1
|
Leventhal S, Gyulassy A, Heimann M, Pascucci V. Exploring Classification of Topological Priors With Machine Learning for Feature Extraction. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:3959-3972. [PMID: 37027638 DOI: 10.1109/tvcg.2023.3248632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In many scientific endeavors, increasingly abstract representations of data allow for new interpretive methodologies and conceptualization of phenomena. For example, moving from raw imaged pixels to segmented and reconstructed objects allows researchers new insights and means to direct their studies toward relevant areas. Thus, the development of new and improved methods for segmentation remains an active area of research. With advances in machine learning and neural networks, scientists have been focused on employing deep neural networks such as U-Net to obtain pixel-level segmentations, namely, defining associations between pixels and corresponding/referent objects and gathering those objects afterward. Topological analysis, such as the use of the Morse-Smale complex to encode regions of uniform gradient flow behavior, offers an alternative approach: first, create geometric priors, and then apply machine learning to classify. This approach is empirically motivated since phenomena of interest often appear as subsets of topological priors in many applications. Using topological elements not only reduces the learning space but also introduces the ability to use learnable geometries and connectivity to aid the classification of the segmentation target. In this article, we describe an approach to creating learnable topological elements, explore the application of ML techniques to classification tasks in a number of areas, and demonstrate this approach as a viable alternative to pixel-level classification, with similar accuracy, improved execution time, and requiring marginal training data.
Collapse
|
2
|
Clahsen T, Hadrian K, Notara M, Schlereth SL, Howaldt A, Prokosch V, Volatier T, Hos D, Schroedl F, Kaser-Eichberger A, Heindl LM, Steven P, Bosch JJ, Steinkasserer A, Rokohl AC, Liu H, Mestanoglu M, Kashkar H, Schumacher B, Kiefer F, Schulte-Merker S, Matthaei M, Hou Y, Fassbender S, Jantsch J, Zhang W, Enders P, Bachmann B, Bock F, Cursiefen C. The novel role of lymphatic vessels in the pathogenesis of ocular diseases. Prog Retin Eye Res 2023; 96:101157. [PMID: 36759312 DOI: 10.1016/j.preteyeres.2022.101157] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 02/10/2023]
Abstract
Historically, the eye has been considered as an organ free of lymphatic vessels. In recent years, however, it became evident, that lymphatic vessels or lymphatic-like vessels contribute to several ocular pathologies at various peri- and intraocular locations. The aim of this review is to outline the pathogenetic role of ocular lymphatics, the respective molecular mechanisms and to discuss current and future therapeutic options based thereon. We will give an overview on the vascular anatomy of the healthy ocular surface and the molecular mechanisms contributing to corneal (lymph)angiogenic privilege. In addition, we present (i) current insights into the cellular and molecular mechanisms occurring during pathological neovascularization of the cornea triggered e.g. by inflammation or trauma, (ii) the role of lymphatic vessels in different ocular surface pathologies such as dry eye disease, corneal graft rejection, ocular graft versus host disease, allergy, and pterygium, (iii) the involvement of lymphatic vessels in ocular tumors and metastasis, and (iv) the novel role of the lymphatic-like structure of Schlemm's canal in glaucoma. Identification of the underlying molecular mechanisms and of novel modulators of lymphangiogenesis will contribute to the development of new therapeutic targets for the treatment of ocular diseases associated with pathological lymphangiogenesis in the future. The preclinical data presented here outline novel therapeutic concepts for promoting transplant survival, inhibiting metastasis of ocular tumors, reducing inflammation of the ocular surface, and treating glaucoma. Initial data from clinical trials suggest first success of novel treatment strategies to promote transplant survival based on pretransplant corneal lymphangioregression.
Collapse
Affiliation(s)
- Thomas Clahsen
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Karina Hadrian
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Maria Notara
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Simona L Schlereth
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Antonia Howaldt
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Verena Prokosch
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Volatier
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Hos
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Falk Schroedl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Alexandra Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Ludwig M Heindl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philipp Steven
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany
| | - Jacobus J Bosch
- Centre for Human Drug Research and Leiden University Medical Center, Leiden, the Netherlands
| | | | - Alexander C Rokohl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hanhan Liu
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Mert Mestanoglu
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hamid Kashkar
- Institute for Molecular Immunology, Center for Molecular Medicine Cologne (CMMC), CECAD Research Center, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Björn Schumacher
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany
| | - Friedemann Kiefer
- European Institute for Molecular Imaging (EIMI), University of Münster, 48149, Münster, Germany
| | - Stefan Schulte-Merker
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Münster, Germany
| | - Mario Matthaei
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Yanhong Hou
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, China
| | - Sonja Fassbender
- IUF‒Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; Immunology and Environment, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Jonathan Jantsch
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Wei Zhang
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philip Enders
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Björn Bachmann
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Felix Bock
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany.
