1
|
Sun Y, Hu Y, Luo S. Complement C5a promotes human retinal pigment epithelial cell viability and migration through SLC38A1-mediated glutamine metabolism. Med Microbiol Immunol 2025; 214:22. [PMID: 40358757 DOI: 10.1007/s00430-025-00832-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 04/26/2025] [Indexed: 05/15/2025]
Abstract
The pathological basis of many visual disorders involves the abnormal viability and migration of retinal pigment epithelium (RPE) cells. Complement response disorder is a significant pathogenic factor causing some autoimmune and inflammation diseases. The complement activation product anaphylatoxin C5a signaling pathway may be associated with RPE cell dysfunction. This study aimed to analyze the molecular mechanisms by which C5a affects RPE cell viability and migration. Recombinant human complement component C5a protein stimulated RPE cells. Cell biological behavior, including cell viability, invasion, and migration were analyzed with Cell Counting Kit-8 and transwell methods. Bioinformatics analysis identified the differentially expressed genes (DEGs) involved in C5a-treated RPE cells based on RNA sequencing. SLC38A1 was knocked down or overexpressed by vector transfection to investigate its involvement in C5a-stimulated RPE cells. C5a promotes RPE cell viability and migration. C5a-induced DEGs are enriched in migration-associated pathways. C5a increased SLC38A1, and SLC38A1 knockdown or overexpression inhibited or promoted RPE cell viability and migration. Glutaminase inhibition abrogated the promoting effect of C5a and SLC38A1 on cell biological behaviors. METTL3-HNRNPC-mediated m6A modification mediated C5a-induced SLC38A1. C5a, METTL3, and SLC38A1 constituted a signaling axis in regulating cell biological behaviors of C5a-treated RPE cells. C5a promotes RPE cell viability and migration, and SLC38A1-mediated improved glutamine metabolism is the downstream signal pathway of the C5a complement pathway. The C5a complement system may target the SLC38A1 to promote RPE cell migration.
Collapse
Affiliation(s)
- Ye Sun
- Jiangnan University Wuxi School of Medicine, Wuxi No.2 People's Hospital (Jiangnan University Medical Center), Wuxi, 214000, China
| | - Yifan Hu
- Jiangnan University Wuxi School of Medicine, Wuxi No.2 People's Hospital (Jiangnan University Medical Center), Wuxi, 214000, China
| | - Shasha Luo
- Department of Ophthalmology, Wuxi No.2 People's Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, 214000, China.
| |
Collapse
|
2
|
Larbi D, Rief AM, Kang S, Chen S, Batsuuri K, Fuhrmann S, Viswanathan S, Wohl SG. Dicer Loss in Müller Glia Leads to a Defined Sequence of Pathological Events Beginning With Cone Dysfunction. Invest Ophthalmol Vis Sci 2025; 66:7. [PMID: 40035725 PMCID: PMC11892533 DOI: 10.1167/iovs.66.3.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/07/2025] [Indexed: 03/06/2025] Open
Abstract
Purpose The loss of Dicer in Müller glia (MG) results in severe photoreceptor degeneration, as it occurs in retinitis pigmentosa or age-related macular degeneration; however, the sequence of events leading to this severe degenerative state is unknown. The aim of this study was to conduct a chronological functional and structural characterization of the pathological events in MG-specific Dicer-conditional knockout (cKO) mice in vivo and histologically. Methods To delete Dicer and mature microRNAs (miRNAs) in MG, two conditional Dicer1 knockout mouse strains (Rlbp-CreER:tdTomato:Dicer-cKOMG and Glast-CreER:tdTomato:Dicer-cKOMG) were created. Optical coherence tomography (OCT), electroretinograms (ERGs), and histological analyses were conducted to investigate structural and functional changes up to 6 months after Dicer deletion. Results Dicer/miRNA loss in MG leads to (1) impairments of the area spanning from the external limiting membrane (ELM) to the retinal pigment epithelium (RPE), (2) cone photoreceptor dysfunction, and (3) retinal remodeling and functional loss of the inner retina at 1, 3, and 6 months after Dicer loss, respectively, in both of the knockout mouse strains. Furthermore, in the Rlbp-CreER:tdTomato:Dicer-cKOMG strain, rod photoreceptor impairment was found 4 months after Dicer depletion (4) accompanied by alteration of RPE integrity (5). Conclusions MG Dicer loss in the adult mouse retina impacts cone function prior to any measurable changes in rod function, suggesting a pivotal role for MG Dicer and miRNAs in supporting cone health. A partially impaired RPE, however, seems to accelerate rod degeneration and overall degenerative events.
Collapse
Affiliation(s)
- Daniel Larbi
- Department of Biological and Vision Sciences, The State University of New York College of Optometry, New York, New York, United States
| | - Alexander M. Rief
- Department of Biological and Vision Sciences, The State University of New York College of Optometry, New York, New York, United States
| | - Seoyoung Kang
- Department of Biological and Vision Sciences, The State University of New York College of Optometry, New York, New York, United States
| | - Shaoheng Chen
- Department of Biological and Vision Sciences, The State University of New York College of Optometry, New York, New York, United States
| | - Khulan Batsuuri
- Department of Biological and Vision Sciences, The State University of New York College of Optometry, New York, New York, United States
| | - Sabine Fuhrmann
- Ophthalmology and Visual Sciences Department, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Suresh Viswanathan
- Indiana University School of Optometry, Bloomington, Indiana, United States
| | - Stefanie G. Wohl
- Department of Biological and Vision Sciences, The State University of New York College of Optometry, New York, New York, United States
| |
Collapse
|
3
|
Jacques K, Coles BLK, van der Kooy D. Pancreatic stem cells originate during the pancreatic progenitor developmental stage. Front Cell Dev Biol 2025; 13:1521411. [PMID: 40040790 PMCID: PMC11876382 DOI: 10.3389/fcell.2025.1521411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/22/2025] [Indexed: 03/06/2025] Open
Abstract
Previously isolated adult pancreatic precursors called pancreatic multipotent progenitors (which make both pancreatic endocrine and exocrine cell types) originate from the Pancreatic Duodenal Homeobox 1 (PDX1) pancreatic developmental lineage. The embryonic time point at which adult pancreatic multipotent progenitor cells emerge has not been established. We have employed the use of two models: a human embryonic stem cell (hESC) to beta-cell cytokine-induced differentiation protocol and a mouse lineage tracing model during early development to isolate clonal pancreatic spheres. The results show that insulin-positive clonal spheres can be isolated as early as the pancreatic endoderm stage as well as the pancreatic progenitor stage during the hESC to beta-cell lineage differentiation model and that they can be isolated only as early as the pancreatic progenitor stage during mouse embryogenesis. Further, pancreatic clonal sphere-forming cells isolated from the pancreatic progenitor stage in embryonic mice display multipotentiality, and those isolated at a later gestational age demonstrate self-renewal ability. These findings suggest that pancreatic precursors isolated from mouse embryonic time points have stem cell properties and that the pancreatic progenitor stage in hESC development may be the optimal time to capture and expand these stem cells and make large numbers of beta cells.
Collapse
Affiliation(s)
- Krystal Jacques
- Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Brenda L. K. Coles
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Derek van der Kooy
- Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Larbi D, Rief AM, Kang S, Chen S, Batsuuri K, Fuhrmann S, Viswanathan S, Wohl SG. Dicer loss in Müller glia leads to a defined sequence of pathological events beginning with cone dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635744. [PMID: 39975262 PMCID: PMC11838336 DOI: 10.1101/2025.01.30.635744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Purpose The loss of Dicer in Müller glia (MG) results in severe photoreceptor degeneration as it occurs in retinitis pigmentosa or AMD. However, the sequence of events leading to this severe degenerative state is unknown. The aim of this study was to conduct a chronological functional and structural characterization of the pathological events in MG-specific Dicer-cKO mice in vivo and histologically. Methods To delete Dicer and mature microRNAs (miRNAs) in MG, two conditional Dicer1 knock-out mouse strains namely RlbpCre:Dicer-cKO MG and GlastCre:Dicer-cKO MG, were created. Optical coherence tomography (OCT), electroretinograms (ERGs) as well as histological analyses were conducted to investigate structural and functional changes up to six months after Dicer deletion. Results Dicer/miRNA loss in MG leads to 1) impairments of the external limiting membrane (ELM) - retinal pigment epithelium (RPE), 2) cone photoreceptor dysfunction and 3) retinal remodeling and functional loss of the inner retina, 1, 3 and 6 months after Dicer loss, respectively, in both strains. Furthermore, in the Rlbp:Dicer-cKO MG strain, rod photoreceptor impairment was found 4 months after Dicer depletion (4) accompanied by alteration of RPE integrity (5). Conclusions MG Dicer loss in the adult mouse retina impacts cone function prior to any measurable changes in rod function, suggesting a pivotal role for MG Dicer and miRNAs in supporting cone health. A partially impaired RPE however seems to accelerate rod degeneration and overall degenerative events.
Collapse
|
5
|
Markitantova Y, Simirskii V. Retinal Pigment Epithelium Under Oxidative Stress: Chaperoning Autophagy and Beyond. Int J Mol Sci 2025; 26:1193. [PMID: 39940964 PMCID: PMC11818496 DOI: 10.3390/ijms26031193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
The structural and functional integrity of the retinal pigment epithelium (RPE) plays a key role in the normal functioning of the visual system. RPE cells are characterized by an efficient system of photoreceptor outer segment phagocytosis, high metabolic activity, and risk of oxidative damage. RPE dysfunction is a common pathological feature in various retinal diseases. Dysregulation of RPE cell proteostasis and redox homeostasis is accompanied by increased reactive oxygen species generation during the impairment of phagocytosis, lysosomal and mitochondrial failure, and an accumulation of waste lipidic and protein aggregates. They are the inducers of RPE dysfunction and can trigger specific pathways of cell death. Autophagy serves as important mechanism in the endogenous defense system, controlling RPE homeostasis and survival under normal conditions and cellular responses under stress conditions through the degradation of intracellular components. Impairment of the autophagy process itself can result in cell death. In this review, we summarize the classical types of oxidative stress-induced autophagy in the RPE with an emphasis on autophagy mediated by molecular chaperones. Heat shock proteins, which represent hubs connecting the life supporting pathways of RPE cells, play a special role in these mechanisms. Regulation of oxidative stress-counteracting autophagy is an essential strategy for protecting the RPE against pathological damage when preventing retinal degenerative disease progression.
Collapse
Affiliation(s)
- Yuliya Markitantova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | | |
Collapse
|
6
|
Metzner E, Southard KM, Norman TM. Multiome Perturb-seq unlocks scalable discovery of integrated perturbation effects on the transcriptome and epigenome. Cell Syst 2025; 16:101161. [PMID: 39689711 PMCID: PMC11738662 DOI: 10.1016/j.cels.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/14/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024]
Abstract
Single-cell CRISPR screens link genetic perturbations to transcriptional states, but high-throughput methods connecting these induced changes to their regulatory foundations are limited. Here, we introduce Multiome Perturb-seq, extending single-cell CRISPR screens to simultaneously measure perturbation-induced changes in gene expression and chromatin accessibility. We apply Multiome Perturb-seq in a CRISPRi screen of 13 chromatin remodelers in human RPE-1 cells, achieving efficient assignment of sgRNA identities to single nuclei via an improved method for capturing barcode transcripts from nuclear RNA. We organize expression and accessibility measurements into coherent programs describing the integrated effects of perturbations on cell state, finding that ARID1A and SUZ12 knockdowns induce programs enriched for developmental features. Modeling of perturbation-induced heterogeneity connects accessibility changes to changes in gene expression, highlighting the value of multimodal profiling. Overall, our method provides a scalable and simply implemented system to dissect the regulatory logic underpinning cell state. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Eli Metzner
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Tri-Institutional Training Program in Computational Biology and Medicine, New York, NY 10065, USA
| | - Kaden M Southard
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Thomas M Norman
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
7
|
Babighian S, Zanella MS, Gattazzo I, Galan A, Gagliano C, D'Esposito F, Zeppieri M. Atrophic Macular Degeneration and Stem Cell Therapy: A Clinical Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1474:105-118. [PMID: 39259423 DOI: 10.1007/5584_2024_819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Age-related macular degeneration (AMD) is one of the leading causes of visual loss in older patients. No effective drug is available for this pathology, but studies about therapy with stem cells replacing the damaged retinal cells with retinal pigment epithelium (RPE) were described. The documentation of AMD progression and the response to stem cell therapy have been performed by optical coherence tomography, microperimetry, and other diagnostic technologies.This chapter reports a clinical review of the most important clinical trials and protocols regarding the use of stem cells in AMD.
