1
|
Zhu H, Li B, Huang T, Wang B, Li S, Yu K, Cai L, Ye Y, Chen S, Zhu H, Xu J, Lu Q, Ji L. Update in the molecular mechanism and biomarkers of diabetic retinopathy. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167758. [PMID: 40048937 DOI: 10.1016/j.bbadis.2025.167758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/27/2025] [Accepted: 02/25/2025] [Indexed: 04/15/2025]
Abstract
Diabetic retinopathy (DR) is a serious complication of diabetes caused by long-term hyperglycemia that leads to microvascular and neuronal damage in the retina. The molecular mechanisms of DR involve oxidative stress, inflammatory responses, neurodegenerative changes, and vascular dysfunction triggered by hyperglycemia. Oxidative stress activates multiple metabolic pathways, such as the polyol, hexosamine, and protein kinase C (PKC) pathways, resulting in the production of, which in turn promote the formation of advanced glycation end products (AGEs). These pathways exacerbate vascular endothelial damage and the release of inflammatory factors, activating inflammatory signaling pathways such as the NF-κB pathway, leading to retinal cell damage and apoptosis. Additionally, DR involves neurodegenerative changes, including the activation of glial cells, neuronal dysfunction, and cell death. Research on the multiomics molecular markers of DR has revealed complex mechanisms at the genetic, epigenetic, and transcriptional levels. Genome-wide association studies (GWASs) have identified multiple genetic loci associated with DR that are involved in metabolic and inflammatory pathways. Noncoding RNAs, such as miRNAs, circRNAs, and lncRNAs, participate in the development of DR by regulating gene expression. Proteomic, metabolomic and lipidomic analyses have revealed specific proteins, metabolites and lipid changes associated with DR, providing potential biomarkers for the early diagnosis and treatment of this disease. This review provides a comprehensive perspective for understanding the molecular network of DR and facilitates the exploration of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Hui Zhu
- Department of Ophthalmology, the Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, China
| | - Bingqi Li
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Tao Huang
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Bin Wang
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Shuoyu Li
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Kuai Yu
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Liwei Cai
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yuxin Ye
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Siyuan Chen
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Haotian Zhu
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jin Xu
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Qinkang Lu
- Department of Ophthalmology, the Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, China.
| | - Lindan Ji
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
2
|
Zheng L, Tang R, Ahmad F, Shi L, Chen X, Li J. hsa_circ_0081343 interacts with Rbm8a to inhibit NLRP3-mediated pyroptosis via the PI3K/AKT/HIF-1α pathways. Placenta 2025; 165:136-147. [PMID: 40267529 DOI: 10.1016/j.placenta.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/01/2025] [Accepted: 04/06/2025] [Indexed: 04/25/2025]
Abstract
INTRODUCTION Pyroptosis at the maternal-fetal interface plays an important role in fetal growth restriction development. hsa_circ_0081343 can be an RNA-binding protein "sponge" regulating Rbm8a nuclear transportation through binding to Rbm8a. This study aimed to elucidate the regulatory mechanism underlying the interaction between hsa_circ_0081343 and Rbm8a in the FGR pyroptosis pathway. METHODS The expression levels of PI3K/AKT pathway-related components (PI3K, AKT, p-PI3K, and p-AKT), HIF-1α, NLRP3, and proinflammatory cytokines (IL-1β, IL-6, and TNF-α) were measured using RT-qPCR, Western blot, and ELISA. RNA-seq and ChIP-seq were used to identify the downstream signaling pathways of hsa_circ_0081343 and Rbm8a in HTR8-SVneo. RNA pull-down assays, Western blot, and RT-qPCR were performed to investigate the interactions between hsa_circ_0081343 and Rbm8a. RESULT The placenta of FGR exhibited considerable upregulation of NLRP3 compared to normal controls. Overexpression of hsa_circ_0081343 inhibited pyroptosis and subsequent inflammatory responses in HTR-8/SVneo cells, and these effects were reversed by Rbm8a knockdown. The integration of RNA-seq and ChIP-seq showed that the PI3K/AKT and HIF-1α pathways were the targets of hsa_circ_0081343 and Rbm8a. hsa_circ_0081343 upregulation and Rbm8a downregulation was accompanied by the inhibition of the PI3K/AKT/HIF-1α signaling pathway, whereas hsa_circ_0081343 knockdown of and Rbm8a overexpression led to the opposite effect. Moreover, Rbm8a binds to hsa_circ_0081343, flanking the intron sequence. Rbm8a overexpression significantly decreased hsa_circ_0081343 expression. CONCLUSION These results indicated that the interaction between hsa_circ_0081343 and Rbm8a regulates NLRP3-mediated pyroptosis through the PI3K/AKT/HIF-1α signaling pathway. Furthermore, Rbm8a binds to hsa_circ_0081343, flanking the intron sequence and modulating hsa_circ_0081343 formation. Our results provide a new direction for further exploration of the regulatory mechanisms of circRNA-RBPs in the pathogenesis of FGR.
