1
|
Bhakuni T, Norden PR, Ujiie N, Tan C, Lee SK, Tedeschi T, Hsieh YW, Wang Y, Liu T, Fawzi AA, Kume T. FOXC1 regulates endothelial CD98 (LAT1/4F2hc) expression in retinal angiogenesis and blood-retina barrier formation. Nat Commun 2024; 15:4097. [PMID: 38755144 PMCID: PMC11099035 DOI: 10.1038/s41467-024-48134-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Angiogenesis, the growth of new blood vessels from pre-existing vasculature, is essential for the development of new organ systems, but transcriptional control of angiogenesis remains incompletely understood. Here we show that FOXC1 is essential for retinal angiogenesis. Endothelial cell (EC)-specific loss of Foxc1 impairs retinal vascular growth and expression of Slc3a2 and Slc7a5, which encode the heterodimeric CD98 (LAT1/4F2hc) amino acid transporter and regulate the intracellular transport of essential amino acids and activation of the mammalian target of rapamycin (mTOR). EC-Foxc1 deficiency diminishes mTOR activity, while administration of the mTOR agonist MHY-1485 rescues perturbed retinal angiogenesis. EC-Foxc1 expression is required for retinal revascularization and resolution of neovascular tufts in a model of oxygen-induced retinopathy. Foxc1 is also indispensable for pericytes, a critical component of the blood-retina barrier during retinal angiogenesis. Our findings establish FOXC1 as a crucial regulator of retinal vessels and identify therapeutic targets for treating retinal vascular disease.
Collapse
Affiliation(s)
- Teena Bhakuni
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Pieter R Norden
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Naoto Ujiie
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Can Tan
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sun Kyong Lee
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Thomas Tedeschi
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yi-Wen Hsieh
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ying Wang
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ting Liu
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Amani A Fawzi
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tsutomu Kume
- Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
2
|
Yagasaki R, Morita A, Mori A, Sakamoto K, Nakahara T. The Anti-Diabetic Drug Metformin Suppresses Pathological Retinal Angiogenesis via Blocking the mTORC1 Signaling Pathway in Mice (Metformin Suppresses Pathological Angiogenesis). Curr Eye Res 2024; 49:505-512. [PMID: 38251680 DOI: 10.1080/02713683.2024.2302865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
PURPOSE Metformin, a biguanide antihyperglycemic drug, can exert various beneficial effects in addition to its glucose-lowering effect. The effects of metformin are mainly mediated by AMP-activated protein kinase (AMPK)-dependent pathway. AMPK activation interferes with the action of the mammalian target of rapamycin complex 1 (mTORC1), and blockade of mTORC1 pathway suppresses pathological retinal angiogenesis. Therefore, in this study, we examined the effects of metformin on pathological angiogenesis and mTORC1 activity in the retinas of mice with oxygen-induced retinopathy (OIR). METHODS OIR was induced by exposing the mice to 80% oxygen from postnatal day (P) 7 to P10. The OIR mice were treated with metformin, rapamycin (an inhibitor of mTORC1), or the vehicle from P10 to P12 or P14. The formation of neovascular tufts, revascularization in the central avascular areas, expression of vascular endothelial growth factor (VEGF) and VEGF receptor (VEGFR) 2, and phosphorylated ribosomal protein S6 (pS6), a downstream indicator of mTORC1 activity, were evaluated at P10, P13, or P15. RESULTS Neovascular tufts and vascular growth in the central avascular areas were observed in the retinas of P15 OIR mice. The formation of neovascular tufts, but not the revascularization in the central avascular areas, was attenuated by metformin administration from P10 to P14. Metformin had no significant inhibitory effect on the expression of VEGF and VEGFR2, but it reduced the pS6 immunoreactivity in vascular cells at the sites of angiogenesis. Rapamycin completely blocked the phosphorylation of ribosomal protein S6 and markedly reduced the formation of neovascular tufts. CONCLUSIONS These results suggest that metformin partially suppresses the formation of neovascular tufts on the retinal surface by blocking the mTORC1 signaling pathway. Metformin may exert beneficial effects against the progression of ocular diseases in which abnormal angiogenesis is associated with the pathogenesis.