| |
Collapse
|
3
|
Palme C, Ahmad S, Romano V, Seifarth C, Williams B, Parekh M, Kaye SB, Steger B. En-face analysis of the human limbal lymphatic vasculature. Exp Eye Res 2020; 201:108278. [DOI: 10.1016/j.exer.2020.108278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/31/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022]
|
4
|
|
5
|
Waxman S, Loewen RT, Dang Y, Watkins SC, Watson AM, Loewen NA. High-Resolution, Three-Dimensional Reconstruction of the Outflow Tract Demonstrates Segmental Differences in Cleared Eyes. Invest Ophthalmol Vis Sci 2019; 59:2371-2380. [PMID: 29847643 PMCID: PMC5939687 DOI: 10.1167/iovs.17-23075] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Purpose The rate of conventional aqueous humor outflow is the highest nasally. We hypothesized that this is reflected in regionally different outflow structures and analyzed the entire limbus by high-resolution, full-thickness ribbon-scanning confocal microscopy (RSCM). Methods We perfused pig eyes by anterior chamber cannulation with eight lectin-fluorophore conjugates, followed by optical clearance with benzyl alcohol benzyl benzoate (BABB). RSCM and advanced analysis software (Imaris) were used to reconstruct a three-dimensional (3D), whole-specimen rendering of the perilimbal outflow structures. We performed morphometric analyses of the outflow tract from the level of the trabecular meshwork (TM) to the scleral vascular plexus (SVP). Results Except for pigmented structures, BABB cleared the entire eye. Rhodamine-conjugated Glycine max agglutinin (soybean [SBA]) labeled the outflow tract evenly and retained fluorescence for months. RSCM produced terabyte-sized files allowing for in silico dissection of outflow tract vessels at a high resolution and in 3D. Networks of interconnected lumens were traced from the TM to downstream drainage structures. The collector channel (CC) volumes were 10 times smaller than the receiving SVP vessels, the largest of which were in the inferior limbus. Proximal CC diameters were up to four times the size of distal diameters and more elliptical at their proximal ends. The largest CCs were found in the superonasal and inferonasal quadrants where the highest outflow occurs. Conclusion RSCM of cleared eyes enabled high-resolution, volumetric analysis of the outflow tract. The proximal structures had greater diameters nasally, whereas the SVP was larger in the inferior limbus.
Collapse
Affiliation(s)
- Susannah Waxman
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Ralitsa T Loewen
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Yalong Dang
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Simon C Watkins
- Center for Biologic Imaging and the Department of Cellular Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Alan M Watson
- Center for Biologic Imaging and the Department of Cellular Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Nils A Loewen
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
6
|
Alabi E, Hutchings N, Bizheva K, Simpson T. Relationship between vessel diameter and depth measurements within the limbus using ultra-high resolution optical coherence tomography. JOURNAL OF OPTOMETRY 2018. [PMID: 28629902 PMCID: PMC5777926 DOI: 10.1016/j.optom.2017.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
PURPOSE To establish a relationship between the diameter and depth position of vessels in the superior and inferior corneo-scleral limbus using ultra-high resolution optical coherence tomography (UHR-OCT). METHODS Volumetric OCT images of the superior and inferior limbus were acquired from 14 healthy subjects with a research-grade UHR-OCT system. Differences in vessel diameter and depth between superior and inferior limbus were analyzed using repeated measured ANOVA in SPSS and R. RESULTS The mean (± SD) superior and inferior diameters were 29±18μm and 24±18μm respectively, and the mean (± SD) superior and inferior depths were 177±109μm and 207±132μm respectively. The superior limbal vessels were larger than the inferior ones (RM-ANOVA, p=0.004), and the inferior limbal vessels were deeper than the superior vessels (RM-ANOVA, p=0.041). There was a positive linear association between limbal vessel depth and size within the superior and inferior limbus with Pearson correlation coefficients of 0.803 and 0.754, respectively. CONCLUSION This study demonstrated that the UHR-OCT was capable of imaging morphometric characteristics such as the size and depth of vessels in the limbus. The results of this study suggest a difference in the size and depth of vessels across different positions of the limbus, which may be indicative of adaptations to chronic hypoxia caused by the covering of the superior limbus by the upper eyelid. UHR-OCT may be a useful tool to evaluate the effect of contact lenses on the microvascular properties within the limbus.
Collapse
Affiliation(s)
- Emmanuel Alabi
- University of Waterloo, School of Optometry and Vision Science, Waterloo, ON, Canada.
| | - Natalie Hutchings
- University of Waterloo, School of Optometry and Vision Science, Waterloo, ON, Canada.
| | - Kostadinka Bizheva
- University of Waterloo, School of Optometry and Vision Science, Waterloo, ON, Canada; University of Waterloo, Department of Physics and Astronomy, Waterloo, ON, Canada; University of Waterloo, Systems Design Engineering Department, Waterloo, ON, Canada.
| | - Trefford Simpson
- University of Waterloo, School of Optometry and Vision Science, Waterloo, ON, Canada.
