1
|
Chen M, Li W, Du Y, Zhao Y, Guo Y, Li Y, Wang X, Huang L, Zeng X, Zhang Y, Huang G, Wang S, Kuang H, Sun G, Jiang Q, Li X, Lu W. JAM-C prevents ocular fibrosis by suppressing the TAZ/KLF6 pathway. J Adv Res 2025:S2090-1232(25)00355-8. [PMID: 40398745 DOI: 10.1016/j.jare.2025.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 04/15/2025] [Accepted: 05/18/2025] [Indexed: 05/23/2025] Open
Abstract
INTRODUCTION Ocular fibrosis is one of the leading causes of irreversible visual impairment or blindness. Currently, there is no effective drug available for such diseases. Therefore, understanding the underlying mechanisms is a prerequisite for finding better therapeutic strategies. OBJECTIVES This study aims to investigate the role of the junctional adhesion molecule C (JAM-C) in ocular fibrosis. METHODS The protein levels of JAM-C were determined in the vitreous humor samples of patients with ocular fibrosis using ELISA. Jam-c genetic deletion mice and ocular fibrosis mouse models were generated to study the role of JAM-C in vivo. EMT, proliferation, migration, and gel contraction capacities in RPE cells were examined after JAM-C knockdown by siRNAs. RNA sequencing, co-IP, ChIP-qPCR, and luciferase reporter assay were performed to investigate the underlying mechanisms. Subretinal injection of adeno-associated virus, immunofluorescence, western blot were performed to evaluate the potential of JAM-C in preventing ocular fibrosis in different mouse models. RESULTS Markedly reduced JAM-C expression was found in patients with ocular fibrosis. Genetic deletion of Jam-c in mice exacerbated ocular fibrosis, and JAM-C knockdown triggered the EMT process in RPE cells. Mechanistically, we reveal that JAM-C inhibits ocular fibrosis by suppressing the nuclear localization and function of TAZ, which otherwise binds to KLF6 to promote its expression and activity to initiate the EMT cascade. Importantly, AAV-mediated JAM-C augmentation alleviated ocular fibrosis in different mouse models. CONCLUSION Our findings unveil a novel function of JAM-C in preventing ocular fibrosis by inhibiting the TAZ/KLF6 pathway, and suggest new therapeutic possibilities for the treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Min Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Wanhong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yuxiang Du
- Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Yuanlong Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Ying Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Ying Li
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiaolu Wang
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, China
| | - Lijuan Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xiaoling Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yihan Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, China
| | - Guanqun Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Shasha Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Haiqing Kuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Guangli Sun
- Affiliated Eye Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Qin Jiang
- Affiliated Eye Hospital of Nanjing Medical University, Nanjing 210000, China.
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| | - Weisi Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| |
Collapse
|
2
|
Chen F, Cai X, Yu Y. PHB2 alleviates retinal pigment epithelium cell fibrosis by suppressing the AGE-RAGE pathway. Open Life Sci 2024; 19:20220985. [PMID: 39507806 PMCID: PMC11538926 DOI: 10.1515/biol-2022-0985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/03/2024] [Accepted: 09/23/2024] [Indexed: 11/08/2024] Open
Abstract
Fibrosis is the primary cause of retinal detachment and visual decline. Here, we investigated the role of Prohibitin 2 (PHB2) in modulating fibrosis in ARPE-19 cells stimulated by transforming growth factor (TGF)-β2. The proliferation, migration, and apoptosis of ARPE-19 cells were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, wound healing, and flow cytometry assays, and levels of fibrosis-associated and pathway-related proteins were determined by performing western blotting. To examine the mechanisms underlying ARPE-19 cell fibrosis, we performed RNA sequencing, protein-protein interaction network, and enrichment analyses. We detected increases in the expression of the fibrosis-related proteins fibronectin and collagen I in response to TGF-β2 treatment, whereas the expression of PHB2 was downregulated. PHB2 overexpression suppressed the proliferation and migration of TGF-β2-stimulated ARPE-19 cells, promoted apoptosis, and inhibited fibrosis and Smad and non-Smad pathways. PHB2 overexpression inhibited the advanced glycation end-product (AGE)-receptor of advanced glycation end-product (RAGE) pathway activated by TGF-β2 treatment, which contributed to enhancing the effects of PHB2 on cellular processes, fibrosis, and Smad and non-Smad pathways. Conversely, exogenous application of AGE counteracted the effects of PHB2 overexpression. We conclude that by suppressing the AGE-RAGE pathway, PHB2 exerts an inhibitory effect on TGF-β2-induced fibrosis in ARPE-19 cells.