Collapse
Affiliation(s)
- Rina Yagasaki
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo, Japan
| | - Akane Morita
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo, Japan
| | - Asami Mori
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo, Japan
| | - Kenji Sakamoto
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo, Japan
| | - Tsutomu Nakahara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo, Japan
| |
Collapse
|
3
|
Nakano A, Morita A, Arima S, Nagamitsu T, Nakahara T. Role of mammalian target of rapamycin in the formation and progression of retinopathy of prematurity-like vascular abnormalities in neonatal rats. Microvasc Res 2024; 152:104626. [PMID: 37963514 DOI: 10.1016/j.mvr.2023.104626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/16/2023]
Abstract
Retinopathy of prematurity (ROP), a retinal disease that can occur in premature infants, can lead to severe visual impairment. In this study, we examined the preventive and therapeutic effects of mammalian target of rapamycin complex 1 (mTORC1) inhibition on abnormal retinal blood vessels in a rat model of ROP. To induce ROP-like vascular abnormalities, rats were subcutaneously treated with KRN633, an inhibitor of vascular endothelial growth factor (VEGF) receptor tyrosine kinase, on postnatal day 7 (P7) and P8. KRN633-treated (ROP) rats were treated subcutaneously with the mTORC1 inhibitor rapamycin according to preventive and therapeutic protocols, i.e., from P11 to P13 (P11-P13) and from P14 to P20 (P14-P20), respectively. To compare with the effects of VEGF inhibition, KRN633 was administered according to similar protocols. Changes in retinal vasculature, phosphorylated ribosomal protein S6 (pS6), a downstream indicator of mTORC1 activity, and the proliferative status of vascular cells were evaluated at P14 and P21 using immunohistochemistry. Rapamycin treatment from P11 to P13 prevented increases in arteriolar tortuosity, capillary density, and the number of proliferating vascular cells, and eliminated pS6 immunoreactivity in ROP rats. KRN633 treatment at P11 and P12 (P11/P12) also prevented the appearance of ROP-like retinal blood vessels. Rapamycin treatment from P14 to P20 failed to attenuate arteriolar tortuosity but prevented increases in capillary density and proliferating vascular cell number at the vascular front, but not at the central zone. KRN633 treatment from P14 to P20 significantly reduced abnormalities in the retinal vasculature; however, the effects were inferior to those of KRN633 treatment on P11/P12. These results suggest that activation of the mTORC1 pathway in proliferating endothelial cells contributes to the appearance and progression of ROP-like retinal blood vessels. Therefore, inhibition of mTORC1 may be a promising approach for selectively targeting abnormal retinal blood vessels in ROP.
Collapse
Affiliation(s)
- Ayuki Nakano
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Akane Morita
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Shiho Arima
- Department of Organic Synthesis, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tohru Nagamitsu
- Department of Organic Synthesis, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tsutomu Nakahara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| |
Collapse
|
4
|
Mason EC, Menon S, Schneider BR, Gaskill CF, Dawson MM, Moore CM, Armstrong LC, Cho O, Richmond BW, Kropski JA, West JD, Geraghty P, Gomperts BN, Ess KC, Gally F, Majka SM. Activation of mTOR signaling in adult lung microvascular progenitor cells accelerates lung aging. J Clin Invest 2023; 133:e171430. [PMID: 37874650 PMCID: PMC10721153 DOI: 10.1172/jci171430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/20/2023] [Indexed: 10/26/2023] Open
Abstract
Reactivation and dysregulation of the mTOR signaling pathway are a hallmark of aging and chronic lung disease; however, the impact on microvascular progenitor cells (MVPCs), capillary angiostasis, and tissue homeostasis is unknown. While the existence of an adult lung vascular progenitor has long been hypothesized, these studies show that Abcg2 enriches for a population of angiogenic tissue-resident MVPCs present in both adult mouse and human lungs using functional, lineage, and transcriptomic analyses. These studies link human and mouse MVPC-specific mTORC1 activation to decreased stemness, angiogenic potential, and disruption of p53 and Wnt pathways, with consequent loss of alveolar-capillary structure and function. Following mTOR activation, these MVPCs adapt a unique transcriptome signature and emerge as a venous subpopulation in the angiodiverse microvascular endothelial subclusters. Thus, our findings support a significant role for mTOR in the maintenance of MVPC function and microvascular niche homeostasis as well as a cell-based mechanism driving loss of tissue structure underlying lung aging and the development of emphysema.