Collapse
Affiliation(s)
- Silvia Babighian
- Department of Ophthalmology, Ospedale Sant'Antonio, Azienda Ospedaliera, Padova, Italy
| | - Maria Sole Zanella
- Department of Ophthalmology, Ospedale Sant'Antonio, Azienda Ospedaliera, Padova, Italy
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Irene Gattazzo
- Department of Ophthalmology, Ospedale Sant'Antonio, Azienda Ospedaliera, Padova, Italy
| | - Alessandro Galan
- Department of Ophthalmology, Ospedale Sant'Antonio, Azienda Ospedaliera, Padova, Italy
| | - Caterina Gagliano
- Eye Clinic Catania University San Marco Hospital, Catania, Italy
- Department of Medicine and Surgery, University of Enna "Kore", Piazza dell'Università, Enna, EN, Italy
| | - Fabiana D'Esposito
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London, UK
- Eye Clinic, Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine, Italy.
| |
Collapse
|
8
|
Rzhanova LA, Alpeeva EV, Aleksandrova MA. Using Small Molecules to Reprogram RPE Cells in Regenerative Medicine for Degenerative Eye Disease. Cells 2024; 13:1931. [PMID: 39682681 PMCID: PMC11640686 DOI: 10.3390/cells13231931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
The main purpose of regenerative medicine for degenerative eye diseases is to create cells to replace lost or damaged ones. Due to their anatomical, genetic, and epigenetic features, characteristics of origin, evolutionary inheritance, capacity for dedifferentiation, proliferation, and plasticity, mammalian and human RPE cells are of great interest as endogenous sources of new photoreceptors and other neurons for the degrading retina. Promising methods for the reprogramming of RPE cells into retinal cells include genetic methods and chemical methods under the influence of certain low-molecular-weight compounds, so-called small molecules. Depending on the goal, which can be the preservation or the replacement of lost RPE cells and cellular structures, various small molecules are used to influence certain biological processes at different levels of cellular regulation. This review discusses the potential of the chemical reprogramming of RPE cells in comparison with other somatic cells and induced pluripotent stem cells (iPSCs) into neural cells of the brain and retina. Possible mechanisms of the chemically induced reprogramming of somatic cells under the influence of small molecules are explored and compared. This review also considers other possibilities in using them in the treatment of retinal degenerative diseases based on the protection, preservation, and support of survived RPE and retinal cells.
Collapse
Affiliation(s)
- Lyubov A. Rzhanova
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia;
| | - Elena V. Alpeeva
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia;
| | | |
Collapse
|
9
|
Hofstetter KS, Haas PM, Kuntz JP, Zheng Y, Fuhrmann S. Loss of Cdc42 causes abnormal optic cup morphogenesis and microphthalmia in mouse. Front Cell Neurosci 2024; 18:1474010. [PMID: 39650797 PMCID: PMC11622195 DOI: 10.3389/fncel.2024.1474010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/31/2024] [Indexed: 12/11/2024] Open
Abstract
Congenital ocular malformations originate from defective morphogenesis during early eye development and cause 25% of childhood blindness. Formation of the eye is a multi-step, dynamic process; it involves evagination of the optic vesicle, followed by distal and ventral invagination, leading to the formation of a two-layered optic cup with a transient optic fissure. These tissue folding events require extensive changes in cell shape and tissue growth mediated by cytoskeleton mechanics and intercellular adhesion. We hypothesized that the Rho GTPase Cdc42 may be an essential, convergent effector downstream of key regulatory factors required for ocular morphogenesis. CDC42 controls actin remodeling, apicobasal polarity, and junction assembly. Here we identify a novel essential function for Cdc42 during eye morphogenesis in mouse; in Cdc42 mutant eyes expansion of the ventral optic cup is arrested, resulting in microphthalmia and a wide coloboma. Our analyses show that Cdc42 is required for expression of the polarity effector proteins PRKCZ and PARD6, intercellular junction protein tight junction protein 1, β-catenin, actin cytoskeleton F-actin, and contractile protein phospho myosin light chain 2. Expression of RPE fate determinants OTX2 and MITF, and formation of the RPE layer are severely affected in the temporal domain of the proximal optic cup. EdU incorporation is significantly downregulated. In addition, mitotic retinal progenitor cells mislocalize deeper, basal regions, likely contributing to decreased proliferation. We propose that morphogenesis of the ventral optic cup requires Cdc42 function for coordinated optic cup expansion and establishment of subretinal space, tissue tension, and differentiation of the ventral RPE layer.
Collapse
Affiliation(s)
- Katrina S. Hofstetter
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Paula M. Haas
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jonathon P. Kuntz
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Yi Zheng
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Sabine Fuhrmann
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical School, Nashville, TN, United States
| |
Collapse
|
10
|
Hofstetter KS, Haas PM, Kuntz JP, Zheng Y, Fuhrmann S. Loss of Cdc42 causes abnormal optic cup morphogenesis and microphthalmia in mouse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.20.619331. [PMID: 39484575 PMCID: PMC11526912 DOI: 10.1101/2024.10.20.619331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Congenital ocular malformations originate from defective morphogenesis during early eye development and cause 25% of childhood blindness. Formation of the eye is a multi-step, dynamic process; it involves evagination of the optic vesicle, followed by distal and ventral invagination, leading to the formation of a two-layered optic cup with a transient optic fissure. These tissue folding events require extensive changes in cell shape and tissue growth mediated by cytoskeleton mechanics and intercellular adhesion. We hypothesized that the Rho GTPase Cdc42 may be an essential, convergent effector downstream of key regulatory factors required for ocular morphogenesis. CDC42 controls actin remodeling, apicobasal polarity, and junction assembly. Here we identify a novel essential function for Cdc42 during eye morphogenesis in mouse; in Cdc42 mutant eyes expansion of the ventral optic cup is arrested, resulting in microphthalmia and a wide coloboma. Our analyses show that Cdc42 is required for expression of the polarity effector proteins PRKCZ and PARD6, intercellular junction protein tight junction protein 1, β-catenin, actin cytoskeleton F-actin, and contractile protein phospho myosin light chain 2. Expression of RPE fate determinants OTX2 and MITF, and formation of the RPE layer are severely affected in the temporal domain of the proximal optic cup. EdU incorporation is significantly downregulated. In addition, mitotic retinal progenitor cells mis-localized deeper, basal regions, likely contributing to decreased proliferation. We propose that morphogenesis of the ventral optic cup requires Cdc42 function for coordinated optic cup expansion and establishment of subretinal space, tissue tension, and differentiation of the ventral RPE layer.
Collapse
Affiliation(s)
- Katrina S. Hofstetter
- Dept. of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Paula M. Haas
- Dept. of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Jonathon P. Kuntz
- Dept. of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Yi Zheng
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Sabine Fuhrmann
- Dept. of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN
- Dept. of Cell and Developmental Biology, Vanderbilt University Medical School; Nashville, TN
| |
Collapse
|
11
|
Adegboro CO, Luo W, Kabra M, McAdams RM, York NW, Wijenayake RI, Suchla KM, Pillers DAM, Pattnaik BR. Transplacental Transfer of Oxytocin and Its Impact on Neonatal Cord Blood and In Vitro Retinal Cell Activity. Cells 2024; 13:1735. [PMID: 39451253 PMCID: PMC11506339 DOI: 10.3390/cells13201735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
The development of fetal organs can be impacted by systemic changes in maternal circulation, with the placenta playing a pivotal role in maintaining pregnancy homeostasis and nutrient exchange. In clinical obstetrics, oxytocin (OXT) is commonly used to induce labor. To explore the potential role of OXT in the placental homeostasis of OXT, we compared OXT levels in neonatal cord blood among neonates (23-42 weeks gestation) whose mothers either received prenatal OXT or experienced spontaneous labor. Our previous research revealed that the oxytocin receptor (OXTR), essential in forming the blood-retina barrier, is expressed in the retinal pigment epithelium (RPE). We hypothesized that perinatal OXT administration might influence the development of the neural retina and its vasculature, offering therapeutic potential for retinal diseases such as retinopathy of prematurity (ROP). Plasma OXT levels were measured using a commercial OXT ELISA kit. Human fetal RPE (hfRPE) cells treated with OXT (10 µM) were assessed for gene expression via RNA sequencing, revealing 14 downregulated and 32 upregulated genes. To validate these differentially expressed genes (DEGs), hfRPE cells were exposed to OXT (0.01, 0.1, 1, or 10 µM) for 12 h, followed by RNA analysis via real-time PCR. Functional, enrichment, and network analyses (Gene Ontology term, FunRich, Cytoscape) were performed to predict the affected pathways. This translational study suggests that OXT likely crosses the placenta, altering fetal OXT concentrations. RNA sequencing identified 46 DEGs involved in vital metabolic and signaling pathways and critical cellular components. Our results indicate that the perinatal administration of OXT may affect neural retina and retinal vessel development, making OXT a potential therapeutic option for developmental eye diseases, including ROP.
Collapse
Affiliation(s)
- Claudette O. Adegboro
- Department of Pediatrics, Division of Neonatology and Newborn Nursery, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA; (C.O.A.); (M.K.); (R.M.M.); (N.W.Y.); (R.I.W.); (K.M.S.)
| | - Wenxiang Luo
- Department of Pediatrics, Division of Neonatology, University of Illinois at Chicago, Chicago, IL 60612, USA; (W.L.); (D.-A.M.P.)
| | - Meha Kabra
- Department of Pediatrics, Division of Neonatology and Newborn Nursery, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA; (C.O.A.); (M.K.); (R.M.M.); (N.W.Y.); (R.I.W.); (K.M.S.)
- McPherson Eye Research Institute, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA
| | - Ryan M. McAdams
- Department of Pediatrics, Division of Neonatology and Newborn Nursery, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA; (C.O.A.); (M.K.); (R.M.M.); (N.W.Y.); (R.I.W.); (K.M.S.)
| | - Nathaniel W. York
- Department of Pediatrics, Division of Neonatology and Newborn Nursery, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA; (C.O.A.); (M.K.); (R.M.M.); (N.W.Y.); (R.I.W.); (K.M.S.)
- Endocrine and Reproductive Physiology Program, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA
| | - Ruwandi I. Wijenayake
- Department of Pediatrics, Division of Neonatology and Newborn Nursery, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA; (C.O.A.); (M.K.); (R.M.M.); (N.W.Y.); (R.I.W.); (K.M.S.)
| | - Kiana M. Suchla
- Department of Pediatrics, Division of Neonatology and Newborn Nursery, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA; (C.O.A.); (M.K.); (R.M.M.); (N.W.Y.); (R.I.W.); (K.M.S.)
| | - De-Ann M. Pillers
- Department of Pediatrics, Division of Neonatology, University of Illinois at Chicago, Chicago, IL 60612, USA; (W.L.); (D.-A.M.P.)
- Children’s Hospital University of Illinois, University of Illinois Hospital & Health Sciences System, Chicago, IL 60612, USA
| | - Bikash R. Pattnaik
- Department of Pediatrics, Division of Neonatology and Newborn Nursery, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA; (C.O.A.); (M.K.); (R.M.M.); (N.W.Y.); (R.I.W.); (K.M.S.)
- McPherson Eye Research Institute, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA
- Endocrine and Reproductive Physiology Program, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin–Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA
| |
Collapse
|
12
|
Cvekl A, Vijg J. Aging of the eye: Lessons from cataracts and age-related macular degeneration. Ageing Res Rev 2024; 99:102407. [PMID: 38977082 DOI: 10.1016/j.arr.2024.102407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
Aging is the greatest risk factor for chronic human diseases, including many eye diseases. Geroscience aims to understand the effects of the aging process on these diseases, including the genetic, molecular, and cellular mechanisms that underlie the increased risk of disease over the lifetime. Understanding of the aging eye increases general knowledge of the cellular physiology impacted by aging processes at various biological extremes. Two major diseases, age-related cataract and age-related macular degeneration (AMD) are caused by dysfunction of the lens and retina, respectively. Lens transparency and light refraction are mediated by lens fiber cells lacking nuclei and other organelles, which provides a unique opportunity to study a single aging hallmark, i.e., loss of proteostasis, within an environment of limited metabolism. In AMD, local dysfunction of the photoreceptors/retinal pigmented epithelium/Bruch's membrane/choriocapillaris complex in the macula leads to the loss of photoreceptors and eventually loss of central vision, and is driven by nearly all the hallmarks of aging and shares features with Alzheimer's disease, Parkinson's disease, cardiovascular disease, and diabetes. The aging eye can function as a model for studying basic mechanisms of aging and, vice versa, well-defined hallmarks of aging can be used as tools to understand age-related eye disease.