Collapse
Affiliation(s)
- Linmei Zheng
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China; Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Rong Tang
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Fiaz Ahmad
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University (NPU), Xi'an, 710072, Shaanxi, China
| | - Lei Shi
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Xiaoju Chen
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China.
| | - Jing Li
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
3
|
He S, Gu C, Meng C, Cai C, Lai D, Qiu Q. CircTHADA regulates endothelial cell pyroptosis in diabetic retinopathy through miR-494-3p/CASP1/GSDMD-N/IL-1β pathway. Exp Cell Res 2025; 447:114496. [PMID: 40090540 DOI: 10.1016/j.yexcr.2025.114496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/18/2025]
Abstract
Our study aimed to elucidate the mechanism by which circTHADA competitively adsorbs miR-494-3p to regulate CASP1-mediated endothelial cell (EC) pyroptosis in diabetic retinopathy (DR). To be specific, we used high glucose (HG)-induced human retinal microvascular endothelial cells (HRMECs) as DR cell models and streptozotocin (STZ)-treated mice as DR mouse models. The expression levels of circTHADA, miR-494-3p, CASP1, NLRP3, GSDMD-N and IL-1β were detected and flow cytrometry was applied to measure cell pyroptosis rate and dual luciferase reporter assays were utilized to determine the direct binding sites. As a result, exacerbated EC pyroptosis in DR was detected in DR cell and mouse models. Based on differentially expressed circRNA profiles by microarray and experimental verification, circTHADA was filtered and identified to regulate CASP1-mediated EC pyroptosis. miR-494-3p was then proven to be involved in circTHADA-mediated ceRNA network by bioinformatics analysis and experimental verification. Further gain- and loss-of-function experiments and rescue experiments revealed the function of the circTHADA/miR-494-3p/CASP1 axis in pyroptosis.
Collapse
Affiliation(s)
- Shuai He
- School of Life Sciences, Westlake University, Westlake Laboratory of Life Sciences and Biomedicine, Institute of Basic Medical Science, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, PR China
| | - Chufeng Gu
- Department of Ophthalmology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, PR China; Shengli Clinical College of Fujian Medical University, Fuzhou, Fujian, PR China.
| | - Chunren Meng
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China
| | - Chunyang Cai
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Dongwei Lai
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Qinghua Qiu
- Department of Ophthalmology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
4
|
Zuo Z, Li N, Zhang Q, Liu Q, Qin H, Yao K. The Role of Non-coding RNAs in Diabetic Retinopathy: Mechanistic Insights and Therapeutic Potential. Mol Neurobiol 2025:10.1007/s12035-025-04863-z. [PMID: 40164888 DOI: 10.1007/s12035-025-04863-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 03/17/2025] [Indexed: 04/02/2025]
Abstract
Diabetic retinopathy (DR) is the most common ocular complication in diabetic patients, accounting for a significant proportion of diabetes-related eye diseases. Approximately one-third of diabetic patients worldwide are affected by DR. Microvascular diseases, which can lead to severe visual impairment or even blindness, pose a significant threat to the quality of life and visual function of patients. However, the underlying cellular mechanisms of DR remain unclear. Recent studies have discovered that, apart from traditional pathological mechanisms, epigenetic mechanisms may alter key biological processes through gene expression dysregulation, thereby promoting the onset and progression of DR. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), play crucial roles in gene regulation and disease pathways. Taking this into account, exploring innovative therapies and developing effective management strategies is crucial. This review focuses on the latest research on ncRNAs in DR, emphasizing their regulatory functions in cell proliferation, apoptosis, and inflammatory responses, and discusses the potential mechanisms by which ncRNAs accelerate disease progression. Additionally, the article highlights the potential role of exosome-associated ncRNAs in DR, proposing their use as early diagnostic markers and targeted therapeutic tools. By integrating current research, this review aims to provide guidance for future studies and promote the advancement of precision diagnostics and therapeutic efficacy in DR.
Collapse
Affiliation(s)
- Zhuan Zuo
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Ni Li
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Qian Zhang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Qin Liu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
5
|
Mu SQ, Lin JJ, Wang Y, Yang LY, Wang S, Wang ZY, Zhao AQ, Luo WJ, Dong ZQ, Cao YG, Jiang ZA, Wang SF, Cao SH, Meng L, Li Y, Yang SY, Sun SG. Hsa_circ_0001304 promotes vascular neointimal hyperplasia accompanied by autophagy activation. Commun Biol 2025; 8:146. [PMID: 39881153 PMCID: PMC11779959 DOI: 10.1038/s42003-025-07580-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025] Open
Abstract
Aberrant autophagy in vascular smooth muscle cells (VSMCs) is associated with the progression of vascular remodeling diseases caused by neointimal hyperplasia. Platelet-derived growth factor-BB (PDGF-BB)-induced vascular remodeling is accompanied by autophagy activation, however, the involvement of circular RNAs (circRNAs) remains unclear. Here, we show the role of PDGF-BB-regulated hsa_circ_0001304 (circ-1304) in neointimal hyperplasia and its potential involvement in VSMC autophagy, while also elucidating the potential mechanisms. Functionally, overexpression of circ-1304 promotes VSMC autophagy in vitro and exacerbates neointimal hyperplasia in vivo, and this exacerbation is accompanied by autophagy activation. Mechanistically, circ-1304 acts as a sponge for miR-636, resulting in increased protein levels of YTHDF2. Subsequently, the YTHDF2 protein promotes the degradation of mTOR mRNA by binding to the latter's m6A modification sites. We demonstrate that PDGF-BB activates VSMC autophagy via circRNA regulation. Therefore, circ-1304 may serve as a potential therapeutic target for vascular remodeling diseases.