Collapse
Affiliation(s)
- Emma C. Mason
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, Colorado, USA
| | - Swapna Menon
- Pulmonary Vascular Research Institute Kochi and AnalyzeDat Consulting Services, Kerala, India
| | - Benjamin R. Schneider
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, Colorado, USA
| | - Christa F. Gaskill
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Maggie M. Dawson
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, Colorado, USA
| | - Camille M. Moore
- Department of Immunology and Genomic Medicine, Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Laura Craig Armstrong
- Division of Pediatric Neurology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Okyong Cho
- Genomics and Microarray Core, University of Colorado Cancer Center, Anschutz Medical Center, Aurora, Colorado, USA
| | - Bradley W. Richmond
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center and Department of Veterans Affairs, Nashville, Tennessee, USA
| | - Jonathan A. Kropski
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center and Department of Veterans Affairs, Nashville, Tennessee, USA
| | - James D. West
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center and Department of Veterans Affairs, Nashville, Tennessee, USA
| | - Patrick Geraghty
- Division of Pulmonary and Critical Care Medicine, SUNY Downstate Medical Center, Brooklyn, New York, USA
| | - Brigitte N. Gomperts
- Translational Research, UCLA Broad Stem Cell Research Center; Pediatrics Division of Pulmonary Medicine, University of California, Los Angeles, California, USA
| | - Kevin C. Ess
- Division of Pediatric Neurology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Fabienne Gally
- Department of Immunology and Genomic Medicine, Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Susan M. Majka
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, Colorado, USA
- Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
5
|
Zhou X, Lai Y, Xu X, Wang Q, Sun L, Chen L, Li J, Li R, Luo D, Lin Y, Ding X. Tetrahedral framework nucleic acids inhibit pathological neovascularization and vaso-obliteration in ischaemic retinopathy via PI3K/AKT/mTOR signalling pathway. Cell Prolif 2023; 56:e13407. [PMID: 36694349 PMCID: PMC10334269 DOI: 10.1111/cpr.13407] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
This study aimed to explore the effect and the molecular mechanism of tetrahedral framework nucleic acids (tFNAs), a novel self-assembled nanomaterial with excellent biocompatibility and superior endocytosis ability, in inhibition of pathological retinal neovascularization (RNV) and more importantly, in amelioration of vaso-obliteration (VO) in ischaemic retinopathy. tFNAs were synthesized from four single-stranded DNAs (ssDNAs). Cell proliferation, wound healing and tube formation assays were performed to explore cellular angiogenic functions in vitro. The effects of tFNAs on reducing angiogenesis and inhibiting VO were explored by oxygen-induced retinopathy (OIR) model in vivo. In vitro, tFNAs were capable to enter endothelial cells (ECs), inhibit cell proliferation, tube formation and migration under hypoxic conditions. In vivo, tFNAs successfully reduce RNV and inhibit VO in OIR model via the PI3K/AKT/mTOR/S6K pathway, while vascular endothelial growth factor fusion protein, Aflibercept, could reduce RNV but not inhibit VO. This study provides a theoretical basis for the further understanding of RNV and suggests that tFNAs might be a novel promising candidate for the treatment of blind-causing RNV.
Collapse
Affiliation(s)
- Xiaodi Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Yanting Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Xiaoxiao Xu
- Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Qiong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Limei Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Limei Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Jiajie Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Department of Maxillofacial Surgery, West China Stomatological HospitalSichuan UniversityChengduChina
| | - Rong Li
- Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Delun Luo
- Innovative Institute of Chinese Medicine and PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Department of Maxillofacial Surgery, West China Stomatological HospitalSichuan UniversityChengduChina
| | - Xiaoyan Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| |
Collapse
|
6
|
Zhang X, Xia M, Wu Y, Zhang F. Branched-Chain Amino Acids Metabolism and Their Roles in Retinopathy: From Relevance to Mechanism. Nutrients 2023; 15:2161. [PMID: 37432261 DOI: 10.3390/nu15092161] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 07/12/2023] Open
Abstract
Retinopathy is one of the leading causes of irreversible blindness and vision loss worldwide. Imbalanced nutrients play important roles in the pathogenesis and pathophysiology of retinal diseases. Branched-Chain Amino Acids (BCAAs), as essential amino acids, perform a variety of biological functions, including protein synthesis, glucose metabolism, lipid metabolism, inflammation, and oxidative stress in metabolic tissues of diabetes and aging-related diseases. Recently, it has been shown that BCAAs are highly related to neuroprotection, oxidative stress, inflammatory and glutamate toxicity in the retina of retinopathy. Therefore, this review summarizes the alterations of BCAA levels in retinopathy, especially diabetic retinopathy and aging-related macular disease, and the genetics, functions, and mechanisms of BCAAs in the retina as well as other metabolic tissues for reference. All of these efforts aim to provide fundamental knowledge of BCAAs for further discoveries and research on retina health based on the sensing and signaling of essential amino acids.
