1
|
Akdemir SC, Akalın I, Günay BÖ. One-Year Results of 0.01% and 0.05% Atropine Eye Drops in Childhood Myopia Progression. J Pediatr Ophthalmol Strabismus 2025:1-6. [PMID: 40135868 DOI: 10.3928/01913913-20250227-07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
PURPOSE To compare 0.01% and 0.05% atropine eye drops with every other day treatment for slowing myopia progression in children. METHODS Children aged 5 to 15 years who had myopia of -1.00 to 8.00 diopters (D), astigmatism less than -2.50 D, and myopic progression of at least 1.00 D in the past year were included in the retrospective study. The 0.01% and 0.05% atropine eye drops were applied every other day. At each visit, all patients underwent complete ophthalmic examination including cycloplegic refraction, axial length (AL), and photopic-mesopic pupil sizes. Spherical equivalent (SE), AL, and photopicmesopic pupil sizes were evaluated. RESULTS In total, 92 eyes of 46 patients were included in the study (22 in the 0.01% atropine group and 24 in the 0.05% atropine group). At the end of the 12-month follow-up period, the mean SE changes were -0.41 ± 0.28 and -0.19 ± 0.22 D in the 0.01% and 0.05% atropine groups, respectively (P < .001). The AL changes were 0.19 ± 0.16 and 0.16 ± 024 mm in the 0.01% and 0.05% atropine groups, respectively (P = .52). Side effects such as photophobia and blurred near vision were not observed in the 0.01% atropine group, but in the 0.05% atropine group, photophobia was observed in 3(12.5%) cases and blurred near vision was observed in 8 (33%) cases. CONCLUSIONS The 0.01% and 0.05% atropine eye drops significantly slowed the progression of myopia with every other day use. The 0.01% atropine was better tolerated than 0.05% atropine. [J Pediatr Ophthalmol Strabismus. 20XX;X(X):XXX-XXX.].
Collapse
|
2
|
Kim DH, Hwang JM, Yang HK. Topical Dopamine Application on Form-Deprivation Myopia in Rabbits. Life (Basel) 2025; 15:461. [PMID: 40141806 PMCID: PMC11944109 DOI: 10.3390/life15030461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: This study aimed to investigate the efficacy of topical dopamine administration in inhibiting form deprivation (FD) myopia in a rabbit model. Methods: A total of 16 neonatal New Zealand white rabbits were randomly assigned to two groups: a control group and a dopamine treatment group. FD myopia was induced in both groups by applying a light diffuser to one eye. The dopamine group received daily topical instillations of 4% dopamine in the eye with FD myopia, while the control group received normal saline instillations over a four-week period. Axial length measurements were taken to assess the degree of myopia, and histological analysis was performed to evaluate retinal safety and structural integrity. Results: The results indicated that dopamine treatment significantly inhibited axial elongation of the FD eyes compared to the control group, with measurements of 15.07 ± 0.34 mm for the dopamine group versus 15.63 ± 0.33 mm for the control group (p = 0.015). Histological analysis showed no evidence of structural alterations or apoptosis in the retina, confirming the safety of topical dopamine. Conclusions: Topical dopamine appears to be a promising therapeutic approach for controlling the progression of myopia in a rabbit model, demonstrating significant efficacy in reducing axial elongation without inducing ocular toxicity. These findings highlight the potential of dopamine in managing myopia and warrant further investigation in clinical settings.
Collapse
Affiliation(s)
| | | | - Hee Kyung Yang
- Department of Ophthalmology, College of Medicine, Seoul National University, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea; (D.H.K.); (J.-M.H.)
| |
Collapse
|
3
|
Koulalis JA, Nelis P, Cools W, Tezcan F, Kuijpers RW. The Short-term Effect of Atropine 0.1% on the Axial Length and Choroid of Children Treated for Myopia Progression Prevention, Measured by Optical Coherence Tomography Angiography. J Pediatr Ophthalmol Strabismus 2025:1-6. [PMID: 39969281 DOI: 10.3928/01913913-20250124-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
PURPOSE To investigate the short-term effect of atropine to better understand its mechanism of action in myopia prevention. The current study investigates whether atropine's effect on the axial length arises from an increase in choroidal thickness using swept-source optical coherence tomography angiography (OCTA). METHODS Twenty-five myopic children (25 eyes) (9 boys and 16 girls; mean age: 11.8 years, range: 7 to 15 years) were enrolled following documented myopia progression and axial length increase in the preceding 6 months. Using swept-source OCTA, choroidal thickness and choroidal stromal volume (CSV) were measured at baseline and after 1 month of daily atropine 0.1% use. Axial length measurements were taken on the same days. RESULTS Following 1 month of daily atropine 0.1% instillation, choroidal thickness increased from 284.24 ± 65.05 to 308.04 ± 70.65 µm (Δ 22.41 ± 4.20 µm, P < .01), CSV increased from 11.88 ± 5.20 to 12.96 ± 5.86 mm3 (Δ 1.08 ± 1.02 mm3, P < .01), and axial length decreased from 25.37 ± 1.21 to 25.33 ± 1.21 mm (Δ 0.044 ± 0.016 mm, P < .05). The CSV and choroidal thickness increase show a negative correlation with the axial length decrease of -0.462 and -0.374, respectively, demonstrating a weak to moderate correlation. CONCLUSIONS One month of daily atropine 0.1% eye drop administration results in an acute decrease in axial length concurrent with an increase in choroidal thickness and CSV. A direct cause-and-effect relationship between these two parameters is plausible. [J Pediatr Ophthalmol Strabismus. 20XX;X(X):XXXXXX.].
Collapse
|
4
|
Han C, Li Y, Zheng X, Zhang J, Zhao X, Ge K, Li G, Yang Y, Zhang W. Choroidal thickening and retinal dopamine increase in mice at high altitude. Exp Eye Res 2025; 251:110241. [PMID: 39814194 DOI: 10.1016/j.exer.2025.110241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 01/02/2025] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
The mechanisms underlying the low incidence of myopia at high altitudes remain unclear. Choroidal thickness and the dopaminergic system have been shown to be closely associated with myopia development. This study aimed to investigate the effects of high altitude exposure on choroidal thickness and the dopaminergic system. Mice were subjected to acute hypobaric hypoxia at an altitude of 5000 m for durations ranging from 2 to 72 h, as well as chronic exposure at an altitude of 3670 m for a period of 3 months. Choroidal thickness was assessed using hematoxylin and eosin (H&E) staining of ocular tissues. The retinal dopamine (DA) levels and its primary metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC), were quantified via high-performance liquid chromatography (HPLC). The expression levels of dopamine D1 receptor (D1R) and dopamine D2 receptor (D2R) were evaluated using immunofluorescence techniques. Study results indicated that choroidal thickness significantly increased after 6 h of high altitude exposure. Retinal dopamine levels showed significant increases in both the 2-10 h and 3 months high altitude groups. Conversely, retinal DOPAC levels decreased in the 2 h and 4 h groups but increased significantly at 72 h. Following high altitude exposure, D1R expression correlated positively with DA levels, while D2R expression exhibited a negative correlation. In conclusion, high-altitude exposure is associated with significant increases in choroidal thickness and retinal DA levels, with D1R and D2R expression patterns varying in response to changes in retinal DA. These findings may represent a key molecular mechanism contributing to the lower incidence of myopia observed at high altitudes.
Collapse
Affiliation(s)
- Cong Han
- Department of Ophthalmology, The Second Hospital &Clinical Medical School, Lanzhou University, Gansu, 730000, China.
| | - Yuting Li
- Department of Pathology, Basic Medical School, Ningxia Medical University, Ningxia, 750004, China.
| | - Xingxing Zheng
- Department of Ophthalmology, The Second Hospital &Clinical Medical School, Lanzhou University, Gansu, 730000, China.
| | - Jianping Zhang
- Department of Ophthalmology, The Second Hospital &Clinical Medical School, Lanzhou University, Gansu, 730000, China.
| | - Xin Zhao
- Department of Ophthalmology, The Second Hospital &Clinical Medical School, Lanzhou University, Gansu, 730000, China.
| | - Keke Ge
- Department of Ophthalmology, The Second Hospital &Clinical Medical School, Lanzhou University, Gansu, 730000, China.
| | - Guonian Li
- Department of Traditional Chinese Medicine, Xi'an Baoshi Flower Changqing Hospital, Shanxi, 710201, China.
| | - Yi Yang
- Department of Ophthalmology, The Second Hospital &Clinical Medical School, Lanzhou University, Gansu, 730000, China.
| | - Wenfang Zhang
- Department of Ophthalmology, The Second Hospital &Clinical Medical School, Lanzhou University, Gansu, 730000, China.
| |
Collapse
|
5
|
Du L, Ding L, Chen J, Wang J, Yang J, Liu S, Xu X, He X, Huang J, Zhu M. Efficacy of weekly dose of 1% atropine for myopia control in Chinese children. Br J Ophthalmol 2025; 109:264-272. [PMID: 39122352 PMCID: PMC11866296 DOI: 10.1136/bjo-2023-324615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024]
Abstract
PURPOSE To assess the effect of weekly 1% atropine use on children's myopia progression and whether the effect is sustainable. METHODS Medical records of myopic children aged 3-15 years receiving weekly 1% atropine for more than 1 year were retrospectively reviewed. Axial length (AL) and spherical equivalent refraction (SER) at every visit were collected. The changes in AL or SER over time were analysed using generalised estimating equation. The related factors of myopic progression were performed by multiple linear regression. The performance of short-term AL change to predict atropine-poor responders (AL change >0.2 mm/year) was assessed using receiver operating characteristic analysis. RESULTS A total of 694 participants with a mean age of 8.83 years were included. The participants with follow-up time reached 1, 2, 3 and 4 years were 256 (36.9%), 250 (36.0%), 143 (20.6%) and 45 (6.5%) separately. The cumulative change in AL was 0.05 mm, 0.24 mm, 0.47 mm, 0.56 mm separately for 1-year, 2-year, 3-year and 4- year treatment. Approximate 0.20 mm elongation per year was observed since the second-year of the treatment. Older age and lower initial myopic refraction were independently associated with less myopic progression. A decrease in AL of more than 0.04 mm during the initial 2 months could serve as an indicator for identifying fast progressors (AL change >0.2 mm/year) over a 2-year period, with sensitivity and specificity rates of 0.78 and 0.73, respectively. CONCLUSION Weekly 1% atropine may be a potentially effective treatment with longer lasting effects for children with myopia control especially in those with older age and lower myopia.
Collapse
Affiliation(s)
- Linlin Du
- Shanghai Eye Diseases Prevention and Treatment Center, Shanghai Eye Hospital, Tongji University, Shanghai, China
| | - Li Ding
- Shanghai Eye Diseases Prevention and Treatment Center, Shanghai Eye Hospital, Tongji University, Shanghai, China
| | - Jun Chen
- Shanghai Eye Diseases Prevention and Treatment Center, Shanghai Eye Hospital, Tongji University, Shanghai, China
| | - Jingjing Wang
- Shanghai Eye Diseases Prevention and Treatment Center, Shanghai Eye Hospital, Tongji University, Shanghai, China
| | - Jinliuxing Yang
- Shanghai Eye Diseases Prevention and Treatment Center, Shanghai Eye Hospital, Tongji University, Shanghai, China
| | - Sichen Liu
- Shanghai Eye Diseases Prevention and Treatment Center, Shanghai Eye Hospital, Tongji University, Shanghai, China
| | - Xun Xu
- Shanghai Eye Diseases Prevention and Treatment Center, Shanghai Eye Hospital, Tongji University, Shanghai, China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangui He
- Shanghai Eye Diseases Prevention and Treatment Center, Shanghai Eye Hospital, Tongji University, Shanghai, China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jiannan Huang
- Shanghai Eye Diseases Prevention and Treatment Center, Shanghai Eye Hospital, Tongji University, Shanghai, China
| | - Mengjun Zhu
- Shanghai Eye Diseases Prevention and Treatment Center, Shanghai Eye Hospital, Tongji University, Shanghai, China
| |
Collapse
|
6
|
Liu H, Schaeffel F, Feldkaemper MP. Effects of computer-generated patterns with different temporal and spatial frequencies on choroidal thickness, retinal dopamine and candidate genes in chickens wearing lenses. Front Med (Lausanne) 2024; 11:1469275. [PMID: 39720655 PMCID: PMC11666368 DOI: 10.3389/fmed.2024.1469275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/23/2024] [Indexed: 12/26/2024] Open
Abstract
Purpose Changes in choroidal thickness (ChT) are proposed to predict myopia development but evidence is mixed. We investigated time courses of choroidal responses, following different types of dynamic artificial stimulation in chicks with and without spectacle lenses, as well as changes in retinal dopamine metabolism and expression of candidate genes. Methods Chicks were kept in an arena surrounded by computer monitors presenting dynamic checkerboard fields of small, medium and large size. Fields were displayed with different cycle frequencies, as ON (rapid rise, slow decay) or OFF (slow rise, rapid decay) temporal luminance profile. Refractive errors, ocular biometry and ChT were assessed. Dopamine metabolism and candidate gene expression levels were also measured. Stimuli were applied for (1) 3 h with no lens, (2) 3 h and monocular treatment with -7D or +7D lenses, (3) 3 or 7 days. Results (1) The smallest fields caused the largest decrease in ChT. (2) Negative lens treatment induced on average 11.7 μm thinner choroids. ChT thinning was enhanced by 10 Hz-ON medium field size flicker which also reduced choroidal thickening with positive lenses. (3) With prolonged treatment, the choroid recovered from initial thinning in all groups although to varying degrees which were dependent on stimulus parameters. Relative ChT changes were positively correlated with the vitreal level of dopamine metabolites. Retinal EGR-1 mRNA level was positively correlated with choroidal thickness. Retinal melanopsin mRNA was increased by 10 Hz-ON stimulation and choroidal BMPR1A mRNA increased with 10 Hz-OFF stimulation. On average, early choroidal thinning did not predict the amount of negative lens-induced eye growth changes after 7 days, whereas later ChT changes showed a weak association. Conclusion Negative lenses caused long-lasting choroidal thinning, with some recovery during lens wear, especially after stimulation with 10 Hz. The dynamic stimuli modulated choroidal thinning but effects were small. There was little difference between ON and OFF stimulation, perhaps because the checkerboard patterns were too coarse. 10 Hz cycle frequency increased dopamine release. Less dopamine was correlated with thinner choroids. Result do not exclude a predictive value of choroidal thickening for future refractive development since we almost exclusively tested choroidal thinning effects.
Collapse
Affiliation(s)
- Hong Liu
- Section of Neurobiology of the Eye, Ophthalmic Research Institute, University of Tübingen, Tübingen, Germany
- Aier Institute of Optometry and Vision Science, Aier Eye Hospital Group, Changsha, China
| | - Frank Schaeffel
- Section of Neurobiology of the Eye, Ophthalmic Research Institute, University of Tübingen, Tübingen, Germany
| | - Marita Pauline Feldkaemper
- Section of Neurobiology of the Eye, Ophthalmic Research Institute, University of Tübingen, Tübingen, Germany
| |
Collapse
|
7
|
Zhu Q, Chen L, Liang JR, Hu M, Xue LP, Zhou GL, Zhou Y, Zhang JY, Fernandez-Hazoury D, Helman A, Zhu YT, Zhang XF. Retardation of myopia by atropine regimes. Int J Ophthalmol 2024; 17:2129-2140. [PMID: 39559301 PMCID: PMC11528274 DOI: 10.18240/ijo.2024.11.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/26/2024] [Indexed: 11/20/2024] Open
Abstract
Myopia is a huge health problem due to its high frequency, vision losses and public health cost. According to the World Health Organization, at least 2.2 billion people have vision impairment. Although myopia can be controlled at its early and middle stages, unfortunately, no cure can be achieved so far. Among the methods to control myopia, atropine, a muscarinic receptor antagonist, is the oldest but still the most effective for retardation of myopia progression. Despite such a fact, standard protocols have not been established for clinicians to use atropine for treatment of myopia. In this article, a concise and up to date summary of myopia epidemiology and pathogenesis and summarized therapeutic effects and side effects, possible mechanisms and application methods of atropine were provided in hope for clinical doctors to effectively control this problematic disease. At present, the protocol is recommend: use higher dose (1%) of atropine intermittently to effectively slowdown myopia progression in schoolchildren for 2y, and to significantly reduce side effects of atropine by decrease of atropine frequency for 1y and inhibit myopic rebound by withdrawal of topical atropine gradually for 1y. Application of a lower dose (0.05%) atropine regime should also be considered due to its effectiveness and application at regular basis.