Collapse
Affiliation(s)
- Ales Cvekl
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Jan Vijg
- Departments of Genetics and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
13
|
Gallego-Rentero M, López Sánchez A, Nicolás-Morala J, Alcaraz-Laso P, Zhang N, Juarranz Á, González S, Carrasco E. The effect of Fernblock® in preventing blue-light-induced oxidative stress and cellular damage in retinal pigment epithelial cells is associated with NRF2 induction. Photochem Photobiol Sci 2024; 23:1471-1484. [PMID: 38909335 DOI: 10.1007/s43630-024-00606-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Blue light exposure of the ocular apparatus is currently rising. This has motivated a growing concern about potential deleterious effects on different eye structures. To address this, ARPE-19 cells were used as a model of the retinal pigment epithelium and subjected to cumulative expositions of blue light. The most relevant cellular events previously associated with blue-light-induced damage were assessed, including alterations in cell morphology, viability, cell proliferation, oxidative stress, inflammation, and the induction of DNA repair cellular mechanisms. Consistent with previous reports, our results provide evidence of cellular alterations resulting from repeated exposure to blue light irradiation. In this context, we explored the potential protective properties of the vegetal extract from Polypodium leucotomos, Fernblock® (FB), using the widely known treatment with lutein as a reference for comparison. The only changes observed as a result of the sole treatment with either FB or lutein were a slight but significant increase in γH2AX+ cells and the raise in the nuclear levels of NRF2. Overall, our findings indicate that the treatment with FB (similarly to lutein) prior to blue light irradiation can alleviate blue-light-induced deleterious effects in RPE cells, specifically preventing the drop in both cell viability and percentage of EdU+ cells, as well as the increase in ROS generation, percentage of γH2AX+ nuclei (more efficiently with FB), and TNF-α secretion (the latter restored only by FB to similar levels to those of the control). On the contrary, the induction in the P21 expression upon blue light irradiation was not prevented neither by FB nor by lutein. Notably, the nuclear translocation of NRF2 induced by blue light was similar to that observed in cells pre-treated with FB, while lutein pre-treatment resulted in nuclear NRF2 levels similar to control cells, suggesting key differences in the mechanism of cellular protection exerted by these compounds. These results may represent the foundation ground for the use of FB as a new ingredient in the development of alternative prophylactic strategies for blue-light-associated diseases, a currently rising medical interest.
Collapse
Affiliation(s)
- María Gallego-Rentero
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | | | - Jimena Nicolás-Morala
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Paula Alcaraz-Laso
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - Noelia Zhang
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ángeles Juarranz
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Salvador González
- Department of Medicine and Medical Specialties, Alcalá de Henares University, Madrid, Spain.
| | - Elisa Carrasco
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
- Centro de Biología Molecular Severo Ochoa (CBM); Instituto Universitario de Biología Molecular-IUBM (Universidad Autónoma de Madrid), Madrid, Spain.
| |
Collapse
|
14
|
Polinyk A, Suffo S, Aljundi W, Seitz B, Abdin AD. Unilateral Crystalline Ischemic Retinopathy Secondary to Primary Hyperoxaluria with Renal Failure and Oxalosis. Klin Monbl Augenheilkd 2024. [PMID: 39047761 DOI: 10.1055/a-2327-8530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Affiliation(s)
- Anna Polinyk
- Department of Ophthalmology, Saarland University Medical Center UKS, Homburg/Saar, Germany
| | - Shady Suffo
- Department of Ophthalmology, Saarland University Medical Center UKS, Homburg/Saar, Germany
| | - Wissam Aljundi
- Department of Ophthalmology, Saarland University Medical Center UKS, Homburg/Saar, Germany
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center UKS, Homburg/Saar, Germany
| | - Alaa Din Abdin
- Department of Ophthalmology, Saarland University Medical Center UKS, Homburg/Saar, Germany
| |
Collapse
|
15
|
Du SW, Komirisetty R, Lewandowski D, Choi EH, Panas D, Suh S, Tabaka M, Radu RA, Palczewski K. Conditional deletion of miR-204 and miR-211 in murine retinal pigment epithelium results in retinal degeneration. J Biol Chem 2024; 300:107344. [PMID: 38705389 PMCID: PMC11140208 DOI: 10.1016/j.jbc.2024.107344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/18/2024] [Accepted: 04/27/2024] [Indexed: 05/07/2024] Open
Abstract
MicroRNAs (miRs) are short, evolutionarily conserved noncoding RNAs that canonically downregulate expression of target genes. The miR family composed of miR-204 and miR-211 is among the most highly expressed miRs in the retinal pigment epithelium (RPE) in both mouse and human and also retains high sequence identity. To assess the role of this miR family in the developed mouse eye, we generated two floxed conditional KO mouse lines crossed to the RPE65-ERT2-Cre driver mouse line to perform an RPE-specific conditional KO of this miR family in adult mice. After Cre-mediated deletion, we observed retinal structural changes by optical coherence tomography; dysfunction and loss of photoreceptors by retinal imaging; and retinal inflammation marked by subretinal infiltration of immune cells by imaging and immunostaining. Single-cell RNA sequencing of diseased RPE and retinas showed potential miR-regulated target genes, as well as changes in noncoding RNAs in the RPE, rod photoreceptors, and Müller glia. This work thus highlights the role of miR-204 and miR-211 in maintaining RPE function and how the loss of miRs in the RPE exerts effects on the neural retina, leading to inflammation and retinal degeneration.
Collapse
Affiliation(s)
- Samuel W Du
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, California, USA; Department of Physiology and Biophysics, University of California, Irvine, California, USA.
| | - Ravikiran Komirisetty
- Department of Ophthalmology and UCLA Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Dominik Lewandowski
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, California, USA
| | - Elliot H Choi
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, California, USA
| | - Damian Panas
- International Centre for Translational Eye Research, Warsaw, Poland; Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Susie Suh
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, California, USA
| | - Marcin Tabaka
- International Centre for Translational Eye Research, Warsaw, Poland; Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Roxana A Radu
- Department of Ophthalmology and UCLA Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute-Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, California, USA; Department of Physiology and Biophysics, University of California, Irvine, California, USA; Department of Chemistry, University of California, Irvine, Irvine, California, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California, USA.
| |
Collapse
|
16
|
Basyal D, Lee S, Kim HJ. Antioxidants and Mechanistic Insights for Managing Dry Age-Related Macular Degeneration. Antioxidants (Basel) 2024; 13:568. [PMID: 38790673 PMCID: PMC11117704 DOI: 10.3390/antiox13050568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Age-related macular degeneration (AMD) severely affects central vision due to progressive macular degeneration and its staggering prevalence is rising globally, especially in the elderly population above 55 years. Increased oxidative stress with aging is considered an important contributor to AMD pathogenesis despite multifaceted risk factors including genetic predisposition and environmental agents. Wet AMD can be managed with routine intra-vitreal injection of angiogenesis inhibitors, but no satisfactory medicine has been approved for the successful management of the dry form. The toxic carbonyls due to photo-oxidative degradation of accumulated bisretinoids within lysosomes initiate a series of events including protein adduct formation, impaired autophagy flux, complement activation, and chronic inflammation, which is implicated in dry AMD. Therapy based on antioxidants has been extensively studied for its promising effect in reducing the impact of oxidative stress. This paper reviews the dry AMD pathogenesis, delineates the effectiveness of dietary and nutrition supplements in clinical studies, and explores pre-clinical studies of antioxidant molecules, extracts, and formulations with their mechanistic insights.
Collapse
Affiliation(s)
| | | | - Hye Jin Kim
- College of Pharmacy, Keimyung University, Dauge 42601, Republic of Korea
| |
Collapse
|
17
|
Shahhossein-Dastjerdi S, Koina ME, Fatseas G, Arfuso F, Chan-Ling T. Autophagy and Exocytosis of Lipofuscin Into the Basolateral Extracellular Space of Human Retinal Pigment Epithelium From Fetal Development to Adolescence. Invest Ophthalmol Vis Sci 2024; 65:32. [PMID: 38648041 PMCID: PMC11044829 DOI: 10.1167/iovs.65.4.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/06/2024] [Indexed: 04/25/2024] Open
Abstract
Purpose To undertake the first ultrastructural characterization of human retinal pigment epithelial (RPE) differentiation from fetal development to adolescence. Methods Ten fetal eyes and three eyes aged six, nine, and 17 years were examined in the temporal retina adjacent to the optic nerve head by transmission electron microscopy. The area, number, and distribution of RPE organelles were quantified and interpreted within the context of adjacent photoreceptors, Bruch's membrane, and choriocapillaris maturation. Results Between eight to 12 weeks' gestation (WG), pseudostratified columnar epithelia with apical tight junctions differentiate to a simple cuboidal epithelium with random distribution of melanosomes and mitochondria. Between 12 to 26 WG, cells enlarge and show long apical microvilli and apicolateral junctional complexes. Coinciding with eye opening at 26 WG, melanosomes migrate apically whereas mitochondria distribute to perinuclear regions, with the first appearance of phagosomes, complex granules, and basolateral extracellular space (BES) formation. Significantly, autophagy and heterophagy, as evidenced by organelle recycling, and the gold standard of ultrastructural evidence for autophagy of double-membrane autophagosomes and mitophagosomes were evident from 32 WG, followed by basal infoldings of RPE cell membrane at 36 WG. Lipofuscin formation and deposition into the BES evident at six years increased at 17 years. Conclusions We provide compelling ultrastructural evidence that heterophagy and autophagy begins in the third trimester of human fetal development and that deposition of cellular byproducts into the extracellular space of RPE takes place via exocytosis. Transplanted RPE cells must also demonstrate the capacity to subserve autophagic and heterophagic functions for effective disease mitigation.
Collapse
Affiliation(s)
- Saeed Shahhossein-Dastjerdi
- Bosch Institute, The University of Sydney, Sydney, Australia
- Now at Cell, Tissue & Organ Bank, Forensic Medicine Research Centre, Tehran, Iran
| | - Mark E. Koina
- Department of Anatomical Pathology, ACT Pathology, The Canberra Hospital, Canberra, Australia
| | - George Fatseas
- Bosch Institute, The University of Sydney, Sydney, Australia
| | - Frank Arfuso
- School of Human Sciences, The University of Western Australia, Crawley, Australia
| | | |
Collapse
|
18
|
Qi YB, Xu Z, Shen S, Wang Z, Wang Z. MYRF: A unique transmembrane transcription factor- from proteolytic self-processing to its multifaceted roles in animal development. Bioessays 2024; 46:e2300209. [PMID: 38488284 DOI: 10.1002/bies.202300209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 03/28/2024]
Abstract
The Myelin Regulator Factor (MYRF) is a master regulator governing myelin formation and maintenance in the central nervous system. The conservation of MYRF across metazoans and its broad tissue expression suggest it has functions extending beyond the well-established role in myelination. Loss of MYRF results in developmental lethality in both invertebrates and vertebrates, and MYRF haploinsufficiency in humans causes MYRF-related Cardiac Urogenital Syndrome, underscoring its importance in animal development; however, these mechanisms are largely unexplored. MYRF, an unconventional transcription factor, begins embedded in the membrane and undergoes intramolecular chaperone mediated trimerization, which triggers self-cleavage, allowing its N-terminal segment with an Ig-fold DNA-binding domain to enter the nucleus for transcriptional regulation. Recent research suggests developmental regulation of cleavage, yet the mechanisms remain enigmatic. While some parts of MYRF's structure have been elucidated, others remain obscure, leaving questions about how these motifs are linked to its intricate processing and function.
Collapse
Affiliation(s)
- Yingchuan B Qi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhimin Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shiqian Shen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhao Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhizhi Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
19
|
Rzhanova LA, Markitantova YV, Aleksandrova MA. Recent Achievements in the Heterogeneity of Mammalian and Human Retinal Pigment Epithelium: In Search of a Stem Cell. Cells 2024; 13:281. [PMID: 38334673 PMCID: PMC10854871 DOI: 10.3390/cells13030281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024] Open
Abstract
Retinal pigment epithelium (RPE) cells are important fundamentally for the development and function of the retina. In this regard, the study of the morphological and molecular properties of RPE cells, as well as their regenerative capabilities, is of particular importance for biomedicine. However, these studies are complicated by the fact that, despite the external morphological similarity of RPE cells, the RPE is a population of heterogeneous cells, the molecular genetic properties of which have begun to be revealed by sequencing methods only in recent years. This review carries out an analysis of the data from morphological and molecular genetic studies of the heterogeneity of RPE cells in mammals and humans, which reveals the individual differences in the subpopulations of RPE cells and the possible specificity of their functions. Particular attention is paid to discussing the properties of "stemness," proliferation, and plasticity in the RPE, which may be useful for uncovering the mechanisms of retinal diseases associated with pathologies of the RPE and finding new ways of treating them.