| |
Collapse
|
7
|
Gonzalez JM, Ko MK, Hong YK, Weigert R, Tan JCH. Deep tissue analysis of distal aqueous drainage structures and contractile features. Sci Rep 2017; 7:17071. [PMID: 29213129 PMCID: PMC5719038 DOI: 10.1038/s41598-017-16897-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/15/2017] [Indexed: 01/04/2023] Open
Abstract
Outflow resistance in the aqueous drainage tract distal to trabecular meshwork is potentially an important determinant of intraocular pressure and success of trabecular bypass glaucoma surgeries. It is unclear how distal resistance is modulated. We sought to establish: (a) multimodal 2-photon deep tissue imaging and 3-dimensional analysis of the distal aqueous drainage tract (DT) in transgenic mice in vivo and ex vivo; (b) criteria for distinguishing the DT from blood and lymphatic vessels; and (c) presence of a DT wall organization capable of contractility. DT lumen appeared as scleral collagen second harmonic generation signal voids that could be traced back to Schlemm's canal. DT endothelium was Prox1-positive, CD31-positive and LYVE-1-negative, bearing a different molecular signature from blood and true lymphatic vessels. DT walls showed prominent filamentous actin (F-actin) labeling reflecting cells in a contracted state. F-actin co-localized with mesenchymal smooth muscle epitopes of alpha-smooth muscle actin, caldesmon and calponin, which localized adjacent and external to the endothelium. Our findings support a DT wall organization resembling that of blood vessels. This reflects a capacity to contract and support dynamic alteration of DT caliber and resistance analogous to the role of blood vessel tone in regulating blood flow.
Collapse
Affiliation(s)
- Jose M Gonzalez
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Minhee K Ko
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Young-Kwon Hong
- Department of Surgery, Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Robert Weigert
- Intracellular Membrane Trafficking Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - James C H Tan
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
8
|
|
9
|
Zeller-Plumhoff B, Roose T, Clough GF, Schneider P. Image-based modelling of skeletal muscle oxygenation. J R Soc Interface 2017; 14:rsif.2016.0992. [PMID: 28202595 DOI: 10.1098/rsif.2016.0992] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/25/2017] [Indexed: 12/12/2022] Open
Abstract
The supply of oxygen in sufficient quantity is vital for the correct functioning of all organs in the human body, in particular for skeletal muscle during exercise. Disease is often associated with both an inhibition of the microvascular supply capability and is thought to relate to changes in the structure of blood vessel networks. Different methods exist to investigate the influence of the microvascular structure on tissue oxygenation, varying over a range of application areas, i.e. biological in vivo and in vitro experiments, imaging and mathematical modelling. Ideally, all of these methods should be combined within the same framework in order to fully understand the processes involved. This review discusses the mathematical models of skeletal muscle oxygenation currently available that are based upon images taken of the muscle microvasculature in vivo and ex vivo Imaging systems suitable for capturing the blood vessel networks are discussed and respective contrasting methods presented. The review further informs the association between anatomical characteristics in health and disease. With this review we give the reader a tool to understand and establish the workflow of developing an image-based model of skeletal muscle oxygenation. Finally, we give an outlook for improvements needed for measurements and imaging techniques to adequately investigate the microvascular capability for oxygen exchange.
Collapse
Affiliation(s)
- B Zeller-Plumhoff
- Helmholtz-Zentrum für Material- und Küstenforschung, Geesthacht, Germany .,Bioengineering Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| | - T Roose
- Bioengineering Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| | - G F Clough
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - P Schneider
- Bioengineering Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| |
Collapse
|
10
|
Trabeculotomy opening size and IOP reduction after Trabectome® surgery. Graefes Arch Clin Exp Ophthalmol 2017; 255:1643-1650. [PMID: 28528378 PMCID: PMC5541095 DOI: 10.1007/s00417-017-3683-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 04/04/2017] [Accepted: 04/18/2017] [Indexed: 01/07/2023] Open
Abstract
Background Trabeculotomy with the Trabectome® is an effective surgical procedure to lower intraocular pressure (IOP). However, in some patients it does not lead to a significant IOP reduction despite a gonioscopically well visible opening of Schlemm’s canal. This study investigated whether the size of the trabeculotomy opening and other parameters, including anterior chamber depth (ACD) are related to IOP reduction. Methods Retrospective observational case series with 93 eyes of 93 patients who underwent Trabectome surgery. Trabeculotomy opening and ACD were measured with an anterior segment swept source OCT. IOP was taken pre-operatively and at a single follow-up visit [follow-up time 125 ± 66 days (mean ± SD)]. The relationship between IOP reduction and OCT parameters and possible confounding factors was analyzed in a multiple linear regression model. Results The trabeculotomy opening size did not correlate with IOP reduction (slope of regression line = 0.0016; 95% confidence interval of slope: −0.025 to 0.028). The same applied for all other parameters tested, including ACD, which showed a tendency towards better IOP reduction with a deeper AC (slope = −1.9; 95% confidence interval: −5.54 to 1.73). Comparison between the 1st and 4th quartile of the trabeculotomy opening showed a significantly higher ACD in the largest trabeculotomy opening quartile (3.32 ± 0.05 mm vs. 3.16 ± 0.04 mm; p = 0.031). Conclusions The fact that the trabeculotomy opening size did not correlate with IOP reduction points to the poorly understood role of the intrascleral aqueous outflow pathway in glaucomatous IOP elevation. A deeper AC might be a factor promoting a larger trabeculotomy opening. Electronic supplementary material The online version of this article (doi:10.1007/s00417-017-3683-0) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Carreon TA, Edwards G, Wang H, Bhattacharya SK. Segmental outflow of aqueous humor in mouse and human. Exp Eye Res 2017; 158:59-66. [PMID: 27498226 PMCID: PMC5290258 DOI: 10.1016/j.exer.2016.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 07/08/2016] [Accepted: 08/01/2016] [Indexed: 12/28/2022]