Collapse
Affiliation(s)
- Qin Zhu
- Department of Pediatric Ophthalmology, Affiliated Hospital of Yunnan University, Kunming 650021, Yunnan Province, China
| | - Li Chen
- Department of Pediatric Ophthalmology, Affiliated Hospital of Yunnan University, Kunming 650021, Yunnan Province, China
| | - Jia-Rui Liang
- Department of Pediatric Ophthalmology, Affiliated Hospital of Yunnan University, Kunming 650021, Yunnan Province, China
| | - Min Hu
- Department of Pediatric Ophthalmology, Affiliated Hospital of Yunnan University, Kunming 650021, Yunnan Province, China
| | - Li-Ping Xue
- Department of Pediatric Ophthalmology, Affiliated Hospital of Yunnan University, Kunming 650021, Yunnan Province, China
| | - Guang-Long Zhou
- Department of Pediatric Ophthalmology, Affiliated Hospital of Yunnan University, Kunming 650021, Yunnan Province, China
| | - Yuan Zhou
- Department of Pediatric Ophthalmology, Affiliated Hospital of Yunnan University, Kunming 650021, Yunnan Province, China
| | - Jie-Ying Zhang
- Department of Pediatric Ophthalmology, Affiliated Hospital of Yunnan University, Kunming 650021, Yunnan Province, China
| | | | | | - Ying-Ting Zhu
- Department of Pediatric Ophthalmology, Affiliated Hospital of Yunnan University, Kunming 650021, Yunnan Province, China
- BioTissue (Tissue Tech Inc), Miami, Florida 33032, USA
| | - Xiao-Fan Zhang
- Department of Pediatric Ophthalmology, Affiliated Hospital of Yunnan University, Kunming 650021, Yunnan Province, China
| |
Collapse
|
8
|
Dong L, Wu HT, Zhang RH, Niu LH, Wang YX, Wei WB, Panda-Jonas S, Jonas JB. Intraocular amphiregulin and axial elongation in non-human adolescent primates. Exp Eye Res 2024; 247:110059. [PMID: 39181228 DOI: 10.1016/j.exer.2024.110059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
The purpose of the experimental interventional study was to examine the influence of intraocularly applied amphiregulin, a member of the epidermal growth factor (EGF) family, on axial length in young non-human primates. It included three non-human primates (Macaca mulatta), aged 4-6 years. The left eyes received three intravitreal injections of amphiregulin (400ng/50 μl) in intervals of 4 weeks, while the right eyes received three intravitreal injections of phosphate buffered solution (50 μl) at the same time points. Ocular biometry was performed in weekly intervals. At baseline, the left eyes (study eyes) were shorter than the right (control) eyes (20.69 ± 0.21 mm versus 20.79 ± 0.24 mm; P < 0.001), with an inter-eye axial length (AL) difference (left minus right eye) of -0.10 ± 0.23 mm. Inter-eye AL difference increased (P < 0.001) to 0.15 ± 0.18 mm at study end, at 12 weeks after baseline. Axial elongation during the study was higher (P < 0.001) in the left eyes (20.69 ± 0.21 mm to 21.05 ± 0.29 mm or 0.36 ± 0.30 mm) than in the right eyes (20.79 ± 0.24 mm to 20.90 ± 0.31 mm or 0.11 ± 0.17 mm). In a parallel manner, inter-eye difference in vitreous cavity depth combined with lens thickness (left eye minus right eye) increased from -0.04 ± 0.17 mm at baseline to -0.02 ± 0.21 mm (P = 0.02), 0.04 ± 0.10 mm (P = 0.002), and to 0.42 ± 0.67 mm (P < 0.001) at 5, 6, and 12 weeks after baseline, respectively. The results suggest that intravitreally applied amphiregulin as EGF family member led to an increase in axial length in adolescent non-human primates. It supports the hypothesis of amphiregulin as EGF family member being involved in the process of axial elongation.
Collapse
Affiliation(s)
- Li Dong
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hao Tian Wu
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Rui Heng Zhang
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ling Han Niu
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ya Xing Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | - Wen Bin Wei
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Hospital, Capital Medical University, Beijing, China; Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Songhomitra Panda-Jonas
- University Eye Hospital, University of Heidelberg, Heidelberg, Germany; Privatpraxis Prof Jonas und Dr Panda-Jonas, Heidelberg, Germany
| | - Jost B Jonas
- Privatpraxis Prof Jonas und Dr Panda-Jonas, Heidelberg, Germany; Rothschild Foundation Hospital, Institut Français de Myopie, 44 Avenue Mathurin Moreau, 75019, Paris, France; Singapore Eye Research Institute, Singapore National Eye Center, Singapore.
| |
Collapse
|
9
|
Vera J, Redondo B, Vera-Diaz FA, Panorgias A. Acute Effects of Oral Caffeine Intake on Human Global-Flash mfERG Responses: A Placebo-Controlled, Double-Masked, Balanced Crossover Study. Invest Ophthalmol Vis Sci 2024; 65:10. [PMID: 39230997 PMCID: PMC11379086 DOI: 10.1167/iovs.65.11.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
Purpose To determine the acute effect of caffeine intake on the retinal responses as measured with a global-flash multifocal electroretinogram (gfmERG) protocol at different contrast levels. Methods Twenty-four young adults (age = 23.3 ± 2.4 years) participated in this placebo-controlled, double-masked, balanced crossover study. On two different days, participants orally ingested caffeine (300 mg) or placebo, and retinal responses were recorded 90 minutes later using a gfmERG at three contrast levels (95%, 50%, and 29%). The amplitude response density and peak time of the direct and induced components (direct component [DC] and induced component [IC], respectively) were extracted for five different eccentricities (1.3°, 5.0°, 9.6°, 15.2°, and 21.9°). Axial length, spherical equivalent refraction, habitual caffeine intake, and body weight were considered as continuous covariates. Results Increased IC amplitude response density was found after caffeine ingestion in comparison to placebo (P = 0.021, ƞp2 = 0.23), specifically for the 95% and 50% stimulus contrasts (P = 0.024 and 0.018, respectively). This effect of caffeine on IC amplitude response density was independent of the retinal eccentricity (P = 0.556). Caffeine had no effect on DC amplitude response density or DC and IC peak times. Conclusions Our results show that oral caffeine intake increases the inner electro-retinal activity in young adults when viewing stimuli of high- (95%) to medium-contrast (50%). Given the increasing evidence that the inner retinal function is involved in the emmetropization process, these results may suggest that caffeine or its derivatives could potentially play a role in the mechanisms involved in eye growth.
Collapse
Affiliation(s)
- Jesús Vera
- CLARO (Clinical and Laboratory Applications of Research in Optometry) Research Group, Department of Optics, Faculty of Sciences, University of Granada, Spain
- New England College of Optometry, Boston, Massachusetts, United States
| | - Beatriz Redondo
- CLARO (Clinical and Laboratory Applications of Research in Optometry) Research Group, Department of Optics, Faculty of Sciences, University of Granada, Spain
- New England College of Optometry, Boston, Massachusetts, United States
| | | | | |
Collapse
|
10
|
Li Y, Wong D, Sreng S, Chung J, Toh A, Yuan H, Eppenberger LS, Leow C, Ting D, Liu N, Schmetterer L, Saw SM, Jonas JB, Chia A, Ang M. Effect of childhood atropine treatment on adult choroidal thickness using sequential deep learning-enabled segmentation. Asia Pac J Ophthalmol (Phila) 2024; 13:100107. [PMID: 39378966 DOI: 10.1016/j.apjo.2024.100107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
PURPOSE To describe choroidal thickness measurements using a sequential deep learning segmentation in adults who received childhood atropine treatment for myopia control. DESIGN Prospective, observational study. METHODS Choroidal thickness was measured by swept-source optical coherence tomography in adults who received childhood atropine, segmented using a sequential deep learning approach. RESULTS Of 422 eyes, 94 (22.3 %) had no previous exposure to atropine treatment, while 328 (77.7 %) had received topical atropine during childhood. After adjusting for age, sex, and axial length, childhood atropine exposure was associated with a thicker choroid by 32.1 μm (95 % CI, 9.2-55.0; P = 0.006) in the inner inferior, 23.5 μm (95 % CI, 1.9-45.1; P = 0.03) in the outer inferior, 21.8 μm (95 % CI, 0.76-42.9; P = 0.04) in the inner nasal, and 21.8 μm (95 % CI, 2.6-41.0; P = 0.03) in the outer nasal. Multivariable analysis, adjusted for age, sex, atropine use, and axial length, showed an independent association between central subfield choroidal thickness and the incidence of tessellated fundus (P < 0.001; OR, 0.97; 95 % CI, 0.96-0.98). CONCLUSIONS This study demonstrated that short-term (2-4 years) atropine treatment during childhood was associated with an increase in choroidal thickness of 20-40 μm in adulthood (10-20 years later), after adjusting for age, sex, and axial length. We also observed an independent association between eyes with thicker central choroidal measurements and reduced incidence of tessellated fundus. Our study suggests that childhood exposure to atropine treatment may affect choroidal thickness in adulthood.
Collapse
Affiliation(s)
- Yong Li
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore; Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Damon Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore; SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Syna Sreng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore; SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore
| | - Joey Chung
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Angeline Toh
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Han Yuan
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Leila Sara Eppenberger
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore; Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Cheryl Leow
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Daniel Ting
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore; Duke-NUS Medical School, National University of Singapore, Singapore, Singapore; Byers Eye Institute, Sandford University, Palo Alto, CA, USA
| | - Nan Liu
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Leopold Schmetterer
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore; Duke-NUS Medical School, National University of Singapore, Singapore, Singapore; SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore; Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria; Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria; Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Seang-Mei Saw
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore; Duke-NUS Medical School, National University of Singapore, Singapore, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Jost B Jonas
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore; Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland; Privatpraxis Prof Jonas and Dr Panda-Jonas, Heidelberg, Germany
| | - Audrey Chia
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore; Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Marcus Ang
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore; Duke-NUS Medical School, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
11
|
Hoseini-Yazdi H, Read SA, Collins MJ, Bahmani H, Ellrich J, Schilling T. Increase in choroidal thickness after blue light stimulation of the blind spot in young adults. Bioelectron Med 2024; 10:13. [PMID: 38825695 PMCID: PMC11145801 DOI: 10.1186/s42234-024-00146-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/01/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Blue light activates melanopsin, a photopigment that is expressed in intrinsically photosensitive retinal ganglion cells (ipRGCs). The axons of ipRGCs converge on the optic disc, which corresponds to the physiological blind spot in the visual field. Thus, a blue light stimulus aligned with the blind spot captures the ipRGCs axons at the optic disc. This study examined the potential changes in choroidal thickness and axial length associated with blue light stimulation of melanopsin-expressing ipRGCs at the blind spot. It was hypothesized that blue light stimulation at the blind spot in adults increases choroidal thickness. METHODS The blind spots of both eyes of 10 emmetropes and 10 myopes, with a mean age of 28 ± 6 years (SD), were stimulated locally for 1-minute with blue flickering light with a 460 nm peak wavelength. Measurements of choroidal thickness and axial length were collected from the left eye before stimulation and over a 60-minute poststimulation period. At a similar time of day, choroidal thickness and axial length were measured under sham control condition in all participants, while a subset of 3 emmetropes and 3 myopes were measured after 1-minute of red flickering light stimulation of the blind spot with a peak wavelength of 620 nm. Linear mixed model analyses were performed to examine the light-induced changes in choroidal thickness and axial length over time and between refractive groups. RESULTS Compared with sham control (2 ± 1 μm, n = 20) and red light (-1 ± 2 μm, n = 6) stimulation, subfoveal choroidal thickness increased within 60 min after blue light stimulation of the blind spot (7 ± 1 μm, n = 20; main effect of light, p < 0.001). Significant choroidal thickening after blue light stimulation occurred in emmetropes (10 ± 2 μm, p < 0.001) but not in myopes (4 ± 2 μm, p > 0.05). Choroidal thickening after blue light stimulation was greater in the fovea, diminishing in the parafoveal and perifoveal regions. There was no significant main effect of light, or light by refractive error interaction on the axial length after blind spot stimulation. CONCLUSIONS These findings demonstrate that stimulating melanopsin-expressing axons of ipRGCs at the blind spot with blue light increases choroidal thickness in young adults. This has potential implications for regulating eye growth.
Collapse
Affiliation(s)
- Hosein Hoseini-Yazdi
- Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, Optometry and Vision Science, Queensland University of Technology, Brisbane, 4059, Australia
| | - Scott A Read
- Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, Optometry and Vision Science, Queensland University of Technology, Brisbane, 4059, Australia
| | - Michael J Collins
- Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, Optometry and Vision Science, Queensland University of Technology, Brisbane, 4059, Australia
| | - Hamed Bahmani
- Dopavision GmbH, Krausenstr. 9-10, 10117, Berlin, Germany
| | - Jens Ellrich
- Dopavision GmbH, Krausenstr. 9-10, 10117, Berlin, Germany
- Medical Faculty, Friedrich-Alexander-University Erlangen-Nuremberg, 91054, Erlangen, Germany
| | - Tim Schilling
- Dopavision GmbH, Krausenstr. 9-10, 10117, Berlin, Germany.
| |
Collapse
|
12
|
Zhou S, Niu Y, Li X, Yue J, Zhang H. The knowledge structure and research trends between light and myopia: A bibliometric analysis from 1981 to 2024. Medicine (Baltimore) 2024; 103:e38157. [PMID: 38758893 PMCID: PMC11098238 DOI: 10.1097/md.0000000000038157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/16/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND This bibliometric analysis explored the knowledge structure of and research trends in the relationship between light and myopia. METHODS Relevant literature published from 1981 to 2024 was collected from the Web of Science Core Collection database. Visual maps were generated using CiteSpace and VOSviewer. We analyzed the included studies in terms of the annual publication count, countries, institutional affiliations, prolific authors, source journals, top 10 most cited articles, keyword co-occurrence, and cocitations. RESULTS A total of 525 papers examining the relationship between light and myopia published between 1981 and 2024 were collected. The United States ranked first in terms of the number of publications and actively engaged in international cooperation with other countries. The New England College of Optometry, which is located in the United States, was the most active institution and ranked first in terms of the number of publications. Schaeffel Frank was the most prolific author. The most active journal in the field was Investigative Ophthalmology & Visual Science. The most frequently cited paper in the included studies was written by Saw, SM and was published in 2002. The most common keywords in basic research included "refractive error," "longitudinal chromatic aberration," and "compensation." The most common keywords in clinical research mainly included "light exposure," "school," and "outdoor activity." The current research hotspots in this field are "progression," "refractive development," and "light exposure." The cocitation analysis generated 17 clusters. CONCLUSION This study is the first to use bibliometric methods to analyze existing research on the relationship between light and myopia. In recent years, the intensity and wavelength of light have become research hotspots in the field. Further research on light of different intensities and wavelengths may provide new perspectives in the future for designing more effective treatments and interventions to reduce the incidence of myopia.
Collapse
Affiliation(s)
- Shuaibing Zhou
- Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institution, Henan Key Laboratory for Ophthalmology and Visual Science, Zhengzhou University, Zhengzhou, China
| | - Yueyue Niu
- Henan University People’s Hospital, Henan Eye Hospital, Zhengzhou, China
| | - Xuejiao Li
- Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institution, Henan Key Laboratory for Ophthalmology and Visual Science, Zhengzhou University, Zhengzhou, China
- Department of Ophthalmology, Sanmenxia Central Hospital, Sanmenxia, China
| | - Juan Yue
- Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institution, Henan Key Laboratory for Ophthalmology and Visual Science, Zhengzhou University, Zhengzhou, China
| | - Hongmin Zhang
- Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institution, Henan Key Laboratory for Ophthalmology and Visual Science, Zhengzhou University, Zhengzhou, China
- Henan University People’s Hospital, Henan Eye Hospital, Zhengzhou, China
| |
Collapse
|
13
|
Lee SH, Tseng BY, Wang JH, Chiu CJ. Efficacy and Safety of Low-Dose Atropine on Myopia Prevention in Premyopic Children: Systematic Review and Meta-Analysis. J Clin Med 2024; 13:1506. [PMID: 38592670 PMCID: PMC10932201 DOI: 10.3390/jcm13051506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 04/10/2024] Open
Abstract
Background: Early-onset myopia increases the risk of irreversible high myopia. Methods: This study systematically evaluated the efficacy and safety of low-dose atropine for myopia control in children with premyopia through meta-analysis using random-effects models. Effect sizes were calculated using risk ratios (RRs) with 95% confidence intervals (CIs). Comprehensive searches of PubMed, EMBASE, Cochrane CENTRAL, and ClinicalTrials.gov were conducted until 20 December 2023, without language restrictions. Results: Four studies involving 644 children with premyopia aged 4-12 years were identified, with atropine concentrations ranging from 0.01% to 0.05%. The analysis focused on myopia incidence and atropine-related adverse events. Lower myopia incidence (RR, 0.62; 95% CI, 0.40-0.97 D/y; p = 0.03) and reduction in rapid myopia shift (≥0.5 D/1y) (RR, 0.50; 95% CI, 0.26-0.96 D/y; p < 0.01) were observed in the 12-24-month period. Spherical equivalent and axial length exhibited attenuated progression in the atropine group. No major adverse events were detected in either group, whereas the incidence of photophobia and allergic conjunctivitis did not vary in the 12-24-month period. Conclusions: Our meta-analysis supports atropine's efficacy and safety for delaying myopia incidence and controlling progression in children with premyopia. However, further investigation is warranted due to limited studies.