Collapse
Affiliation(s)
- Feng Chen
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, No. 9, Jinsui Road, Tianhe District, Guangzhou, Guangdong, 510623, China
| | - Xiaoxiao Cai
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 510623, China
| | - Ying Yu
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 510623, China
| |
Collapse
|
3
|
Prieto-López L, Pereiro X, Vecino E. The mechanics of the retina: Müller glia role on retinal extracellular matrix and modelling. Front Med (Lausanne) 2024; 11:1393057. [PMID: 39296899 PMCID: PMC11410058 DOI: 10.3389/fmed.2024.1393057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/13/2024] [Indexed: 09/21/2024] Open
Abstract
The retina is a highly heterogeneous tissue, both cell-wise but also regarding its extracellular matrix (ECM). The stiffness of the ECM is pivotal in retinal development and maturation and has also been associated with the onset and/or progression of numerous retinal pathologies, such as glaucoma, proliferative vitreoretinopathy (PVR), age-related macular degeneration (AMD), epiretinal membrane (ERM) formation or uveitis. Nonetheless, much remains unknown about the biomechanical milieu of the retina, and specifically the role that Müller glia play as principal mechanosensors and major producers of ECM constituents. So far, new approaches need to be developed to further the knowledge in the field of retinal mechanobiology for ECM-target applications to arise. In this review, we focus on the involvement of Müller glia in shaping and altering the retinal ECM under both physiological and pathological conditions and look into various biomaterial options to more accurately replicate the impact of matrix stiffness in vitro.
Collapse
Affiliation(s)
- Laura Prieto-López
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
| | - Xandra Pereiro
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
- Begiker-Ophthalmology Research Group, BioCruces Health Research Institute, Cruces Hospital, Barakaldo, Spain
| | - Elena Vecino
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
- Begiker-Ophthalmology Research Group, BioCruces Health Research Institute, Cruces Hospital, Barakaldo, Spain
| |
Collapse
|
4
|
Zhao Y, Sun B, Fu X, Zuo Z, Qin H, Yao K. YAP in development and disease: Navigating the regulatory landscape from retina to brain. Biomed Pharmacother 2024; 175:116703. [PMID: 38713948 DOI: 10.1016/j.biopha.2024.116703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024] Open
Abstract
The distinctive role of Yes-associated protein (YAP) in the nervous system has attracted widespread attention. This comprehensive review strategically uses the retina as a vantage point, embarking on an extensive exploration of YAP's multifaceted impact from the retina to the brain in development and pathology. Initially, we explore the crucial roles of YAP in embryonic and cerebral development. Our focus then shifts to retinal development, examining in detail YAP's regulatory influence on the development of retinal pigment epithelium (RPE) and retinal progenitor cells (RPCs), and its significant effects on the hierarchical structure and functionality of the retina. We also investigate the essential contributions of YAP in maintaining retinal homeostasis, highlighting its precise regulation of retinal cell proliferation and survival. In terms of retinal-related diseases, we explore the epigenetic connections and pathophysiological regulation of YAP in diabetic retinopathy (DR), glaucoma, and proliferative vitreoretinopathy (PVR). Lastly, we broaden our exploration from the retina to the brain, emphasizing the research paradigm of "retina: a window to the brain." Special focus is given to the emerging studies on YAP in brain disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD), underlining its potential therapeutic value in neurodegenerative disorders and neuroinflammation.