Collapse
Affiliation(s)
| | - Yuliya V. Markitantova
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia; (L.A.R.); (M.A.A.)
| | | |
Collapse
|
20
|
Shelton DA, Gefke I, Summers V, Kim YK, Yu H, Getz Y, Ferdous S, Donaldson K, Liao K, Papania JT, Chrenek MA, Boatright JH, Nickerson JM. Age-Related RPE changes in Wildtype C57BL/6J Mice between 2 and 32 Months. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.574142. [PMID: 38352604 PMCID: PMC10862734 DOI: 10.1101/2024.01.30.574142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Purpose This study provides a systematic evaluation of age-related changes in RPE cell structure and function using a morphometric approach. We aim to better capture nuanced predictive changes in cell heterogeneity that reflect loss of RPE integrity during normal aging. Using C57BL6/J mice ranging from P60-P730, we sought to evaluate how regional changes in RPE shape reflect incremental losses in RPE cell function with advancing age. We hypothesize that tracking global morphological changes in RPE is predictive of functional defects over time. Methods We tested three groups of C57BL/6J mice (young: P60-180; Middle-aged: P365-729; aged: 730+) for function and structural defects using electroretinograms, immunofluorescence, and phagocytosis assays. Results The largest changes in RPE morphology were evident between the young and aged groups, while the middle-aged group exhibited smaller but notable region-specific differences. We observed a 1.9-fold increase in cytoplasmic alpha-catenin expression specifically in the central-medial region of the eye between the young and aged group. There was an 8-fold increase in subretinal, IBA-1-positive immune cell recruitment and a significant decrease in visual function in aged mice compared to young mice. Functional defects in the RPE corroborated by changes in RPE phagocytotic capacity. Conclusions The marked increase of cytoplasmic alpha-catenin expression and subretinal immune cell deposition, and decreased visual output coincide with regional changes in RPE cell morphometrics when stratified by age. These cumulative changes in the RPE morphology showed predictive regional patterns of stress associated with loss of RPE integrity.
Collapse
Affiliation(s)
- Debresha A. Shelton
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Isabelle Gefke
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Vivian Summers
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Yong-Kyu Kim
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
- Department of Ophthalmology, Hallym University College of Medicine, Kangdong Sacred Heart Hospital, Seoul, South Korea
| | - Hanyi Yu
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
- Department of Computer Science, Emory University, Atlanta, Georgia, United States
| | - Yana Getz
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Salma Ferdous
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States
| | - Kevin Donaldson
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Kristie Liao
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Jack T. Papania
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Micah A. Chrenek
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Jeffrey H. Boatright
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
- Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Decatur, Georgia, United States
| | - John M. Nickerson
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| |
Collapse
|
21
|
Chao WWJ, Chao HWH, Lee HF, Chao HM. The Effect of S-Allyl L-Cysteine on Retinal Ischemia: The Contributions of MCP-1 and PKM2 in the Underlying Medicinal Properties. Int J Mol Sci 2024; 25:1349. [PMID: 38279349 PMCID: PMC10816972 DOI: 10.3390/ijms25021349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/07/2024] [Accepted: 01/20/2024] [Indexed: 01/28/2024] Open
Abstract
Retinal ischemia plays a vital role in vision-threatening retinal ischemic disorders, such as diabetic retinopathy, age-related macular degeneration, glaucoma, etc. The aim of this study was to investigate the effects of S-allyl L-cysteine (SAC) and its associated therapeutic mechanism. Oxidative stress was induced by administration of 500 μM H2O2 for 24 h; SAC demonstrated a dose-dependent neuroprotective effect with significant cell viability effects at 100 μM, and it concurrently downregulated angiogenesis factor PKM2 and inflammatory biomarker MCP-1. In a Wistar rat model of high intraocular pressure (HIOP)-induced retinal ischemia and reperfusion (I/R), post-administration of 100 μM SAC counteracted the ischemic-associated reduction of ERG b-wave amplitude and fluorogold-labeled RGC reduction. This study supports that SAC could protect against retinal ischemia through its anti-oxidative, anti-angiogenic, anti-inflammatory, and neuroprotective properties.
Collapse
Affiliation(s)
- Windsor Wen-Jin Chao
- Department of Medicine, Aston Medical School, Aston University, Birmingham B4 7ET, UK;
- Department of Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Howard Wen-Haur Chao
- Department of Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Hung-Fu Lee
- Department of Neurosurgery, Cheng Hsin General Hospital, Taipei 11220, Taiwan;
| | - Hsiao-Ming Chao
- Department of Chinese Medicine, School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Medicine, Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Ophthalmology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111045, Taiwan
| |
Collapse
|
22
|
Kocherlakota S, Baes M. Benefits and Caveats in the Use of Retinal Pigment Epithelium-Specific Cre Mice. Int J Mol Sci 2024; 25:1293. [PMID: 38279294 PMCID: PMC10816505 DOI: 10.3390/ijms25021293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
The retinal pigment epithelium (RPE) is an important monolayer of cells present in the outer retina, forming a major part of the blood-retina barrier (BRB). It performs many tasks essential for the maintenance of retinal integrity and function. With increasing knowledge of the retina, it is becoming clear that both common retinal disorders, like age-related macular degeneration, and rare genetic disorders originate in the RPE. This calls for a better understanding of the functions of various proteins within the RPE. In this regard, mice enabling an RPE-specific gene deletion are a powerful tool to study the role of a particular protein within the RPE cells in their native environment, simultaneously negating any potential influences of systemic changes. Moreover, since RPE cells interact closely with adjacent photoreceptors, these mice also provide an excellent avenue to study the importance of a particular gene function within the RPE to the retina as a whole. In this review, we outline and compare the features of various Cre mice created for this purpose, which allow for inducible or non-inducible RPE-specific knockout of a gene of interest. We summarize the various benefits and caveats involved in the use of such mouse lines, allowing researchers to make a well-informed decision on the choice of Cre mouse to use in relation to their research needs.
Collapse
Affiliation(s)
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
23
|
Mollick T, Darekar S, Dalarun B, Plastino F, Zhang J, Fernández AP, Alkasalias T, André H, Laín S. Retinoblastoma vulnerability to combined de novo and salvage pyrimidine ribonucleotide synthesis pharmacologic blockage. Heliyon 2024; 10:e23831. [PMID: 38332874 PMCID: PMC10851301 DOI: 10.1016/j.heliyon.2023.e23831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 02/10/2024] Open
Abstract
Retinoblastoma is an eye cancer that commonly affects young children. Despite significant advances, current treatments cause side effects even when administered locally, and patients may still have to undergo enucleation. This is particularly disheartening in cases of bilateral retinoblastoma. Hence, there is an urgent need for novel therapeutic strategies. Inhibitors of the enzyme dihydroorotate dehydrogenase (DHODH), which is involved in the de novo pyrimidine ribonucleotide synthesis pathway, have proven to be effective in preclinical trials against several cancers including pediatric cancers. Here we tested whether blocking pyrimidine ribonucleotide synthesis promotes retinoblastoma cell death. Cultured retinoblastoma cell lines were treated with small molecule inhibitors of DHODH alone or in combination with inhibitors of nucleoside uptake to also block the salvage pathway for pyrimidine ribonucleotide formation. On their own, DHODH inhibitors had a moderate killing effect. However, the combination with nucleoside uptake inhibitors greatly enhanced the effect of DHODH inhibition. In addition, we observed that pyrimidine ribonucleotide synthesis blockage can cause cell death in a p53 mutant retinoblastoma cell line derived from a patient with metastasis. Explaining these results, the analysis of a published patient cohort revealed that loss of chr16q22.2 (containing the DHODH gene) is amongst the most frequent alterations in retinoblastoma and that these tumors often show gains in chromosome regions expressing pyrimidine ribonucleotide salvage factors. Furthermore, these genome alterations associate with malignancy. These results indicate that targeting pyrimidine ribonucleotide synthesis may be an effective therapeutic strategy to consider as a treatment for retinoblastoma.
Collapse
Affiliation(s)
- Tanzina Mollick
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165, Solna, Stockholm, Sweden
| | - Suhas Darekar
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165, Solna, Stockholm, Sweden
| | - Basile Dalarun
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165, Solna, Stockholm, Sweden
| | - Flavia Plastino
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Juan Zhang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165, Solna, Stockholm, Sweden
| | - Andres Pastor Fernández
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165, Solna, Stockholm, Sweden
| | - Twana Alkasalias
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165, Solna, Stockholm, Sweden
- General Directorate of Scientific Research Center, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Helder André
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Sonia Laín
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165, Solna, Stockholm, Sweden
| |
Collapse
|
24
|
Song Y, Lv P, Yu J. Platycodin D inhibits diabetic retinopathy via suppressing TLR4/MyD88/NF-κB signaling pathway and activating Nrf2/HO-1 signaling pathway. Chem Biol Drug Des 2024; 103:e14419. [PMID: 38230792 DOI: 10.1111/cbdd.14419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/12/2023] [Accepted: 11/29/2023] [Indexed: 01/18/2024]
Abstract
Diabetic retinopathy (DR) is one of the most frequently occurring diabetic complications associated with inflammation and oxidative stress. Platycodin D (PLD) is a bio-active saponin that has been reported to exhibit anti-inflammation, anti-oxidative, and antidiabetic activities. Therefore, we speculated the protective effects of PLD on DR in the present study. Our results demonstrated that PLD attenuated high glucose (HG)-induced inflammation, as evidenced by decreased production of TNF-α, IL-1β, IL-6. The HG-induced oxidative stress was prevented by PLD with decreased ROS production and malondialdehyde (MDA) level, as well as increased activities of superoxide dismutase and glutathione (GSH). In addition, treatment of PLD significantly decreased the apoptotic rate in HG-induced ARPE-19 cells. The HG-caused increases in expression of bax and cleaved capsase-3, as well a decrease in bcl-2 expression were attenuated by PLD. Furthermore, PLD suppressed the activation of TLR4/MyD88/NF-κB and enhanced the activation of Nrf2/HO-1 pathway in HG-induced ARPE-19 cells. Additionally, overexpression of TLR4 attenuated the anti-inflammatory, while knockdown of Nrf2 reversed the anti-oxidative and anti-apoptotic activities of PLD in HG-stimulated ARPE-19 cells. Furthermore, PLD attenuates retinal damage in DR rats. Finally, we demonstrated that PLD weakened the TLR4/MyD88/NF-κB p65 pathway and promoted the Nrf2/HO-1 pathway in vivo. Taken together, these findings indicated that PLD exerted protective effects against DR, which were attributed to the regulation of TLR4/MyD88/NF-κB and Nrf2/HO-1 signaling pathways.
Collapse
Affiliation(s)
- Yanmin Song
- Department of Ophthalmology, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi Province, P.R. China
- Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi Province, P.R. China
| | - Peilin Lv
- Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi Province, P.R. China
- Department of Ophthalmology, Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi Province, P.R. China
| | - Jingni Yu
- Department of Ophthalmology, Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, Shaanxi Province, P.R. China
| |
Collapse
|
25
|
Sawula E, Miersch S, Jong ED, Li C, Chou FY, Tang JK, Saberianfar R, Harding J, Sidhu SS, Nagy A. Cell-based passive immunization for protection against SARS-CoV-2 infection. Stem Cell Res Ther 2023; 14:318. [PMID: 37932852 PMCID: PMC10629160 DOI: 10.1186/s13287-023-03556-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Immunologically impaired individuals respond poorly to vaccines, highlighting the need for additional strategies to protect these vulnerable populations from COVID-19. While monoclonal antibodies (mAbs) have emerged as promising tools to manage infectious diseases, the transient lifespan of neutralizing mAbs in patients limits their ability to confer lasting, passive prophylaxis from SARS-CoV-2. Here, we attempted to solve this problem by combining cell and mAb engineering in a way that provides durable immune protection against viral infection using safe and universal cell therapy. METHODS Mouse embryonic stem cells equipped with our FailSafe™ and induced allogeneic cell tolerance technologies were engineered to express factors that potently neutralize SARS-CoV-2, which we call 'neutralizing biologics' (nBios). We subcutaneously transplanted the transgenic cells into mice and longitudinally assessed the ability of the cells to deliver nBios into circulation. To do so, we quantified plasma nBio concentrations and SARS-CoV-2 neutralizing activity over time in transplant recipients. Finally, using similar cell engineering strategies, we genetically modified FailSafe™ human-induced pluripotent stem cells to express SARS-CoV-2 nBios. RESULTS Transgenic mouse embryonic stem cells engineered for safety and allogeneic-acceptance can secrete functional and potent SARS-CoV-2 nBios. As a dormant, subcutaneous tissue, the transgenic cells and their differentiated derivatives long-term deliver a supply of protective nBio titers in vivo. Moving toward clinical relevance, we also show that human-induced pluripotent stem cells, similarly engineered for safety, can secrete highly potent nBios. CONCLUSIONS Together, these findings show the promise and potential of using 'off-the-shelf' cell products that secrete neutralizing antibodies for sustained protective immunity against current and future viral pathogens of public health significance.