Collapse
Affiliation(s)
- Ssu-Hsien Lee
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan; (S.-H.L.); (B.-Y.T.)
| | - Bor-Yuan Tseng
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan; (S.-H.L.); (B.-Y.T.)
| | - Jen-Hung Wang
- Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan;
| | - Cheng-Jen Chiu
- Department of Ophthalmology and Visual Science, Tzu Chi University, Hualien 970, Taiwan
- Department of Ophthalmology, Hualien Tzu Chi Hospital, the Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| |
Collapse
|
14
|
Che D, Qiao D, Cao Y, Zhang Y, Zhou Q, Tong S, Miao P, Zhou J. Changes in choroidal hemodynamics of form-deprivation myopia in Guinea pigs. Biochem Biophys Res Commun 2024; 692:149348. [PMID: 38064999 DOI: 10.1016/j.bbrc.2023.149348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024]
Abstract
PURPOSE We studied changes in the choroid, particularly variation in blood flow, during the development of myopia. The hemodynamic mechanism in play remains unclear. We evaluated blood flow by quantitating indocyanine green (ICG) fluorescence in a guinea pig model of form-deprivation myopia. METHODS Guinea pigs were divided into form-deprivation myopia (FDM) and normal control (NC) groups. Ocular biometric and choroidal hemodynamics parameters were quantitatively derived via ICG imaging, and included the maximal ICG fluorescence intensity (Imax), rising time (Trising), blood flow index (BFI), and mean transit time (MTT). RESULTS Form deprivation was associated with significant interocular differences in terms of both refractive error and axial length. ICG fluorescence hemodynamic maps of fundal blood flow and vasculature density were evident. In deprived eyes, the fluorescence signals exhibited significantly longer Trising and MTT but lower Imax and BFI than fellow eyes and NC group. The interocular differences in terms of the ocular biometric and hemodynamic parameters were significantly correlated. Hemodynamic analysis of choriocapillaris lobules revealed weakened fluorescence intensity and prolonged arrival and filling times in deprived eyes. Form deprivation reduced the number of lobulated choriocapillaris structures. CONCLUSION Form-deprivation myopia triggered changes in the hemodynamic and vascular network structures of the choroid and choriocapillaris. The ICG fluorescence imaging/analysis method provides a unique tool for further myopia research.
Collapse
Affiliation(s)
- Danyang Che
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danlei Qiao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yiting Cao
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingjie Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qimin Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanbao Tong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Peng Miao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Jibo Zhou
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
15
|
Tapia F, Peñaloza V, Silva-Olivares F, Sotomayor-Zárate R, Schmachtenberg O, Vielma AH. Glucagon Increases Retinal Rod Bipolar Cell Inhibition Through a D1 Dopamine Receptor-Dependent Pathway That Is Altered After Lens-Defocus Treatment in Mice. Invest Ophthalmol Vis Sci 2024; 65:46. [PMID: 38289613 PMCID: PMC10840015 DOI: 10.1167/iovs.65.1.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/05/2024] [Indexed: 02/01/2024] Open
Abstract
Purpose Members of the secretin/glucagon family have diverse roles in retinal physiological and pathological conditions. Out of them, glucagon has been associated with eye growth regulation and image defocus signaling in the eye, both processes central in myopia induction. On the other hand, dopamine is perhaps the most studied molecule in myopia and has been proposed as fundamental in myopia pathogenesis. However, glucagonergic activity in the mammalian retina and its possible link with dopaminergic signaling remain unknown. Methods To corroborate whether glucagon and dopamine participate together in the modulation of synaptic activity in the retina, inhibitory post-synaptic currents were measured in rod bipolar cells from retinal slices of wild type and negative lens-exposed mice, using whole cell patch-clamp recordings and selective pharmacology. Results Glucagon produced an increase of inhibitory post-synaptic current frequency in rod bipolar cells, which was also dependent on dopaminergic activity, as it was abolished by dopamine type 1 receptor antagonism and under scotopic conditions. The effect was also abolished after 3-week negative lens-exposure but could be recovered using dopamine type 1 receptor agonism. Conclusions Altogether, these results support a possible neuromodulatory role of glucagon in the retina of mammals as part of a dopaminergic activity-dependent synaptic pathway that is affected under myopia-inducing conditions.
Collapse
Affiliation(s)
- Felipe Tapia
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Valentín Peñaloza
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
| | - Francisco Silva-Olivares
- Laboratorio de Neuroquímica y Neurofarmacología, Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Universidad de Valparaíso, Valparaíso, Chile
| | - Ramón Sotomayor-Zárate
- Laboratorio de Neuroquímica y Neurofarmacología, Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Universidad de Valparaíso, Valparaíso, Chile
| | - Oliver Schmachtenberg
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
- Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Alex H. Vielma
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
16
|
Chen CS, Lin CF, Chou YL, Lee DY, Tien PT, Wang YC, Chang CY, Lin ES, Chen JJ, Wu MY, Ku H, Gan D, Chang YM, Lin HJ, Wan L. Acupuncture modulates development of myopia by reducing NLRP3 inflammasome activation via the dopamine-D1R signaling pathway. Acupunct Med 2023; 41:364-375. [PMID: 37211683 DOI: 10.1177/09645284231170886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
BACKGROUND Dopamine has been suggested to be a stop signal for eye growth and affects the development of myopia. Acupuncture is known to increase dopamine secretion and is widely used to treat myopia clinically. OBJECTIVE The aim of this study was to determine if acupuncture inhibits myopia progression in form deprived Syrian hamsters by inducing rises in dopamine content that in turn suppress inflammasome activation. METHODS Acupuncture was applied at LI4 and Taiyang every other day for 21 days. The levels of molecules associated with the dopamine signaling pathway, inflammatory signaling pathway and inflammasome activation were determined. A dopamine agonist (apomorphine) was used to evaluate if activation of the dopaminergic signaling pathway suppresses myopia progression by inhibiting inflammasome activation in primary retinal pigment epithelial (RPE) cells. A dopamine receptor 1 (D1R) inhibitor (SCH39166) was also administered to the hamsters. RESULTS Acupuncture inhibited myopia development by increasing dopamine levels and activating the D1R signaling pathway. Furthermore, we also demonstrated that nucleotide-binding oligomerization domain (NOD)-, leucine-rich repeat (LRR)- and pyrin domain-containing protein 3 (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome activation was inhibited by activation of the D1R signaling pathway. CONCLUSION Our findings suggest that acupuncture inhibits myopia development by suppressing inflammation, which is initiated by activation of the dopamine-D1R signaling pathway.
Collapse
Affiliation(s)
- Chih-Sheng Chen
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung
- Division of Chinese Medicine, Asia University Hospital, Taichung
| | - Chi-Fong Lin
- PhD Program for Health Science and Industry, China Medical University, Taichung
| | - Yung-Lan Chou
- School of Chinese Medicine, China Medical University, Taichung
| | - Der-Yen Lee
- Graduate Institute of Integrated Medicine, China Medical University, Taichung
| | - Peng-Tai Tien
- Eye Center, China Medical University Hospital, Taichung
| | - Yao-Chien Wang
- Department of Emergency Medicine, Taichung Tzu Chi Hospital, Taichung
| | - Ching-Yao Chang
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung
| | - En-Shyh Lin
- Department of Beauty Science, National Taichung University of Science and Technology, Taichung
| | | | - Ming-Yen Wu
- Eye Center, China Medical University Hospital, Taichung
| | - Hsiangyu Ku
- Department of Ophthalmology and Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Dekang Gan
- Department of Ophthalmology and Visual Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yung-Ming Chang
- The School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung
- Department of Chinese Medicine, 1PT Biotechnology Co., Ltd., Taichung
| | - Hui-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung
- Graduate Institute of Integrated Medicine, China Medical University, Taichung
| | - Lei Wan
- School of Chinese Medicine, China Medical University, Taichung
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung
- Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung
| |
Collapse
|
17
|
Shu Z, Chen K, Wang Q, Wu H, Zhu Y, Tian R, Yan W, Huang Q, Zhang C, Xiong W, Qu J, Zhou X, Huang F. The Role of Retinal Dopamine D1 Receptors in Ocular Growth and Myopia Development in Mice. J Neurosci 2023; 43:8231-8242. [PMID: 37751999 PMCID: PMC10697406 DOI: 10.1523/jneurosci.1196-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/10/2023] [Accepted: 09/20/2023] [Indexed: 09/28/2023] Open
Abstract
Dopamine is a key neurotransmitter in the signaling cascade controlling ocular refractive development, but the exact role and site of action of dopamine D1 receptors (D1Rs) involved in myopia remains unclear. Here, we determine whether retinal D1Rs exclusively mediate the effects of endogenous dopamine and systemically delivered D1R agonist or antagonist in the mouse form deprivation myopia (FDM) model. Male C57BL/6 mice subjected to unilateral FDM or unobstructed vision were divided into the following four groups: one noninjected and three groups that received intraperitoneal injections of a vehicle, D1R agonist SKF38393 (18 and 59 nmol/g), or D1R antagonist SCH39166 (0.1 and 1 nmol/g). The effects of these drugs on FDM were further assessed in Drd1-knock-out (Drd1-KO), retina-specific conditional Drd1-KO (Drd1-CKO) mice, and corresponding wild-type littermates. In the visually unobstructed group, neither SKF38393 nor SCH39166 affected normal refractive development, whereas myopia development was attenuated by SKF38393 and enhanced by SCH39166 injections. In Drd1-KO or Drd1-CKO mice, however, these drugs had no effect on FDM development, suggesting that activation of retinal D1Rs is pertinent to myopia suppression by the D1R agonist. Interestingly, the development of myopia was unchanged by either Drd1-KO or Drd1-CKO, and neither SKF38393 nor SCH39166 injections, nor Drd1-KO, affected the retinal or vitreal dopamine and the dopamine metabolite DOPAC levels. Effects on axial length were less marked than effects on refraction. Therefore, activation of D1Rs, specifically retinal D1Rs, inhibits myopia development in mice. These results also suggest that multiple dopamine D1R mechanisms play roles in emmetropization and myopia development.SIGNIFICANCE STATEMENT While dopamine is recognized as a "stop" signal that inhibits myopia development (myopization), the location of the dopamine D1 receptors (D1Rs) that mediate this action remains to be addressed. Answers to this key question are critical for understanding how dopaminergic systems regulate ocular growth and refraction. We report here the results of our study showing that D1Rs are essential for controlling ocular growth and myopia development in mice, and for identifying the retina as the site of action for dopaminergic control via D1Rs. These findings highlight the importance of intrinsic retinal dopaminergic mechanisms for the regulation of ocular growth and suggest specific avenues for exploring the retinal mechanisms involved in the dopaminergic control of emmetropization and myopization.
Collapse
Affiliation(s)
- Ziheng Shu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China, 325000
- Research Unit of Myopia Basic Research and Clinical Prevention and Control, Chinese Academy of Medical Sciences (2019RU025), Wenzhou, Zhejiang, People's Republic of China, 325000
| | - Kaijie Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China, 325000
- Research Unit of Myopia Basic Research and Clinical Prevention and Control, Chinese Academy of Medical Sciences (2019RU025), Wenzhou, Zhejiang, People's Republic of China, 325000
| | - Qiongsi Wang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China, 325000
- Research Unit of Myopia Basic Research and Clinical Prevention and Control, Chinese Academy of Medical Sciences (2019RU025), Wenzhou, Zhejiang, People's Republic of China, 325000
| | - Honglin Wu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China, 325000
- Research Unit of Myopia Basic Research and Clinical Prevention and Control, Chinese Academy of Medical Sciences (2019RU025), Wenzhou, Zhejiang, People's Republic of China, 325000
| | - Yangfeifei Zhu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China, 325000
- Research Unit of Myopia Basic Research and Clinical Prevention and Control, Chinese Academy of Medical Sciences (2019RU025), Wenzhou, Zhejiang, People's Republic of China, 325000
| | - Ruikang Tian
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China, 325000
- Research Unit of Myopia Basic Research and Clinical Prevention and Control, Chinese Academy of Medical Sciences (2019RU025), Wenzhou, Zhejiang, People's Republic of China, 325000
| | - Wenjun Yan
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China, 325000
- Research Unit of Myopia Basic Research and Clinical Prevention and Control, Chinese Academy of Medical Sciences (2019RU025), Wenzhou, Zhejiang, People's Republic of China, 325000
| | - Qin Huang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China, 325000
- Research Unit of Myopia Basic Research and Clinical Prevention and Control, Chinese Academy of Medical Sciences (2019RU025), Wenzhou, Zhejiang, People's Republic of China, 325000
| | - Chunlan Zhang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China, 325000
- Research Unit of Myopia Basic Research and Clinical Prevention and Control, Chinese Academy of Medical Sciences (2019RU025), Wenzhou, Zhejiang, People's Republic of China, 325000
| | - Weiwei Xiong
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China, 325000
- Research Unit of Myopia Basic Research and Clinical Prevention and Control, Chinese Academy of Medical Sciences (2019RU025), Wenzhou, Zhejiang, People's Republic of China, 325000
| | - Jia Qu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China, 325000
- Research Unit of Myopia Basic Research and Clinical Prevention and Control, Chinese Academy of Medical Sciences (2019RU025), Wenzhou, Zhejiang, People's Republic of China, 325000
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, People's Republic of China, 325000
| | - Xiangtian Zhou
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China, 325000
- Research Unit of Myopia Basic Research and Clinical Prevention and Control, Chinese Academy of Medical Sciences (2019RU025), Wenzhou, Zhejiang, People's Republic of China, 325000
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, People's Republic of China, 325000
| | - Furong Huang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China, 325000
- Research Unit of Myopia Basic Research and Clinical Prevention and Control, Chinese Academy of Medical Sciences (2019RU025), Wenzhou, Zhejiang, People's Republic of China, 325000
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, People's Republic of China, 325000
| |
Collapse
|
18
|
Otin S, Ávila FJ, Mallen V, Garcia-Martin E. Detecting Structural Changes in the Choroidal Layer of the Eye in Neurodegenerative Disease Patients through Optical Coherence Tomography Image Processing. Biomedicines 2023; 11:2986. [PMID: 38001986 PMCID: PMC10669633 DOI: 10.3390/biomedicines11112986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
PURPOSE To evaluate alterations of the choroid in patients with a neurodegenerative disease versus healthy controls, a custom algorithm based on superpixel segmentation was used. DESIGN A cross-sectional study was conducted on data obtained in a previous cohort study. SUBJECTS Swept-source optical coherence tomography (OCT) B-scan images obtained using a Triton (Topcon, Japan) device were compiled according to current OSCAR IB and APOSTEL OCT image quality criteria. Images were included from three cohorts: multiple sclerosis (MS) patients, Parkinson disease (PD) patients, and healthy subjects. Only patients with early-stage MS and PD were included. METHODS In total, 104 OCT B-scan images were processed using a custom superpixel segmentation (SpS) algorithm to detect boundary limits in the choroidal layer and the optical properties of the image. The algorithm groups pixels with similar structural properties to generate clusters with similar meaningful properties. MAIN OUTCOMES SpS selects and groups the superpixels in a segmented choroidal area, computing the choroidal optical image density (COID), measured as the standard mean gray level, and the total choroidal area (CA), measured as px2. RESULTS The CA and choroidal density (CD) were significantly reduced in the two neurodegenerative disease groups (higher in PD than in MS) versus the healthy subjects (p < 0.001); choroidal area was also significantly reduced in the MS group versus the healthy subjects. The COID increased significantly in the PD patients versus the MS patients and in the MS patients versus the healthy controls (p < 0.001). CONCLUSIONS The SpS algorithm detected choroidal tissue boundary limits and differences optical density in MS and PD patients versus healthy controls. The application of the SpS algorithm to OCT images potentially acts as a non-invasive biomarker for the early diagnosis of MS and PD.