Collapse
Affiliation(s)
- Yaqin Zhao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Bin Sun
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xuefei Fu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zhuan Zuo
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
5
|
Du Y. The Hippo signalling pathway and its impact on eye diseases. J Cell Mol Med 2024; 28:e18300. [PMID: 38613348 PMCID: PMC11015399 DOI: 10.1111/jcmm.18300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/26/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
The Hippo signalling pathway, an evolutionarily conserved kinase cascade, has been shown to be crucial for cell fate determination, homeostasis and tissue regeneration. Recent experimental and clinical studies have demonstrated that the Hippo signalling pathway is involved in the pathophysiology of ocular diseases. This article provides the first systematic review of studies on the regulatory and functional roles of mammalian Hippo signalling systems in eye diseases. More comprehensive studies on this pathway are required for a better understanding of the pathophysiology of eye diseases and the development of effective therapies.
Collapse
Affiliation(s)
- Yuxiang Du
- Precision Medicine Laboratory for Chronic Non‐communicable Diseases of Shandong Province, Institute of Precision MedicineJining Medical UniversityJiningShandongPeople's Republic of China
| |
Collapse
|
6
|
Zhou J, Song Y, Wang X, Li X, Liu C, Tian C, Wang C, Li L, Yan G, Cui H. JTE-013 Alleviates Pulmonary Fibrosis by Affecting the RhoA/YAP Pathway and Mitochondrial Fusion/Fission. Pharmaceuticals (Basel) 2023; 16:1444. [PMID: 37895915 PMCID: PMC10609863 DOI: 10.3390/ph16101444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Pulmonary fibrosis may be due to the proliferation of fibroblasts and the aggregation of extracellular matrix, resulting in the stimulation of inflammation damage, destroying lung tissue structure, seriously affecting the patient's respiratory function, and even leading to death. We investigated the role and mechanism of JTE-013 in attenuating bleomycin (BLM)-induced pulmonary fibrosis. BLM-induced pulmonary fibrosis was established in mice. Type 2 alveolar epithelial cells (MLE-12) were stimulated with sphingosine monophosphate (S1P) in vitro. JTE-013, an S1PR2 (sphingosine 1-phosphate receptor 2) antagonist, and Verteporfin were administered in vivo and in vitro. IL-4, IL-5, TNF-α, and IFN-γ were measured by ELISA. IL-4 and IFN-γ positive cells were detected by flow cytometry. Inhibition of S1PR2 with JTE-013 significantly ameliorated BLM-induced pathological changes and inflammatory cytokine levels. JTE-013 also significantly reduced the expression of RHOA/YAP pathway proteins and mitochondrial fission protein Drp1, apoptosis, and the colocalization of α-SMA with YAP, Drp1, and Tom20, as detected by immunohistochemistry, immunofluorescence staining, TUNEL, and Western blot. In vitro, S1PR2 and YAP knockdown downregulated RHOA/YAP pathway protein expression, Drp1 phosphorylation, and Drp1 translocation, promoted YAP phosphorylation and phenotypic transformation of MFN2, and inhibited the up-regulation of mitochondrial membrane potential, reactive oxygen species production, and cell apoptosis (7.13% vs. 18.14%), protecting the integrity of the mitochondrial dynamics. JTE-013 also inhibited the expression of fibrosis markers α-SMA, MMP-9, and COL1A1, and alleviated the symptoms of pulmonary fibrosis. Conclusively, JTE-013 has great anti-pulmonary fibrosis potential by regulating RHOA/YAP and mitochondrial fusion/fission.
Collapse
Affiliation(s)
- Jiaxu Zhou
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; (J.Z.); (Y.S.); (X.W.); (X.L.); (C.L.); (C.W.); (L.L.)
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji 133002, China;
| | - Yilan Song
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; (J.Z.); (Y.S.); (X.W.); (X.L.); (C.L.); (C.W.); (L.L.)
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, China
| | - Xingmei Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; (J.Z.); (Y.S.); (X.W.); (X.L.); (C.L.); (C.W.); (L.L.)