Abstract
The main and only modifiable risk factor in glaucoma, the group of usually late onset progressive and irreversible blinding optic neuropathies, is elevated intraocular pressure (IOP). The increase in IOP is due to impeded aqueous humor (AH) outflow through the conventional pathway. The aberrant increased resistance at the trabecular meshwork (TM), the filter-like region in the anterior eye chamber is the major contributory factor in causing the impeded outflow. In normal as well as in glaucoma eyes the regions of the TM are divided into areas of high and low flow. The collector channels and distal outflow regions are now increasingly being recognized as potential players in contributing to impede AH outflow. Structural and molecular make-up contributing to the segmental blockage to outflow is likely to provide greater insight. Establishing segmental blockage to outflow in model systems of glaucoma such as the mouse in parallel to human eyes will expand our repertoire of tools for investigation. Further study into this area of interest has the potential to ultimately lead to the development of new therapeutics focused on lowering IOP by targeting the various components of segmental blockage of outflow in the TM and in the distal outflow region.
Collapse
Affiliation(s)
- Teresia A Carreon
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, 33136, USA
| | - Genea Edwards
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, 33136, USA
| | - Haiyan Wang
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Shanghai First People's Hospital Affiliated to Jiaotong University, Shanghai, 200080, China
| | - Sanjoy K Bhattacharya
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, 33136, USA.
| |
Collapse
|
12
|
Fallano K, Bussel I, Kagemann L, Lathrop KL, Loewen N. Training strategies and outcomes of ab interno trabeculectomy with the trabectome. F1000Res 2017; 6:67. [PMID: 28529695 PMCID: PMC5428488 DOI: 10.12688/f1000research.10236.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2017] [Indexed: 11/05/2023] Open
Abstract
Plasma-mediated ab interno trabeculectomy with the trabectome was first approved by the US Food and Drug Administration in 2004 for use in adult and pediatric glaucomas. Since then, increased clinical experience and updated outcome data have led to its expanded use, including a range of glaucomas and angle presentations, previously deemed to be relatively contraindicated. The main benefits are a high degree of safety, ease, and speed compared to traditional filtering surgery and tube shunts. The increasing burden of glaucoma and expanding life expectancy has resulted in demand for well-trained surgeons. In this article, we discuss the results of trabectome surgery in standard and nonstandard indications. We present training strategies of the surgical technique that include a pig eye model, and visualization exercises that can be performed before and at the conclusion of standard cataract surgery in patients who do not have glaucoma. We detail the mechanism of enhancing the conventional outflow pathway and describe methods of visualization and function testing.
Collapse
Affiliation(s)
- Katherine Fallano
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Igor Bussel
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Larry Kagemann
- Food and Drug Administration, Silver Springs, MS, USA
- Department of Ophthalmology, New York University School of Medicine, New York, NY, USA
| | - Kira L. Lathrop
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nils Loewen
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
13
|
Fallano K, Bussel I, Kagemann L, Lathrop KL, Loewen N. Training strategies and outcomes of ab interno trabeculectomy with the trabectome. F1000Res 2017; 6:67. [PMID: 28529695 PMCID: PMC5428488 DOI: 10.12688/f1000research.10236.2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/26/2017] [Indexed: 01/15/2023] Open
Abstract
Plasma-mediated ab interno trabeculectomy with the trabectome was first approved by the US Food and Drug Administration in 2004 for use in adult and pediatric glaucomas. Since then, increased clinical experience and updated outcome data have led to its expanded use, including a range of glaucomas and angle presentations, previously deemed to be relatively contraindicated. The main benefits are a high degree of safety, ease, and speed compared to traditional filtering surgery and tube shunts. The increasing burden of glaucoma and expanding life expectancy has resulted in demand for well-trained surgeons. In this article, we discuss the results of trabectome surgery in standard and nonstandard indications. We present training strategies of the surgical technique that include a pig eye model, and visualization exercises that can be performed before and at the conclusion of standard cataract surgery in patients who do not have glaucoma. We detail the mechanism of enhancing the conventional outflow pathway and describe methods of visualization and function testing.