Collapse
Affiliation(s)
- Sofia Otin
- Department of Applied Physics, University of Zaragoza, 50009 Zaragoza, Spain;
| | - Francisco J. Ávila
- Department of Applied Physics, University of Zaragoza, 50009 Zaragoza, Spain;
| | - Victor Mallen
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (V.M.); (E.G.-M.)
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, 50009 Zaragoza, Spain
| | - Elena Garcia-Martin
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (V.M.); (E.G.-M.)
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
19
|
Yao Y, Chen Z, Wu Q, Lu Y, Zhou X, Zhu X. Single-cell RNA sequencing of retina revealed novel transcriptional landscape in high myopia and underlying cell-type-specific mechanisms. MedComm (Beijing) 2023; 4:e372. [PMID: 37746666 PMCID: PMC10511833 DOI: 10.1002/mco2.372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023] Open
Abstract
High myopia is a leading cause of blindness worldwide with increasing prevalence. Retina percepts visual information and triggers myopia development, but the underlying etiology is not fully understood because of cellular heterogeneity. In this study, single-cell RNA sequencing analysis was performed on retinas of mouse highly myopic and control eyes to dissect the involvement of each cell type during high myopia progression. For highly myopic photoreceptors, Hk2 inhibition underlying metabolic remodeling from aerobic glycolysis toward oxidative phosphorylation and excessive oxidative stress was identified. Importantly, a novel Apoe + rod subpopulation was specifically identified in highly myopic retina. In retinal neurons of highly myopic eyes, neurodegeneration was generally discovered, and the imbalanced ON/OFF signaling driven by cone-bipolar cells and the downregulated dopamine receptors in amacrine cells were among the most predominant findings, indicating the aberrant light processing in highly myopic eyes. Besides, microglia exhibited elevated expression of cytokines and TGF-β receptors, suggesting enhanced responses to inflammation and the growth-promoting states involved in high myopia progression. Furthermore, cell-cell communication network revealed attenuated neuronal interactions and increased glial/vascular interactions in highly myopic retinas. In conclusion, this study outlines the transcriptional landscape of highly myopic retina, providing novel insights into high myopia development and prevention.
Collapse
Affiliation(s)
- Yunqian Yao
- Eye Institute and Department of OphthalmologyEye & ENT HospitalFudan UniversityShanghaiChina
- Key Laboratory of MyopiaChinese Academy of Medical SciencesNational Health Center Key Laboratory of Myopia (Fudan University)ShanghaiChina
- Shanghai Research Center of Ophthalmology and OptometryShanghaiChina
| | - Zhenhua Chen
- State Key Laboratory of Molecular Development BiologyChinese Academy of SciencesInstitute of Genetics and Developmental BiologyBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qingfeng Wu
- State Key Laboratory of Molecular Development BiologyChinese Academy of SciencesInstitute of Genetics and Developmental BiologyBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Center for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesBeijingChina
- Chinese Institute for Brain ResearchBeijingChina
- Beijing Children's HospitalCapital Medical UniversityBeijingChina
| | - Yi Lu
- Eye Institute and Department of OphthalmologyEye & ENT HospitalFudan UniversityShanghaiChina
- Key Laboratory of MyopiaChinese Academy of Medical SciencesNational Health Center Key Laboratory of Myopia (Fudan University)ShanghaiChina
- Shanghai Key Laboratory of Visual Impairment and RestorationShanghaiChina
- State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| | - Xingtao Zhou
- Eye Institute and Department of OphthalmologyEye & ENT HospitalFudan UniversityShanghaiChina
- Key Laboratory of MyopiaChinese Academy of Medical SciencesNational Health Center Key Laboratory of Myopia (Fudan University)ShanghaiChina
- Shanghai Research Center of Ophthalmology and OptometryShanghaiChina
| | - Xiangjia Zhu
- Eye Institute and Department of OphthalmologyEye & ENT HospitalFudan UniversityShanghaiChina
- Key Laboratory of MyopiaChinese Academy of Medical SciencesNational Health Center Key Laboratory of Myopia (Fudan University)ShanghaiChina
- Shanghai Key Laboratory of Visual Impairment and RestorationShanghaiChina
- State Key Laboratory of Medical NeurobiologyFudan UniversityShanghaiChina
| |
Collapse
|
20
|
Wei P, Han G, Wang Y. Effects of dopamine D2 receptor antagonists on retinal pigment epithelial/choroid complex metabolism in form-deprived myopic guinea pigs. Proteomics 2023; 23:e2200325. [PMID: 37491763 DOI: 10.1002/pmic.202200325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/27/2023]
Abstract
The retinal pigment epithelial (RPE)/choroid complex regulates myopia development, but the precise pathogenesis of myopia remains unclear. We aimed to investigate the changes in RPE/choroid complex metabolism in a form deprivation myopia model after dopamine D2 receptor (D2R) modulation. Guinea pigs were randomly divided into normal (NC), form deprivation myopia (FDM), and FDM treated with dopamine D2R antagonist groups. Differential metabolites were screened using SIMCA-P software and MetaboAnalyst metabolomics analysis tool. Functions of differential metabolites were analyzed using KEGG enrichment pathways. Relative to the NC group, 38 differential metabolites were identified, comprising 29 increased metabolites (including nicotinic acid, cytosine, and glutamate) and 9 decreased metabolites, of which proline exhibited the largest decrease. Pathway analysis revealed regulation of arginine/proline and aspartate/glutamate metabolism. Intravitreal D2R antagonist injection increased proline concentrations and activated arginine/proline and purine metabolism pathways. In sum, D2R antagonists alleviated the myopia trend of refractive biological parameters in form deprivation myopic guinea pigs, suggesting the involvement of dopamine D2R signaling in myopia pathogenesis. The RPE/choroid may provide glutamate to the retina by activating proline metabolism via metabolic coupling with the retina. Dopamine D2R antagonism may modulate proline/arginine metabolic pathways in the RPE/choroid and regulate metabolism, information presentation, and myopia.
Collapse
Affiliation(s)
- Pinghui Wei
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, PR China
- Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, PR China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, PR China
| | - Guoge Han
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, PR China
- Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, PR China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, PR China
| | - Yan Wang
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, PR China
- Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, PR China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, PR China
| |
Collapse
|
21
|
Huang Y, Chen X, Zhuang J, Yu K. The Role of Retinal Dysfunction in Myopia Development. Cell Mol Neurobiol 2023; 43:1905-1930. [PMID: 36427109 PMCID: PMC11412200 DOI: 10.1007/s10571-022-01309-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
Myopia is a refractive disorder arising from a mismatch between refractive power and relatively long axial length of the eye. With its dramatically increasing prevalence, myopia has become a pervasive social problem. It is commonly accepted that abnormal visual input acts as an initiating factor of myopia. As the first station to perceive visual signals, the retina plays an important role in myopia etiology. The retina is a fine-layered structure with multitudinous cells, processing intricate visual signals via numerous molecular pathways. Accordingly, dopaminergic mechanisms, contributions of rod and cone photoreceptors, myopic structural changes of retinal pigment epithelium (RPE) and neuro-retinal layers have all suggested a vital role of retinal dysfunction in myopia development. Herein, we separately discuss myopia-related retinal dysfunction and current dilemmas by different levels, from molecules to cells, with the hope that the comprehensive delineation could contribute to a better understanding of myopia etiology, indicate novel therapeutic targets, and inspire future studies.
Collapse
Affiliation(s)
- Yuke Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guang-Dong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, No.7 Jinsui Road, Tianhe District, Guangzhou City, China
| | - Xi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guang-Dong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, No.7 Jinsui Road, Tianhe District, Guangzhou City, China
| | - Jing Zhuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guang-Dong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, No.7 Jinsui Road, Tianhe District, Guangzhou City, China
| | - Keming Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guang-Dong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, No.7 Jinsui Road, Tianhe District, Guangzhou City, China.
| |
Collapse
|
22
|
Ostrin LA, Harb E, Nickla DL, Read SA, Alonso-Caneiro D, Schroedl F, Kaser-Eichberger A, Zhou X, Wildsoet CF. IMI-The Dynamic Choroid: New Insights, Challenges, and Potential Significance for Human Myopia. Invest Ophthalmol Vis Sci 2023; 64:4. [PMID: 37126359 PMCID: PMC10153586 DOI: 10.1167/iovs.64.6.4] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 02/07/2023] [Indexed: 05/02/2023] Open
Abstract
The choroid is the richly vascular layer of the eye located between the sclera and Bruch's membrane. Early studies in animals, as well as more recent studies in humans, have demonstrated that the choroid is a dynamic, multifunctional structure, with its thickness directly and indirectly subject to modulation by a variety of physiologic and visual stimuli. In this review, the anatomy and function of the choroid are summarized and links between the choroid, eye growth regulation, and myopia, as demonstrated in animal models, discussed. Methods for quantifying choroidal thickness in the human eye and associated challenges are described, the literature examining choroidal changes in response to various visual stimuli and refractive error-related differences are summarized, and the potential implications of the latter for myopia are considered. This review also allowed for the reexamination of the hypothesis that short-term changes in choroidal thickness induced by pharmacologic, optical, or environmental stimuli are predictive of future long-term changes in axial elongation, and the speculation that short-term choroidal thickening can be used as a biomarker of treatment efficacy for myopia control therapies, with the general conclusion that current evidence is not sufficient.
Collapse
Affiliation(s)
- Lisa A Ostrin
- University of Houston College of Optometry, Houston, Texas, United States
| | - Elise Harb
- Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, California, United States
| | - Debora L Nickla
- Department of Biomedical Sciences and Disease, New England College of Optometry, Boston, Massachusetts, United States
| | - Scott A Read
- Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - David Alonso-Caneiro
- Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Falk Schroedl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology-Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Alexandra Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology-Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Xiangtian Zhou
- Eye Hospital and School of Optometry and Ophthalmology, National Clinical Research Center for Ocular Diseases, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Christine F Wildsoet
- Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, California, United States
- Centre for Vision and Eye Research, School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
23
|
Moon JY, Garg I, Cui Y, Katz R, Zhu Y, Le R, Lu Y, Lu ES, Ludwig CA, Elze T, Wu DM, Eliott D, Miller JW, Kim LA, Husain D, Vavvas DG, Miller JB. Wide-field swept-source optical coherence tomography angiography in the assessment of retinal microvasculature and choroidal thickness in patients with myopia. Br J Ophthalmol 2023; 107:102-108. [PMID: 34385166 DOI: 10.1136/bjophthalmol-2021-319540] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/23/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND/AIMS Pathological myopia (PM) is a leading cause of blindness worldwide. We aimed to evaluate microvascular and chorioretinal changes in different stages of myopia with wide-field (WF) swept-source (SS) optical coherence tomography angiography (OCTA). METHODS This prospective cross-sectional observational study included 186 eyes of 122 patients who had undergone imaging between November 2018 and October 2020. Vessel density (VD) and vessel skeletonised density (VSD) of superficial capillary plexus, deep capillary plexus and whole retina, as well as foveal avascular zone parameters, retinal thickness (RT) and choroidal thickness (CT), were calculated. RESULTS This study evaluated 75 eyes of 48 patients with high myopia (HM), 43 eyes of 31 patients with mild to moderate myopia and 68 eyes of 53 age-matched controls. Controlling for age and the presence of systemic hypertension, we found that HM was associated with decrease in VD and VSD in all layers on 12×12 mm² scans. Furthermore, HM was associated with a VD and VSD decrease in every Early Treatment Diabetic Retinopathy Study grid, with a larger decrease temporally (βVD=-0.39, βVSD=-10.25, p<0.01). HM was associated with decreased RT and CT. Reduction in RT was outside the macular region, while reduction in CT was in the macular region. CONCLUSION Using WF SS-OCTA, we identified reduction in microvasculature and structural changes associated with myopia. Decrease in VD and VSD was greater in the temporal quadrant, and reductions in RT and CT were uneven across the retina. Further work may help identify risk factors for the progression of PM and associated vision-threatening complications.
Collapse
Affiliation(s)
- Jade Y Moon
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
- Harvard Retinal Imaging Lab, Boston, Massachusetts, USA
| | - Itika Garg
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
- Harvard Retinal Imaging Lab, Boston, Massachusetts, USA
| | - Ying Cui
- Harvard Retinal Imaging Lab, Boston, Massachusetts, USA
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Raviv Katz
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
- Harvard Retinal Imaging Lab, Boston, Massachusetts, USA
| | - Ying Zhu
- Harvard Retinal Imaging Lab, Boston, Massachusetts, USA
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Rongrong Le
- Harvard Retinal Imaging Lab, Boston, Massachusetts, USA
- Wenzhou Medical University affiliated Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yifan Lu
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
- Harvard Retinal Imaging Lab, Boston, Massachusetts, USA
| | - Edward S Lu
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
- Harvard Retinal Imaging Lab, Boston, Massachusetts, USA
| | - Cassie A Ludwig
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Tobias Elze
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
| | - David M Wu
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Dean Eliott
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Joan W Miller
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Leo A Kim
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA
| | - Deeba Husain
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Demetrios G Vavvas
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - John B Miller
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
- Harvard Retinal Imaging Lab, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Cho H, Seo Y, Han SH, Han J. Factors Related to Axial Length Elongation in Myopic Children Who Received 0.05% Atropine Treatment. J Ocul Pharmacol Ther 2022; 38:703-708. [PMID: 36269657 DOI: 10.1089/jop.2022.0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Purpose: To evaluate the longitudinal changes of axial length (AL) and factors associated with AL growth in myopic children receiving 0.05% atropine. Methods: This single-center retrospective study included children aged 4-13 years with myopia of at least -0.5 diopters (D) treated with 0.05% atropine eye drops from November 2016 to May 2021. Predictive factors for AL change were evaluated using linear mixed models. Results: Among 109 patients (218 eyes), 58 (53.2%) were male and the mean age at treatment was 8.5 ± 2.0 years. At baseline measurement, the mean spherical equivalent was -4.05 ± 2.34 diopters (D), and AL was 25.00 ± 0.97 mm. The mean follow-up duration was 25.4 (12-58) months, and the mean AL elongation was 0.23 ± 0.17 mm/year during the follow-up periods. AL shortening of ≥0.05 mm at subsequent visit occurred in 18 patients (26 eyes). The mean AL change in the group without initial AL shortening was statistically larger than that in the group with initial AL shortening (0.26 ± 0.16 mm/year vs. 0.02 ± 0.17 mm/year, P < 0.001). In linear mixed model, the age at atropine treatment and initial AL shortening were significantly associated with respect to AL growth (beta coefficient: -0.032 and -0.122, respectively, P < 0.001 for both). Conclusions: Our study found that older age and initial AL shortening are predictors of favorable response after 0.05% atropine treatment. Children with AL shortening at initial subsequent visit may be associated with good long-term response, and younger children may require higher concentration of atropine for optimal response.
