathan VK, Nealey PF, Russell P, Murphy CJ. Topographic modulation of the orientation and shape of cell nuclei and their influence on the measured elastic modulus of epithelial cells. Biophys J 2011; 101:2139-46. [PMID: 22067151 DOI: 10.1016/j.bpj.2011.09.042] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 08/25/2011] [Accepted: 09/26/2011] [Indexed: 01/08/2023] Open
Abstract
The influence of nucleus shape and orientation on the elastic modulus of epithelial cells was investigated with atomic force microscopy. The shape and orientation were controlled by presenting the epithelial cells with anisotropic parallel ridges and grooves of varying pitch at the cell substratum. As the cells oriented to the underlying topography, the volume of the nucleus increased as the pitch of the topography increased from 400 nm to 2000 nm. The increase in nucleus volume was reflected by an increase in the measured elastic modulus of the topographically aligned cells. Significant alterations in the shape of the nucleus, by intimate contact with the topographic ridge and grooves of the underlying cell, were also observed via confocal microscopy, indicating that the nucleus may also act as a direct mechanosensor of substratum topography.
Collapse
Affiliation(s)
- Clayton T McKee
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, California, USA
| | | | | | | | | |
Collapse
|
35
|
Macromolecular deterioration as the ultimate constraint on human lifespan. Ageing Res Rev 2011; 10:397-403. [PMID: 21272671 DOI: 10.1016/j.arr.2010.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 12/07/2010] [Accepted: 12/10/2010] [Indexed: 12/25/2022]
Abstract
A number of tissues and organs in the human body contain abundant proteins that are long-lived. This includes the heart, lung, brain, bone and connective tissues. It is proposed that the accumulation of modifications to such long-lived proteins over a period of decades alters the properties of the organs and tissues in which they reside. Such insidious processes may affect human health, fitness and ultimately may limit our lifespan. The human lens, which contains proteins that do not turnover, is used to illustrate the impact of these gradual deleterious modifications. On the basis of data derived from the lens, it is postulated that the intrinsic instability of certain amino acid residues, which leads to truncation, racemisation and deamidation, is primarily responsible for the age-related deterioration of such proteins. Since these post-translational modifications accumulate over a period of many years, they can only be studied using organisms that have lifespans measured in decades. One conclusion is that there may be important aspects of human aging that can be studied only using long-lived animals.
Collapse
|
36
|
Beirão M, Matos E, Beirâo I, Costa PPE, Torres P. Anticipation of presbyopia in Portuguese familial amyloidosis ATTR V30M. Amyloid 2011; 18:92-7. [PMID: 21591979 DOI: 10.3109/13506129.2011.576719] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aim of this study was to evaluate if Portuguese patients with familial amyloidosis, liver transplanted and not, have an earlier development of presbyopia compared with a normal population and its relation with the presence or the absence of anterior capsule opacification of the lens. This study was performed to evaluate if Portuguese patients with familial amyloidosis and in a blood donors population (control group). Three hundred and fifty-six subjects, 144 amyloidotic patients and 212 healthy individuals, were evaluated for the need of plus lenses for normal near reading (Jaeger chart 1 at 33 cm). In familial amyloidosis patients, the value of the add-power was related to age, liver transplantation status, and presence of visible anterior capsule opacification of the lens. In both groups, the value of add-power was positively correlated with age (r=0.91; P<0.005). Familial amyloidosis patients require more add-power than control individuals of similar age, and need to use reading glasses at earlier ages. The age of onset of presbyopia in familial amyloidosis patients was significantly lower than in control individuals (32 years vs. 42 years). Adjusting for age, no significant difference was observed in add-power values between liver transplanted and not transplanted amyloidotic patients, suggesting that liver transplantation has no influence on presbyopia evolution in these patients. Familial amyloidosis patients had an earlier onset of presbyopia, probably related to amyloid deposition on the anterior capsule of the lens, which is not halted by liver transplantation.