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji 133002, China;
| | - Xinrui Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; (J.Z.); (Y.S.); (X.W.); (X.L.); (C.L.); (C.W.); (L.L.)
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji 133002, China;
| | - Chang Liu
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; (J.Z.); (Y.S.); (X.W.); (X.L.); (C.L.); (C.W.); (L.L.)
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji 133002, China;
| | - Chenchen Tian
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji 133002, China;
| | - Chongyang Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; (J.Z.); (Y.S.); (X.W.); (X.L.); (C.L.); (C.W.); (L.L.)
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, China
| | - Liangchang Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; (J.Z.); (Y.S.); (X.W.); (X.L.); (C.L.); (C.W.); (L.L.)
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, China
| | - Guanghai Yan
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; (J.Z.); (Y.S.); (X.W.); (X.L.); (C.L.); (C.W.); (L.L.)
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, China
| | - Hong Cui
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, China; (J.Z.); (Y.S.); (X.W.); (X.L.); (C.L.); (C.W.); (L.L.)
- Center of Medical Functional Experiment, Yanbian University Medical College, Yanji 133002, China;
| |
Collapse
|
7
|
Gao AY, Haak AJ, Bakri SJ. In vitro laboratory models of proliferative vitreoretinopathy. Surv Ophthalmol 2023; 68:861-874. [PMID: 37209723 DOI: 10.1016/j.survophthal.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Proliferative vitreoretinopathy (PVR), the most common cause of recurrent retinal detachment, is characterized by the formation and contraction of fibrotic membranes on the surface of the retina. There are no Food and Drug Administration (FDA)-approved drugs to prevent or treat PVR. Therefore, it is necessary to develop accurate in vitro models of the disease that will enable researchers to screen drug candidates and prioritize the most promising candidates for clinical studies. We provide a summary of recent in vitro PVR models, as well as avenues for model improvement. Several in vitro PVR models were identified, including various types of cell cultures. Additionally, novel techniques that have not been used to model PVR were identified, including organoids, hydrogels, and organ-on-a-chip models. Novel ideas for improving in vitro PVR models are highlighted. Researchers may consult this review to help design in vitro models of PVR, which will aid in the development of therapies to treat the disease.
Collapse
Affiliation(s)
- Ashley Y Gao
- Mayo Clinic, Department of Ophthalmology, Rochester, Minnesota, USA
| | - Andrew J Haak
- Mayo Clinic, Department of Physiology and Biomedical Engineering, Rochester, Minnesota, USA
| | - Sophie J Bakri
- Mayo Clinic, Department of Ophthalmology, Rochester, Minnesota, USA.
| |
Collapse
|
8
|
Zhang R, Li B, Li H. Extracellular-Matrix Mechanics Regulate the Ocular Physiological and Pathological Activities. J Ophthalmol 2023; 2023:7626920. [PMID: 37521908 PMCID: PMC10386902 DOI: 10.1155/2023/7626920] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
The extracellular matrix (ECM) is a noncellular structure that plays an indispensable role in a series of cell life activities. Accumulating studies have demonstrated that ECM stiffness, a type of mechanical forces, exerts a pivotal influence on regulating organogenesis, tissue homeostasis, and the occurrence and development of miscellaneous diseases. Nevertheless, the role of ECM stiffness in ophthalmology is rarely discussed. In this review, we focus on describing the important role of ECM stiffness and its composition in multiple ocular structures (including cornea, retina, optic nerve, trabecular reticulum, and vitreous) from a new perspective. The abnormal changes in ECM can trigger physiological and pathological activities of the eye, suggesting that compared with different biochemical factors, the transmission and transduction of force signals triggered by mechanical cues such as ECM stiffness are also universal in different ocular cells. We expect that targeting ECM as a therapeutic approach or designing advanced ECM-based technologies will have a broader application prospect in ophthalmology.