Collapse
Affiliation(s)
- Shi-Qing Mu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
- Shijiazhuang Medical College, Shijiazhuang, 050500, China
| | - Jia-Jie Lin
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
- School of Basic Medicine, Jiangxi Provincial Key Laboratory of Tissue Engineering, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
| | - Yu Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
- Baoding Key Laboratory of Pediatric Hematology Oncology, Baoding Hospital of Beijing Children's Hospital, Capital Medical University, Baoding, 07100, China
| | - Li-Yun Yang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Sen Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Zhao-Yi Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - An-Qi Zhao
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Wen-Jun Luo
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Zi-Qi Dong
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yu-Guang Cao
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Ze-An Jiang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Si-Fan Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Shan-Hu Cao
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Li Meng
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yang Li
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, China
| | - Shu-Yan Yang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Shao-Guang Sun
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
6
|
Feng S, Zhang Q, Liu Q, Huang C, Zhang H, Wang F, Zhu Y, Jian Q, Chen X, Jiang Q, Yan B. N 6-Methyladenosine Demethylase FTO Controls Macrophage Homeostasis in Diabetic Vasculopathy. Diabetes 2025; 74:82-95. [PMID: 39446524 DOI: 10.2337/db24-0691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
Diabetic vasculopathy, encompassing complications such as diabetic retinopathy, represents a significant source of morbidity, with inflammation playing a pivotal role in the progression of these complications. This study investigates the influence of N6-methyladenosine demethylase (m6A) modification and the m6A demethylase fat mass and obesity-associated (FTO) protein on macrophage polarization and its subsequent effects on diabetic microvasculopathy. We found that diabetes induces a shift in macrophage polarization toward a proinflammatory M1 phenotype, which is associated with a reduction in m6A modification levels. Notably, FTO emerges as a critical regulator of m6A under diabetic conditions. In vitro experiments reveal that FTO not only modulates macrophage polarization but also mediates their interactions with vascular endothelial cells. In vivo experiments demonstrate that FTO deficiency exacerbates retinal inflammation and microvascular dysfunction in diabetic retinas. Mechanistically, FTO stabilizes mRNA through an m6A-YTHDF2-dependent pathway, thereby activating the PI3K/AKT signaling cascade. Collectively, these findings position FTO as a promising therapeutic target for the management of diabetic vascular complications. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Siguo Feng
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Qiuyang Zhang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Qing Liu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Chang Huang
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Huiying Zhang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Fengsheng Wang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Yue Zhu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Qizhi Jian
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Biao Yan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Xie J, Jiang J, Wang X, Zuo X, Jia Y. RNA binding protein ELAVL1-mediated USP33 stabilizes HIF1A to promote pathological proliferation, migration and angiogenesis of RECs. Int Ophthalmol 2024; 44:393. [PMID: 39320536 DOI: 10.1007/s10792-024-03311-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/08/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Dysfunction of retinal vascularization plays pathogenic roles in retinopathy of prematurity (ROP). Hypoxia-inducible factor 1 alpha (HIF1A) is activated by hypoxia and contributes to ROP progression. Herein, we clarified the mechanism underlying HIF1A activation in human retinal vascular endothelial cells (HRECs) under hypoxia. METHODS Protein expression was assayed by immunoblot analysis. Cell migration, microtubule formation, invasion, proliferation, and viability were detected by wound-healing, tube formation, transwell, EdU, and CCK-8 assays, respectively. Bioinformatics was used to predict the deubiquitinase-HIF1A interactions and RNA binding proteins (RBPs) bound to USP33. The impact of USP33 on HIF1A deubiquitination was validated by immunoprecipitation (IP) assay. RNA stability analysis was performed with actinomycin D (Act D) treatment. The ELAVL1/USP33 interaction was assessed by RNA immunoprecipitation experiment. RESULTS In hypoxia-exposed HRECs, HIF1A and USP33 protein levels were upregulated. Deficiency of HIF1A or USP33 suppressed cell migration, proliferation and microtubule formation of hypoxia-exposed HRECs. Mechanistically, USP33 deficiency led to an elevation in HIF1A ubiquitination and degradation. USP33 deficiency reduced HIF1A protein levels to suppress the proliferation and microtubule formation of hypoxia-induced HRECs. Moreover, the RBP ELAVL1 stabilized USP33 mRNA to increase USP33 protein levels. ELAVL1 decrease repressed the proliferation and microtubule formation of hypoxia-induced HRECs by reducing USP33. CONCLUSION Our study identifies a novel ELAVL1/USP33/HIF1A regulatory cascade with the ability to affect hypoxia-induced pathological proliferation, angiogenesis, and migration in HRECs.
Collapse
Affiliation(s)
- Jing Xie
- Department of Ophthalmology, Xingtai People's Hospital, No. 818 Xiangdu North Road, Xiangdu District, Xingtai, 054001, Hebei, China.
| | - Jun Jiang
- Department of Urology, The First Affiliated Hospital of Xingtai Medical College, Xingtai City, 054001, Hebei, China
| | - Xiuxian Wang
- Department of Ophthalmology, Xingtai People's Hospital, No. 818 Xiangdu North Road, Xiangdu District, Xingtai, 054001, Hebei, China
| | - Xiangrong Zuo
- Department of Ophthalmology, Xingtai People's Hospital, No. 818 Xiangdu North Road, Xiangdu District, Xingtai, 054001, Hebei, China
| | - Yuhong Jia
- Department of Ophthalmology, Xingtai People's Hospital, No. 818 Xiangdu North Road, Xiangdu District, Xingtai, 054001, Hebei, China
| |
Collapse
|
8
|
Wang Y, Zou J, Zhou H. N6-methyladenine RNA methylation epigenetic modification and diabetic microvascular complications. Front Endocrinol (Lausanne) 2024; 15:1462146. [PMID: 39296713 PMCID: PMC11408340 DOI: 10.3389/fendo.2024.1462146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
N6-methyladensine (m6A) has been identified as the best-characterized and the most abundant mRNA modification in eukaryotes. It can be dynamically regulated, removed, and recognized by its specific cellular components (respectively called "writers," "erasers," "readers") and have become a hot research field in a variety of biological processes and diseases. Currently, the underlying molecular mechanisms of m6A epigenetic modification in diabetes mellitus (DM) and diabetic microvascular complications have not been extensively clarified. In this review, we focus on the effects and possible mechanisms of m6A as possible potential biomarkers and therapeutic targets in the treatment of DM and diabetic microvascular complications.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jiayun Zou
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hua Zhou
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Chen K, Li WD, Li XQ. The role of m6A in angiogenesis and vascular diseases. iScience 2024; 27:110082. [PMID: 39055919 PMCID: PMC11269316 DOI: 10.1016/j.isci.2024.110082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
Angiogenesis, whether physiological or pathological, plays a pivotal role in various physiological and disease conditions. This intricate process relies on a complex and meticulously orchestrated signal transduction network that connects endothelial cells, their associated parietal cells (VSMCs and pericytes), and various other cell types, including immune cells. Given the significance of m6A and its connection to angiogenesis and vascular disease, researchers must adopt a comprehensive and ongoing approach to their investigations. This study aims to ascertain whether a common key mechanism of m6A exists in angiogenesis and vascular diseases and to elucidate the potential application of m6A in treating vascular diseases.