Collapse
Affiliation(s)
- Melo Beirão
- Opthalmology, Centro Hospitalar do Porto, Porto, Portugal.
| | | | | | | | | |
Collapse
|
37
|
Michael R, Bron AJ. The ageing lens and cataract: a model of normal and pathological ageing. Philos Trans R Soc Lond B Biol Sci 2011; 366:1278-92. [PMID: 21402586 DOI: 10.1098/rstb.2010.0300] [Citation(s) in RCA: 313] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cataract is a visible opacity in the lens substance, which, when located on the visual axis, leads to visual loss. Age-related cataract is a cause of blindness on a global scale involving genetic and environmental influences. With ageing, lens proteins undergo non-enzymatic, post-translational modification and the accumulation of fluorescent chromophores, increasing susceptibility to oxidation and cross-linking and increased light-scatter. Because the human lens grows throughout life, the lens core is exposed for a longer period to such influences and the risk of oxidative damage increases in the fourth decade when a barrier to the transport of glutathione forms around the lens nucleus. Consequently, as the lens ages, its transparency falls and the nucleus becomes more rigid, resisting the change in shape necessary for accommodation. This is the basis of presbyopia. In some individuals, the steady accumulation of chromophores and complex, insoluble crystallin aggregates in the lens nucleus leads to the formation of a brown nuclear cataract. The process is homogeneous and the affected lens fibres retain their gross morphology. Cortical opacities are due to changes in membrane permeability and enzyme function and shear-stress damage to lens fibres with continued accommodative effort. Unlike nuclear cataract, progression is intermittent, stepwise and non-uniform.
Collapse
Affiliation(s)
- R Michael
- Institut Universitari Barraquer, Universitat Autònoma de Barcelona, Laforja 88, 08021 Barcelona, Spain.
| | | |
Collapse
|
38
|
Truscott RJW. Are ancient proteins responsible for the age-related decline in health and fitness? Rejuvenation Res 2010; 13:83-9. [PMID: 20230282 DOI: 10.1089/rej.2009.0938] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There are a number of sites in the body where proteins are present for decades and sometimes for all of our lives. Over a period of many years, such proteins are subject to two types of modifications. The first results from the intrinsic instability of certain amino acid residues and leads to deamidation, racemization, and truncation. The second type can be traced to relentless covalent modification of such ancient proteins by reactive biochemicals produced during cellular metabolism.The accumulation of both types of posttranslational modifications over time may have important consequences for the properties of tissues that contain such proteins. It is proposed that the age-related decline in function of organs such as the eye, heart, brain, and lung, as well as skeletal components, comes about, in part, from the posttranslational modification of these long-lived proteins. Examples are provided in which this may be an important factor in the etiology of age-related conditions. As the properties of these proteins alter inexorably over time, the molecular changes contribute to a gradual decline in the function of individual organs and also tissues such as joints. This cumulative degeneration of old proteins at multiple sites in the body may also constrain the ultimate life span of the individual. The human lens may be particularly useful for discovering which reactive metabolites in the body are of most importance for posttranslational modification of long-lived proteins.
Collapse
|
39
|
Abstract
Not only are human lenses different in many ways from those of non-primates, they also undergo dramatic changes with age. These age-dependent alterations lead to perturbations in the properties of older lenses, and ultimately to disturbances in visual function, which typically become apparent at middle age. Recent data suggest that many, if not all, of these age-dependent features can be traced to the lack of macromolecular turnover in the lens and to the inexorable modifications to proteins and membrane components over a period of decades. Exposure of lenses to heat can reproduce many of these alterations, suggesting that long-term incubation at body temperature may be an important factor in aging the human lens. Two conclusions flow from this. Firstly, the human lens may be an ideal tissue for studying macromolecular aging in man. Secondly, it will be extremely challenging to examine the origin of human age-related conditions, such as presbyopia and nuclear cataract, using traditional laboratory animals. Characterising the unfolding and decomposition of long-lived macromolecules appears to provide the key to understanding the two most common human lens disorders: presbyopia and age-related nuclear cataract.
Collapse
|
40
|
Song S, Landsbury A, Dahm R, Liu Y, Zhang Q, Quinlan RA. Functions of the intermediate filament cytoskeleton in the eye lens. J Clin Invest 2009; 119:1837-48. [PMID: 19587458 DOI: 10.1172/jci38277] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Intermediate filaments (IFs) are a key component of the cytoskeleton in virtually all vertebrate cells, including those of the lens of the eye. IFs help integrate individual cells into their respective tissues. This Review focuses on the lens-specific IF proteins beaded filament structural proteins 1 and 2 (BFSP1 and BFSP2) and their role in lens physiology and disease. Evidence generated in studies in both mice and humans suggests a critical role for these proteins and their filamentous polymers in establishing the optical properties of the eye lens and in maintaining its transparency. For instance, mutations in both BFSP1 and BFSP2 cause cataract in humans. We also explore the potential role of BFSP1 and BFSP2 in aging processes in the lens.
Collapse
Affiliation(s)
- Shuhua Song
- Center for Ophthalmic Research/Surgery, Brigham and Women's Hospital, and Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|