Collapse
Affiliation(s)
- Xiaonan Zhang
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Liaoning Provence Key Laboratory of Genome Engineered Animal Models, National Center of Genetically Engineered Animal Models for International Research, Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian 116000, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
| | - Mengxue Xia
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
| | - Yingjie Wu
- Liaoning Provence Key Laboratory of Genome Engineered Animal Models, National Center of Genetically Engineered Animal Models for International Research, Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian 116000, China
- Shandong Provincial Hospital, School of Laboratory Animal & Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Fang Zhang
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
| |
Collapse
|
7
|
Landowski M, Bowes Rickman C. Targeting Lipid Metabolism for the Treatment of Age-Related Macular Degeneration: Insights from Preclinical Mouse Models. J Ocul Pharmacol Ther 2021; 38:3-32. [PMID: 34788573 PMCID: PMC8817708 DOI: 10.1089/jop.2021.0067] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Age-related macular degeneration (AMD) is a major leading cause of irreversible visual impairment in the world with limited therapeutic interventions. Histological, biochemical, genetic, and epidemiological studies strongly implicate dysregulated lipid metabolism in the retinal pigmented epithelium (RPE) in AMD pathobiology. However, effective therapies targeting lipid metabolism still need to be identified and developed for this blinding disease. To test lipid metabolism-targeting therapies, preclinical AMD mouse models are needed to establish therapeutic efficacy and the role of lipid metabolism in the development of AMD-like pathology. In this review, we provide a comprehensive overview of current AMD mouse models available to researchers that could be used to provide preclinical evidence supporting therapies targeting lipid metabolism for AMD. Based on previous studies of AMD mouse models, we discuss strategies to modulate lipid metabolism as well as examples of studies evaluating lipid-targeting therapeutics to restore lipid processing in the RPE. The use of AMD mouse models may lead to worthy lipid-targeting candidate therapies for clinical trials to prevent the blindness caused by AMD.
Collapse
Affiliation(s)
- Michael Landowski
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA.,McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Catherine Bowes Rickman
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
8
|
Cha S, Seo WI, Woo HN, Kim HJ, Lee SHS, Kim J, Choi JS, Park K, Lee JY, Lee BJ, Lee H. AAV expressing an mTOR-inhibiting siRNA exhibits therapeutic potential in retinal vascular disorders by preserving endothelial integrity. FEBS Open Bio 2021; 12:71-81. [PMID: 34431239 PMCID: PMC8727948 DOI: 10.1002/2211-5463.13281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/18/2021] [Accepted: 08/24/2021] [Indexed: 11/29/2022] Open
Abstract
Expanding on previous demonstrations of the therapeutic effects of adeno‐associated virus (AAV) carrying small‐hairpin RNA (shRNA) in downregulating the mechanistic target of rapamycin (mTOR) in in vivo retinal vascular disorders, vascular endothelial growth factor (VEGF)‐stimulated endothelial cells were treated with AAV2‐shmTOR to examine the role of mTOR inhibition in retinal angiogenesis. AAV2‐shmTOR exposure significantly reduced mTOR expression in human umbilical vein endothelial cells (HUVECs) and decreased downstream signaling cascades of mTOR complex 1 (mTORC1) and mTORC2 under VEGF treatment. Moreover, the angiogenic potential of VEGF was significantly inhibited by AAV2‐shmTOR, which preserved endothelial integrity by maintaining tight junctions between HUVECs. These data thus support previous in vivo studies and provide evidence that AAV2‐shmTOR induces therapeutic effects by inhibiting the neovascularization of endothelial cells.
Collapse
Affiliation(s)
- Seho Cha
- CuroGene Life Sciences Co., Ltd., Cheongju, Korea
| | - Won-Il Seo
- Department of Veterinary Medicine: College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Ha-Na Woo
- Department of Microbiology, College of Medicine, University of Ulsan, Seoul, Korea.,Bio-Medical Institute of Technology, College of Medicine, University of Ulsan, Seoul, Korea
| | - Hee Jong Kim
- CuroGene Life Sciences Co., Ltd., Cheongju, Korea
| | - Steven Hyun Seung Lee
- CuroGene Life Sciences Co., Ltd., Cheongju, Korea.,Department of Microbiology, College of Medicine, University of Ulsan, Seoul, Korea.,Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin Kim
- CuroGene Life Sciences Co., Ltd., Cheongju, Korea
| | - Jun-Sub Choi