Collapse
Affiliation(s)
- Katherine Fallano
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Igor Bussel
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Larry Kagemann
- Food and Drug Administration, Silver Springs, MS, USA
- Department of Ophthalmology, New York University School of Medicine, New York, NY, USA
| | - Kira L. Lathrop
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nils Loewen
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Lin HC, Tew TB, Hsieh YT, Lin SY, Chang HW, Hu FR, Chen WL. Using optical coherence tomography to assess the role of age and region in corneal epithelium and palisades of vogt. Medicine (Baltimore) 2016; 95:e4234. [PMID: 27583846 PMCID: PMC5008530 DOI: 10.1097/md.0000000000004234] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Using spectral-domain optical coherence tomography (OCT) to observe the morphology and epithelial thickness (ET) of the palisades of Vogt (POV), and to evaluate the role of age and region on these structures.One hundred twelve eyes of 112 healthy subjects were enrolled and divided into 4 groups: A (0-19), B (20-39), C (40-59), and D (≥60 years old). RTvue-100 OCT was applied on the cornea and the limbus. The morphology of the subepithelial stroma underneath the epithelium of POV was classified into typical and atypical types. Maximum ET of POV was measured manually from OCT images.The positive rate of typical POV in superior, nasal, temporal, and inferior limbus was: Group A: 100%, 69.2%, 65.4%, 100%; Group B: 100%, 73.5%, 61.8%, 94.1%; Group C: 95.8%, 41.7%, 37.5%, 83.3%; Group D: 67.9%, 0%, 3.6%, 25%, showing a significant decreasing tendency with age. The maximum ET of POV in superior, nasal, temporal, and inferior limbus was: Group A: 103.5 ± 10.1 um, 89.2 ± 9.7 um, 87.9 ± 13.6 um, 104.7 ± 14.1 um; Group B: 111.4 ± 15.8 um, 85.3 ± 9.9 um, 88.2 ± 8.6 um, 112.6 ± 19.7 um; Group C: 116.4 ± 16.4 um, 82.8 ± 11.6 um, 87.0 ± 11.6 um, 120.0 ± 25.6 um; Group D: 96.3 ± 17.9 um, 73.8 ± 15.9 um, 79.2 ± 16.7 um, 87.4 ± 18.5 um. Age-dependent change was observed. In general, the maximum ET of POV in superior/inferior quadrants was thicker than the other 2 quadrants.Spectral-domain OCT is a useful tool to observe the limbal microstructure and provide invaluable information. Aging and anatomic regions had significant effects on the microstructure of these areas.
Collapse
Affiliation(s)
- Hsuan-Chieh Lin
- Department of Ophthalmology, National Taiwan University Hospital, Taipei
- Department of Ophthalmology, National Taiwan University Hospital, Hsinchu Branch, Hsinchu
| | - Teck Boon Tew
- Department of Ophthalmology, National Taiwan University Hospital, Taipei
| | - Yi-Ting Hsieh
- Department of Ophthalmology, National Taiwan University Hospital, Taipei
| | - Szu-Yuan Lin
- Department of Ophthalmology, Cathay General Hospital
| | - Huai-Wen Chang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei
| | - Fung-Rong Hu
- Department of Ophthalmology, National Taiwan University Hospital, Taipei
- Center of Corneal Tissue Engineering and Stem Cell Biology, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Li Chen
- Department of Ophthalmology, National Taiwan University Hospital, Taipei
- Center of Corneal Tissue Engineering and Stem Cell Biology, National Taiwan University Hospital, Taipei, Taiwan
- Correspondence: Wei-Li Chen, Department of Ophthalmology, National Taiwan University Hospital, No. 7 Chung-Shan South Road, Post Code 100, Taipei, Taiwan (e-mail: )
| |
Collapse
|
15
|
Richter GM, Coleman AL. Minimally invasive glaucoma surgery: current status and future prospects. Clin Ophthalmol 2016; 10:189-206. [PMID: 26869753 PMCID: PMC4734795 DOI: 10.2147/opth.s80490] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Minimally invasive glaucoma surgery aims to provide a medication-sparing, conjunctival-sparing, ab interno approach to intraocular pressure reduction for patients with mild-to-moderate glaucoma that is safer than traditional incisional glaucoma surgery. The current approaches include: increasing trabecular outflow (Trabectome, iStent, Hydrus stent, gonioscopy-assisted transluminal trabeculotomy, excimer laser trabeculotomy); suprachoroidal shunts (Cypass micro-stent); reducing aqueous production (endocyclophotocoagulation); and subconjunctival filtration (XEN gel stent). The data on each surgical procedure for each of these approaches are reviewed in this article, patient selection pearls learned to date are discussed, and expectations for the future are examined.