Collapse
Affiliation(s)
- Ke Chen
- Department of Vascular Surgery, The Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Wen-Dong Li
- Department of Vascular Surgery, The Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| | - Xiao-Qiang Li
- Department of Vascular Surgery, The Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
10
|
Lin Y, Ke S, Ye W, Xie B, Huang Z. Non-Apoptotic Programmed Cell Death as Targets for Diabetic Retinal Neurodegeneration. Pharmaceuticals (Basel) 2024; 17:837. [PMID: 39065688 PMCID: PMC11279440 DOI: 10.3390/ph17070837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetic retinopathy (DR) remains the leading cause of blindness among the global working-age population. Emerging evidence underscores the significance of diabetic retinal neurodegeneration (DRN) as a pivotal biomarker in the progression of vasculopathy. Inflammation, oxidative stress, neural cell death, and the reduction in neurotrophic factors are the key determinants in the pathophysiology of DRN. Non-apoptotic programmed cell death (PCD) plays a crucial role in regulating stress response, inflammation, and disease management. Therapeutic modalities targeting PCD have shown promising potential for mitigating DRN. In this review, we highlight recent advances in identifying the role of various PCD types in DRN, with specific emphasis on necroptosis, pyroptosis, ferroptosis, parthanatos, and the more recently characterized PANoptosis. In addition, the therapeutic agents aimed at the regulation of PCD for addressing DRN are discussed.
Collapse
Affiliation(s)
- Yingjia Lin
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
- Fifth Clinical Institute of Shantou University Medical College, Shantou 515041, China
| | - Shuping Ke
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
- Fifth Clinical Institute of Shantou University Medical College, Shantou 515041, China
| | - Weiqing Ye
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
- Fifth Clinical Institute of Shantou University Medical College, Shantou 515041, China
| | - Biyao Xie
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
- Fifth Clinical Institute of Shantou University Medical College, Shantou 515041, China
| | - Zijing Huang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
| |
Collapse
|
11
|
Yu S, Li C, Lu X, Han Z, Li Y, Yuan X, Guo D. The m 6A-ncRNAs axis in diabetes complications: novel mechanism and therapeutic potential. Front Endocrinol (Lausanne) 2024; 15:1426380. [PMID: 38978623 PMCID: PMC11228181 DOI: 10.3389/fendo.2024.1426380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
Diabetes, a multifaceted metabolic disorder, poses a significant global health burden with its increasing prevalence and associated complications, such as diabetic nephropathy, diabetic retinopathy, diabetic cardiomyopathy, and diabetic angiopathy. Recent studies have highlighted the intricate interplay between N6-methyladenosine (m6A) and non-coding RNAs (ncRNAs) in key pathways implicated in these diabetes complications, like cell apoptosis, oxidative stress, and inflammation. Thus, understanding the mechanistic insights into how m6A dysregulation impacts the expression and function of ncRNAs opens new avenues for therapeutic interventions targeting the m6A-ncRNAs axis in diabetes complications. This review explores the regulatory roles of m6A modifications and ncRNAs, and stresses the role of the m6A-ncRNA axis in diabetes complications, providing a therapeutic potential for these diseases.
Collapse
Affiliation(s)
- Siming Yu
- Department of Nephrology II, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chunsheng Li
- School of Graduate Studies, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinxin Lu
- School of Graduate Studies, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zehui Han
- School of Graduate Studies, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yue Li
- School of Graduate Studies, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xingxing Yuan
- School of Graduate Studies, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Dandan Guo
- Department of Cardiology, Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
12
|
Huang H, Zeng J, Kuang X, He F, Yan J, Li B, Liu W, Shen H. Transcriptional patterns of human retinal pigment epithelial cells under protracted high glucose. Mol Biol Rep 2024; 51:477. [PMID: 38573426 DOI: 10.1007/s11033-024-09479-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND The retinal pigment epithelium (RPE) is essential for retinal homeostasis. Comprehensively exploring the transcriptional patterns of diabetic human RPE promotes the understanding of diabetic retinopathy (DR). METHODS AND RESULTS A total of 4125 differentially expressed genes (DEGs) were screened out from the human primary RPE cells subjected to prolonged high glucose (HG). The subsequent bioinformatics analysis is divided into 3 steps. In Step 1, 21 genes were revealed by intersecting the enriched genes from the KEGG, WIKI, and Reactome databases. In Step 2, WGCNA was applied and intersected with the DEGs. Further intersection based on the enrichments with the GO biological processes, GO cellular components, and GO molecular functions databases screened out 12 candidate genes. In Step 3, 13 genes were found to be simultaneously up-regulated in the DEGs and a GEO dataset involving human diabetic retinal tissues. VEGFA and ERN1 were the 2 starred genes finally screened out by overlapping the 3 Steps. CONCLUSION In this study, multiple genes were identified as crucial in the pathological process of RPE under protracted HG, providing potential candidates for future researches on DR. The current study highlights the importance of RPE in DR pathogenesis.