Collapse
Affiliation(s)
- Ran Zhang
- Department of Ophthalmology & Optometry, North Sichuan Medical College, Nanchong 637000, Sichuan, China
- Department of Ophthalmology, Central Hospital of Suining City, Suining 629000, Sichuan, China
| | - Bo Li
- Department of Ophthalmology, Central Hospital of Suining City, Suining 629000, Sichuan, China
| | - Heng Li
- Department of Ophthalmology & Optometry, North Sichuan Medical College, Nanchong 637000, Sichuan, China
- Department of Ophthalmology, Central Hospital of Suining City, Suining 629000, Sichuan, China
| |
Collapse
|
9
|
Experimental Models to Study Epithelial-Mesenchymal Transition in Proliferative Vitreoretinopathy. Int J Mol Sci 2023; 24:ijms24054509. [PMID: 36901938 PMCID: PMC10003383 DOI: 10.3390/ijms24054509] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Proliferative vitreoretinal diseases (PVDs) encompass proliferative vitreoretinopathy (PVR), epiretinal membranes, and proliferative diabetic retinopathy. These vision-threatening diseases are characterized by the development of proliferative membranes above, within and/or below the retina following epithelial-mesenchymal transition (EMT) of the retinal pigment epithelium (RPE) and/or endothelial-mesenchymal transition of endothelial cells. As surgical peeling of PVD membranes remains the sole therapeutic option for patients, development of in vitro and in vivo models has become essential to better understand PVD pathogenesis and identify potential therapeutic targets. The in vitro models range from immortalized cell lines to human pluripotent stem-cell-derived RPE and primary cells subjected to various treatments to induce EMT and mimic PVD. In vivo PVR animal models using rabbit, mouse, rat, and swine have mainly been obtained through surgical means to mimic ocular trauma and retinal detachment, and through intravitreal injection of cells or enzymes to induce EMT and investigate cell proliferation and invasion. This review offers a comprehensive overview of the usefulness, advantages, and limitations of the current models available to investigate EMT in PVD.
Collapse
|
10
|
Zhang S, Ye K, Gao G, Song X, Xu P, Zeng J, Xie B, Zheng D, He L, Ji J, Zhong X. Amniotic Membrane Enhances the Characteristics and Function of Stem Cell-Derived Retinal Pigment Epithelium Sheets by Inhibiting the Epithelial-Mesenchymal Transition. Acta Biomater 2022; 151:183-196. [PMID: 35933105 DOI: 10.1016/j.actbio.2022.07.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022]
Abstract
Human pluripotent stem cell-derived retinal pigment epithelium (iRPE) is an attractive cell source for disease modeling and cell replacement therapy of retinal disorders with RPE defects. However, there are still challenges to develop appropriate culture conditions close to in vivo microenvironment to generate iRPE sheets, which mimic more faithfully the characteristics and functions of the human RPE cells. Here, we developed a simple, novel platform to construct authentic iRPE sheets using human amniotic membrane (hAM) as a natural scaffold. The decellularized hAM (dAM) provided a Bruch's membrane (BM)-like bioscaffold, supported the iRPE growth and enhanced the epithelial features, polarity distribution and functional features of iRPE cells. Importantly, RNA-seq analysis was performed to compare the transcriptomes of iRPE cells cultured on different substrates, which revealed the potential mechanism that dAM supported and promoted iRPE growth was the inhibition of epithelial mesenchymal transition (EMT). The tissue-engineered iRPE sheets survived and kept monolayer when transplanted into the subretinal space of rabbits. All together, our results indicate that the dAM imitating the natural BM allows for engineering authentic human RPE sheets, which will provide valuable biomaterials for disease modeling, drug screening and cell replacement therapy of retinal degenerative diseases. STATEMENT OF SIGNIFICANCE: : Engineered RPE sheets have a great advantage over RPE cell suspension for transplantation as they support RPE growth in an intact monolayer which RPE functions are dependent on. The substrates for RPE culture play a critical role to maintain the physiological functions of the RPE in stem cell therapies for patients with retinal degeneration. In this study, we constructed engineered iRPE sheets on the decellularized human amniotic membrane (dAM) scaffolds, which contributed to enhancing epithelial features, polarity distribution and functional features of iRPE. dAM exhibited the ability of anti-epithelial mesenchymal transition (EMT) to support iRPE growth. Furtherly, the results of transplanted in vivo demonstrated the feasibility of iRPE sheets in retina regenerative therapy. Engineering RPE sheets on dAM is a promising strategy to facilitate the development of iRPE replacement therapy and retinal disease modeling.