Collapse
Affiliation(s)
- Evan Sawula
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Shane Miersch
- The Anvil Institute, University of Waterloo, Waterloo, ON, Canada
| | - Eric D Jong
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Chengjin Li
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Fang-Yu Chou
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Jean Kit Tang
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Reza Saberianfar
- The Anvil Institute, University of Waterloo, Waterloo, ON, Canada
| | - Jeffrey Harding
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Sachdev S Sidhu
- The Anvil Institute, University of Waterloo, Waterloo, ON, Canada
| | - Andras Nagy
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada.
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
26
|
Huang L, Ye L, Li R, Zhang S, Qu C, Li S, Li J, Yang M, Wu B, Chen R, Huang G, Gong B, Li Z, Yang H, Yu M, Shi Y, Wang C, Chen W, Yang Z. Dynamic human retinal pigment epithelium (RPE) and choroid architecture based on single-cell transcriptomic landscape analysis. Genes Dis 2023; 10:2540-2556. [PMID: 37554187 PMCID: PMC10404887 DOI: 10.1016/j.gendis.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 12/23/2022] Open
Abstract
The retinal pigment epithelium (RPE) and choroid are located behind the human retina and have multiple functions in the human visual system. Knowledge of the RPE and choroid cells and their gene expression profiles are fundamental for understanding retinal disease mechanisms and therapeutic strategies. Here, we sequenced the RNA of about 0.3 million single cells from human RPE and choroids across two regions and seven ages, revealing regional and age differences within the human RPE and choroid. Cell-cell interactions highlight the broad connectivity networks between the RPE and different choroid cell types. Moreover, the transcription factors and their target genes change during aging. The coding of somatic variations increases during aging in the human RPE and choroid at the single-cell level. Moreover, we identified ELN as a candidate for improving RPE degeneration and choroidal structure during aging. The mapping of the molecular architecture of the human RPE and choroid improves our understanding of the human vision support system and offers potential insights into the intervention targets for retinal diseases.
Collapse
Affiliation(s)
- Lulin Huang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, Sichuan 610072, China
| | - Lin Ye
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Runze Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Shanshan Zhang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Chao Qu
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Shujin Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Jie Li
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Mu Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Biao Wu
- School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, Zhejiang 325035, China
| | - Ran Chen
- School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, Zhejiang 325035, China
| | - Guo Huang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Bo Gong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Zheng Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Hongjie Yang
- Department of Organ Transplant Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Man Yu
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Yi Shi
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Changguan Wang
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100730, China
| | - Wei Chen
- School of Ophthalmology and Optometry, Wenzhou Medical College, Wenzhou, Zhejiang 325035, China
| | - Zhenglin Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, Sichuan 610072, China
| |
Collapse
|
27
|
Sun T, Huang K, Niu K, Lin C, Liu W, Yeh C, Kuo S, Chang C. Hyperbaric oxygen therapy suppresses hypoxia and reoxygenation injury to retinal pigment epithelial cells through activating peroxisome proliferator activator receptor-alpha signalling. J Cell Mol Med 2023; 27:3189-3201. [PMID: 37731202 PMCID: PMC10568664 DOI: 10.1111/jcmm.17963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023] Open
Abstract
Retinal ischemia followed by reperfusion (IR) is a common cause of many ocular disorders, such as age-related macular degeneration (AMD), which leads to blindness in the elderly population, and proper therapies remain unavailable. Retinal pigment epithelial (RPE) cell death is a hallmark of AMD. Hyperbaric oxygen (HBO) therapy can improve IR tissue survival by inducing ischemic preconditioning responses. We conducted an in vitro study to examine the effects of HBO preconditioning on oxygen-glucose deprivation (OGD)-induced IR-injured RPE cells. RPE cells were treated with HBO (100% O2 at 3 atmospheres absolute for 90 min) once a day for three consecutive days before retinal IR onset. Compared with normal cells, the IR-injured RPE cells had lower cell viability, lower peroxisome proliferator activator receptor-alpha (PPAR-α) expression, more severe oxidation status, higher blood-retinal barrier disruption and more elevated apoptosis and autophagy rates. HBO preconditioning increased PPAR-α expression, improved cell viability, decreased oxidative stress, blood-retinal barrier disruption and cellular apoptosis and autophagy. A specific PPAR-α antagonist, GW6471, antagonized all the protective effects of HBO preconditioning in IR-injured RPE cells. Combining these observations, HBO therapy can reverse OGD-induced RPE cell injury by activating PPAR-α signalling.
Collapse
Affiliation(s)
- Tzong‐Bor Sun
- Department of Hyperbaric Oxygen MedicineChi Mei Medical CenterTainanTaiwan
- Division of Plastic Surgery, Department of SurgeryChi Mei Medical CenterTainanTaiwan
- Department of Biotechnology and Food TechnologySouthern Taiwan University of Science and TechnologyTainanTaiwan
| | - Kuo‐Feng Huang
- Division of Plastic Surgery, Department of SurgeryChi Mei Medical CenterTainanTaiwan
| | - Ko‐Chi Niu
- Department of Hyperbaric Oxygen MedicineChi Mei Medical CenterTainanTaiwan
| | - Cheng‐Hsien Lin
- Department of MedicineMackay Medical CollegeNew Taipei CityTaiwan
- Department of Medical ResearchChi Mei Medical CenterTainanTaiwan
| | - Wen‐Pin Liu
- Department of Medical ResearchChi Mei Medical CenterTainanTaiwan
| | - Chao‐Hung Yeh
- Division of Neurosurgery, Department of SurgeryChi Mei Medical CenterTainanTaiwan
- Department of OptometryChung Hwa University of Medical TechnologyTainanTaiwan
| | - Shu‐Chun Kuo
- Department of OptometryChung Hwa University of Medical TechnologyTainanTaiwan
- Department of OphthalmologyChi Mei Medical CenterTainanTaiwan
| | - Ching‐Ping Chang
- Department of Medical ResearchChi Mei Medical CenterTainanTaiwan
| |
Collapse
|
28
|
Markitantova YV, Grigoryan EN. Cellular and Molecular Triggers of Retinal Regeneration in Amphibians. Life (Basel) 2023; 13:1981. [PMID: 37895363 PMCID: PMC10608152 DOI: 10.3390/life13101981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Understanding the mechanisms triggering the initiation of retinal regeneration in amphibians may advance the quest for prevention and treatment options for degenerating human retina diseases. Natural retinal regeneration in amphibians requires two cell sources, namely retinal pigment epithelium (RPE) and ciliary marginal zone. The disruption of RPE interaction with photoreceptors through surgery or injury triggers local and systemic responses for retinal protection. In mammals, disease-induced damage to the retina results in the shutdown of the function, cellular or oxidative stress, pronounced immune response, cell death and retinal degeneration. In contrast to retinal pathology in mammals, regenerative responses in amphibians have taxon-specific features ensuring efficient regeneration. These include rapid hemostasis, the recruitment of cells and factors of endogenous defense systems, activities of the immature immune system, high cell viability, and the efficiency of the extracellular matrix, cytoskeleton, and cell surface remodeling. These reactions are controlled by specific signaling pathways, transcription factors, and the epigenome, which are insufficiently studied. This review provides a summary of the mechanisms initiating retinal regeneration in amphibians and reveals its features collectively directed at recruiting universal responses to trauma to activate the cell sources of retinal regeneration. This study of the integrated molecular network of these processes is a prospect for future research in demand biomedicine.
Collapse
Affiliation(s)
| | - Eleonora N. Grigoryan
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| |
Collapse
|
29
|
Gupta S, Lytvynchuk L, Ardan T, Studenovska H, Sharma R, Faura G, Eide L, Shanker Verma R, Znaor L, Erceg S, Stieger K, Motlik J, Petrovski G, Bharti K. Progress in Stem Cells-Based Replacement Therapy for Retinal Pigment Epithelium: In Vitro Differentiation to In Vivo Delivery. Stem Cells Transl Med 2023; 12:536-552. [PMID: 37459045 PMCID: PMC10427969 DOI: 10.1093/stcltm/szad039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/14/2023] [Indexed: 08/17/2023] Open
Abstract
Retinal pigment epithelium (RPE) is a critical cell monolayer forming the blood-retina-barrier (BRB) and a permeable bridge between the choriocapillaris and the retina. RPE is also crucial in maintaining photoreceptor function and for completing the visual cycle. Loss of the RPE is associated with the development of degenerative diseases like age-related macular degeneration (AMD). To treat diseases like AMD, pluripotent stem cell-derived RPE (pRPE) has been recently explored extensively as a regenerative module. pRPE like other ectodermal tissues requires specific lineage differentiation and long-term in vitro culturing for maturation. Therefore, understanding the differentiation process of RPE could be useful for stem cell-based RPE derivation. Developing pRPE-based transplants and delivering them into the subretinal space is another aspect that has garnered interest in the last decade. In this review, we discuss the basic strategies currently employed for stem cell-based RPE derivation, their delivery, and recent clinical studies related to pRPE transplantation in patients. We have also discussed a few limitations with in vitro RPE culture and potential solutions to overcome such problems which can be helpful in developing functional RPE tissue.
Collapse
Affiliation(s)
- Santosh Gupta
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Lyubomyr Lytvynchuk
- Department of Ophthalmology, Justus Liebig University Giessen, University Hospital Giessen and Marburg GmbH, Giessen, Germany
- Department of Ophthalmology, Karl Landsteiner Institute for Retinal Research and Imaging, Vienna, Austria
| | - Taras Ardan
- Laboratory of Cell Regeneration and Cell Plasticity, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic
| | - Hana Studenovska
- Department of Biomaterials and Bioanalogous Systems, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Ruchi Sharma
- Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Georgina Faura
- Department of Medical Biochemistry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lars Eide
- Department of Medical Biochemistry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Rama Shanker Verma
- Stem Cell and Molecular Biology, Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences. Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Ljubo Znaor
- Department of Ophthalmology, University of Split School of Medicine and University Hospital Centre, Split, Croatia
| | - Slaven Erceg
- Research Center “Principe Felipe,” Stem Cell Therapies in Neurodegenerative Diseases Laboratory, Valencia, Spain
- Department of Neuroregeneration, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Knut Stieger
- Department of Ophthalmology, Justus Liebig University Giessen, University Hospital Giessen and Marburg GmbH, Giessen, Germany
| | - Jan Motlik
- Laboratory of Cell Regeneration and Cell Plasticity, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic
| | - Goran Petrovski
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Ophthalmology, University of Split School of Medicine and University Hospital Centre, Split, Croatia
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - Kapil Bharti
- Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
30
|
Ovadia S, Cui G, Elkon R, Cohen-Gulkar M, Zuk-Bar N, Tuoc T, Jing N, Ashery-Padan R. SWI/SNF complexes are required for retinal pigmented epithelium differentiation and for the inhibition of cell proliferation and neural differentiation programs. Development 2023; 150:dev201488. [PMID: 37522516 PMCID: PMC10482007 DOI: 10.1242/dev.201488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 07/14/2023] [Indexed: 08/01/2023]
Abstract
During embryonic development, tissue-specific transcription factors and chromatin remodelers function together to ensure gradual, coordinated differentiation of multiple lineages. Here, we define this regulatory interplay in the developing retinal pigmented epithelium (RPE), a neuroectodermal lineage essential for the development, function and maintenance of the adjacent retina. We present a high-resolution spatial transcriptomic atlas of the developing mouse RPE and the adjacent ocular mesenchyme obtained by geographical position sequencing (Geo-seq) of a single developmental stage of the eye that encompasses young and more mature ocular progenitors. These transcriptomic data, available online, reveal the key transcription factors and their gene regulatory networks during RPE and ocular mesenchyme differentiation. Moreover, conditional inactivation followed by Geo-seq revealed that this differentiation program is dependent on the activity of SWI/SNF complexes, shown here to control the expression and activity of RPE transcription factors and, at the same time, inhibit neural progenitor and cell proliferation genes. The findings reveal the roles of the SWI/SNF complexes in controlling the intersection between RPE and neural cell fates and the coupling of cell-cycle exit and differentiation.