Collapse
Affiliation(s)
- Grace M Richter
- UCLA Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles, CA, USA; USC Eye Institute, Department of Ophthalmology, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Anne L Coleman
- UCLA Stein Eye Institute, Department of Ophthalmology, University of California, Los Angeles, CA, USA
| |
Collapse
|
16
|
van der Merwe EL, Kidson SH. The three-dimensional organisation of the post-trabecular aqueous outflow pathway and limbal vasculature in the mouse. Exp Eye Res 2014; 125:226-35. [PMID: 24979218 DOI: 10.1016/j.exer.2014.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 05/29/2014] [Accepted: 06/13/2014] [Indexed: 11/17/2022]
Abstract
The mouse eye has been used as a model for studies on the microanatomy of the outflow pathways but most of what is known comes from histological sections. These studies have focused mainly on the morphological features of the trabecular meshwork, Schlemm's canal and aqueous channels that link to the superficial episcleral vasculature. However, the anatomical architecture of the aqueous outflow vessels and their relationship to each other and to the general vascular circulation is not well understood. The aim of this study was to provide a detailed description of the microarchitecture of the aqueous outflow vessels and their relationship to the superficial limbal/episcleral vasculature throughout the entire limbus. The aqueous outflow vessels and blood and lymphatic vessels were imaged in PECAM-1 and LYVE-1 immunostained whole anterior segments of adult mice and three-dimensional (3-D) reconstructions of the optical sections were generated to reveal the aqueous, blood and lymphatic architecture. The arterial supply, venous drainage, organisation of perilimbal vasculature, collector channels/aqueous veins and the morphology of Schlemm's canal were revealed in their entirety and the relationships between these structures is described. Schlemm's canal was PECAM-1 positive but there was no affinity for the lymphatic marker LYVE-1. We show that Schlemm's canal is a continuous circular structure and more often seen as a single, broad, varicose vessel with short regions appearing as a plexus. Aqueous veins link Schlemm's canal to the superficial vasculature and there were no direct links seen between the canal and the lymphatic vessels.
Collapse
Affiliation(s)
- Elizabeth L van der Merwe
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory 7925 Cape Town, South Africa.
| | - Susan H Kidson
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory 7925 Cape Town, South Africa; Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925 Cape Town, South Africa
| |
Collapse
|
17
|
Zhang L, Qian X, Zhang K, Cui Q, Zhao Q, Liu Z. Three-dimensional reconstruction of blood vessels in the rabbit eye by X-ray phase contrast imaging. Biomed Eng Online 2013; 12:30. [PMID: 23577753 PMCID: PMC3642019 DOI: 10.1186/1475-925x-12-30] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/02/2013] [Indexed: 01/22/2023] Open
Abstract
Background A clear understanding of the blood vessels in the eye is helpful in the diagnosis and treatment of ophthalmic diseases, such as glaucoma. Conventional techniques such as micro-CT imaging and histology are not sufficiently accurate to identify the vessels in the eye, because their diameter is just a few microns. The newly developed medical imaging technology, X-ray phase-contrast imaging (XPCI), is able to distinguish the structure of the vessels in the eye. In this study, XPCI was used to identify the internal structure of the blood vessels in the eye. Methods After injection with barium sulfate via the ear border artery, an anesthetized rabbit was killed and its eye was fixed in vitro in 10% formalin solution. We acquired images using XPCI at the Shanghai Synchrotron Radiation Facility. The datasets were converted into slices by filtered back-projection (FBP). An angiographic score was obtained as a parameter to quantify the density of the blood vessels. A three-dimensional (3D) model of the blood vessels was then established using Amira 5.2 software. Results With XPCI, blood vessels in the rabbit eye as small as 18 μm in diameter and a sixth of the long posterior ciliary artery could be clearly distinguished. In the 3D model, we obtained the level 4 branch structure of vessels in the fundus. The diameters of the arteria centralis retinae and its branches are about 200 μm, 110 μm, 95 μm, 80 μm and 40 μm. The diameters of the circulus arteriosus iridis major and its branches are about 210 μm, 70 μm and 30 μm. Analysis of vessel density using the angiographic score showed that the blood vessels had maximum density in the fundus and minimum density in the area anterior to the equator (scores 0.27 ± 0.029 and 0.16 ± 0.032, respectively). We performed quantitative angiographic analysis of the blood vessels to further investigate the density of the vessels. Conclusions XPCI provided a feasible means to determine the structure of the blood vessels in the eye. We were able to determine the diameters and morphological characteristics of the vessels from both 2D images and the 3D model. By analyzing the images, we obtained measurements of the density distribution of the microvasculature, and this approach may provide valuable reference information prior to glaucoma filtration surgery.