Collapse
Affiliation(s)
- Suai Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Ke Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Guanjie Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaojing Song
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Ping Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jingrong Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Bingbing Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Dandan Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Liwen He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
| | - Jianping Ji
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
| | - Xiufeng Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
| |
Collapse
|
11
|
Zhang W, Li J. EGF Receptor Signaling Modulates YAP Activation and Promotes Experimental Proliferative Vitreoretinopathy. Invest Ophthalmol Vis Sci 2022; 63:24. [PMID: 35895037 PMCID: PMC9344224 DOI: 10.1167/iovs.63.8.24] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Both epidermal growth factor receptor (EGFR) and the Yes-associated protein (YAP) signaling pathway are implicated in cell proliferation and differentiation. In this study, we explored whether the formation of proliferative vitreoretinopathy (PVR) depends on the interaction of the EGFR receptor and YAP pathway. Methods We studied the effects of EGFR and YAP activation on retinal fibrosis in a PVR mouse model as well as in knockout mice (conditional deletion of EGFR or YAP specifically in RPE cells). Reversal and knockdown experiments were performed to induce a model of ARPE-19 cells treated with TGF-β2 in vitro. The effect of EGFR/YAP signaling blockade on the PVR-induced cell cycle and TGF-β2-induced ARPE-19 cell activation was determined. Results The EGFR inhibitor erlotinib or conditional deletion of EGFR attenuated YAP activation and decreased the expression of YAP and its downstream target Cyr61 and of connective tissue growth factor in vivo and in vitro. EGFR-PI3K-PDK1 signaling induced by PVR promoted YAP activation and cell cycle progression. Furthermore, activated EGFR signaling bypassed RhoA to increase the protein levels of YAP, C-Myc, CyclinD1, and Bcl-xl. Conclusions Our work highlights that EGFR-PI3K-PDK1-dependent YAP activation plays a crucial role in the formation of PVR. Targeting EGFR and the YAP pathway provides promising therapeutic treatments for PVR.
Collapse
Affiliation(s)
- Wei Zhang
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology Tianjin Medical University, Tianjin, China.,Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Li
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology Tianjin Medical University, Tianjin, China
| |
Collapse
|
12
|
Understanding Drivers of Ocular Fibrosis: Current and Future Therapeutic Perspectives. Int J Mol Sci 2021; 22:ijms222111748. [PMID: 34769176 PMCID: PMC8584003 DOI: 10.3390/ijms222111748] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 01/10/2023] Open
Abstract
Ocular fibrosis leads to severe visual impairment and blindness worldwide, being a major area of unmet need in ophthalmology and medicine. To date, the only available treatments are antimetabolite drugs that have significant potentially blinding side effects, such as tissue damage and infection. There is thus an urgent need to identify novel targets to prevent/treat scarring and postsurgical fibrosis in the eye. In this review, the latest progress in biological mechanisms underlying ocular fibrosis are discussed. We also summarize the current knowledge on preclinical studies based on viral and non-viral gene therapy, as well as chemical inhibitors, for targeting TGFβ or downstream effectors in fibrotic disorders of the eye. Moreover, the role of angiogenetic and biomechanical factors in ocular fibrosis is discussed, focusing on related preclinical treatment approaches. Moreover, we describe available evidence on clinical studies investigating the use of therapies targeting TGFβ-dependent pathways, angiogenetic factors, and biomechanical factors, alone or in combination with other strategies, in ocular tissue fibrosis. Finally, the recent progress in cell-based therapies for treating fibrotic eye disorders is discussed. The increasing knowledge of these disorders in the eye and the promising results from testing of novel targeted therapies could offer viable perspectives for translation into clinical use.
Collapse
|