Collapse
Affiliation(s)
- Shai Ovadia
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Guizhong Cui
- Guangzhou National Laboratory, Department of Basic Research, Guangzhou 510005, China
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Mazal Cohen-Gulkar
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nitay Zuk-Bar
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tran Tuoc
- Department of Human Genetics, Ruhr University of Bochum, 44791 Bochum, Germany
| | - Naihe Jing
- Guangzhou National Laboratory, Department of Basic Research, Guangzhou 510005, China
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
31
|
Móvio MI, de Lima-Vasconcellos TH, Dos Santos GB, Echeverry MB, Colombo E, Mattos LS, Resende RR, Kihara AH. Retinal organoids from human-induced pluripotent stem cells: From studying retinal dystrophies to early diagnosis of Alzheimer's and Parkinson's disease. Semin Cell Dev Biol 2023; 144:77-86. [PMID: 36210260 DOI: 10.1016/j.semcdb.2022.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/18/2022]
Abstract
Human-induced pluripotent stem cells (hiPSCs) have provided new methods to study neurodegenerative diseases. In addition to their wide application in neuronal disorders, hiPSCs technology can also encompass specific conditions, such as inherited retinal dystrophies. The possibility of evaluating alterations related to retinal disorders in 3D organoids increases the truthfulness of in vitro models. Moreover, both Alzheimer's (AD) and Parkinson's disease (PD) have been described as causing early retinal alterations, generating beta-amyloid protein accumulation, or affecting dopaminergic amacrine cells. This review addresses recent advances and future perspectives obtained from in vitro modeling of retinal diseases, focusing on retinitis pigmentosa (RP). Additionally, we depicted the possibility of evaluating changes related to AD and PD in retinal organoids obtained from potential patients long before the onset of the disease, constituting a valuable tool in early diagnosis. With this, we pointed out prospects in the study of retinal dystrophies and early diagnosis of AD and PD.
Collapse
Affiliation(s)
- Marília Inês Móvio
- Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | | | | | - Marcela Bermudez Echeverry
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Elisabetta Colombo
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Leonardo S Mattos
- Biomedical Robotics Laboratory, Department of Advanced Robotics, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Rodrigo Ribeiro Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alexandre Hiroaki Kihara
- Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil; Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil.
| |
Collapse
|
32
|
Bai Y, Xie M, Zhu Y. Mechanism underlying Müller cell pyroptosis and its role in the development of proliferative vitreoretinopathy. Clinics (Sao Paulo) 2023; 78:100241. [PMID: 37418795 DOI: 10.1016/j.clinsp.2023.100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 07/09/2023] Open
Abstract
OBJECTIVES To explore the mechanism underlying Müller Cell Pyroptosis (MCP) and its role in the development of Proliferative Vitreoretinopathy (PVR). METHOD The expression of pyroptosis-related factors, namely, cysteinyl aspartate-specific proteinase (caspase-1), interleukin (IL)-1β, IL-18, and Gasdermin D (GSDMD), was detected by quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) and western blotting at the mRNA and protein levels, respectively, in retinal tissues. Müller and spontaneously Arising Retinal Pigment Epithelia (ARPE)-19 primary cells with GSDMD overexpression or knockdown were cultivated. Western blotting was used to detect the levels of the following pyroptosis-related factors in retinal tissues: caspase-1, IL-1β, IL-18, and GSDMD. Through Cell Adhesion (CA) experiments, the changes in ARPE-19 CA in each group were observed. The migration and invasion of ARPE-19 cells were measured using the Transwell assay. The proliferation of ARPE-19 cells was measured with a Cell Counting Kit 8 (CCK-8) assay. Finally, the expression of the cytokines IL-1β and IL-18 in the ARPE-19 cell culture medium was detected using the Enzyme-Linked Immunosorbent Assay (ELISA). RESULTS Compared with the surrounding normal tissues, the expression of caspase-1, IL-1β, IL-18, and GSDMD at the protein and mRNA levels in the retinal proliferative membrane samples of the patients decreased significantly (p < 0.05). MCP significantly enhanced ARPE-19 CA, migration and invasion, proliferation, and cytokine expression (p < 0.05). CONCLUSIONS MCP can promote the development of PVR lesions.
Collapse
Affiliation(s)
- Yue Bai
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Maosong Xie
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yihua Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
| |
Collapse
|
33
|
Markitantova Y, Simirskii V. Endogenous and Exogenous Regulation of Redox Homeostasis in Retinal Pigment Epithelium Cells: An Updated Antioxidant Perspective. Int J Mol Sci 2023; 24:10776. [PMID: 37445953 DOI: 10.3390/ijms241310776] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The retinal pigment epithelium (RPE) performs a range of necessary functions within the neural layers of the retina and helps ensure vision. The regulation of pro-oxidative and antioxidant processes is the basis for maintaining RPE homeostasis and preventing retinal degenerative processes. Long-term stable changes in the redox balance under the influence of endogenous or exogenous factors can lead to oxidative stress (OS) and the development of a number of retinal pathologies associated with RPE dysfunction, and can eventually lead to vision loss. Reparative autophagy, ubiquitin-proteasome utilization, the repair of damaged proteins, and the maintenance of their conformational structure are important interrelated mechanisms of the endogenous defense system that protects against oxidative damage. Antioxidant protection of RPE cells is realized as a result of the activity of specific transcription factors, a large group of enzymes, chaperone proteins, etc., which form many signaling pathways in the RPE and the retina. Here, we discuss the role of the key components of the antioxidant defense system (ADS) in the cellular response of the RPE against OS. Understanding the role and interactions of OS mediators and the components of the ADS contributes to the formation of ideas about the subtle mechanisms in the regulation of RPE cellular functions and prospects for experimental approaches to restore RPE functions.
Collapse
Affiliation(s)
- Yuliya Markitantova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Vladimir Simirskii
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
34
|
Grigoryan EN. Impact of Microgravity and Other Spaceflight Factors on Retina of Vertebrates and Humans In Vivo and In Vitro. Life (Basel) 2023; 13:1263. [PMID: 37374046 PMCID: PMC10305389 DOI: 10.3390/life13061263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/20/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Spaceflight (SF) increases the risk of developmental, regenerative, and physiological disorders in animals and humans. Astronauts, besides bone loss, muscle atrophy, and cardiovascular and immune system alterations, undergo ocular disorders affecting posterior eye tissues, including the retina. Few studies revealed abnormalities in the development and changes in the regeneration of eye tissues in lower vertebrates after SF and simulated microgravity. Under microgravity conditions, mammals show disturbances in the retinal vascular system and increased risk of oxidative stress that can lead to cell death in the retina. Animal studies provided evidence of gene expression changes associated with cellular stress, inflammation, and aberrant signaling pathways. Experiments using retinal cells in microgravity-modeling systems in vitro additionally indicated micro-g-induced changes at the molecular level. Here, we provide an overview of the literature and the authors' own data to assess the predictive value of structural and functional alterations for developing countermeasures and mitigating the SF effects on the human retina. Further emphasis is given to the importance of animal studies on the retina and other eye tissues in vivo and retinal cells in vitro aboard spacecraft for understanding alterations in the vertebrate visual system in response to stress caused by gravity variations.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
35
|
Li F, Lei C, Gong K, Bai S, Sun L. Palmitic acid promotes human retinal pigment epithelial cells migration by upregulating miR-222 expression and inhibiting NUMB. Aging (Albany NY) 2023; 15:9341-9357. [PMID: 37566749 PMCID: PMC10564421 DOI: 10.18632/aging.204647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/24/2023] [Indexed: 08/13/2023]
Abstract
High glucose promotes retinal pigment epithelial cell (RPEC) migration. However, the underlying molecular mechanisms explaining how high fatty acid levels affect RPEC migration remain largely unknown. We investigated whether and how palmitic acid (PA) impacts the migration of human RPEC cell line ARPE-19. ARPE-19 cells were treated with varying doses of palmitic acid, and the RPEC migration was evaluated by scratch and transwell migration assays. Cell viability was determined by the CCK-8 method. The levels of epithelial-mesenchymal transition (EMT)-associated proteins, including E-cadherin, vimentin, MMP2, and MMP3, were evaluated by western blot. The microRNAs and mRNAs levels were assessed by quantitative PCR. miRNA targets were predicted with online tools and validated with the luciferase reporter assay. miRNA mimics, inhibitors, and siRNA oligos were used to perform gain-of-function and loss-of-function studies. We found that PA increased viability of ARPE-19 cells, promoted their migration and EMT. PA decreased E-cadherin protein expression, and increased vimentin, MMP2, and MMP3 protein levels. Additionally, PA increased miR-222 expression in ARPE-19 cells, and functionally blocking miR-222 suppressed the PA-induced RPEC migration and EMT. NUMB was identified as a downstream target of miR-222, and NUMB knockdown abolished the effects of PA on promoting the migration and EMT of ARPE-19 cells. Therefore, PA promotes human RPEC migration by upregulating miR-222 expression and downregulating NUMB. This study unravels a novel PA-miR-222-NUMB axis that can be potentially targeted for therapy of high fat acid-related ocular diseases.
Collapse
Affiliation(s)
- Fengzhi Li
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated Guangren Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi 710004, China
| | - Chunling Lei
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated Guangren Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi 710004, China
| | - Ke Gong
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated Guangren Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi 710004, China
| | - Shuwei Bai
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated Guangren Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi 710004, China
| | - Lianyi Sun
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated Guangren Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi 710004, China
| |
Collapse
|
36
|
Sripathi SR, Hu MW, Turaga RC, Mikeasky R, Satyanarayana G, Cheng J, Duan Y, Maruotti J, Wahlin KJ, Berlinicke CA, Qian J, Esumi N, Zack DJ. IKKβ Inhibition Attenuates Epithelial Mesenchymal Transition of Human Stem Cell-Derived Retinal Pigment Epithelium. Cells 2023; 12:1155. [PMID: 37190063 PMCID: PMC10136838 DOI: 10.3390/cells12081155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 05/17/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT), which is well known for its role in embryonic development, malignant transformation, and tumor progression, has also been implicated in a variety of retinal diseases, including proliferative vitreoretinopathy (PVR), age-related macular degeneration (AMD), and diabetic retinopathy. EMT of the retinal pigment epithelium (RPE), although important in the pathogenesis of these retinal conditions, is not well understood at the molecular level. We and others have shown that a variety of molecules, including the co-treatment of human stem cell-derived RPE monolayer cultures with transforming growth factor beta (TGF-β) and the inflammatory cytokine tumor necrosis factor alpha (TNF-α), can induce RPE-EMT; however, small molecule inhibitors of RPE-EMT have been less well studied. Here, we demonstrate that BAY651942, a small molecule inhibitor of nuclear factor kapa-B kinase subunit beta (IKKβ) that selectively targets NF-κB signaling, can modulate TGF-β/TNF-α-induced RPE-EMT. Next, we performed RNA-seq studies on BAY651942 treated hRPE monolayers to dissect altered biological pathways and signaling events. Further, we validated the effect of IKKβ inhibition on RPE-EMT-associated factors using a second IKKβ inhibitor, BMS345541, with RPE monolayers derived from an independent stem cell line. Our data highlights the fact that pharmacological inhibition of RPE-EMT restores RPE identity and may provide a promising approach for treating retinal diseases that involve RPE dedifferentiation and EMT.
Collapse
Affiliation(s)
- Srinivasa R. Sripathi
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Henderson Ocular Stem Cell Laboratory, Retina Foundation of the Southwest, Dallas, TX 75231, USA
| | - Ming-Wen Hu
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ravi Chakra Turaga
- Caris Life Sciences, 350 W Washington St., Tempe, AZ 85281, USA
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Rebekah Mikeasky
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ganesh Satyanarayana
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
- Emory Eye Center, Department of Ophthalmology, Emory University, Atlanta, GA 30322, USA
| | - Jie Cheng
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yukan Duan
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Karl J. Wahlin
- Shiley Eye Institute, University of California, San Diego, CA 92093, USA
| | - Cynthia A. Berlinicke
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiang Qian
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Noriko Esumi
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Donald J. Zack
- Department of Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Whiting School of Engineering, Baltimore, MD 21218, USA
| |
Collapse
|
37
|
Blomfield AK, Maurya M, Bora K, Pavlovich MC, Yemanyi F, Huang S, Fu Z, O’Connell AE, Chen J. Ectopic Rod Photoreceptor Development in Mice with Genetic Deficiency of WNT2B. Cells 2023; 12:1033. [PMID: 37048106 PMCID: PMC10093714 DOI: 10.3390/cells12071033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Wnt/β-catenin signaling is essential for embryonic eye development in both the anterior eye and retina. WNT2B, a ligand and activator of the Wnt/β-catenin pathway, assists in the development of the lens and peripheral regions of the eye. In humans WNT2B mutations are associated with coloboma and WNT2B may also assist in retinal progenitor cell differentiation in chicken, yet the potential role of WNT2B in retinal neuronal development is understudied. This study explored the effects of WNT2B on retinal neuronal and vascular formation using systemic Wnt2b knockout (KO) mice generated by crossing Wnt2bflox/flox (fl/fl) mice with CMV-cre mice. Wnt2b KO eyes exhibited relatively normal anterior segments and retinal vasculature. Ectopic formation of rod photoreceptor cells in the subretinal space was observed in Wnt2b KO mice as early as one week postnatally and persisted through nine-month-old mice. Other retinal neuronal layers showed normal organization in both thickness and lamination, without detectable signs of retinal thinning. The presence of abnormal photoreceptor genesis was also observed in heterozygous Wnt2b mice, and occasionally in wild type mice with decreased Wnt2b expression levels. Expression of Wnt2b was found to be enriched in the retinal pigment epithelium compared with whole retina. Together these findings suggest that WNT2B is potentially involved in rod photoreceptor genesis during eye development; however, potential influence by a yet unknown genetic factor is also possible.