- CuroGene Life Sciences Co., Ltd., Cheongju, Korea
| | - Keerang Park
- CuroGene Life Sciences Co., Ltd., Cheongju, Korea
| | - Joo Yong Lee
- Bio-Medical Institute of Technology, College of Medicine, University of Ulsan, Seoul, Korea.,Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Beom Jun Lee
- Department of Veterinary Medicine: College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Heuiran Lee
- Bio-Medical Institute of Technology, College of Medicine, University of Ulsan, Seoul, Korea.,Department of Microbiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
9
|
Saltykova IV, Elahi A, Pitale PM, Gorbatyuk OS, Athar M, Gorbatyuk MS. Tribbles homolog 3-mediated targeting the AKT/mTOR axis in mice with retinal degeneration. Cell Death Dis 2021; 12:664. [PMID: 34215725 PMCID: PMC8253859 DOI: 10.1038/s41419-021-03944-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/28/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023]
Abstract
Various retinal degenerative disorders manifest in alterations of the AKT/mTOR axis. Despite this, consensus on the therapeutic targeting of mTOR in degenerating retinas has not yet been achieved. Therefore, we investigated the role of AKT/mTOR signaling in rd16 retinas, in which we restored the AKT/mTOR axis by genetic ablation of pseudokinase TRB3, known to inhibit phosphorylation of AKT and mTOR. First, we found that TRB3 ablation resulted in preservation of photoreceptor function in degenerating retinas. Then, we learned that the mTOR downstream cellular pathways involved in the homeostasis of photoreceptors were also reprogrammed in rd16 TRB3-/- retinas. Thus, the level of inactivated translational repressor p-4E-BP1 was significantly increased in these mice along with the restoration of translational rate. Moreover, in rd16 mice manifesting decline in p-mTOR at P15, we found elevated expression of Beclin-1 and ATG5 autophagy genes. Thus, these mice showed impaired autophagy flux measured as an increase in LC3 conversion and p62 accumulation. In addition, the RFP-EGFP-LC3 transgene expression in rd16 retinas resulted in statistically fewer numbers of red puncta in photoreceptors, suggesting impaired late autophagic vacuoles. In contrast, TRIB3 ablation in these mice resulted in improved autophagy flux. The restoration of translation rate and the boost in autophagosome formation occurred concomitantly with an increase in total Ub and rhodopsin protein levels and the elevation of E3 ligase Parkin1. We propose that TRB3 may retard retinal degeneration and be a promising therapeutic target to treat various retinal degenerative disorders.
Collapse
Affiliation(s)
- Irina V Saltykova
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Asif Elahi
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Priyam M Pitale
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Oleg S Gorbatyuk
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mohammad Athar
- Department of Dermatology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Marina S Gorbatyuk
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
10
|
Jones I, Hägglund AC, Carlsson L. Reduced mTORC1-signaling in retinal ganglion cells leads to vascular retinopathy. Dev Dyn 2021; 251:321-335. [PMID: 34148274 DOI: 10.1002/dvdy.389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The coordinated wiring of neurons, glia and endothelial cells into neurovascular units is critical for central nervous system development. This is best exemplified in the mammalian retina where interneurons, astrocytes and retinal ganglion cells sculpt their vascular environment to meet the metabolic demands of visual function. Identifying the molecular networks that underlie neurovascular unit formation is an important step towards a deeper understanding of nervous system development and function. RESULTS Here, we report that cell-to-cell mTORC1-signaling is essential for neurovascular unit formation during mouse retinal development. Using a conditional knockout approach we demonstrate that reduced mTORC1 activity in asymmetrically positioned retinal ganglion cells induces a delay in postnatal vascular network formation in addition to the production of rudimentary and tortuous vessel networks in adult animals. The severity of this vascular phenotype is directly correlated to the degree of mTORC1 down regulation within the neighboring retinal ganglion cell population. CONCLUSIONS This study establishes a cell nonautonomous role for mTORC1-signaling during retinal development. These findings contribute to our current understanding of neurovascular unit formation and demonstrate how ganglion cells actively sculpt their local environment to ensure that the retina is perfused with an appropriate supply of oxygen and nutrients.
