1
|
Xu X, Ding X, Wang Z, Ye S, Xu J, Liang Z, Luo R, Xu J, Li X, Ren Z. GBP2 inhibits pathological angiogenesis in the retina via the AKT/mTOR/VEGFA axis. Microvasc Res 2024; 154:104689. [PMID: 38636926 DOI: 10.1016/j.mvr.2024.104689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/29/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Pathological retinal angiogenesis is not only the hallmark of retinopathies, but also a major cause of blindness. Guanylate binding protein 2 (GBP2) has been reported to be associated with retinal diseases such as diabetic retinopathy and hypoxic retinopathy. However, GBP2-mediated pathological retinal angiogenesis remains largely unknown. The present study aimed to investigate the role of GBP2 in pathological retinal angiogenesis and its underlying molecular mechanism. In this study, we established oxygen-induced retinopathy (OIR) mice model for in vivo study and hypoxia-induced angiogenesis in ARPE-19 cells for in vitro study. We demonstrated that GBP2 expression was markedly downregulated in the retina of mice with OIR and ARPE-19 cells treated with hypoxia, which was associated with pathological retinal angiogenesis. The regulatory mechanism of GBP2 in ARPE-19 cells was studied by GBP2 silencing and overexpression. The regulatory mechanism of GBP2 in the retina was investigated by overexpressing GBP2 in the retina of OIR mice. Mechanistically, GBP2 downregulated the expression and secretion of vascular endothelial growth factor (VEGFA) in ARPE-19 cells and retina of OIR mice. Interestingly, overexpression of GBP2 significantly inhibited neovascularization in OIR mice, conditioned medium of GBP2 overexpressing ARPE-19 cells inhibited angiogenesis in human umbilical vein endothelial cells (HUVECs). Furthermore, we confirmed that GBP2 downregulated VEGFA expression and angiogenesis by inhibiting the AKT/mTOR signaling pathway. Taken together, we concluded that GBP2 inhibited pathological retinal angiogenesis via the AKT/mTOR/VEGFA axis, thereby suggesting that GBP2 may be a therapeutic target for pathological retinal angiogenesis.
Collapse
Affiliation(s)
- Xiaoxiang Xu
- Department of Anatomy, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xihui Ding
- Department of Anatomy, Anhui Medical University, Hefei, Anhui 230032, China
| | - Zizhuo Wang
- Department of Anatomy, Anhui Medical University, Hefei, Anhui 230032, China
| | - Shujiang Ye
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230012, China; Anhui Public Health Clinical Center, Hefei, Anhui 230012, China
| | - Jianguang Xu
- College and Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, Anhui 230032, China
| | - Zugang Liang
- Hefei Huaxia Mingren Eye Hospital, Hefei, Anhui 230032, China
| | - Renfei Luo
- Department of Anatomy, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jinyong Xu
- Department of Anatomy, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xiaohui Li
- Department of Anatomy, Anhui Medical University, Hefei, Anhui 230032, China.
| | - Zhenhua Ren
- Department of Anatomy, Anhui Medical University, Hefei, Anhui 230032, China; College and Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, Anhui 230032, China.