Collapse
Affiliation(s)
- Alexandra K. Blomfield
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Meenakshi Maurya
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Kiran Bora
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Madeline C. Pavlovich
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Felix Yemanyi
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Shuo Huang
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Amy E. O’Connell
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jing Chen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
38
|
Yuan Y, Kong W, Liu XM, Shi GH. Gene Therapy Activates Retinal Pigment Epithelium Cell Proliferation for Age-related Macular Degeneration in a Mouse Model. Curr Med Sci 2023; 43:384-392. [PMID: 36944806 DOI: 10.1007/s11596-022-2684-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/21/2022] [Indexed: 03/23/2023]
Abstract
OBJECTIVE Age-related macular degeneration (AMD) is a degenerative retinal disease. The degeneration or death of retinal pigment epithelium (RPE) cells is implicated in the pathogenesis of AMD. This study aimed to activate the proliferation of RPE cells in vivo by using an adeno-associated virus (AAV) vector encoding β-catenin to treat AMD in a mouse model. METHODS Mice were intravitreally injected with AAV2/8-Y733F-VMD2-β-catenin for 2 or 4 weeks, and β-catenin expression was measured using immunofluorescence staining, real-time quantitative reverse transcription polymerase chain reaction (PCR), and Western blotting. The function of β-catenin was determined using retinal flat mounts and laser-induced damage models. Finally, the safety of AAV2/8-Y733F-VMD2-β-catenin was evaluated by multiple intravitreal injections. RESULTS AAV2/8-Y733F-VMD2-β-catenin induced the expression of β-catenin in RPE cells. It activated the proliferation of RPE cells and increased cyclin D1 expression. It was beneficial to the recovery of laser-induced damage by activating the proliferation of RPE cells. Furthermore, it could induce apoptosis of RPE cells by increasing the expression of Trp53, Bax and caspase3 while decreasing the expression of Bcl-2. CONCLUSION AAV2/8-Y733F-VMD2-β-catenin increased β-catenin expression in RPE cells, activated RPE cell proliferation, and helped mice heal from laser-induced eye injury. Furthermore, it could induce the apoptosis of RPE cells. Therefore, it may be a safe approach for AMD treatment.
Collapse
Affiliation(s)
- Yun Yuan
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, 215000, China.
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215000, China.
| | - Wen Kong
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, 215000, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215000, China
| | - Xiao-Mei Liu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, 215000, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215000, China
| | - Guo-Hua Shi
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, 215000, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, 215000, China
| |
Collapse
|
39
|
Rizk E, Madrid A, Koueik J, Sun D, Stewart K, Chen D, Luo S, Hong F, Papale LA, Hariharan N, Alisch RS, Iskandar BJ. Purified regenerating retinal neurons reveal regulatory role of DNA methylation-mediated Na+/K+-ATPase in murine axon regeneration. Commun Biol 2023; 6:120. [PMID: 36717618 PMCID: PMC9886953 DOI: 10.1038/s42003-023-04463-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/11/2023] [Indexed: 01/31/2023] Open
Abstract
While embryonic mammalian central nervous system (CNS) axons readily grow and differentiate, only a minority of fully differentiated mature CNS neurons are able to regenerate injured axons, leading to stunted functional recovery after injury and disease. To delineate DNA methylation changes specifically associated with axon regeneration, we used a Fluorescent-Activated Cell Sorting (FACS)-based methodology in a rat optic nerve transection model to segregate the injured retinal ganglion cells (RGCs) into regenerating and non-regenerating cell populations. Whole-genome DNA methylation profiling of these purified neurons revealed genes and pathways linked to mammalian RGC regeneration. Moreover, whole-methylome sequencing of purified uninjured adult and embryonic RGCs identified embryonic molecular profiles reactivated after injury in mature neurons, and others that correlate specifically with embryonic or adult axon growth, but not both. The results highlight the contribution to both embryonic growth and adult axon regeneration of subunits encoding the Na+/K+-ATPase. In turn, both biochemical and genetic inhibition of the Na+/K+-ATPase pump significantly reduced RGC axon regeneration. These data provide critical molecular insights into mammalian CNS axon regeneration, pinpoint the Na+/K+-ATPase as a key regulator of regeneration of injured mature CNS axons, and suggest that successful regeneration requires, in part, reactivation of embryonic signals.
Collapse
Affiliation(s)
- Elias Rizk
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA ,grid.240473.60000 0004 0543 9901Department of Neurological Surgery, Penn State Milton S. Hershey Medical Center, Hershey, PA 17033 USA
| | - Andy Madrid
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - Joyce Koueik
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - Dandan Sun
- grid.21925.3d0000 0004 1936 9000Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| | - Krista Stewart
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - David Chen
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - Susan Luo
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - Felissa Hong
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - Ligia A. Papale
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - Nithya Hariharan
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - Reid S. Alisch
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| | - Bermans J. Iskandar
- grid.14003.360000 0001 2167 3675Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53792 USA
| |
Collapse
|
40
|
Gupta S, Lytvynchuk L, Ardan T, Studenovska H, Faura G, Eide L, Znaor L, Erceg S, Stieger K, Motlik J, Bharti K, Petrovski G. Retinal Pigment Epithelium Cell Development: Extrapolating Basic Biology to Stem Cell Research. Biomedicines 2023; 11:310. [PMID: 36830851 PMCID: PMC9952929 DOI: 10.3390/biomedicines11020310] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
The retinal pigment epithelium (RPE) forms an important cellular monolayer, which contributes to the normal physiology of the eye. Damage to the RPE leads to the development of degenerative diseases, such as age-related macular degeneration (AMD). Apart from acting as a physical barrier between the retina and choroidal blood vessels, the RPE is crucial in maintaining photoreceptor (PR) and visual functions. Current clinical intervention to treat early stages of AMD includes stem cell-derived RPE transplantation, which is still in its early stages of evolution. Therefore, it becomes essential to derive RPEs which are functional and exhibit features as observed in native human RPE cells. The conventional strategy is to use the knowledge obtained from developmental studies using various animal models and stem cell-based exploratory studies to understand RPE biogenies and developmental trajectory. This article emphasises such studies and aims to present a comprehensive understanding of the basic biology, including the genetics and molecular pathways of RPE development. It encompasses basic developmental biology and stem cell-based developmental studies to uncover RPE differentiation. Knowledge of the in utero developmental cues provides an inclusive methodology required for deriving RPEs using stem cells.
Collapse
Affiliation(s)
- Santosh Gupta
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, 0450 Oslo, Norway
| | - Lyubomyr Lytvynchuk
- Department of Ophthalmology, Justus Liebig University Giessen, University Hospital Giessen and Marburg GmbH, 35392 Giessen, Germany
- Karl Landsteiner Institute for Retinal Research and Imaging, 1030 Vienna, Austria
| | - Taras Ardan
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, 27721 Libechov, Czech Republic
| | - Hana Studenovska
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 16206 Prague, Czech Republic
| | - Georgina Faura
- Department of Medical Biochemistry, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Lars Eide
- Department of Medical Biochemistry, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Ljubo Znaor
- Department of Ophthalmology, University of Split School of Medicine and University Hospital Centre, 21000 Split, Croatia
| | - Slaven Erceg
- Research Center “Principe Felipe”, Stem Cell Therapies in Neurodegenerative Diseases Laboratory, 46012 Valencia, Spain
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 11720 Prague, Czech Republic
| | - Knut Stieger
- Department of Ophthalmology, Justus Liebig University Giessen, University Hospital Giessen and Marburg GmbH, 35392 Giessen, Germany
| | - Jan Motlik
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, 27721 Libechov, Czech Republic
| | - Kapil Bharti
- Ocular and Stem Cell Translational Research Section, NEI, NIH, Bethesda, MD 20892, USA
| | - Goran Petrovski
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, 0450 Oslo, Norway
- Department of Ophthalmology, University of Split School of Medicine and University Hospital Centre, 21000 Split, Croatia
- Department of Ophthalmology, Oslo University Hospital, 0450 Oslo, Norway
| |
Collapse
|
41
|
Lycium barbarum Polysaccharides Regulating miR-181/Bcl-2 Decreased Autophagy of Retinal Pigment Epithelium with Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9554457. [PMID: 36644575 PMCID: PMC9836813 DOI: 10.1155/2023/9554457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 01/07/2023]
Abstract
Disturbed structure and dysfunction of the retinal pigment epithelium (RPE) lead to degenerative diseases of the retina. Excessive accumulation of reactive oxygen species (ROS) in the RPE is thought to play an important role in RPE dysfunction and degeneration. Autophagy is a generally low-activity degradation process of cellular components that increases significantly when high levels of oxidative stress are present. Agents with antioxidant properties may decrease autophagy and provide protection against RPE dysfunction and damage caused by ROS. Lycium barbarum polysaccharide (LBP) has been widely studied as an antioxidant and cell-protective agent. Therefore, we designed this study to investigate the effects of LBP, which inhibits miR-181, on autophagy in retinal pigment epithelium (RPE) with oxidative stress in vitro and in vivo. In the current study, we found that the highly expressed miR-181 downregulated the expression of Bcl-2 in hydrogen peroxide- (H2O2-) induced ARPE-19 cells, resulting in an increase in ROS, apoptosis, and autophagy flux. LBP inhibited the expression of miR-181, decreased the levels of ROS, apoptosis, and autophagy flux, and increased cell viability in H2O2-induced ARPE-19 cells, suggesting that LBP provides protection against oxidative damage in ARPE-19 cells. We also found that LBP decreased RPE atrophy and autophagy flux in rd10 mice. Taken together, the results showed that LBP has a protective effect for RPE under oxidative stress by inhibiting miR-181 and affecting the Bcl-2/Beclin1 autophagy signaling pathway.
Collapse
|
42
|
Song H, Wang YH, Zhou HY, Cui KM. Sulforaphane alleviates LPS-induced inflammatory injury in ARPE-19 cells by repressing the PWRN2/NF-kB pathway. Immunopharmacol Immunotoxicol 2022; 44:868-876. [PMID: 35766158 DOI: 10.1080/08923973.2022.2090954] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly population and its pathogenesis has been associated with inflammatory damage to retinal pigment epithelial (RPE) cells. Here, we explored the ability of sulforaphane to protect ARPE-19 cells from lipopolysaccharide (LPS)-induced inflammatory injury and elucidated the underlying molecular mechanism. METHODS Cell viability, apoptosis, inflammation, PWRN2 expression, nuclear transcription factor-kappa B (NF-kB) activity, and the interaction between PWRN2 and the IkBa protein were assessed in RPE cells under- or over-expressing PWRN2 that had been treated with LPS and sulforaphane. RESULTS Overexpression of PWRN2 in LPS-treated cells promoted NF-kB activation by interacting with IkBa, thus reducing cell viability. In contrast, PWRN2 downregulation repressed LPS-induced NF-kB activation and apoptosis in RPE cells. Similarly, sulforaphane downregulated PWRN2 and inhibited NF-kB activation in a concentration-dependent manner. Conversely, PWRN2 overexpression or NF-kB upregulation weakened the anti-inflammatory effects of sulforaphane. CONCLUSION Our results suggest that sulforaphane protects RPE cells from LPS-induced inflammatory injury by suppressing the PWRN2/NF-kB pathway.