Collapse
|
18
|
Francis AW, Kagemann L, Wollstein G, Ishikawa H, Folz S, Overby DR, Sigal IA, Wang B, Schuman JS. Morphometric analysis of aqueous humor outflow structures with spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 2012; 53:5198-207. [PMID: 22499987 PMCID: PMC3727668 DOI: 10.1167/iovs.11-9229] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/09/2012] [Accepted: 02/10/2012] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To describe morphometric details of the human aqueous humor (AH) outflow microvasculature visualized with 360-degree virtual castings during active AH outflow in cadaver eyes and to compare these structures with corrosion casting studies. METHODS The conventional AH outflow pathways of donor eyes (n = 7) and eyes in vivo (n = 3) were imaged with spectral-domain optical coherence tomography (SD-OCT) and wide-bandwidth superluminescent diode array during active AH outflow. Digital image contrast was adjusted to isolate AH microvasculature, and images were viewed in a 3D viewer. Additional eyes (n = 3) were perfused with mock AH containing fluorescent tracer microspheres to compare microvasculature patterns. RESULTS Observations revealed components of the conventional outflow pathway from Schlemm's canal (SC) to the superficial intrascleral venous plexus (ISVP). The superficial ISVP in both our study and corrosion casts were composed of interconnected venules (10-50 μm) forming a hexagonal meshwork. Larger radial arcades (50-100 μm) drained the region nearest SC and converged with larger tortuous vessels (>100 μm). A 360-degree virtual casting closely approximated corrosion casting studies. Tracer studies corroborated our findings. Tracer decorated several larger vessels (50-100 μm) extending posteriorly from the limbus in both raw and contrast-enhanced fluorescence images. Smaller tracer-labeled vessels (30-40 μm) were seen branching between larger vessels and exhibited a similar hexagonal network pattern. CONCLUSIONS SD-OCT is capable of detailed morphometric analysis of the conventional outflow pathway in vivo or ex vivo with details comparable to corrosion casting techniques.
Collapse
Affiliation(s)
- Andrew W. Francis
- From the Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts; the Department of Ophthalmology, UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania; the Department of Bioengineering, Swanson School of Engineering, Pittsburgh, Pennsylvania; The McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; the Fox Center for Vision Restoration of UPMC and the University of Pittsburgh, Pittsburgh, Pennsylvania; the Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana; and the Department of Bioengineering, Imperial College, London
| | - Larry Kagemann
- From the Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts; the Department of Ophthalmology, UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania; the Department of Bioengineering, Swanson School of Engineering, Pittsburgh, Pennsylvania; The McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; the Fox Center for Vision Restoration of UPMC and the University of Pittsburgh, Pittsburgh, Pennsylvania; the Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana; and the Department of Bioengineering, Imperial College, London
| | - Gadi Wollstein
- From the Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts; the Department of Ophthalmology, UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania; the Department of Bioengineering, Swanson School of Engineering, Pittsburgh, Pennsylvania; The McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; the Fox Center for Vision Restoration of UPMC and the University of Pittsburgh, Pittsburgh, Pennsylvania; the Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana; and the Department of Bioengineering, Imperial College, London
| | - Hiroshi Ishikawa
- From the Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts; the Department of Ophthalmology, UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania; the Department of Bioengineering, Swanson School of Engineering, Pittsburgh, Pennsylvania; The McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; the Fox Center for Vision Restoration of UPMC and the University of Pittsburgh, Pittsburgh, Pennsylvania; the Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana; and the Department of Bioengineering, Imperial College, London
| | - Steven Folz
- From the Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts; the Department of Ophthalmology, UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania; the Department of Bioengineering, Swanson School of Engineering, Pittsburgh, Pennsylvania; The McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; the Fox Center for Vision Restoration of UPMC and the University of Pittsburgh, Pittsburgh, Pennsylvania; the Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana; and the Department of Bioengineering, Imperial College, London
| | - Darryl R. Overby
- From the Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts; the Department of Ophthalmology, UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania; the Department of Bioengineering, Swanson School of Engineering, Pittsburgh, Pennsylvania; The McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; the Fox Center for Vision Restoration of UPMC and the University of Pittsburgh, Pittsburgh, Pennsylvania; the Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana; and the Department of Bioengineering, Imperial College, London
| | - Ian A. Sigal
- From the Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts; the Department of Ophthalmology, UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania; the Department of Bioengineering, Swanson School of Engineering, Pittsburgh, Pennsylvania; The McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; the Fox Center for Vision Restoration of UPMC and the University of Pittsburgh, Pittsburgh, Pennsylvania; the Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana; and the Department of Bioengineering, Imperial College, London
| | - Bo Wang
- From the Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts; the Department of Ophthalmology, UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania; the Department of Bioengineering, Swanson School of Engineering, Pittsburgh, Pennsylvania; The McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; the Fox Center for Vision Restoration of UPMC and the University of Pittsburgh, Pittsburgh, Pennsylvania; the Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana; and the Department of Bioengineering, Imperial College, London
| | - Joel S. Schuman
- From the Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts; the Department of Ophthalmology, UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania; the Department of Bioengineering, Swanson School of Engineering, Pittsburgh, Pennsylvania; The McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; the Fox Center for Vision Restoration of UPMC and the University of Pittsburgh, Pittsburgh, Pennsylvania; the Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana; and the Department of Bioengineering, Imperial College, London
| |
Collapse
|
19
|
Kagemann L, Wollstein G, Ishikawa H, Nadler Z, Sigal IA, Folio LS, Schuman JS. Visualization of the conventional outflow pathway in the living human eye. Ophthalmology 2012; 119:1563-8. [PMID: 22683063 DOI: 10.1016/j.ophtha.2012.02.032] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 02/16/2012] [Accepted: 02/17/2012] [Indexed: 11/18/2022] Open
Abstract
PURPOSE We sought to visualize the aqueous outflow system in 3 dimensions (3D) in living human eyes, and to investigate the use of commercially available spectral-domain optical coherence tomographic (SD-OCT) systems for this purpose. DESIGN Prospective, observational study. PARTICIPANTS One randomly determined eye in each of 6 normal healthy subjects was included. TESTING We performed 3D SD-OCT imaging of the aqueous humor outflow structures with 2 devices: The Cirrus HD-OCT and the Bioptigen SDOIS. MAIN OUTCOME MEASURES We created 3D virtual castings of Schlemm's canal (SC) and more distal outflow structures from scan data from each device. RESULTS Virtual casting of the SC provided visualization of more aqueous vessels branching from SC than could be located by interrogating the 2-dimensional (2D) image stack. Similarly, virtual casting of distal structures allowed visualization of large and small aqueous outflow channel networks that could not be appreciated with conventional 2D visualization. CONCLUSIONS The outflow pathways from SC to the superficial vasculature can be identified and tracked in living human eyes using commercially available SD-OCT.