Collapse
Affiliation(s)
- Hyuna Cho
- Institute of Vision Research, Department of Ophthalmology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Yuri Seo
- Institute of Vision Research, Department of Ophthalmology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, South Korea
| | - Sueng-Han Han
- Institute of Vision Research, Department of Ophthalmology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jinu Han
- Institute of Vision Research, Department of Ophthalmology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
25
|
Zhou Y, Zhu Y, Huang XB, Xiong YJ, Guo YL, Cai Q, Wang M, Gong YX, Cao X, Li JJ, Cai JR, Song Y, Sun ZM. Changes of Choroidal Thickness in Children after Short-Term Application of 1% Atropine Gel. Ophthalmic Res 2022; 66:421-430. [PMID: 36412621 DOI: 10.1159/000526448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/19/2022] [Indexed: 12/23/2023]
Abstract
INTRODUCTION The aim of the study was to assess changes in choroidal thickness (ChT) after administration of 1% atropine for 1 week in myopic, emmetropic, and hyperopic children. METHODS A total of 235 children aged 4-8 years, which included 46 myopia, 34 emmetropia, and 155 hyperopia patients, were recruited and divided into three groups according to the spherical equivalent with the use of 1% atropine twice a day for 1 week. The ChT was measured at baseline and 1 week. RESULTS In the myopia and emmetropia groups, following administration of 1% atropine gel, the ChT thickened significantly under the fovea (i.e., from 278.29 ± 53.01 μm to 308.24 ± 57.3 μm, p < 0.05; from 336.10 ± 78.60 μm to 353.46 ± 70.22 μm, p < 0.05, respectively), and at all intervals from the fovea, while in the hyperopia group, there was no significant difference in the ChT except the nasal side (p < 0.05). CONCLUSION Topical administration of 1% atropine gel for 1 week significantly increased the subfoveal and parafoveal ChT in children with myopia and emmetropia. Atropine did not increase the ChT in hyperopic children, except on the nasal side.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Ophthalmology, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Yan Zhu
- Department of Ophthalmology, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Xiao Bo Huang
- Department of Ophthalmology, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Yao Jia Xiong
- Department of Ophthalmology, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Ya Li Guo
- Department of Ophthalmology, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Qi Cai
- Department of Ophthalmology, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Min Wang
- Department of Ophthalmology, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Ye Xun Gong
- Department of Ophthalmology, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Xin Cao
- Department of Ophthalmology, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Jun Jie Li
- Department of Ophthalmology, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Jian Ru Cai
- Department of Ophthalmology, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Yu Song
- Department of Ophthalmology, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Zhi Min Sun
- Department of Ophthalmology, Second Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
26
|
Wahyuningsih E, Wigid D, Dewi A, Moehariadi H, Sujuti H, Anandita N. The Effect of Citicoline on the Expression of Matrix Metalloproteinase-2 (MMP-2), Transforming Growth Factor-β1 (TGF-β1), and Ki-67, and on the Thickness of Scleral Tissue of Rat Myopia Model. Biomedicines 2022; 10:2600. [PMID: 36289864 PMCID: PMC9599282 DOI: 10.3390/biomedicines10102600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 12/20/2023] Open
Abstract
Citicoline, presumed to be involved in the dopaminergic pathway, might play a role as a candidate agent in controlling myopia. However, its study with respect to myopia is limited. The aim of this study is to demonstrate the effect of citicoline on the expression of MMP-2, TGF-β1, and Ki-67, and on the thickness of scleral tissue of a rat myopia model. Immunohistochemistry was performed to evaluate the expression of MMP-2, TGF-β1, and Ki-67 as the markers for fibroblast proliferation. Hematoxylin and eosin staining were used to evaluate scleral thickness. An electronic digital caliper was used to evaluate the axial length. The treatment group administered with 200 mg/kg BW/day had the lowest mean MMP-2 expression, axial elongation, and fibroblast proliferation, but it had the highest mean scleral thickness. The treatment group administered with 300 mg/kg BW/day had the highest mean TGF-β1 expression. Citicoline is able to decrease MMP-2 expression and fibroblast proliferation and increase TGF-β1 expression and scleral tissue thickness significantly in the scleral tissue of rat models for myopia.
Collapse
Affiliation(s)
- Eka Wahyuningsih
- Department of Ophthalmology, Faculty of Medicine, Universitas Brawijaya, Dr. Saiful Anwar General Hospital, Malang 65111, Indonesia
| | | | | | | | | | | |
Collapse
|
27
|
Goto S, Muroy SE, Zhang Y, Saijo K, Kolora SRR, Zhu Q, Wildsoet CF. Gene Expression Signatures of Contact Lens-Induced Myopia in Guinea Pig Retinal Pigment Epithelium. Invest Ophthalmol Vis Sci 2022; 63:25. [PMID: 36006019 PMCID: PMC9424971 DOI: 10.1167/iovs.63.9.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Purpose To identify key retinal pigment epithelium (RPE) genes linked to the induction of myopia in guinea pigs. Methods To induce myopia, two-week-old pigmented guinea pigs (New Zealand strain, n = 5) wore −10 diopter (D) rigid gas-permeable contact lenses (CLs), for one day; fellow eyes were left without CLs and served as controls. Spherical equivalent refractive errors (SE) and axial length (AL) were measured at baseline and one day after initiation of CL wear. RNA sequencing was applied to RPE collected from both treated and fellow (control) eyes after one day of CL-wear to identify related gene expression changes. Additional RPE-RNA samples from treated and fellow eyes were subjected to quantitative real-time PCR (qRT-PCR) analysis for validation purposes. Results The CLs induced myopia. The change from baseline values in SE was significantly different (P = 0.016), whereas there was no significant difference in the change in AL (P = 0.10). RNA sequencing revealed significant interocular differences in the expression in RPE of 13 genes: eight genes were significantly upregulated in treated eyes relative to their fellows, and five genes, including bone morphogenetic protein 2 (Bmp2), were significantly downregulated. The latter result was also confirmed by qRT-PCR. Additional analysis of differentially expressed genes revealed significant enrichment for bone morphogenetic protein (BMP) and TGF-β signaling pathways. Conclusions The results of this RPE gene expression study provide further supporting evidence for an important role of BMP2 in eye growth regulation, here from a guinea pig myopia model.
Collapse
Affiliation(s)
- So Goto
- Herbert Wertheim School Optometry and Vision Science, University of California, Berkeley, California, United States.,Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,Department of Ophthalmology, National Hospital Organization, Tokyo Medical Center, Meguro-ku, Tokyo, Japan
| | - Sandra E Muroy
- Department of Integrative Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States
| | - Yan Zhang
- Herbert Wertheim School Optometry and Vision Science, University of California, Berkeley, California, United States
| | - Kaoru Saijo
- Department of Molecular & Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States
| | - Sree Rohit Raj Kolora
- Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Qiurong Zhu
- Herbert Wertheim School Optometry and Vision Science, University of California, Berkeley, California, United States.,Department of Optometry and Visual Science, West China Hospital of Sichuan University, China
| | - Christine F Wildsoet
- Herbert Wertheim School Optometry and Vision Science, University of California, Berkeley, California, United States
| |
Collapse
|
28
|
Brown DM, Mazade R, Clarkson-Townsend D, Hogan K, Datta Roy PM, Pardue MT. Candidate pathways for retina to scleral signaling in refractive eye growth. Exp Eye Res 2022; 219:109071. [PMID: 35447101 PMCID: PMC9701099 DOI: 10.1016/j.exer.2022.109071] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/25/2022] [Accepted: 04/05/2022] [Indexed: 12/22/2022]
Abstract
The global prevalence of myopia, or nearsightedness, has increased at an alarming rate over the last few decades. An eye is myopic if incoming light focuses prior to reaching the retinal photoreceptors, which indicates a mismatch in its shape and optical power. This mismatch commonly results from excessive axial elongation. Important drivers of the myopia epidemic include environmental factors, genetic factors, and their interactions, e.g., genetic factors influencing the effects of environmental factors. One factor often hypothesized to be a driver of the myopia epidemic is environmental light, which has changed drastically and rapidly on a global scale. In support of this, it is well established that eye size is regulated by a homeostatic process that incorporates visual cues (emmetropization). This process allows the eye to detect and minimize refractive errors quite accurately and locally over time by modulating the rate of elongation of the eye via remodeling its outermost coat, the sclera. Critically, emmetropization is not dependent on post-retinal processing. Thus, visual cues appear to influence axial elongation through a retina-to-sclera, or retinoscleral, signaling cascade, capable of transmitting information from the innermost layer of the eye to the outermost layer. Despite significant global research interest, the specifics of retinoscleral signaling pathways remain elusive. While a few pharmacological treatments have proven to be effective in slowing axial elongation (most notably topical atropine), the mechanisms behind these treatments are still not fully understood. Additionally, several retinal neuromodulators, neurotransmitters, and other small molecules have been found to influence axial length and/or refractive error or be influenced by myopigenic cues, yet little progress has been made explaining how the signal that originates in the retina crosses the highly vascular choroid to affect the sclera. Here, we compile and synthesize the evidence surrounding three of the major candidate pathways receiving significant research attention - dopamine, retinoic acid, and adenosine. All three candidates have both correlational and causal evidence backing their involvement in axial elongation and have been implicated by multiple independent research groups across diverse species. Two hypothesized mechanisms are presented for how a retina-originating signal crosses the choroid - via 1) all-trans retinoic acid or 2) choroidal blood flow influencing scleral oxygenation. Evidence of crosstalk between the pathways is discussed in the context of these two mechanisms.
Collapse
Affiliation(s)
- Dillon M Brown
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA
| | - Reece Mazade
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA
| | - Danielle Clarkson-Townsend
- Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA; Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA, 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA; Gangarosa Department of Environmental Health, Emory University, 1518 Clifton Rd, Atlanta, GA, 30322, USA
| | - Kelleigh Hogan
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA
| | - Pooja M Datta Roy
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA
| | - Machelle T Pardue
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA.
| |
Collapse
|
29
|
Yam JC, Jiang Y, Lee J, Li S, Zhang Y, Sun W, Yuan N, Wang YM, Yip BHK, Kam KW, Chan HN, Zhang XJ, Young AL, Tham CC, Cheung CY, Chu WK, Pang CP, Chen LJ. The Association of Choroidal Thickening by Atropine With Treatment Effects for Myopia: Two-Year Clinical Trial of the Low-concentration Atropine for Myopia Progression (LAMP) Study. Am J Ophthalmol 2022; 237:130-138. [PMID: 34942105 DOI: 10.1016/j.ajo.2021.12.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 11/17/2022]
Abstract
PURPOSE To evaluate longitudinal changes in subfoveal choroidal thickness (SFChT) among children receiving atropine 0.05%, 0.025%, or 0.01% over 2 years and their associations with treatment outcomes in myopia control. DESIGN Double-blinded randomized controlled trial. METHODS SFChT was measured at 4-month intervals using spectral domain optical coherence tomography. Cycloplegic spherical equivalent (SE), axial length (AL), best-corrected visual acuity, parental SE, outdoor time, near work diopter hours, and treatment compliance were also measured. RESULTS 314 children were included with qualified choroidal data. The 2-year changes in SFChT from baseline were 21.15 ± 32.99 µm, 3.34 ± 25.30 µm, and -0.30 ± 27.15 µm for the atropine 0.05%, 0.025%, and 0.01% groups, respectively (P < .001). A concentration-dependent response was observed, with thicker choroids at higher atropine concentrations (β = 0.89, P < .001). Mean SFChT thickness significantly increased at 4 months in the atropine 0.025% (P = .001) and 0.05% groups (P < .001) and then remained stable until the end of the second year (P > .05 for all groups). Over 2 years, an increase in SFChT was associated with slower SE progression (β = 0.074, P < .001) and reduced AL elongation (β = -0.045, P < .001). In the mediation analysis, 18.45% of the effect on SE progression from atropine 0.05% was mediated via its choroidal thickening. CONCLUSIONS Low concentration atropine induced a choroidal thickening effect along a concentration-dependent response throughout the treatment period. The choroidal thickening was associated with a slower SE progression and AL elongation among all the treatment groups. Choroidal response can be used for assessment of long-term treatment outcomes and as a guide for concentration titrations of atropine.
Collapse
Affiliation(s)
- Jason C Yam
- From the Department of Ophthalmology and Visual Sciences (J.C.Y., Y.J., J.L., S.L., Y.Z., N.Y., Y.M.W., K.W.K., H.-N.C., X.J.Z., A.L.Y., C.C.T., C.Y.C., W.K.C., C.P.P., L.J.C.), The Chinese University of Hong Kong, Hong Kong;; Hong Kong Eye Hospital, (J.C.Y., C.C.T.), Hong Kong; Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, (J.C.Y., K.W.K., A.L.Y.,C.C.T., L.J.C.), Hong Kong; Hong Kong Hub of Paediatric Excellence (J.C.Y., C.C.T., W.K.C., C.P.P., L.J.C.), The Chinese University of Hong Kong; Department of Ophthalmology, Hong Kong Children's Hospital (J.C.Y.), Hong Kong.