Collapse
Affiliation(s)
- Hui Song
- Eye Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, P.R. China
| | - Ying-Hao Wang
- Eye Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, P.R. China
| | - Hai-Yan Zhou
- Eye Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, P.R. China
| | - Kun-Ming Cui
- Eye Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, P.R. China
| |
Collapse
|
43
|
Grigoryan EN. Cell Sources for Retinal Regeneration: Implication for Data Translation in Biomedicine of the Eye. Cells 2022; 11:cells11233755. [PMID: 36497013 PMCID: PMC9738527 DOI: 10.3390/cells11233755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
The main degenerative diseases of the retina include macular degeneration, proliferative vitreoretinopathy, retinitis pigmentosa, and glaucoma. Novel approaches for treating retinal diseases are based on cell replacement therapy using a variety of exogenous stem cells. An alternative and complementary approach is the potential use of retinal regeneration cell sources (RRCSs) containing retinal pigment epithelium, ciliary body, Müller glia, and retinal ciliary region. RRCSs in lower vertebrates in vivo and in mammals mostly in vitro are able to proliferate and exhibit gene expression and epigenetic characteristics typical for neural/retinal cell progenitors. Here, we review research on the factors controlling the RRCSs' properties, such as the cell microenvironment, growth factors, cytokines, hormones, etc., that determine the regenerative responses and alterations underlying the RRCS-associated pathologies. We also discuss how the current data on molecular features and regulatory mechanisms of RRCSs could be translated in retinal biomedicine with a special focus on (1) attempts to obtain retinal neurons de novo both in vivo and in vitro to replace damaged retinal cells; and (2) investigations of the key molecular networks stimulating regenerative responses and preventing RRCS-related pathologies.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
44
|
Fuhrmann S, Ramirez S, Mina Abouda M, Campbell CD. Porcn is essential for growth and invagination of the mammalian optic cup. Front Cell Dev Biol 2022; 10:1016182. [PMID: 36393832 PMCID: PMC9661423 DOI: 10.3389/fcell.2022.1016182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Microphthalmia, anophthalmia, and coloboma (MAC) are congenital ocular malformations causing 25% of childhood blindness. The X-linked disorder Focal Dermal Hypoplasia (FDH) is frequently associated with MAC and results from mutations in Porcn, a membrane bound O-acyl transferase required for palmitoylation of Wnts to activate multiple Wnt-dependent pathways. Wnt/β-catenin signaling is suppressed in the anterior neural plate for initiation of eye formation and is subsequently required during differentiation of the retinal pigment epithelium (RPE). Non-canonical Wnts are critical for early eye formation in frog and zebrafish. However, it is unclear whether this also applies to mammals. We performed ubiquitous conditional inactivation of Porcn in mouse around the eye field stage. In Porcn CKO , optic vesicles (OV) arrest in growth and fail to form an optic cup. Ventral proliferation is significantly decreased in the mutant OV, with a concomitant increase in apoptotic cell death. While pan-ocular transcription factors such as PAX6, SIX3, LHX2, and PAX2 are present, indicative of maintenance of OV identity, regional expression of VSX2, MITF, OTX2, and NR2F2 is downregulated. Failure of RPE differentiation in Porcn CKO is consistent with downregulation of the Wnt/β-catenin effector LEF1, starting around 2.5 days after inactivation. This suggests that Porcn inactivation affects signaling later than a potential requirement for Wnts to promote eye field formation. Altogether, our data shows a novel requirement for Porcn in regulating growth and morphogenesis of the OV, likely by controlling proliferation and survival. In FDH patients with ocular manifestations, growth deficiency during early ocular morphogenesis may be the underlying cause for microphthalmia.
Collapse
Affiliation(s)
- Sabine Fuhrmann
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical School, Nashville, TN, United States
| | - Sara Ramirez
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical School, Nashville, TN, United States
| | - Mirna Mina Abouda
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Clorissa D. Campbell
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
45
|
Dubchak E, Obasanmi G, Zeglinski MR, Granville DJ, Yeung SN, Matsubara JA. Potential role of extracellular granzyme B in wet age-related macular degeneration and fuchs endothelial corneal dystrophy. Front Pharmacol 2022; 13:980742. [PMID: 36204224 PMCID: PMC9531149 DOI: 10.3389/fphar.2022.980742] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Age-related ocular diseases are the leading cause of blindness in developed countries and constitute a sizable socioeconomic burden worldwide. Age-related macular degeneration (AMD) and Fuchs endothelial corneal dystrophy (FECD) are some of the most common age-related diseases of the retina and cornea, respectively. AMD is characterized by a breakdown of the retinal pigment epithelial monolayer, which maintains retinal homeostasis, leading to retinal degeneration, while FECD is characterized by degeneration of the corneal endothelial monolayer, which maintains corneal hydration status, leading to corneal edema. Both AMD and FECD pathogenesis are characterized by disorganized local extracellular matrix (ECM) and toxic protein deposits, with both processes linked to aberrant protease activity. Granzyme B (GrB) is a serine protease traditionally known for immune-mediated initiation of apoptosis; however, it is now recognized that GrB is expressed by a variety of immune and non-immune cells and aberrant extracellular localization of GrB substantially contributes to various age-related pathologies through dysregulated cleavage of ECM, tight junction, and adherens junction proteins. Despite growing recognition of GrB involvement in multiple age-related pathologies, its role in AMD and FECD remains poorly understood. This review summarizes the pathophysiology of, and similarities between AMD and FECD, outlines the current knowledge of the role of GrB in AMD and FECD, as well as hypothesizes putative contributions of GrB to AMD and FECD pathogenesis and highlights the therapeutic potential of pharmacologically inhibiting GrB as an adjunctive treatment for AMD and FECD.
Collapse
Affiliation(s)
- Eden Dubchak
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Gideon Obasanmi
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Matthew R. Zeglinski
- ICORD Centre and Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute, UBC, Vancouver, BC, Canada
| | - David J. Granville
- ICORD Centre and Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute, UBC, Vancouver, BC, Canada
| | - Sonia N. Yeung
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Joanne A. Matsubara
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
- *Correspondence: Joanne A. Matsubara,
| |
Collapse
|
46
|
Pandey RS, Krebs MP, Bolisetty MT, Charette JR, Naggert JK, Robson P, Nishina PM, Carter GW. Single-Cell RNA Sequencing Reveals Molecular Features of Heterogeneity in the Murine Retinal Pigment Epithelium. Int J Mol Sci 2022; 23:10419. [PMID: 36142331 PMCID: PMC9499471 DOI: 10.3390/ijms231810419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/09/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Transcriptomic analysis of the mammalian retinal pigment epithelium (RPE) aims to identify cellular networks that influence ocular development, maintenance, function, and disease. However, available evidence points to RPE cell heterogeneity within native tissue, which adds complexity to global transcriptomic analysis. Here, to assess cell heterogeneity, we performed single-cell RNA sequencing of RPE cells from two young adult male C57BL/6J mice. Following quality control to ensure robust transcript identification limited to cell singlets, we detected 13,858 transcripts among 2667 and 2846 RPE cells. Dimensional reduction by principal component analysis and uniform manifold approximation and projection revealed six distinct cell populations. All clusters expressed transcripts typical of RPE cells; the smallest (C1, containing 1-2% of total cells) exhibited the hallmarks of stem and/or progenitor (SP) cells. Placing C1-6 along a pseudotime axis suggested a relative decrease in melanogenesis and SP gene expression and a corresponding increase in visual cycle gene expression upon RPE maturation. K-means clustering of all detected transcripts identified additional expression patterns that may advance the understanding of RPE SP cell maintenance and the evolution of cellular metabolic networks during development. This work provides new insights into the transcriptome of the mouse RPE and a baseline for identifying experimentally induced transcriptional changes in future studies of this tissue.
Collapse
Affiliation(s)
- Ravi S. Pandey
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Dr., Farmington, CT 06032, USA
| | - Mark P. Krebs
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Mohan T. Bolisetty
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Dr., Farmington, CT 06032, USA
| | | | | | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Dr., Farmington, CT 06032, USA
| | - Patsy M. Nishina
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | |
Collapse
|
47
|
Hu L, Zhang R, Wu J, Feng C, Jiang J. Kruppel-Like Factor (KLF6) Regulates Oxidative Stress and Apoptosis of Human Retinal Pigment Epithelial Cells Induced by High Glucose Through Transcriptional Regulation of USP22 and the Downstream SIRT1/Nrf2 Pathway. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Oxidative stress and apoptosis play an important role in diabetic retinopathy (DR). KLF6 and its transcriptional regulator USP22 are abnormally expressed in DR, but the specific role and mechanism have not been reported. In this paper, we will discuss the specific roles and mechanisms
of KLF6 and USP22 on oxidative stress and apoptosis in DR. In this study, RT-qPCR and western blot were used to detect the expression of KLF6 and USP22 in ARPE-19 cells. Subsequently, after KLF6 was overexpressed and USP22 expression was inhibited by cell transfection, the oxidative stress
and apoptosis related indexes were detected by CCK-8, ELISA, TUNEL and other techniques to explore the mechanism. In addition, we used luciferase and ChIP to detect the association between KLF6 and USP22. Finally, the expression of proteins related to the SIRT1/Nrf2 pathway was detected by
western blot. The results showed that silencing USP22 increased the activity, and inhibited apoptosis and oxidative stress of ARPE-19 cells induced by high glucose (HG). KLF6 transcriptionally activates USP22. Overexpression of KLF6 reversed the protective effects of silencing USP22 on HG-induced
ARPE-19 cells against apoptosis and antioxidant stress, which may be achieved by regulating the SIRT1/Nrf2 pathway. In conclusion, KLF6 regulated oxidative stress and apoptosis of ARPE-19 cells induced by high glucose through transcriptional regulation of USP22 and the downstream SIRT1/Nrf2
pathway.
Collapse
Affiliation(s)
- Liping Hu
- Department of Fundus, Aier Eye Hospital of Wuhan University, Wuhan, Hubei, 430063, China
| | - Rui Zhang
- Department of Fundus, Aier Eye Hospital of Wuhan University, Wuhan, Hubei, 430063, China
| | - Jianhua Wu
- Department of Fundus, Aier Eye Hospital of Wuhan University, Wuhan, Hubei, 430063, China
| | - Chao Feng
- Department of Fundus, Aier Eye Hospital of Wuhan University, Wuhan, Hubei, 430063, China
| | - Jingli Jiang
- Department of Ophthalmology, Wenrong Hospital of Hengdian, Jinhua, Zhejiang, 322118, China
| |
Collapse
|
48
|
Loss of Hes1 in embryonic stem cells caused developmental disorders in retinal pigment epithelium morphogenesis and specification. Biochem Biophys Res Commun 2022; 632:76-84. [DOI: 10.1016/j.bbrc.2022.09.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 08/23/2022] [Accepted: 09/21/2022] [Indexed: 11/20/2022]
|
49
|
Grigoryan EN. Self-Organization of the Retina during Eye Development, Retinal Regeneration In Vivo, and in Retinal 3D Organoids In Vitro. Biomedicines 2022; 10:1458. [PMID: 35740479 PMCID: PMC9221005 DOI: 10.3390/biomedicines10061458] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 11/23/2022] Open
Abstract
Self-organization is a process that ensures histogenesis of the eye retina. This highly intricate phenomenon is not sufficiently studied due to its biological complexity and genetic heterogeneity. The review aims to summarize the existing central theories and ideas for a better understanding of retinal self-organization, as well as to address various practical problems of retinal biomedicine. The phenomenon of self-organization is discussed in the spatiotemporal context and illustrated by key findings during vertebrate retina development in vivo and retinal regeneration in amphibians in situ. Described also are histotypic 3D structures obtained from the disaggregated retinal progenitor cells of birds and retinal 3D organoids derived from the mouse and human pluripotent stem cells. The review highlights integral parts of retinal development in these conditions. On the cellular level, these include competence, differentiation, proliferation, apoptosis, cooperative movements, and migration. On the physical level, the focus is on the mechanical properties of cell- and cell layer-derived forces and on the molecular level on factors responsible for gene regulation, such as transcription factors, signaling molecules, and epigenetic changes. Finally, the self-organization phenomenon is discussed as a basis for the production of retinal organoids, a promising model for a wide range of basic scientific and medical applications.
Collapse
Affiliation(s)
- Eleonora N Grigoryan
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
50
|
Todd L, Reh TA. Comparative Biology of Vertebrate Retinal Regeneration: Restoration of Vision through Cellular Reprogramming. Cold Spring Harb Perspect Biol 2022; 14:a040816. [PMID: 34580118 PMCID: PMC9248829 DOI: 10.1101/cshperspect.a040816] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The regenerative capacity of the vertebrate retina varies substantially across species. Whereas fish and amphibians can regenerate functional retina, mammals do not. In this perspective piece, we outline the various strategies nonmammalian vertebrates use to achieve functional regeneration of vision. We review key differences underlying the regenerative potential across species including the cellular source of postnatal progenitors, the diversity of cell fates regenerated, and the level of functional vision that can be achieved. Finally, we provide an outlook on the field of engineering the mammalian retina to replace neurons lost to injury or disease.
Collapse
Affiliation(s)
- Levi Todd
- Department of Biological Structure, University of Washington, Seattle, Washington 98195, USA
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|