Collapse
Affiliation(s)
- Larry Kagemann
- Department of Ophthalmology, UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Kagemann L, Wollstein G, Ishikawa H, Sigal IA, Folio LS, Xu J, Gong H, Schuman JS. 3D visualization of aqueous humor outflow structures in-situ in humans. Exp Eye Res 2011; 93:308-15. [PMID: 21514296 PMCID: PMC3196779 DOI: 10.1016/j.exer.2011.03.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 03/15/2011] [Accepted: 03/29/2011] [Indexed: 11/30/2022]
Abstract
Aqueous humor (AH) exiting the eye via the trabecular meshwork and Schlemm's canal (SC) passes through the deep and intrascleral venous plexus (ISVP) or directly through aqueous veins. The purpose of this study was to visualize the human AH outflow system 360° in three dimensions (3D) during active AH outflow in a virtual casting. The conventional AH outflow pathways of 7 donor eyes were imaged with a modified Bioptigen spectral-domain optical coherence tomography system (Bioptigen Inc, USA; SuperLum LTD, Ireland) at a perfusion pressure of 20 mmHg (N = 3), and 10 mmHg (N = 4). In all eyes, 36 scans (3 equally distributed in each clock hour), each covering a 2 × 3 × 2 mm volume (512 frames, each 512 × 1024 pixels), were obtained. All image data were black/white inverted, and the background subtracted (ImageJ 1.40 g, http://rsb.info.nih.gov/ij/). Contrast was adjusted to isolate the ISVP. SC, collector channels, the deep and ISVP, and episcleral veins were observed throughout the limbus. Aqueous veins could be observed extending into the episcleral veins. Individual scan ISVP castings were rendered and assembled in 3D space in Amira 4.1 (Visage Imaging Inc. USA). A 360-degree casting of the ISVP was obtained in all perfused eyes. The ISVP tended to be dense and overlapping in the superior and inferior quadrants, and thinner in the lateral quadrants. The human AH outflow pathway can be imaged using SD-OCT. The more superficial structures of the AH outflow pathway present with sufficient contrast as to be optically isolated and cast in-situ 360° in cadaver eye perfusion models. This approach may be useful as a model in future studies of human AH outflow.
Collapse
Affiliation(s)
- Larry Kagemann
- Department of Ophthalmology, UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Johnson AW, Ammar DA, Kahook MY. Two-photon imaging of the mouse eye. Invest Ophthalmol Vis Sci 2011; 52:4098-105. [PMID: 21447675 DOI: 10.1167/iovs.10-7115] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
PURPOSE To image the conventional aqueous outflow pathway and adjacent structures within the intact enucleated mouse eye using a noninvasive microscopy technique. METHODS Two-photon microscopy (2PM) techniques, including two-photon autofluorescence (2PAF) and second harmonic generation (SHG), were used to obtain images of the trabecular meshwork (TM) region within an intact mouse eye. Cardiac perfusion of fluorescein-conjugated dextran was used to label blood vessels within the eye to serve as an anatomic reference. Eyes were subsequently fixed, paraffin embedded, sectioned, and stained for comparison to the 2PM images. RESULTS Three-dimensional analyses of multiple 2PM images revealed a well-defined region adjacent to the iris and cornea that is free of SHG signal and consistent with the location of Schlemm's canal. This open region is continuous with smaller tube structures consistent with collector channels. These structures do not label in mice perfused with the vascular probe dextran, supporting the hypothesis that the enclosed spaces are filled with aqueous humor rather than circulating blood. The TM region in the mouse eye was also visible, with a clear SHG signal representing collagen fibers. CONCLUSIONS These results support the hypothesis that 2PM may be useful for noninvasively imaging the conventional aqueous outflow pathway in mouse models of glaucoma. Studies are ongoing to validate our methodology in live animals.
Collapse
Affiliation(s)
- Andrew W Johnson
- Department of Ophthalmology, University of Colorado Denver, Aurora, Colorado, USA
| | | | | |
Collapse
|