| | - Yuning Jiang
- From the Department of Ophthalmology and Visual Sciences (J.C.Y., Y.J., J.L., S.L., Y.Z., N.Y., Y.M.W., K.W.K., H.-N.C., X.J.Z., A.L.Y., C.C.T., C.Y.C., W.K.C., C.P.P., L.J.C.), The Chinese University of Hong Kong, Hong Kong
| | - Jackie Lee
- From the Department of Ophthalmology and Visual Sciences (J.C.Y., Y.J., J.L., S.L., Y.Z., N.Y., Y.M.W., K.W.K., H.-N.C., X.J.Z., A.L.Y., C.C.T., C.Y.C., W.K.C., C.P.P., L.J.C.), The Chinese University of Hong Kong, Hong Kong
| | - Sherie Li
- From the Department of Ophthalmology and Visual Sciences (J.C.Y., Y.J., J.L., S.L., Y.Z., N.Y., Y.M.W., K.W.K., H.-N.C., X.J.Z., A.L.Y., C.C.T., C.Y.C., W.K.C., C.P.P., L.J.C.), The Chinese University of Hong Kong, Hong Kong
| | - Yuzhou Zhang
- From the Department of Ophthalmology and Visual Sciences (J.C.Y., Y.J., J.L., S.L., Y.Z., N.Y., Y.M.W., K.W.K., H.-N.C., X.J.Z., A.L.Y., C.C.T., C.Y.C., W.K.C., C.P.P., L.J.C.), The Chinese University of Hong Kong, Hong Kong
| | - Wen Sun
- Jockey Club School of Public Health and Primary Care (W.S., B.H.K.Y.), The Chinese University of Hong Kong, Hong Kong, China
| | - Nan Yuan
- From the Department of Ophthalmology and Visual Sciences (J.C.Y., Y.J., J.L., S.L., Y.Z., N.Y., Y.M.W., K.W.K., H.-N.C., X.J.Z., A.L.Y., C.C.T., C.Y.C., W.K.C., C.P.P., L.J.C.), The Chinese University of Hong Kong, Hong Kong
| | - Yu Meng Wang
- From the Department of Ophthalmology and Visual Sciences (J.C.Y., Y.J., J.L., S.L., Y.Z., N.Y., Y.M.W., K.W.K., H.-N.C., X.J.Z., A.L.Y., C.C.T., C.Y.C., W.K.C., C.P.P., L.J.C.), The Chinese University of Hong Kong, Hong Kong
| | - Benjamin Hon Kei Yip
- Jockey Club School of Public Health and Primary Care (W.S., B.H.K.Y.), The Chinese University of Hong Kong, Hong Kong, China
| | - Ka Wai Kam
- From the Department of Ophthalmology and Visual Sciences (J.C.Y., Y.J., J.L., S.L., Y.Z., N.Y., Y.M.W., K.W.K., H.-N.C., X.J.Z., A.L.Y., C.C.T., C.Y.C., W.K.C., C.P.P., L.J.C.), The Chinese University of Hong Kong, Hong Kong;; Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, (J.C.Y., K.W.K., A.L.Y.,C.C.T., L.J.C.), Hong Kong
| | - Hei-Nga Chan
- From the Department of Ophthalmology and Visual Sciences (J.C.Y., Y.J., J.L., S.L., Y.Z., N.Y., Y.M.W., K.W.K., H.-N.C., X.J.Z., A.L.Y., C.C.T., C.Y.C., W.K.C., C.P.P., L.J.C.), The Chinese University of Hong Kong, Hong Kong
| | - Xiu Juan Zhang
- From the Department of Ophthalmology and Visual Sciences (J.C.Y., Y.J., J.L., S.L., Y.Z., N.Y., Y.M.W., K.W.K., H.-N.C., X.J.Z., A.L.Y., C.C.T., C.Y.C., W.K.C., C.P.P., L.J.C.), The Chinese University of Hong Kong, Hong Kong
| | - Alvin L Young
- From the Department of Ophthalmology and Visual Sciences (J.C.Y., Y.J., J.L., S.L., Y.Z., N.Y., Y.M.W., K.W.K., H.-N.C., X.J.Z., A.L.Y., C.C.T., C.Y.C., W.K.C., C.P.P., L.J.C.), The Chinese University of Hong Kong, Hong Kong;; Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, (J.C.Y., K.W.K., A.L.Y.,C.C.T., L.J.C.), Hong Kong
| | - Clement C Tham
- From the Department of Ophthalmology and Visual Sciences (J.C.Y., Y.J., J.L., S.L., Y.Z., N.Y., Y.M.W., K.W.K., H.-N.C., X.J.Z., A.L.Y., C.C.T., C.Y.C., W.K.C., C.P.P., L.J.C.), The Chinese University of Hong Kong, Hong Kong;; Hong Kong Eye Hospital, (J.C.Y., C.C.T.), Hong Kong; Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, (J.C.Y., K.W.K., A.L.Y.,C.C.T., L.J.C.), Hong Kong; Hong Kong Hub of Paediatric Excellence (J.C.Y., C.C.T., W.K.C., C.P.P., L.J.C.), The Chinese University of Hong Kong
| | - Carol Y Cheung
- From the Department of Ophthalmology and Visual Sciences (J.C.Y., Y.J., J.L., S.L., Y.Z., N.Y., Y.M.W., K.W.K., H.-N.C., X.J.Z., A.L.Y., C.C.T., C.Y.C., W.K.C., C.P.P., L.J.C.), The Chinese University of Hong Kong, Hong Kong
| | - Wai Kit Chu
- From the Department of Ophthalmology and Visual Sciences (J.C.Y., Y.J., J.L., S.L., Y.Z., N.Y., Y.M.W., K.W.K., H.-N.C., X.J.Z., A.L.Y., C.C.T., C.Y.C., W.K.C., C.P.P., L.J.C.), The Chinese University of Hong Kong, Hong Kong;; Hong Kong Hub of Paediatric Excellence (J.C.Y., C.C.T., W.K.C., C.P.P., L.J.C.), The Chinese University of Hong Kong
| | - Chi Pui Pang
- From the Department of Ophthalmology and Visual Sciences (J.C.Y., Y.J., J.L., S.L., Y.Z., N.Y., Y.M.W., K.W.K., H.-N.C., X.J.Z., A.L.Y., C.C.T., C.Y.C., W.K.C., C.P.P., L.J.C.), The Chinese University of Hong Kong, Hong Kong;; Hong Kong Hub of Paediatric Excellence (J.C.Y., C.C.T., W.K.C., C.P.P., L.J.C.), The Chinese University of Hong Kong
| | - Li Jia Chen
- From the Department of Ophthalmology and Visual Sciences (J.C.Y., Y.J., J.L., S.L., Y.Z., N.Y., Y.M.W., K.W.K., H.-N.C., X.J.Z., A.L.Y., C.C.T., C.Y.C., W.K.C., C.P.P., L.J.C.), The Chinese University of Hong Kong, Hong Kong;; Department of Ophthalmology and Visual Sciences, Prince of Wales Hospital, (J.C.Y., K.W.K., A.L.Y.,C.C.T., L.J.C.), Hong Kong; Hong Kong Hub of Paediatric Excellence (J.C.Y., C.C.T., W.K.C., C.P.P., L.J.C.), The Chinese University of Hong Kong
| |
Collapse
|
30
|
Dong L, Zhang RH, Zhou WD, Li YF, Li HY, Wu HT, Shi XH, Jonas JB, Wei WB. Epiregulin, epigen and betacellulin antibodies and axial elongation in young guinea pigs with lens-induced myopization. BMC Ophthalmol 2022; 22:193. [PMID: 35477375 PMCID: PMC9044769 DOI: 10.1186/s12886-022-02417-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/21/2022] [Indexed: 11/28/2022] Open
Abstract
Background To examine an effect of intravitreally applied antibodies against epidermal growth factor family members, namely epiregulin, epigen and betacellulin, on ocular axial elongation. Methods The experimental study included 30 guinea pigs (age:3–4 weeks) which underwent bilateral lens-induced myopization and received three intraocular injections of 20 µg of epiregulin antibody, epigen antibody and betacellulin antibody in weekly intervals into their right eyes, and of phosphate-buffered saline into their left eyes. Seven days after the last injection, the animals were sacrificed. Axial length was measured by sonographic biometry. Results At baseline, right eyes and left eyes did not differ (all P > 0.10) in axial length in neither group, nor did the interocular difference in axial length vary between the groups (P = 0.19). During the study period, right and left eyes elongated (P < 0.001) from 8.08 ± 0.07 mm to 8.59 ± 0.06 mm and from 8.08 ± 0.07 mm to 8.66 ± 0.07 mm, respectively. The interocular difference (left eye minus right eye) in axial elongation increased significantly in all three groups (epiregulin-antibody:from 0.03 ± 0.06 mm at one week after baseline to 0.16 ± 0.08 mm at three weeks after baseline;P = 0.001); epigen-antibody group:from -0.01 ± 0.06 mm to 0.06 ± 0.08 mm;P = 0.02; betacellulin antibody group:from -0.05 ± 0.05 mm to 0.02 ± 0.04 mm;P = 0.004). Correspondingly, interocular difference in axial length increased from -0.02 ± 0.04 mm to 0.13 ± 0.06 mm in the epiregulin-antibody group (P < 0.001), and from 0.01 ± 0.05 mm to 0.07 ± 0.05 mm in the epigen-antibody group (P = 0.045). In the betacellulin-antibody group the increase (0.01 ± 0.04 mm to 0.03 ± 0.03 mm) was not significant (P = 0.24). Conclusions The EGF family members epiregulin, epigen and betacellulin may be associated with axial elongation in young guinea pigs, with the effect decreasing from epiregulin to epigen and to betacellulin.
Collapse
Affiliation(s)
- Li Dong
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Rui-Heng Zhang
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wen-Da Zhou
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yi-Fan Li
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - He-Yan Li
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hao-Tian Wu
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xu-Han Shi
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jost B Jonas
- Beijing Institute of Ophthalmology and Beijing Ophthalmology and Visual Science Key Lab, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland.,Privatpraxis Prof Jonas Und Dr Panda-Jonas, Heidelberg, Germany
| | - Wen-Bin Wei
- Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
31
|
Salehi MA, Karimi A, Mohammadi S, Arevalo JF. Spectral-domain OCT measurements in obesity: A systematic review and meta-analysis. PLoS One 2022; 17:e0267495. [PMID: 35476846 PMCID: PMC9045631 DOI: 10.1371/journal.pone.0267495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/08/2022] [Indexed: 11/18/2022] Open
Abstract
Background Previous studies proposed possible applications of spectral-domain optical coherence tomography (SD-OCT) measurements in prognosticating pathologies observed in overweight/obesity, including ocular, vascular, and neurologic consequences. Therefore, we conducted a systematic review and meta-analysis to investigate the changes in the in SD-OCT measurements of the patients with higher body mass index (BMI) compared to normal weight individuals. Materials and methods We conducted a systematic search on PubMed, Scopus, and Embase. The search results underwent two-phase title/abstract and full-text screenings. We then analyzed SD-OCT measurements differences in patients with high BMI and controls, and performed meta-regression, sub-group analysis, quality assessment, and publication bias assessment. The measurements included macular thickness, cup to disc ratio, ganglion cell-inner plexiform layer (GC-IPL) and its sub-sectors, RNFL and peripapillary RNFL (pRNFL) and their sub-layers, and choroidal thickness and its sub-sectors. Results 19 studies were included in this meta-analysis accounting for 1813 individuals, 989 cases and 824 controls. There was an overall trend towards decreased thickness in high BMI patients, but only two measurements reached statistical significance: temporal retinal nerve fiber layer (RNFL) (Standardized mean difference (SMD): -0.33, 95% confidence interval (CI): -0.53 to -0.14, p<0.01) and the choroidal region 1.0 mm nasal to fovea (SMD: -0.38, 95% CI: -0.60 to -0.16, p<0.01). Conclusion Some ocular layers are thinner in patients with higher BMI than the controls. These SD-OCT measurements might correlate with adverse events related to increased body weight and have prognostic abilities. As SD-OCT is a robust, rapid and non-invasive tool, future guidelines and studies are needed to evaluate the possibility of their integration into care of the patients with obesity.
Collapse
Affiliation(s)
| | - Amirali Karimi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheil Mohammadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- * E-mail:
| | - J. Fernando Arevalo
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, United States of America
| |
Collapse
|
32
|
van der Sande E, Haarman AEG, Quint WH, Tadema KCD, Meester-Smoor MA, Kamermans M, De Zeeuw CI, Klaver CCW, Winkelman BHJ, Iglesias AI. The Role of GJD2(Cx36) in Refractive Error Development. Invest Ophthalmol Vis Sci 2022; 63:5. [PMID: 35262731 PMCID: PMC8934558 DOI: 10.1167/iovs.63.3.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
Refractive errors are common eye disorders characterized by a mismatch between the focal power of the eye and its axial length. An increased axial length is a common cause of the refractive error myopia (nearsightedness). The substantial increase in myopia prevalence over the last decades has raised public health concerns because myopia can lead to severe ocular complications later in life. Genomewide association studies (GWAS) have made considerable contributions to the understanding of the genetic architecture of refractive errors. Among the hundreds of genetic variants identified, common variants near the gap junction delta-2 (GJD2) gene have consistently been reported as one of the top hits. GJD2 encodes the connexin 36 (Cx36) protein, which forms gap junction channels and is highly expressed in the neural retina. In this review, we provide current evidence that links GJD2(Cx36) to the development of myopia. We summarize the gap junctional communication in the eye and the specific role of GJD2(Cx36) in retinal processing of visual signals. Finally, we discuss the pathways involving dopamine and gap junction phosphorylation and coupling as potential mechanisms that may explain the role of GJD2(Cx36) in refractive error development.
Collapse
Affiliation(s)
- Emilie van der Sande
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Art & Science (KNAW), Amsterdam, The Netherlands
| | - Annechien E. G. Haarman
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Wim H. Quint
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Kirke C. D. Tadema
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Magda A. Meester-Smoor
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Maarten Kamermans
- Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Art & Science (KNAW), Amsterdam, The Netherlands
- Department of Biomedical Physics and Biomedical Photonics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Chris I. De Zeeuw
- Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Art & Science (KNAW), Amsterdam, The Netherlands
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Caroline C. W. Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Beerend H. J. Winkelman
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Art & Science (KNAW), Amsterdam, The Netherlands
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Adriana I. Iglesias
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
33
|
Huang F, Shu Z, Huang Q, Chen K, Yan W, Wu W, Yang J, Wang Q, Wang F, Zhang C, Qu J, Zhou X. Retinal Dopamine D2 Receptors Participate in the Development of Myopia in Mice. Invest Ophthalmol Vis Sci 2022; 63:24. [PMID: 35050306 PMCID: PMC8787610 DOI: 10.1167/iovs.63.1.24] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Purpose To learn more about the locations of dopamine D2 receptors (D2Rs) that regulate form-deprivation myopia (FDM), using different transgenic mouse models. Methods One eye of D2R-knockout (KO) mice and wild-type littermates was subjected to four weeks of monocular FDM, whereas the fellow eye served as control. Mice in both groups received daily intraperitoneal injections of either the D2R antagonist sulpiride (8 µg/g) or vehicle alone. FDM was also induced in retina- (Six3creD2Rfl/fl) or fibroblast-specific (S100a4creD2Rfl/fl) D2R-KO mice. A subset of retina-specific D2R-KO mice and D2Rfl/fl littermates were also given sulpiride or vehicle injections. Refraction was measured with an eccentric infrared photorefractor, and other biometric parameters were measured by optical coherence tomography (n ≈ 20 for each group). Results FDM development was attenuated in wild-type littermates treated with sulpiride. However, this inhibitory effect disappeared in the D2R-KO mice, suggesting that antagonizing D2Rs suppressed myopia development. Similarly, the development of myopia was partially inhibited by retina-specific (deletion efficiency: 94.7%) but not fibroblast-specific (66.9%) D2R-KO. The sulpiride-mediated inhibitory effects on FDM also disappeared with retinal D2R-KO, suggesting that antagonizing D2Rs outside the retina may not attenuate myopia. Changes in axial length were less marked than changes in refraction, but in general the two were correlated. Conclusions This study demonstrates that D2Rs located in the retina participate in dopaminergic regulation of FDM in mice. These findings provide an important and fundamental basis for further exploring the retinal mechanism(s) involved in dopamine signaling and myopia development.
Collapse
Affiliation(s)
- Furong Huang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health P. R. China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Ziheng Shu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health P. R. China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Qin Huang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health P. R. China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Kaijie Chen
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health P. R. China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Wenjun Yan
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health P. R. China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Wenjing Wu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health P. R. China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Jinglei Yang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health P. R. China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Qiongsi Wang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health P. R. China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Fengjiao Wang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health P. R. China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Chunlan Zhang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health P. R. China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Jia Qu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health P. R. China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China.,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
| | - Xiangtian Zhou
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health P. R. China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China.,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China.,Research Unit of Myopia Basic Research and Clinical Prevention and Control, Chinese Academy of Medical Sciences (2019RU025), Wenzhou, Zhejiang, China
| |
Collapse
|
34
|
Liu Y, Wang L, Xu Y, Pang Z, Mu G. The influence of the choroid on the onset and development of myopia: from perspectives of choroidal thickness and blood flow. Acta Ophthalmol 2021; 99:730-738. [PMID: 33550704 DOI: 10.1111/aos.14773] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022]
Abstract
Myopia is the most common type of refractive errors characterized by excessive elongation of the ocular globe. With the increasing prevalence of myopia, improved knowledge of factors involved in myopia development is of particular importance. There are growing evidence suggesting that the choroid plays an important role in the regulation of eye growth and the development of myopia. Studies have demonstrated that thinning choroid is a structural feature of myopia, with a negative correlation between choroidal thickness and axial length, suggesting that the change in choroidal thickness may be a predictive biomarker for long-term changes in ocular elongation. Given the fact that the choroid is primarily a vascular structure capable of rapidly changing blood flow, variations of choroidal thickness might be primarily caused by changes in choroidal blood flow. Considering that hypoxia is associated with myopia and choroidal blood flow is the main source of oxygen and nourishment supply, apart from the effect on myopia possibly by changing choroidal thickness, decreasing choroidal blood flow may contribute to scleral ischaemia and hypoxia, resulting in alterations in the scleral structure and thus leading to myopia. This review aims to provide an overview of recent work exploring the influence of the choroid on myopia from perspectives of choroidal thickness and blood flow, which may present new predictive indicators for the onset of myopia and new targets for the development of novel therapeutic approaches for myopia.
Collapse
Affiliation(s)
- Yilin Liu
- Department of Ophthalmology Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University Jinan China
| | - Lijun Wang
- Department of Ophthalmology Binzhou Medical University Hospital Binzhou China
| | - Yanyun Xu
- Department of Ophthalmology Shandong Second Provincial General Hospital, Shandong Provincial ENT Hospital Jinan China
| | - Zuoxiang Pang
- Department of Ophthalmology Weifang People's Hospital Weifang China
| | - Guoying Mu
- Department of Ophthalmology Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University Jinan China
| |
Collapse
|
35
|
Lee YS, Choi SE, Hahm J, Kim MJ, Bae HS, Yi K, Lim HT, Hyon JY. Digital Therapeutics: Exploring the Possibilities of Digital Intervention for Myopia. Front Digit Health 2021; 3:710644. [PMID: 34713181 PMCID: PMC8521975 DOI: 10.3389/fdgth.2021.710644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/03/2021] [Indexed: 11/23/2022] Open
Abstract
Pediatric myopia is increasing globally and has become a major public health issue. However, the mechanism of pediatric myopia is still poorly understood, and there is no effective treatment to prevent its progression. Based on results from animal and clinical studies, certain neuronal–humoral factors (NHFs), such as IGF-1, dopamine, and cortisol may be involved in the progression of pediatric myopia. Digital therapeutics uses evidence-based software as therapeutic interventions and it has the potential to offer innovative treatment strategies for pediatric myopia beyond conventional treatment methods. In this perspective article, we introduce digital therapeutics SAT-001, a software algorithm that modulates the level of NHFs to reduce the progression of pediatric myopia. The proposed mechanism is based on a theoretical hypothesis derived from scientific research and clinical studies and will be further confirmed by evidence generated from clinical studies involving pediatric myopia.