| |
Collapse
|
2
|
Heckel E, Cagnone G, Agnihotri T, Cakir B, Das A, Kim JS, Kim N, Lavoie G, Situ A, Pundir S, Sun Y, Wünnemann F, Pierce KA, Dennis C, Mitchell GA, Chemtob S, Rezende FA, Andelfinger G, Clish CB, Roux PP, Sapieha P, Smith LE, Joyal JS. Triglyceride-derived fatty acids reduce autophagy in a model of retinal angiomatous proliferation. JCI Insight 2022; 7:e154174. [PMID: 35167498 PMCID: PMC8986067 DOI: 10.1172/jci.insight.154174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/09/2022] [Indexed: 11/17/2022] Open
Abstract
Dyslipidemia and autophagy have been implicated in the pathogenesis of blinding neovascular age-related macular degeneration (NV-AMD). VLDL receptor (VLDLR), expressed in photoreceptors with a high metabolic rate, facilitates the uptake of triglyceride-derived fatty acids. Since fatty acid uptake is reduced in Vldlr-/- tissues, more remain in circulation, and the retina is fuel deficient, driving the formation in mice of neovascular lesions reminiscent of retinal angiomatous proliferation (RAP), a subtype of NV-AMD. Nutrient scarcity and energy failure are classically mitigated by increasing autophagy. We found that excess circulating lipids restrained retinal autophagy, which contributed to pathological angiogenesis in the Vldlr-/- RAP model. Triglyceride-derived fatty acid sensed by free fatty acid receptor 1 (FFAR1) restricted autophagy and oxidative metabolism in photoreceptors. FFAR1 suppressed transcription factor EB (TFEB), a master regulator of autophagy and lipid metabolism. Reduced TFEB, in turn, decreased sirtuin-3 expression and mitochondrial respiration. Metabolomic signatures of mouse RAP-like retinas were consistent with a role in promoting angiogenesis. This signature was also found in human NV-AMD vitreous. Restoring photoreceptor autophagy in Vldlr-/- retinas, either pharmacologically or by deleting Ffar1, enhanced metabolic efficiency and suppressed pathological angiogenesis. Dysregulated autophagy by circulating lipids might therefore contribute to the energy failure of photoreceptors driving neovascular eye diseases, and FFAR1 may be a target for intervention.
Collapse
Affiliation(s)
- Emilie Heckel
- Department of Pharmacology, University of Montreal, Montreal, Quebec, Canada
| | - Gael Cagnone
- Department of Pharmacology, University of Montreal, Montreal, Quebec, Canada
| | - Tapan Agnihotri
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Bertan Cakir
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ashim Das
- Department of Pharmacology, University of Montreal, Montreal, Quebec, Canada
| | - Jin Sung Kim
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Nicholas Kim
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Geneviève Lavoie
- Department of Pathology and Cell Biology, Institute for Research in Immunology and Cancer (IRIC), and
| | - Anu Situ
- Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Sheetal Pundir
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Ye Sun
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Florian Wünnemann
- Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Kerry A. Pierce
- Metabolomics Platform, Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA
| | - Courtney Dennis
- Metabolomics Platform, Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA
| | - Grant A. Mitchell
- Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Sylvain Chemtob
- Department of Pharmacology, University of Montreal, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
- Department of Ophthalmology, University of Montreal, Montreal, Quebec, Canada
| | - Flavio A. Rezende
- Department of Ophthalmology, University of Montreal, Montreal, Quebec, Canada
| | - Gregor Andelfinger
- Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Clary B. Clish
- Metabolomics Platform, Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA
| | - Philippe P. Roux
- Department of Pathology and Cell Biology, Institute for Research in Immunology and Cancer (IRIC), and
| | - Przemyslaw Sapieha
- Department of Ophthalmology, University of Montreal, Montreal, Quebec, Canada
| | - Lois E.H. Smith
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jean-Sébastien Joyal
- Department of Pharmacology, University of Montreal, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
- Department of Ophthalmology, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Murenu E, Kostidis S, Lahiri S, Geserich AS, Imhof A, Giera M, Michalakis S. Metabolic Analysis of Vitreous/Lens and Retina in Wild Type and Retinal Degeneration Mice. Int J Mol Sci 2021; 22:ijms22052345. [PMID: 33652907 PMCID: PMC7956175 DOI: 10.3390/ijms22052345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Photoreceptors are the light-sensing cells of the retina and the major cell type affected in most inherited retinal degenerations. Different metabolic pathways sustain their high energetic demand in physiological conditions, particularly aerobic glycolysis. The principal metabolome of the mature retina has been studied, but only limited information is available on metabolic adaptations in response to key developmental events, such as eye opening. Moreover, dynamic metabolic changes due to retinal degeneration are not well understood. Here, we aimed to explore and map the ocular metabolic dynamics induced by eye opening in healthy (wild type) or Pde6b-mutant (retinal degeneration 1, Rd1) mice, in which photoreceptors degenerate shortly after eye opening. To unravel metabolic differences emerging before and after eye opening under physiological and pathophysiological conditions, we performed nuclear magnetic resonance (NMR) spectroscopy-based metabolome analysis of wild type and Rd1 retina and vitreous/lens. We show that eye opening is accompanied by changes in the concentration of selected metabolites in the retina and by alterations in the vitreous/lens composition only in the retinal degeneration context. As such, we identify NAcetylaspartate as a potential novel vitreous/lens marker reflecting progressive retinal degeneration. Thus, our data can help elucidating mechanisms underlying key events in retinal physiology and reveal changes occurring in pathology, while highlighting the importance of the vitreous/lens in the characterization of retinal diseases.