Collapse
Affiliation(s)
- Hao Huang
- Department of Ophthalmology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, 116 South Changjiang Road, Zhuzhou, 412000, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Jingshu Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Xielan Kuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, 510000, China
- Biobank of Eye, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, 54 Xianlie Road, Guangzhou, 510000, China
| | - Fan He
- Amass Ophthalmology, Guangzhou, 510000, China
| | - Jianjun Yan
- Department of Ophthalmology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, 116 South Changjiang Road, Zhuzhou, 412000, China
| | - Bowen Li
- Eye Center of Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Wei Liu
- Department of Ophthalmology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, 116 South Changjiang Road, Zhuzhou, 412000, China.
| | - Huangxuan Shen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, 510000, China.
- Biobank of Eye, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, 54 Xianlie Road, Guangzhou, 510000, China.
| |
Collapse
|
13
|
Pang H, Huang G, Xie Z, Zhou Z. The role of regulated necrosis in diabetes and its complications. J Mol Med (Berl) 2024; 102:495-505. [PMID: 38393662 DOI: 10.1007/s00109-024-02421-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/21/2023] [Accepted: 01/16/2024] [Indexed: 02/25/2024]
Abstract
Morphologically, cell death can be divided into apoptosis and necrosis. Apoptosis, which is a type of regulated cell death, is well tolerated by the immune system and is responsible for hemostasis and cellular turnover under physiological conditions. In contrast, necrosis is defined as a form of passive cell death that leads to a dramatic inflammatory response (also referred to as necroinflammation) and causes organ dysfunction under pathological conditions. Recently, a novel form of cell death named regulated necrosis (such as necroptosis, pyroptosis, and ferroptosis) was discovered. Distinct from apoptosis, regulated necrosis is modulated by multiple internal or external factors, but meanwhile, it results in inflammation and immune response. Accumulating evidence has indicated that regulated necrosis is associated with multiple diseases, including diabetes. Diabetes is characterized by hyperglycemia caused by insulin deficiency and/or insulin resistance, and long-term high glucose leads to various diabetes-related complications. Here, we summarize the mechanisms of necroptosis, pyroptosis, and ferroptosis, and introduce recent advances in characterizing the associations between these three types of regulated necrosis and diabetes and its complications.
Collapse
Affiliation(s)
- Haipeng Pang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Gan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
14
|
Ye D, Zhang Y, Zhang B, Liu J, Wei T, Lu S. The regulatory role of m 6A methylation modification in metabolic syndrome pathogenesis and progression. Front Physiol 2024; 15:1271874. [PMID: 38562618 PMCID: PMC10984216 DOI: 10.3389/fphys.2024.1271874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Metabolic syndromes are characterized by various complications caused by disrupted glucose and lipid metabolism, which are major factors affecting the health of a population. However, existing diagnostic and treatment strategies have limitations, such as the lack of early diagnostic and therapeutic approaches, variability in patient responses to treatment, and cost-effectiveness. Therefore, developing alternative solutions for metabolic syndromes is crucial. N6-methyladenosine (m6A) is one of the most abundant modifications that determine the fate of RNA. m6A modifications are closely associated with metabolic syndrome development and present novel prospects for clinical applications. Aberrant m6A modifications have been detected during inflammatory infiltration, apoptosis, autophagy, iron sagging, necrosis, and scorching during metabolic syndrome pathogenesis and progression. However, few reviews have systematically described the correlation between m6A modifications and these factors concerning metabolic syndrome pathogenesis and progression. This study summarizes the m6A methylation regulators and their roles in metabolic syndrome development, highlighting the potential of m6A modification as a biomarker in metabolic disorders.
Collapse
Affiliation(s)
- Diwen Ye
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| | - Yongjiao Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| | - Bingyang Zhang
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| | - Junjun Liu
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| | - Tianshu Wei
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| | - Sumei Lu
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
15
|
Feng X, Yang X, Zhong Y, Cheng X. The role of ncRNAs-mediated pyroptosis in diabetes and its vascular complications. Cell Biochem Funct 2024; 42:e3968. [PMID: 38439590 DOI: 10.1002/cbf.3968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024]
Abstract
Over the past decade, the prevalence of diabetes has increased significantly worldwide, leading to an increase in vascular complications of diabetes (VCD), such as diabetic cardiomyopathy (DCM), diabetic nephropathy (DN), and diabetic retinopathy (DR). Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), long Noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), play a key role in cellular processes, including the pathophysiology of diabetes and VCD via pyroptosis. ncRNAs (e.g., miR-17, lnc-MEG3, and lnc-KCNQ1OT1) can regulate pyroptosis in pancreatic β cells. Some ncRNAs are involved in VCD progression. For example, miR-21, lnc-KCNQ1OT1, lnc-GAS5, and lnc-MALAT1 were reported in DN and DCM, and lnc-MIAT was identified in DCM and DR. Herein, this review aimed to summarize recent research findings related to ncRNAs-mediated pyroptosis at the onset and progression of diabetes and VCD.
Collapse
Affiliation(s)
- Xinyao Feng
- Hunan Key laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaoxu Yang
- Hunan Key laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Yancheng Zhong
- Hunan Key laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Xihua Cheng
- Hunan Key laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
16
|
Huang R, Sun M, Wang W, Yu X, Liu F. YTHDF2 alleviates microglia activation via promoting circHIPK2 degradation. J Neuroimmunol 2024; 387:578265. [PMID: 38147784 DOI: 10.1016/j.jneuroim.2023.578265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/28/2023]
Abstract
Microglial activation is a common cellular dysfunction in central nervous system inflammation, accompanied by abnormal expression of circular RNAs (circRNAs). YTHDF2, a N6-methyladenosine (m6A) reader, is known as a key element in RNA degradation. Here, lipolysaccharide induced microglia activation in mouse cortex and BV2 cells, accompanied by the decreased YTHDF2 and elevated circHIPK2. YTHDF2 overexpression or circHIPK2 knockdown in BV2 microglia inhibited the expressions of iNOS protein, IL-1β mRNA and IL-6 mRNA. Subsequent experiments revealed that YTHDF2 facilitated circHIPK2 degradation, thereby alleviating microglia activation. These findings suggest that YTHDF2 overexpression could serve as a therapeutic approach for inhibiting microglia activation.