Collapse
Affiliation(s)
| | | | - Jarang Hahm
- S-Alpha Therapeutics, Inc., Seoul, South Korea
| | - Myoung Joon Kim
- S-Alpha Therapeutics, Inc., Seoul, South Korea.,Renew Seoul Eye Center, Seoul, South Korea
| | | | - Kayoung Yi
- Department of Ophthalmology, Hallym University Kangnam Sacred Heart Hospital, Seoul, South Korea
| | - Hyun Taek Lim
- Department of Ophthalmology, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, South Korea
| | - Joon Young Hyon
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul University Bundang Hospital, Seongnam, South Korea
| |
Collapse
|
36
|
Gao Q, Ludwig CA, Smith SJ, Schachar IH. Ocular Penetrance and Safety of the Dopaminergic Prodrug Etilevodopa. Transl Vis Sci Technol 2021; 10:5. [PMID: 34609478 PMCID: PMC8496415 DOI: 10.1167/tvst.10.12.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Animal models have demonstrated the role of dopamine in regulating axial elongation, the critical feature of myopia. Because frequent delivery of dopaminergic agents via peribulbar, intravitreal, or intraperitoneal injections is not clinically viable, we sought to evaluate ocular penetration and safety of the topically applied dopaminergic prodrug etilevodopa. Methods The ocular penetration of dopamine and dopaminergic prodrugs (levodopa and etilevodopa) were quantified using an enzyme-linked immunosorbent assay in enucleated porcine eyes after a single topical administration. The pharmacokinetic profile of the etilevodopa was then assessed in rats. A four-week once-daily application of etilevodopa as a topical eye drop was conducted to establish its safety profile. Results At 24 hours, the studied prodrugs showed increased dopaminergic derivatives in the vitreous of porcine eyes. Dopamine 0.5% (P = 0.0123) and etilevodopa 10% (p = 0.370) achieved significant vitreous concentrations. Etilevodopa 10% was able to enter the posterior segment of the eye after topical administration in rats with an intravitreal half-life of eight hours after single topical administration. Monthly application of topical etilevodopa showed no alterations in retinal ocular coherence tomography, electroretinography, caspase staining, or TUNEL staining. Conclusions At similar concentrations, no difference in ocular penetration of levodopa and etilevodopa was observed. However, etilevodopa was highly soluble and able to be applied at higher topical concentrations. Dopamine exhibited both high solubility and enhanced penetration into the vitreous as compared to other dopaminergic prodrugs. Translational Relevance These findings indicate the potential of topical etilevodopa and dopamine for further study as a therapeutic treatment for myopia.
Collapse
Affiliation(s)
- Quanqing Gao
- Department of Ophthalmology, Stanford University, School of Medicine, Stanford, California, USA
| | - Cassie A Ludwig
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Stephen J Smith
- Department of Ophthalmology, Stanford University, School of Medicine, Stanford, California, USA
| | - Ira H Schachar
- Department of Ophthalmology, Stanford University, School of Medicine, Stanford, California, USA.,North Bay Vitreoretinal Consultants, Santa Rosa, California, USA
| |
Collapse
|
37
|
Summers JA, Schaeffel F, Marcos S, Wu H, Tkatchenko AV. Functional integration of eye tissues and refractive eye development: Mechanisms and pathways. Exp Eye Res 2021; 209:108693. [PMID: 34228967 PMCID: PMC11697408 DOI: 10.1016/j.exer.2021.108693] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/16/2022]
Abstract
Refractive eye development is a tightly coordinated developmental process. The general layout of the eye and its various components are established during embryonic development, which involves a complex cross-tissue signaling. The eye then undergoes a refinement process during the postnatal emmetropization process, which relies heavily on the integration of environmental and genetic factors and is controlled by an elaborate genetic network. This genetic network encodes a multilayered signaling cascade, which converts visual stimuli into molecular signals that guide the postnatal growth of the eye. The signaling cascade underlying refractive eye development spans across all ocular tissues and comprises multiple signaling pathways. Notably, tissue-tissue interaction plays a key role in both embryonic eye development and postnatal eye emmetropization. Recent advances in eye biometry, physiological optics and systems genetics of refractive error have significantly advanced our understanding of the biological processes involved in refractive eye development and provided a framework for the development of new treatment options for myopia. In this review, we summarize the recent data on the mechanisms and signaling pathways underlying refractive eye development and discuss new evidence suggesting a wide-spread signal integration across different tissues and ocular components involved in visually guided eye growth.
Collapse
Affiliation(s)
- Jody A Summers
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Frank Schaeffel
- Section of Neurobiology of the Eye, Ophthalmic Research Institute, University of Tuebingen, Tuebingen, Germany; Myopia Research Group, Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
| | - Susana Marcos
- Instituto de Óptica "Daza de Valdés", Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Hao Wu
- Department of Ophthalmology, Columbia University, New York, USA
| | - Andrei V Tkatchenko
- Department of Ophthalmology, Columbia University, New York, USA; Department of Pathology and Cell Biology, Columbia University, New York, USA.
| |
Collapse
|
38
|
Thomson K, Kelly T, Karouta C, Morgan I, Ashby R. Insights into the mechanism of atropine's anti-myopia effects: evidence against cholinergic hyperactivity and modulation of dopamine release. Br J Pharmacol 2021; 178:4501-4517. [PMID: 34302355 PMCID: PMC9293064 DOI: 10.1111/bph.15629] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/29/2021] [Accepted: 06/25/2021] [Indexed: 11/27/2022] Open
Abstract
Background and Purpose The ability of the muscarinic cholinergic antagonist atropine to inhibit myopia development in humans and animal models would suggest that cholinergic hyperactivity may underlie myopic growth. To test this, we investigated whether cholinergic agonists accelerate ocular growth rates in chickens. Furthermore, we investigated whether atropine alters ocular growth by downstream modulation of dopamine levels, a mechanism postulated to underlie its antimyopic effects. Experimental Approach Muscarinic (muscarine and pilocarpine), nicotinic (nicotine) and non‐specific (oxotremorine and carbachol) cholinergic agonists were administered to chicks developing form‐deprivation myopia (FDM) or chicks that were otherwise untreated. Vitreal levels of dopamine and its primary metabolite 3,4‐dihydroxyphenylacetic acid (DOPAC) were examined using mass spectrometry MS in form‐deprived chicks treated with atropine (360, 15 or 0.15 nmol). Further, we investigated whether dopamine antagonists block atropine's antimyopic effects. Key Results Unexpectedly, administration of each cholinergic agonist inhibited FDM but did not affect normal ocular development. Atropine only affected dopamine and DOPAC levels at its highest dose. Dopamine antagonists did not alter the antimyopia effects of atropine. Conclusion and Implications Muscarinic, nicotinic and non‐specific cholinergic agonists inhibited FDM development. This indicates that cholinergic hyperactivity does not underlie myopic growth and questions whether atropine inhibits myopia via cholinergic antagonism. This study also demonstrates that changes in retinal dopamine release are not required for atropine's antimyopic effects. Finally, nicotinic agonists may represent a novel and more targeted approach for the cholinergic control of myopia as they are unlikely to cause the anterior segment side effects associated with muscarinic treatment.
Collapse
Affiliation(s)
- Kate Thomson
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Australia
| | - Tamsin Kelly
- National Centre for Forensic Studies, Faculty of Science and Technology, University of Canberra, Australia
| | - Cindy Karouta
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Australia
| | - Ian Morgan
- Research School of Biology, Australian National University, Australia
| | - Regan Ashby
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Australia.,Research School of Biology, Australian National University, Australia
| |
Collapse
|
39
|
Tkatchenko TV, Tkatchenko AV. Genetic network regulating visual acuity makes limited contribution to visually guided eye emmetropization. Genomics 2021; 113:2780-2792. [PMID: 34147636 DOI: 10.1016/j.ygeno.2021.06.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/25/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022]
Abstract
During postnatal development, the eye undergoes a refinement process whereby optical defocus guides eye growth towards sharp vision in a process of emmetropization. Optical defocus activates a signaling cascade originating in the retina and propagating across the back of the eye to the sclera. Several observations suggest that visual acuity might be important for optical defocus detection and processing in the retina; however, direct experimental evidence supporting or refuting the role of visual acuity in refractive eye development is lacking. Here, we used genome-wide transcriptomics to determine the relative contribution of the retinal genetic network regulating visual acuity to the signaling cascade underlying visually guided eye emmetropization. Our results provide evidence that visual acuity is regulated at the level of molecular signaling in the retina by an extensive genetic network. The genetic network regulating visual acuity makes relatively small contribution to the signaling cascade underlying refractive eye development. This genetic network primarily affects baseline refractive eye development and this influence is primarily facilitated by the biological processes related to melatonin signaling, nitric oxide signaling, phototransduction, synaptic transmission, and dopamine signaling. We also observed that the visual-acuity-related genes associated with the development of human myopia are chiefly involved in light perception and phototransduction. Our results suggest that the visual-acuity-related genetic network primarily contributes to the signaling underlying baseline refractive eye development, whereas its impact on visually guided eye emmetropization is modest.
Collapse
Affiliation(s)
| | - Andrei V Tkatchenko
- Department of Ophthalmology, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
40
|
Ye L, Shi Y, Yin Y, Li S, He J, Zhu J, Xu X. Effects of Atropine Treatment on Choroidal Thickness in Myopic Children. Invest Ophthalmol Vis Sci 2021; 61:15. [PMID: 33320168 PMCID: PMC7745623 DOI: 10.1167/iovs.61.14.15] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose To examine the changes in choroidal thickness (ChT) after 6 months of 1% or 0.01% atropine treatment and the independent factors associated with eye elongation. Methods A total of 207 myopic children aged 6 to 12 years were recruited and randomly assigned to groups A and B in a ratio of 1:1. Participants in group A received 1% atropine once a day for 1 week, and then once a week for 23 weeks. Participants in group B received 0.01% atropine once a day for 6 months. ChT and internal axial length (IAL) were measured at baseline, 1 week, 3 months, and 6 months. Results In group A, the ChT significantly increased after a 1-week loading dose of 1% atropine (26 ± 14 µm; P < 0.001) and the magnitude of increase stabilized throughout the following weekly treatment. The internal axial length did not significantly change at the 6-month visit (−0.01 ± 0.11 mm; P = 0.74). In contrast, a decreased ChT (−5 ± 17 µm; P < 0.001) and pronounced eye elongation (0.19 ± 0.12 mm; P < 0.001) were observed in group B after 6 months. Multivariable regression analysis showed that less increase in ChT at the 1-week visit (P = 0.03), younger age (P < 0.001), and presence of peripapillary atrophy (P = 0.001) were significantly associated with greater internal axial length increase over 6 months in group A. Conclusions One percent atropine could increase the ChT, whereas 0.01% atropine caused a decrease in ChT after 6 months of treatment. For participants receiving 1% atropine, the short-term increase in ChT was negatively associated with long-term eye elongation. Younger age and the presence of peripapillary atrophy were found to be risk factors for greater eye elongation.
Collapse
Affiliation(s)
- Luyao Ye
- Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Ya Shi
- Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Yao Yin
- Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai, China
| | - Shanshan Li
- Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai, China
| | - Jiangnan He
- Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai, China
| | - Jianfeng Zhu
- Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai, China
| | - Xun Xu
- Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai, China.,Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| |
Collapse
|
41
|
Thomson K, Karouta C, Ashby R. Form-Deprivation and Lens-Induced Myopia Are Similarly Affected by Pharmacological Manipulation of the Dopaminergic System in Chicks. Invest Ophthalmol Vis Sci 2021; 61:4. [PMID: 33016984 PMCID: PMC7545069 DOI: 10.1167/iovs.61.12.4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose Animal models have demonstrated a link between decreases in retinal dopamine levels and the development of form-deprivation myopia (FDM). However, the consistency of dopamine's role in the other major form of experimental myopia, that of lens-induced myopia (LIM), is less clear, raising the question as to what extent dopamine plays a role in human myopia. Therefore, to better define the role of dopamine in both forms of experimental myopia, we examined how consistent the protection afforded by dopamine and the dopamine agonist 6-amino-5,6,7,8-tetrahydronaphthalene-2,3-diol hydrobromide (ADTN) is between FDM and LIM. Methods Intravitreal injections of dopamine (0.002, 0.015, 0.150, 1.500 µmol) or ADTN (0.001, 0.010, 0.100, 1.000 µmol) were administered daily to chicks developing FDM or LIM. Axial length and refraction were measured following 4 days of treatment. To determine the receptor subtype by which dopamine and ADTN inhibit FDM and LIM, both compounds were coadministered with either the dopamine D2-like antagonist spiperone (0.005 µmol) or the D1-like antagonist SCH-23390 (0.005 µmol). Results Intravitreal administration of dopamine or ADTN inhibited the development of FDM (ED50 = 0.003 µmol and ED50 = 0.011 µmol, respectively) and LIM (ED50 = 0.002 µmol and ED50 = 0.010 µmol, respectively) in a dose-dependent manner, with a similar degree of protection observed in both paradigms (P = 0.471 and P = 0.969, respectively). Coadministration with spiperone, but not SCH-23390, inhibited the protective effects of dopamine and ADTN against the development of both FDM (P = 0.214 and P = 0.138, respectively) and LIM (P = 0.116 and P = 0.100, respectively). Conclusions pharmacological targeting of the retinal dopamine system inhibits FDM and LIM in a similar dose-dependent manner through a D2-like mechanism.
Collapse
Affiliation(s)
- Kate Thomson
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, Australia
| | - Cindy Karouta
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, Australia
| | - Regan Ashby
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, Australia.,Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
42
|
Zhang Z, Qi Y, Wei W, Jin ZB, Wang W, Duan A, Liu W. Investigation of Macular Choroidal Thickness and Blood Flow Change by Optical Coherence Tomography Angiography After Posterior Scleral Reinforcement. Front Med (Lausanne) 2021; 8:658259. [PMID: 34017847 PMCID: PMC8130341 DOI: 10.3389/fmed.2021.658259] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/18/2021] [Indexed: 12/15/2022] Open
Abstract
Purpose: This work aimed to study the effect of posterior scleral reinforcement (PSR) on choroidal thickness (CT) and blood flow. Methods: This study included 25 eyes of 24 patients with high myopia ( ≤ -6.0 dioptres or axial length ≥ 26.0 mm) who underwent PSR surgery. All patients completed the 1-month follow-up visit. Myopic macular degeneration (MMD) was graded according to the International Meta-Analysis for Pathologic Myopia (META-PM) classification based on color fundus photographs. Swept-source optical coherence tomography angiography (SSOCTA) was performed to investigate CT, choroidal perfusion area (CPA), and choriocapillaris perfusion area (CCPA) change following PSR surgery. Results: The distribution of MMD categories was 9 (36.0%) in category 1, 10 (40.0%) in category 2, and 6 (24.0%) in category 3 or 4. MMD severity was strongly correlated with CT (all P < 0.01) and CPA (all P < 0.04). Postoperative CT at each sector increased significantly at 1 week's follow-up, compared to preoperative measures (all P < 0.05). Postoperative CPA at subfoveal, superior, inferior, and nasal sectors also increased significantly 1 week after PSR surgery (all P < 0.05). Moreover, the increased CT, CPA, and CCPA remain after PSR surgery at 1 month's follow-up, but the difference was not statistically significant. Conclusions: We demonstrated that the CT and choroidal blood flow increased significantly in patients with high myopia who underwent PSR surgery in a short period of time. In addition, the CT and CPA were independently associated with MMD. However, whether the transient improvement of the choroidal circulation could prevent long-term progression of high myopia warrants further study in the future.
Collapse
Affiliation(s)
- Zheng Zhang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China.,Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yue Qi
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China.,Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wenbin Wei
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China.,Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zi-Bing Jin
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China.,Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wen Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China.,Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Anli Duan
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China.,Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wu Liu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China.,Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
43
|
Thomson K, Morgan I, Kelly T, Karouta C, Ashby R. Coadministration With Carbidopa Enhances the Antimyopic Effects of Levodopa in Chickens. Invest Ophthalmol Vis Sci 2021; 62:25. [PMID: 33877264 PMCID: PMC8083087 DOI: 10.1167/iovs.62.4.25] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Purpose Topical application of levodopa inhibits the development of form-deprivation myopia (FDM) and lens-induced myopia (LIM) in chicks. Here we examine whether coadministration with carbidopa enhances this protection and compare the effectiveness of topical versus systemic administration. We also investigate the degree to which topical and systemic administration of these compounds alters retinal dopamine release and examine whether this is the mechanism by which they inhibit experimental myopia. Methods Levodopa and levodopa:carbidopa (at a 4:1 ratio) were administered as twice-daily eye drops or once-daily intraperitoneal injections to chicks developing FDM or LIM over an ascending dose range. Axial length and refraction were measured following 4 days of treatment. Dopamine levels in the vitreous and blood were analyzed using liquid chromatography-mass spectrometry following topical or systemic administration of levodopa or levodopa:carbidopa. Finally, chicks receiving topical or systemic levodopa or levodopa:carbidopa were cotreated with the dopamine antagonist spiperone. Results Levodopa:carbidopa inhibited the development of FDM and LIM to a greater extent than levodopa alone (P < 0.05). Topical application was more effective than systemic administration (P < 0.001). Vitreal dopamine levels were increased to the greatest extent by topical application of levodopa:carbidopa (P < 0.001). Systemic but not topical administration significantly increased dopamine levels within the blood (P < 0.01). Cotreatment with spiperone inhibited the antimyopic effects (P < 0.05) of levodopa and levodopa:carbidopa. Conclusions The presence of carbidopa increases the bioavailability of levodopa within the eye, enhancing its antimyopic effects, with topical application showing the greatest efficacy. Thus levodopa:carbidopa may be a promising treatment for controlling the progression of human myopia.