Collapse
Affiliation(s)
- Elisa Murenu
- Department of Ophthalmology, Ludwig-Maximilians-Universität München, Mathildenstraße 8, 80336 Munich, Germany;
- Department of Pharmacy, Ludwig-Maximilians Universität München, Butenandtstr. 7, 81377 Munich, Germany;
| | - Sarantos Kostidis
- Leiden University Medical Center, Center for Proteomics & Metabolomics, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (S.K.); (M.G.)
| | - Shibojyoti Lahiri
- Biomedical Center Munich-Molecular Biology, Ludwig-Maximilians-Universität München, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany; (S.L.); (A.I.)
| | - Anna S. Geserich
- Department of Pharmacy, Ludwig-Maximilians Universität München, Butenandtstr. 7, 81377 Munich, Germany;
| | - Axel Imhof
- Biomedical Center Munich-Molecular Biology, Ludwig-Maximilians-Universität München, Großhaderner Strasse 9, 82152 Planegg-Martinsried, Germany; (S.L.); (A.I.)
| | - Martin Giera
- Leiden University Medical Center, Center for Proteomics & Metabolomics, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (S.K.); (M.G.)
| | - Stylianos Michalakis
- Department of Ophthalmology, Ludwig-Maximilians-Universität München, Mathildenstraße 8, 80336 Munich, Germany;
- Department of Pharmacy, Ludwig-Maximilians Universität München, Butenandtstr. 7, 81377 Munich, Germany;
- Correspondence: ; Tel.: +49-89-2180-77325
| |
Collapse
|
4
|
Supuran CT. Agents for the prevention and treatment of age-related macular degeneration and macular edema: a literature and patent review. Expert Opin Ther Pat 2019; 29:761-767. [PMID: 31540558 DOI: 10.1080/13543776.2019.1671353] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Introduction: Macular degeneration (MD) and macular edema (ME) are ophthalmologic diseases affecting an increasing number of the aging population. Until recently, there were few therapeutic options for both conditions but the last two decades saw important advances. Areas covered: This review summarizes the agents used for the treatment of age-related MD (AMD), which include verteporfin, for photodynamic therapy, and anti-VEGF agents, the aptamer pegaptanib, the monoclonal antibodies (MAbs) ranibizumab (Lucentis®) and bevacizumab (Avastin®) and the fusion protein aflibercept (Eylea®). All these drugs are effective only for the wet form of AMD, whereas for the dry form there is no treatment available. ME is, on the other hand, treated with nonsteroidal anti-inflammatory drugs and carbonic anhydrase (CA) inhibitors. Recently, MAbs such as ranibizumab and bevacizumab were also shown to be effective for the management of the cystoid and diabetic ME. Expert opinion: There are important advances made in the field in the last years but longer-acting anti-VEGF agents or drugs with less ocular side effects are needed. Many such agents are in clinical development.
Collapse
Affiliation(s)
- Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze , Firenze , Italy
| |
Collapse
|