Collapse
Affiliation(s)
- Rongrong Huang
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Ming Sun
- Department of Ultrasound, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Weiwei Wang
- Department of Pathology, Qingdao Eighth People's Hospital, Qingdao 266100, China
| | - Xiaoyu Yu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China.
| | - Fan Liu
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong 226001, China.
| |
Collapse
|
17
|
Chen X, Wang Y, Wang JN, Zhang YC, Zhang YR, Sun RX, Qin B, Dai YX, Zhu HJ, Zhao JX, Zhang WW, Ji JD, Yuan ST, Shen QD, Liu QH. Lactylation-driven FTO targets CDK2 to aggravate microvascular anomalies in diabetic retinopathy. EMBO Mol Med 2024; 16:294-318. [PMID: 38297099 PMCID: PMC10897304 DOI: 10.1038/s44321-024-00025-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/10/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
Diabetic retinopathy (DR) is a leading cause of irreversible vision loss in working-age populations. Fat mass and obesity-associated protein (FTO) is an N6-methyladenosine (m6A) demethylase that demethylates RNAs involved in energy homeostasis, though its influence on DR is not well studied. Herein, we detected elevated FTO expression in vitreous fibrovascular membranes of patients with proliferative DR. FTO promoted cell cycle progression and tip cell formation of endothelial cells (ECs) to facilitate angiogenesis in vitro, in mice, and in zebrafish. FTO also regulated EC-pericyte crosstalk to trigger diabetic microvascular leakage, and mediated EC-microglia interactions to induce retinal inflammation and neurodegeneration in vivo and in vitro. Mechanistically, FTO affected EC features via modulating CDK2 mRNA stability in an m6A-YTHDF2-dependent manner. FTO up-regulation under diabetic conditions was driven by lactate-mediated histone lactylation. FB23-2, an inhibitor to FTO's m6A demethylase activity, suppressed angiogenic phenotypes in vitro. To allow for systemic administration, we developed a nanoplatform encapsulating FB23-2 and confirmed its targeting and therapeutic efficiency in mice. Collectively, our study demonstrates that FTO is important for EC function and retinal homeostasis in DR, and warrants further investigation as a therapeutic target for DR patients.
Collapse
Affiliation(s)
- Xue Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China.
| | - Ying Wang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jia-Nan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yi-Chen Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Ye-Ran Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Ru-Xu Sun
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Bing Qin
- Department of Ophthalmology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China
| | - Yuan-Xin Dai
- Department of Polymer Science and Engineering and Key Laboratory of High-Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Hong-Jing Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jin-Xiang Zhao
- Department of Ophthalmology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, China
| | - Wei-Wei Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jiang-Dong Ji
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Song-Tao Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Qun-Dong Shen
- Department of Polymer Science and Engineering and Key Laboratory of High-Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Qing-Huai Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
18
|
Li B, Wang Z, Zhou H, Zou J, Yoshida S, Zhou Y. N6-methyladenosine methylation in ophthalmic diseases: From mechanisms to potential applications. Heliyon 2024; 10:e23668. [PMID: 38192819 PMCID: PMC10772099 DOI: 10.1016/j.heliyon.2023.e23668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/23/2023] [Accepted: 12/09/2023] [Indexed: 01/10/2024] Open
Abstract
N6-methyladenosine (m6A) modification, as the most common modification method in eukaryotes, is widely involved in numerous physiological and pathological processes, such as embryonic development, malignancy, immune regulation, and premature aging. Under pathological conditions of ocular diseases, changes in m6A modification and its metabolism can be detected in aqueous and vitreous humor. At the same time, an increasing number of studies showed that m6A modification is involved in the normal development of eye structures and the occurrence and progress of many ophthalmic diseases, especially ocular neovascular diseases, such as diabetic retinopathy, age-related macular degeneration, and melanoma. In this review, we summarized the latest progress regarding m6A modification in ophthalmic diseases, changes in m6A modification-related enzymes in various pathological states and their upstream and downstream regulatory networks, provided new prospects for m6A modification in ophthalmic diseases and new ideas for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Zicong Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Haixiang Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jingling Zou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
19
|
Park SY, Kang HM, Park G, Oh JW, Choi YW. OGD/R-induced ferroptosis and pyroptosis in retinal pigment epithelium cells: Role of PLD1 and PLD2 modulation. Cell Biochem Funct 2023; 41:1162-1173. [PMID: 37691020 DOI: 10.1002/cbf.3848] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 09/12/2023]
Abstract
This study investigated the role of phospholipase D (PLD) in retinal ischemia-reperfusion (I/R) injury using an oxygen-glucose deprivation/reperfusion (OGD/R) model commonly used in retinal I/R injury research. To create an in vitro cellular I/R model, pharmacological inhibitors and small interfering RNA (siRNA) were used to target PLD1 and PLD2 in retinal pigment epithelial (RPE) cells. Treatment with PLD inhibitors and siRNA reduced reactive oxygen species (ROS) and malondialdehyde (MDA) induced by OGD/R in RPE cells and increased the levels of superoxide dismutase (SOD) and glutathione (GSH), indicating a reduction in oxidative damage and improvement in the antioxidant system. Next, we showed that inhibiting PLD1 or PLD2 reduced intracellular iron levels and lipid peroxidation, which are critical factors in ferroptosis. Additionally, PLD1 and PLD2 modulated the expression of proteins involved in the regulation of ferroptosis, including GPX4, SLC7A11, FTH1, and ACSL4. We also investigated the roles of PLD1 and PLD2 in preventing pyroptosis, another form of programmed cell death associated with inflammation. Our study found that OGD/R significantly increased the production of pro-inflammatory cytokines and activated caspase-1, NLRP3, ASC, cleaved-caspase 1 (C-caspase-1), and GSDMD-N in RPE cells, indicating pyroptosis induction. However, PLD1 and PLD2 inhibition or knockdown significantly inhibited the production of pro-inflammatory cytokines and activation of the NLRP3 inflammasome, Taken together, our findings support the hypothesis that the PLD signaling pathway plays a key role in OGD/R-induced ferroptosis and pyroptosis induction and may be a potential therapeutic target for preventing or treating retinal dysfunction and degeneration.