Collapse
Affiliation(s)
- Kate Thomson
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, Australia
| | - Ian Morgan
- Research School of Biology, Australian National University, Canberra, Australia
| | - Tamsin Kelly
- National Centre for Forensic Studies, Faculty of Science and Technology, University of Canberra, Canberra, Australia
| | - Cindy Karouta
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, Australia
| | - Regan Ashby
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, Australia.,Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
44
|
Mathis U, Feldkaemper MP, Schaeffel F. Effects of Single and Repeated Intravitreal Applications of Atropine on Choroidal Thickness in Alert Chickens. Ophthalmic Res 2021; 64:664-674. [PMID: 33774636 DOI: 10.1159/000515755] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 03/02/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Atropine, a muscarinic antagonist, is known since the 19th century to inhibit myopia development in children. One of its effects is that it stimulates choroidal thickening. Thicker choroids, in turn, have been linked to myopia inhibition. We used the atropine-stimulated choroidal response in the chicken to learn more about the time courses and amplitudes of the effects of atropine, as well as whether repeated applications lead to accumulation or desensitization. METHODS Intravitreal injections containing 250 µg atropine sulfate were performed in 1 eye around 10:00 in the morning, the fellow eye received vehicle. Chickens with bilateral vehicle injections served as controls. Choroidal thickness was measured over the day for every 2-3 h in alert animals, using spectral domain optical coherence tomography, with 3-5 independent measurements in each eye. Three experiments were done - (1) single injection and time course measured over 1 day, (2) single injection and time course measured over 4 days, and (3) daily injections and time course measured over 4 days for measuring the effects of atropine on vitreal, retinal, and choroidal dopamine, and 3,4-dihydroxyphenylacetic acid levels by using high-performance liquid chromatography with electrochemical detection. RESULTS Atropine induced an increase in choroidal thickness by about 60 percent, with a peak amplitude after about 2 h. The effect persisted only for a few hours and had nearly disappeared by evening. Initially, similar amounts of choroidal thickening were observed in vehicle-injected fellow eyes but recovery to baseline was faster. When atropine was injected daily for 4 days, choroids thickened every day with similar amplitudes and time courses, with no signs of either accumulation or desensitization effects. Interestingly, while dopamine release from the retina was stimulated by atropine and followed approximately, the time course of choroidal thickening, its tissue concentration dropped in the choroid. CONCLUSIONS Even at relatively high intravitreal doses, effects of atropine on choroidal thickness remained transient, similar to its effects on retinal dopamine. With repeated application every day, the diurnal patterns of choroidal thickening could be reproduced for 4 days with similar amplitudes and time courses. The transient nature of the effects of atropine on the choroid may be relevant for application protocols of atropine against myopia.
Collapse
Affiliation(s)
- Ute Mathis
- Ophthalmic Research Institute, Section of Neurobiology of the Eye, University of Tuebingen, Tuebingen, Germany
| | - Marita Pauline Feldkaemper
- Ophthalmic Research Institute, Section of Neurobiology of the Eye, University of Tuebingen, Tuebingen, Germany
| | - Frank Schaeffel
- Ophthalmic Research Institute, Section of Neurobiology of the Eye, University of Tuebingen, Tuebingen, Germany.,Institute for Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland.,Zeiss Vision Lab, Ophthalmic Research Institute, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
45
|
Abstract
Myopia is a global problem that is increasing at an epidemic rate in the world. Although the refractive error can be corrected easily, myopes, particularly those with high myopia, are susceptible to potentially blinding eye diseases later in life. Despite a plethora of myopia research, the molecular/cellular mechanisms underlying the development of myopia are not well understood, preventing the search for the most effective pharmacological control. Consequently, several approaches to slowing down myopia progression in the actively growing eyes of children have been underway. So far, atropine, an anticholinergic blocking agent, has been most effective and is used by clinicians in off-label ways for myopia control. Although the exact mechanisms of its action remain elusive and debatable, atropine encompasses a complex interplay with receptors on different ocular tissues at multiple levels and, hence, can be categorized as a shotgun approach to myopia treatment. This review will provide a brief overview of the biological mechanisms implicated in mediating the effects of atropine in myopia control.
Collapse
|
46
|
Ye L, Li S, Shi Y, Yin Y, He J, Zhu J, Xu X. Comparisons of atropine versus cyclopentolate cycloplegia in myopic children. Clin Exp Optom 2021; 104:143-150. [PMID: 32844483 DOI: 10.1111/cxo.13128] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
CLINICAL RELEVANCE In clinical practice, 1% atropine and 1% cyclopentolate are used as cycloplegia agents to diagnose refractive error. The influence of 1% atropine on ocular biometry is obscure, and the impact of 1% cyclopentolate remains controversial. BACKGROUND This study aims to compare the effects of atropine versus cyclopentolate cycloplegia on ocular biometry in myopic children and to determine the sites of action for atropine. METHODS A total of 207 myopic children aged 6-12-years were included in the analysis. All participants underwent comprehensive eye examinations before and after cyclopentolate cycloplegia, after which they were randomly assigned into two groups, A and B, in a ratio of 1:1, to receive 1% or 0.01% atropine, respectively. The treatment was administered once every night for a week. Participants were re-examined one week later. RESULTS Cyclopentolate cycloplegia caused a decrease in choroidal thickness (-3 ± 9 μm, p = 0.001), elongation of axial length (9 ± 16 μm, p < 0.001), loss of lens power (-0.14 ± 0.37 dioptre, p < 0.001), and a hyperopic shift (0.14 ± 0.22 dioptre, p < 0.001) in both groups. However, ocular biometry showed different changes after one-week use of 1% or 0.01% atropine (all p < 0.001). In Group A, choroid thickening (24 ± 13 μm, p < 0.001) and reduced axial length (-30 ± 27 μm, p < 0.001) were observed after atropine cycloplegia, with greater changes in lens power (0.50 ± 0.37 dioptre, p < 0.001) and spherical equivalent (0.52 ± 0.23 dioptre, p < 0.001). Group B showed a slight increase in choroidal thickness following one-week use of 0.01% atropine (6 ± 9 μm, p < 0.001), but other biometric measures showed no significant changes. CONCLUSION Cyclopentolate and atropine cycloplegia have different effects on ocular biometry. Both 1% cyclopentolate cycloplegia and 0.01% atropine resulted in choroidal thickening, indicating that the choroid may be a site of action for atropine.
Collapse
Affiliation(s)
- Luyao Ye
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Eye Disease Prevention and Treatment Centre, Shanghai Eye Hospital, Shanghai, China.,National Clinical Research Centre for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Centre for Visual Science and Photomedicine, Shanghai Engineering Centre for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Shanshan Li
- Shanghai Eye Disease Prevention and Treatment Centre, Shanghai Eye Hospital, Shanghai, China
| | - Ya Shi
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Eye Disease Prevention and Treatment Centre, Shanghai Eye Hospital, Shanghai, China.,National Clinical Research Centre for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Centre for Visual Science and Photomedicine, Shanghai Engineering Centre for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Yao Yin
- Shanghai Eye Disease Prevention and Treatment Centre, Shanghai Eye Hospital, Shanghai, China
| | - Jiangnan He
- Shanghai Eye Disease Prevention and Treatment Centre, Shanghai Eye Hospital, Shanghai, China
| | - Jianfeng Zhu
- Shanghai Eye Disease Prevention and Treatment Centre, Shanghai Eye Hospital, Shanghai, China
| | - Xun Xu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Eye Disease Prevention and Treatment Centre, Shanghai Eye Hospital, Shanghai, China.,National Clinical Research Centre for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Centre for Visual Science and Photomedicine, Shanghai Engineering Centre for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| |
Collapse
|
47
|
Jiang Y, Zhang Z, Wu Z, Sun S, Fu Y, Ke B. Change and Recovery of Choroid Thickness after Short-term Application of 1% Atropine Gel and Its Influencing Factors in 6-7-year-old Children. Curr Eye Res 2021; 46:1171-1177. [PMID: 33390025 DOI: 10.1080/02713683.2020.1863431] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE To investigate the change and recovery of choroid thickness after short-term application of 1% atropine gel and its influencing factors in 6-7-year-old children. MATERIALS AND METHODS 71 right eyes of 71 children were enrolled and divided into myopia and control group. 1% atropine gel was administered twice a day for one week and then stopped. Spherical equivalent (SE), accommodative amplitude (AA), keratometry (K), axial length (AL), and choroidal thickness (CT) were obtained at baseline and 1st, 4th, and 8th weeks. CT was measured at subfovea and 1 mm, 2 mm, and 3 mm temporal, superior, nasal, and inferior from the fovea using spectral-domain optical coherence tomography. RESULTS In both groups, all CTs increased following the change in SE, AA, and AL after administration of 1% atropine for one week. They gradually recovered to baseline levels seven weeks after withdrawal. The change (Δ) in CT at 3 mm superior from the fovea was significantly higher in the myopia group than in the control group. In both groups, ΔCT at subfovea had no significant correlation with SE, AA, and AL, both at baseline and one week. However, ΔCT at subfovea was negatively correlated with ΔAL in the control group. CONCLUSIONS One-week application of 1% atropine gel may increase CT in 6-7-year-old Chinese children. Meanwhile, the recovery process after withdrawal lasts seven weeks. During the recovery process, the changes in structural parameters (AL, CT) and functional parameters (AA, SE) in both groups occurred synchronously. The SE, AA, and AL at baseline may not predict the extent of atropine's effect on CT.
Collapse
Affiliation(s)
- Yunjia Jiang
- Department of Ophthalmology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China.,Department of Ophthalmology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu Province, China.,Department of Ophthalmology, The Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu Province, China
| | - Zhengwei Zhang
- Department of Ophthalmology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China.,Department of Ophthalmology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu Province, China.,Department of Ophthalmology, The Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu Province, China
| | - Zhifeng Wu
- Department of Ophthalmology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu Province, China.,Department of Ophthalmology, The Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu Province, China
| | - Song Sun
- Department of Ophthalmology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu Province, China.,Department of Ophthalmology, The Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu Province, China
| | - Yuting Fu
- Department of Ophthalmology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu Province, China.,Department of Ophthalmology, The Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu Province, China
| | - Bilian Ke
- Department of Ophthalmology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China.,Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,National Clinical Research Center for Eye Diseases, Shanghai, China.,Shanghai Key Laboratory of Fundus Disease, Shanghai, China.,Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| |
Collapse
|
48
|
Flanagan SC, Cobice D, Richardson P, Sittlington JJ, Saunders KJ. Elevated Melatonin Levels Found in Young Myopic Adults Are Not Attributable to a Shift in Circadian Phase. Invest Ophthalmol Vis Sci 2021; 61:45. [PMID: 32729910 PMCID: PMC7425780 DOI: 10.1167/iovs.61.8.45] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose To evaluate the relationship between refractive error, circadian phase, and melatonin with consideration of prior light exposure, physical activity, and sleep. Methods Healthy young myopic (spherical equivalent refraction [SER] ≤−0.50DS) and emmetropic adults underwent noncycloplegic autorefraction and axial length (AL) measures. Objective measurements of light exposure, physical activity, and sleep were captured across 7 days by wrist-worn Actiwatch-2 devices. Questionnaires assessed sleep quality and chronotype. Hourly evening saliva sampling during a dim-light melatonin onset (DLMO) protocol evaluated circadian phase, and both morning serum and saliva samples were collected. Liquid chromatography/mass spectrometry quantified melatonin. Results Subjects (n = 51) were aged 21.4 (interquartile range, 20.1−24.0) years. Melatonin was significantly higher in the myopic group at every evening time point and with both morning serum and saliva sampling (P ≤ 0.001 for all). DLMO-derived circadian phase did not differ between groups (P = 0.98). Multiple linear regression analysis demonstrated significant associations between serum melatonin and SER (B = –.34, β = –.42, P = 0.001), moderate activity (B = .009, β = .32, P = 0.01), and mesopic illumination (B = –.007, β = –.29, P = 0.02), F(3, 46) = 7.23, P < 0.001, R2 = 0.32, R2adjusted = .28. Myopes spent significantly more time exposed to “indoor” photopic illumination (3 to ≤1000 lux; P = 0.05), but “indoor” photopic illumination was not associated with SER, AL, or melatonin, and neither sleep, physical activity, nor any other light exposure metric differed significantly between groups (P > 0.05 for all). Conclusions While circadian phase is aligned in adult myopes and emmetropes, myopia is associated with both elevated serum and salivary melatonin levels. Prospective studies are required to ascertain whether elevated melatonin levels occur before, during, or after myopia development.
Collapse
|
49
|
Muralidharan AR, Lança C, Biswas S, Barathi VA, Wan Yu Shermaine L, Seang-Mei S, Milea D, Najjar RP. Light and myopia: from epidemiological studies to neurobiological mechanisms. Ther Adv Ophthalmol 2021; 13:25158414211059246. [PMID: 34988370 PMCID: PMC8721425 DOI: 10.1177/25158414211059246] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/25/2021] [Indexed: 12/22/2022] Open
Abstract
Myopia is far beyond its inconvenience and represents a true, highly prevalent, sight-threatening ocular condition, especially in Asia. Without adequate interventions, the current epidemic of myopia is projected to affect 50% of the world population by 2050, becoming the leading cause of irreversible blindness. Although blurred vision, the predominant symptom of myopia, can be improved by contact lenses, glasses or refractive surgery, corrected myopia, particularly high myopia, still carries the risk of secondary blinding complications such as glaucoma, myopic maculopathy and retinal detachment, prompting the need for prevention. Epidemiological studies have reported an association between outdoor time and myopia prevention in children. The protective effect of time spent outdoors could be due to the unique characteristics (intensity, spectral distribution, temporal pattern, etc.) of sunlight that are lacking in artificial lighting. Concomitantly, studies in animal models have highlighted the efficacy of light and its components in delaying or even stopping the development of myopia and endeavoured to elucidate possible mechanisms involved in this process. In this narrative review, we (1) summarize the current knowledge concerning light modulation of ocular growth and refractive error development based on studies in human and animal models, (2) summarize potential neurobiological mechanisms involved in the effects of light on ocular growth and emmetropization and (3) highlight a potential pathway for the translational development of noninvasive light-therapy strategies for myopia prevention in children.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dan Milea
- Singapore Eye Research Institute, Singapore
| | - Raymond P Najjar
- Visual Neurosciences Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower Level 6, Singapore 169856
| |
Collapse
|
50
|
Uslu Dogan C, Culha D. Subfoveal choroidal thickness and peripapillary retinal nerve fiber layer thickness in young obese males. Eur J Ophthalmol 2020; 31:3190-3195. [PMID: 33334163 DOI: 10.1177/1120672120982899] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Regarding the effect of obesity on subfoveal choroidal thickness (CT) and peripapillary retinal nerve fiber layer (RNFL) thickness, controversial results have been reported in different patient groups. This study aimed to evaluate the effect of obesity on these parameters among young male subjects in comparison with age-matched non-obese healthy males. METHODS This prospective, cross-sectional study included both eyes of 50 obese young males and 50 healthy non-obese young males. The obese and the non-obese groups included subjects with a BMI of ⩾30 and ⩽25 kg/m², respectively. Subfoveal choroidal thickness and RNFL analyses were conducted by spectral domain optical coherence tomography (SD-OCT). RESULTS Subfoveal choroidal thickness (321.0 ± 46.7 vs 338.4±35.3, p = 0.002) and RNFL thickness at temporal quadrant (73.4 ± 9.9 vs 76.4 ± 9.3, p = 0.008) was significantly lower in the obese group when compared to the non-obese group. The groups did not differ regarding peripapillary RNFL thickness at other quadrants (superior, inferior, or nasal) or regarding mean peripapillary RNFL thickness. CONCLUSION Findings of this study demonstrated a negative correlation of obesity with subfoveal choroidal thickness and temporal quadrant peripapillary RNFL thickness. Larger studies on different patient groups with longer-term follow-up are warranted to better elucidate the ophthalmological effects of obesity.
Collapse
Affiliation(s)
- Ceylan Uslu Dogan
- Department of Ophthalmology, University of Health Sciences, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| | - Damla Culha
- Department of Ophthalmology, University of Health Sciences, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|