Collapse
Affiliation(s)
- Iwan Jones
- Umeå Center for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden
| | | | - Leif Carlsson
- Umeå Center for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden
| |
Collapse
|
11
|
Yao A, Wijngaarden P. Metabolic pathways in context:
mTOR
signalling in the retina and optic nerve ‐ A review. Clin Exp Ophthalmol 2020; 48:1072-1084. [DOI: 10.1111/ceo.13819] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/21/2020] [Accepted: 07/05/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Anthony Yao
- Centre for Eye Research Australia Royal Victorian Eye and Ear Hospital East Melbourne, Victoria Australia
| | - Peter Wijngaarden
- Centre for Eye Research Australia Royal Victorian Eye and Ear Hospital East Melbourne, Victoria Australia
- Ophthalmology, Department of Surgery University of Melbourne Melbourne, Victoria Australia
| |
Collapse
|
12
|
Calcitriol and non-calcemic vitamin D analogue, 22-oxacalcitriol, attenuate developmental and pathological choroidal vasculature angiogenesis ex vivo and in vivo. Oncotarget 2020; 11:493-509. [PMID: 32082484 PMCID: PMC7007294 DOI: 10.18632/oncotarget.27380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/19/2019] [Indexed: 01/03/2023] Open
Abstract
Aberrant ocular angiogenesis can underpin vision loss in leading causes of blindness, including neovascular age-related macular degeneration and proliferative diabetic retinopathy. Current pharmacological interventions require repeated invasive administrations, may lack efficacy and are associated with poor patient compliance and tachyphylaxis. Vitamin D has de novo anti-angiogenic properties. Here, our aim was to validate the ocular anti-angiogenic activity of biologically active vitamin D, calcitriol, and selected vitamin D analogue, 22-oxacalcitriol. Calcitriol induced a significant reduction in ex vivo mouse choroidal fragment sprouting. Viability studies in a human RPE cell line suggested non-calcemic vitamin D analogues including 22-oxacalcitriol have less off-target anti-proliferative activity compared to calcitriol and other analogues. Thereafter, the anti-angiogenic activity of 22-oxacalcitriol was demonstrated in an ex vivo mouse choroidal fragment sprouting assay. In zebrafish larvae, 22-oxacalcitriol was found to be anti-angiogenic, inducing a dose-dependent reduction in choriocapillaris development. Subcutaneously administered calcitriol failed to attenuate mouse retinal vasculature development. However, calcitriol and 22-oxacalcitriol administered intraperitoneally, significantly attenuated lesion volume in the laser-induced choroidal neovascularisation mouse model. In summary, calcitriol and 22-oxacalcitriol attenuate ex vivo and in vivo choroidal vasculature angiogenesis. Therefore, vitamin D may have potential as an interventional treatment for ophthalmic neovascular indications.
Collapse
|
13
|
Bruning U, Morales-Rodriguez F, Kalucka J, Goveia J, Taverna F, Queiroz KCS, Dubois C, Cantelmo AR, Chen R, Loroch S, Timmerman E, Caixeta V, Bloch K, Conradi LC, Treps L, Staes A, Gevaert K, Tee A, Dewerchin M, Semenkovich CF, Impens F, Schilling B, Verdin E, Swinnen JV, Meier JL, Kulkarni RA, Sickmann A, Ghesquière B, Schoonjans L, Li X, Mazzone M, Carmeliet P. Impairment of Angiogenesis by Fatty Acid Synthase Inhibition Involves mTOR Malonylation. Cell Metab 2018; 28:866-880.e15. [PMID: 30146486 PMCID: PMC8057116 DOI: 10.1016/j.cmet.2018.07.019] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 06/12/2018] [Accepted: 07/27/2018] [Indexed: 12/29/2022]
Abstract
The role of fatty acid synthesis in endothelial cells (ECs) remains incompletely characterized. We report that fatty acid synthase knockdown (FASNKD) in ECs impedes vessel sprouting by reducing proliferation. Endothelial loss of FASN impaired angiogenesis in vivo, while FASN blockade reduced pathological ocular neovascularization, at >10-fold lower doses than used for anti-cancer treatment. Impaired angiogenesis was not due to energy stress, redox imbalance, or palmitate depletion. Rather, FASNKD elevated malonyl-CoA levels, causing malonylation (a post-translational modification) of mTOR at lysine 1218 (K1218). mTOR K-1218 malonylation impaired mTOR complex 1 (mTORC1) kinase activity, thereby reducing phosphorylation of downstream targets (p70S6K/4EBP1). Silencing acetyl-CoA carboxylase 1 (an enzyme producing malonyl-CoA) normalized malonyl-CoA levels and reactivated mTOR in FASNKD ECs. Mutagenesis unveiled the importance of mTOR K1218 malonylation for angiogenesis. This study unveils a novel role of FASN in metabolite signaling that contributes to explaining the anti-angiogenic effect of FASN blockade.