Collapse
Affiliation(s)
- Sun Young Park
- Bio-IT Fusion Technology Research Institute, Pusan National University, Geumjeong-gu, Busan, Republic of Korea
| | - He Mi Kang
- Department of Horticultural Bioscience, Pusan National University, Miryang, Gyeongsangnam-do, Republic of Korea
| | - Geuntae Park
- Department of Nanomaterials Engineering, Pusan National University, Geumjeong-gu, Busan, Republic of Korea
| | - Jin-Woo Oh
- Department of Nanomaterials Engineering, Pusan National University, Geumjeong-gu, Busan, Republic of Korea
| | - Young-Whan Choi
- Bio-IT Fusion Technology Research Institute, Pusan National University, Geumjeong-gu, Busan, Republic of Korea
| |
Collapse
|
20
|
Cao H, Hou C. Cell Division Control Protein 42 Facilitates Diabetic Retinopathy Progression by Activating the MEK/ERK Pathway. TOHOKU J EXP MED 2023; 261:211-219. [PMID: 37635064 DOI: 10.1620/tjem.2023.j068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Cell division control protein 42 (CDC42) modulates insulin secretion and angiogenesis to participate in the pathology of diabetic complications and retinal vascular-associated diseases. This study intended to explore the role of CDC42 in the progression of diabetic retinopathy, and the underlying mechanism. Human retinal microvascular endothelial cells (hRMECs) were cultured in 5.5 mM glucose (normal glucose) or 25 mM glucose (high glucose; HG) medium, respectively. CDC42 overexpression plasmid and small interference RNA (oe-CDC42 and si-CDC42) or corresponding negative controls (oe-NC and si-NC) were transfected into hRMECs under HG. Then, platelet-activating factor C-16 (C16-PAF) (MEK/ERK pathway activator) was added to si-CDC42 or si-NC transfected hRMECs under HG. Our study showed that HG increased CDC42 mRNA and protein, cell viability, invasive cell count, branch points, and tube length but reduced cell apoptosis in hRMECs. CDC42 upregulation enhanced cell viability, invasive cell count, branch points, tube length, p-MEK, and p-ERK, but attenuated cell apoptosis. Downregulation of CDC42 exhibited opposite trends. In addition, C16-PAF also increased cell viability, invasive cell count, branch points, and tube length, p-MEK, and p-ERK, but retarded cell apoptosis. Notably, C16-PAF diminished the effect of CDC42 downregulation on the above-mentioned functions in hRMECs under HG. Conclusively, CDC42 promotes HG-induced hRMEC viability and invasion, as well as angiogenesis, but inhibits apoptosis by activating the MEK/ERK pathway, which may be responsible for the progression of diabetic retinopathy.
Collapse
Affiliation(s)
- Hui Cao
- Department of Ophthalmology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China
| | - Changzheng Hou
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University
| |
Collapse
|
21
|
Zhang W, He Y, Zhang Y. CircRNA in ocular neovascular diseases: Fundamental mechanism and clinical potential. Pharmacol Res 2023; 197:106946. [PMID: 37797661 DOI: 10.1016/j.phrs.2023.106946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Ocular neovascular disease (OND), characterized by the aberrant formation of immature blood vessels, is the leading cause of vision impairment and blindness. It is important to find effective ways to diagnose and treat these diseases. Circular RNA (circRNA) is a group of endogenous non-coding RNA that play a crucial role in regulating different biological processes. Due to their close association with ocular disease and angiogenesis, circRNAs have become a hotspot in OND research. In this review, we intensively investigate the possibility of using circRNAs in the management of ONDs. In general, angiogenesis is divided into five phases. On the basis of these five steps, we describe the potential of using circRNAs by introducing how they regulate angiogenesis. Subsequently, the interactions between circRNAs and ONDs, including pterygium, corneal neovascularization, age-related macular degeneration, diabetic retinopathy, and retinopathy of prematurity, are analyzed in detail. We also introduce the potential use of circRNAs as OND diagnostic biomarkers. Finally, we summarize the prospects of using circRNAs as a potential strategy in OND management. The gaps in recent research are also pointed out with the purpose of promoting the introduction of circRNAs into clinical applications.
Collapse
Affiliation(s)
- Wenxin Zhang
- Department of Ophthalmology, 2nd Hospital of Jilin University, Changchun 130041, Jilin, China
| | - Yuxi He
- Department of Ophthalmology, 2nd Hospital of Jilin University, Changchun 130041, Jilin, China
| | - Yan Zhang
- Department of Ophthalmology, 2nd Hospital of Jilin University, Changchun 130041, Jilin, China; Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
22
|
Lin LC, Liu ZY, Yang JJ, Zhao JY, Tao H. m6A epitranscriptomic modification in diabetic microvascular complications. Trends Pharmacol Sci 2023; 44:S0165-6147(23)00215-8. [PMID: 39492320 DOI: 10.1016/j.tips.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 11/05/2024]
Abstract
N6-methyladenosine (m6A) modifications are modulated by m6A methyltransferases, m6A demethylases, and m6A-binding proteins. The dynamic and reversible patterns of m6A modification control cell fate programming by regulating RNA splicing, translation, and decay. Emerging evidence demonstrates that m6A modification of coding and noncoding RNAs exerts crucial effects that influence the pathogenesis of diabetic microvascular complications that include diabetic cardiomyopathy, diabetic nephropathy, diabetic retinopathy, diabetic neuropathy, and diabetic dermatosis. In this review, we summarize the roles of m6A modification and m6A modification-related enzymes in diabetic microvascular complications and discuss potential m6A modification-related enzyme-targeting therapeutic strategies.