Collapse
Affiliation(s)
- Ulrike Bruning
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology (CCB), VIB, 3000 Leuven, Belgium; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, Guangdong, P.R. China; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, 3000 Leuven, Belgium
| | - Francisco Morales-Rodriguez
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology (CCB), VIB, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, 3000 Leuven, Belgium
| | - Joanna Kalucka
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology (CCB), VIB, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, 3000 Leuven, Belgium
| | - Jermaine Goveia
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology (CCB), VIB, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, 3000 Leuven, Belgium
| | - Federico Taverna
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology (CCB), VIB, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, 3000 Leuven, Belgium
| | - Karla C S Queiroz
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology (CCB), VIB, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, 3000 Leuven, Belgium
| | - Charlotte Dubois
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology (CCB), VIB, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, 3000 Leuven, Belgium
| | - Anna Rita Cantelmo
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology (CCB), VIB, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, 3000 Leuven, Belgium
| | - Rongyuan Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, Guangdong, P.R. China
| | - Stefan Loroch
- Leibniz Institut für analytische Wissenschaften, ISAS, 44227 Dortmund, Germany
| | - Evy Timmerman
- VIB Center for Medical Biotechnology, 9000 Ghent, Belgium; Department of Biochemistry, Ghent University, 9000 Ghent, Belgium; VIB Proteomics Expertise Center, 9000 Ghent, Belgium
| | - Vanessa Caixeta
- Leibniz Institut für analytische Wissenschaften, ISAS, 44227 Dortmund, Germany
| | - Katarzyna Bloch
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Lena-Christin Conradi
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology (CCB), VIB, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, 3000 Leuven, Belgium
| | - Lucas Treps
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology (CCB), VIB, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, 3000 Leuven, Belgium
| | - An Staes
- VIB Center for Medical Biotechnology, 9000 Ghent, Belgium; Department of Biochemistry, Ghent University, 9000 Ghent, Belgium; VIB Proteomics Expertise Center, 9000 Ghent, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, 9000 Ghent, Belgium; Department of Biochemistry, Ghent University, 9000 Ghent, Belgium; VIB Proteomics Expertise Center, 9000 Ghent, Belgium
| | - Andrew Tee
- Cardiff University, Cardiff CF14 4YS, UK
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology (CCB), VIB, 3000 Leuven, Belgium; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, 3000 Leuven, Belgium
| | - Clay F Semenkovich
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA
| | - Francis Impens
- VIB Center for Medical Biotechnology, 9000 Ghent, Belgium; Department of Biochemistry, Ghent University, 9000 Ghent, Belgium; VIB Proteomics Expertise Center, 9000 Ghent, Belgium
| | | | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | | | | | - Albert Sickmann
- Leibniz Institut für analytische Wissenschaften, ISAS, 44227 Dortmund, Germany
| | - Bart Ghesquière
- Metabolomics Core Facility, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; Metabolomics Core Facility, VIB Center for Cancer Biology (CCB), VIB, 3000 Leuven, Belgium
| | - Luc Schoonjans
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology (CCB), VIB, 3000 Leuven, Belgium; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, Guangdong, P.R. China; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, 3000 Leuven, Belgium
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, Guangdong, P.R. China.
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, VIB Center for Cancer Biology (CCB), VIB, 3000 Leuven, Belgium; Laboratory of Tumor Inflammation and Angiogenesis, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology (CCB), VIB, 3000 Leuven, Belgium; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, Guangdong, P.R. China; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
14
|
Iizuka N, Morita A, Kawano C, Mori A, Sakamoto K, Kuroyama M, Ishii K, Nakahara T. Anti-angiogenic effects of valproic acid in a mouse model of oxygen-induced retinopathy. J Pharmacol Sci 2018; 138:203-208. [PMID: 30409713 DOI: 10.1016/j.jphs.2018.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/20/2018] [Accepted: 10/10/2018] [Indexed: 11/19/2022] Open
Abstract
Pathological retinal angiogenesis contributes to the pathogenesis of several ocular diseases. Valproic acid, a widely used antiepileptic drug, exerts anti-angiogenic effects by inhibiting histone deacetylase (HDAC). Herein, we investigated the effects of valproic acid and vorinostat, a HDAC inhibitor, on pathological retinal angiogenesis in mice with oxygen-induced retinopathy (OIR). OIR was induced in neonatal mice by exposure to 80% oxygen from postnatal day (P) 7 to P10 and to atmospheric oxygen from P10 to P15. Mice were subcutaneously injected with valproic acid, vorinostat, or vehicle once a day from P10 to P14. At P15, retinal neovascular tufts and vascular growth in the central avascular zone were observed in mice with OIR. Additionally, immunoreactivity for phosphorylated ribosomal protein S6 (pS6), an indicator of mammalian target of rapamycin (mTOR) activity, was detected in the neovascular tufts. Both valproic acid and vorinostat reduced the formation of retinal neovascular tuft without affecting vascular growth in the central avascular zone. Valproic acid reduced the pS6 immunoreactivity in neovascular tufts. Given that vascular endothelial growth factor (VEGF) activates mTOR-dependent pathways in proliferating endothelial cells of the neonatal mouse retina, these results suggest that valproic acid suppresses pathological retinal angiogenesis by interrupting VEGF-mTOR pathways.
Collapse
Affiliation(s)
- Naoto Iizuka
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan; Pharmacy Practice and Science II (Kitasato University East Hospital), Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Akane Morita
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Chihiro Kawano
- Pharmacy Practice and Science II (Kitasato University East Hospital), Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Asami Mori
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kenji Sakamoto
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masakazu Kuroyama
- Pharmacy Practice and Science II (Kitasato University East Hospital), Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kunio Ishii
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tsutomu Nakahara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| |
Collapse
|
15
|
Nakahara T, Morita A, Yagasaki R, Mori A, Sakamoto K. Mammalian Target of Rapamycin (mTOR) as a Potential Therapeutic Target in Pathological Ocular Angiogenesis. Biol Pharm Bull 2018; 40:2045-2049. [PMID: 29199229 DOI: 10.1248/bpb.b17-00475] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pathological ocular angiogenesis is a causative factor of retinopathy of prematurity, proliferative diabetic retinopathy, and wet age-related macular degeneration. Vascular endothelial growth factor (VEGF) plays an important role in pathological angiogenesis, and anti-VEGF agents have been used to treat the ocular diseases that are driven by pathological angiogenesis. However, adverse effects associated with the blockade of VEGF signaling, including impairments of normal retinal vascular growth and retinal function, were suggested. Therefore, the development of a safe, effective strategy to prevent pathological ocular angiogenesis is needed. Recent studies have demonstrated that inhibitors of the mammalian target of rapamycin (mTOR) target proliferating endothelial cells within the retinal vasculature. Here, we review the potential of targeting the mTOR pathway to treat pathological ocular angiogenesis.
Collapse
Affiliation(s)
- Tsutomu Nakahara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences
| | - Akane Morita
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences
| | - Rina Yagasaki
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences
| | - Asami Mori
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences
| | - Kenji Sakamoto
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences
| |
Collapse
|
16
|
Morita A, Mori A, Arima S, Sakamoto K, Nagamitsu T, Ishii K, Nakahara T. Transient phenotypic changes in endothelial cells and pericytes in neonatal mouse retina following short-term blockade of vascular endothelial growth factor receptors. Dev Dyn 2018; 247:699-711. [DOI: 10.1002/dvdy.24614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/23/2017] [Accepted: 12/04/2017] [Indexed: 12/27/2022] Open
Affiliation(s)
- Akane Morita
- Department of Molecular Pharmacology; Kitasato University School of Pharmaceutical Sciences; Tokyo Japan
| | - Asami Mori
- Department of Molecular Pharmacology; Kitasato University School of Pharmaceutical Sciences; Tokyo Japan
| | - Shiho Arima
- Department of Organic Synthesis; Kitasato University School of Pharmaceutical Sciences; Tokyo Japan
| | - Kenji Sakamoto
- Department of Molecular Pharmacology; Kitasato University School of Pharmaceutical Sciences; Tokyo Japan
| | - Tohru Nagamitsu
- Department of Organic Synthesis; Kitasato University School of Pharmaceutical Sciences; Tokyo Japan
| | - Kunio Ishii
- Department of Molecular Pharmacology; Kitasato University School of Pharmaceutical Sciences; Tokyo Japan
| | - Tsutomu Nakahara
- Department of Molecular Pharmacology; Kitasato University School of Pharmaceutical Sciences; Tokyo Japan
| |
Collapse
|
17
|
Presurgical Administration of mTOR Inhibitors in Patients with Large Subependymal Giant Cell Astrocytoma Associated with Tuberous Sclerosis Complex. World Neurosurg 2017; 107:1053.e1-1053.e6. [DOI: 10.1016/j.wneu.2017.08.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 01/27/2023]
|
18
|
Morita A, Ushikubo H, Mori A, Sakamoto K, Nakahara T. Exposure to high-concentration oxygen in the neonatal period induces abnormal retinal vascular patterning in mice. ACTA ACUST UNITED AC 2016; 107:216-224. [DOI: 10.1002/bdrb.21187] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 09/19/2016] [Accepted: 10/06/2016] [Indexed: 01/27/2023]
Affiliation(s)
- Akane Morita
- Department of Molecular Pharmacology; Kitasato University School of Pharmaceutical Sciences; Minato-ku Tokyo Japan
| | - Hiroko Ushikubo
- Department of Molecular Pharmacology; Kitasato University School of Pharmaceutical Sciences; Minato-ku Tokyo Japan
| | - Asami Mori
- Department of Molecular Pharmacology; Kitasato University School of Pharmaceutical Sciences; Minato-ku Tokyo Japan
| | - Kenji Sakamoto
- Department of Molecular Pharmacology; Kitasato University School of Pharmaceutical Sciences; Minato-ku Tokyo Japan
| | - Tsutomu Nakahara
- Department of Molecular Pharmacology; Kitasato University School of Pharmaceutical Sciences; Minato-ku Tokyo Japan
| |
Collapse
|