Collapse
Affiliation(s)
- Li-Chan Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Zhi-Yan Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Jian-Yuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
23
|
Yu J, Ke L, Zhou J, Ding C, Yang H, Yan D, Yu C. Stachydrine Relieved the Inflammation and Promoted the Autophagy in Diabetes Retinopathy Through Activating the AMPK/SIRT1 Signaling Pathway. Diabetes Metab Syndr Obes 2023; 16:2593-2604. [PMID: 37649589 PMCID: PMC10464895 DOI: 10.2147/dmso.s420253] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023] Open
Abstract
Background Diabetes retinopathy (DR) is a chronic, progressive, and potentially harmful retinal disease associated with persistent hyperglycemia. Autophagy is a lysosome-dependent degradation pathway that widely exists in eukaryotic cells, which has recently been demonstrated to participate in the DR development. Stachydrine (STA) is a water-soluble alkaloid extracted from Leonurus heterophyllus. This study aimed to explore the effects of STA on the autophagy in DR progression in vivo and in vitro. Methods High glucose-treated human retinal microvascular endothelial cells (HRMECs) and STA-treated rats were used to establish DR model. The reactive oxygen species (ROS) and inflammatory factor levels (TNF-α, IL-1β, and IL-6) were determined using corresponding kits. Additionally, the cell growth was analyzed using CCK-8 and EdU assays. Besides, LC3BII, p62, p-AMPKα, AMPKα, and SIRT1 protein levels were measured using Western blot. The LC3BII and SIRT1 expressions were also determined using immunofluorescence. Results The results showed that STZ decreased the ROS and inflammatory factor levels in the HG-treated HRMECs. Besides, after STA treatment, the beclin-1, LC3BII, p-AMPKα, and SIRT1 levels were increased, and p62 was decreased in the HG-treated HRMECs and the retinal tissue of STZ-treated rats. Conclusion In conclusion, this study demonstrated that STA effectively relieved the inflammation and promoted the autophagy in DR progression in vivo and in vitro through activating the AMPK/SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Jiewei Yu
- Department of Ophthalmology, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332000, People’s Republic of China
| | - Lingling Ke
- Department of Ophthalmology, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332000, People’s Republic of China
| | - Jingjing Zhou
- Image Center, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332000, People’s Republic of China
| | - Chunyan Ding
- Department of Ophthalmology, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332000, People’s Republic of China
| | - Hui Yang
- Department of Ophthalmology, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332000, People’s Republic of China
| | - Dongbiao Yan
- Department of Endocrinology, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332000, People’s Republic of China
| | - Chengbi Yu
- Department of Endocrinology, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332000, People’s Republic of China
| |
Collapse
|
24
|
Li X, Su X, Xia F, Qiu J, Zhang J, Wu H, Xie X, Xu M. Bibliometric and visual analysis of diabetes mellitus and pyroptosis from 2011 to 2022. Eur J Med Res 2023; 28:235. [PMID: 37443131 DOI: 10.1186/s40001-023-01175-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
OBJECTIVE To visualize and analyze the published literature on diabetes mellitus and pyroptosis based on a bibliometric approach, so as to provide a comprehensive picture of the hot research directions and dynamic progress in this field. METHODS This study was based on the web of science core collection database to conduct a comprehensive search of the published literature in the field of diabetes mellitus and Pyroptosis from January 1985 to August 2022, including the published research literature in this field, as well as a visual analysis of the number of citations, year of publication, journal, author, research institution, country, and research topic. RESULTS A total of 139 literature on research related to diabetes mellitus and cellular scorch from 2011 to 2022 were retrieved, with a total of 3009 citations and a maximum of 255 citations for a single article, which had a first author Schmid-Burgk, JL The first author of this article is from Germany; among 20 publishing countries, China leads with 100 articles; among 222 publishing institutions, Harbin Medical University leads with 18 articles and 184 citations; among 980 authors, Chen, X from China tops the list of high-impact authors with 5 articles and 29 citations. Among the 98 journals, "CELL DEATH DISEASE" ranked first in both volume and high-impact journals with 4 articles and 29 citations. Among 349 keywords, "pyroptosis" ranked first with a cumulative frequency of 65 times. The cluster analysis was divided into three categories, chronic complications of diabetes mellitus and pyroptosis (67 articles), diabetes mellitus and pyroptosis (60 articles), and diabetes mellitus combined with other diseases and pyroptosis (12 articles), and the number of articles related to diabetes mellitus and its chronic complications increased rapidly from 2019, among which, diabetic cardiomyopathy (27 articles) had the highest number of articles. CONCLUSIONS Based on a comprehensive analysis of published literature in the field of diabetes mellitus and pyroptosis from 2011 to 2022, this study achieved a visual analysis of studies with significant and outstanding contributions to the field, thus framing a picture showing the development and changes in the field. At the same time, this study provides research information and direction for clinicians and investigators to conduct diabetes mellitus and pyroptosis-related research in the future.
Collapse
Affiliation(s)
- Xiaodong Li
- The First Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, 550000, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Xiaojuan Su
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Fenglin Xia
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jing Qiu
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jiaqi Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Haiyan Wu
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xuejun Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Mingchao Xu
- Traditional Chinese Medicine Hospital of Meishan, Meishan, 620010, China.
| |
Collapse
|
25
|
Zheng X, Wan J, Tan G. The mechanisms of NLRP3 inflammasome/pyroptosis activation and their role in diabetic retinopathy. Front Immunol 2023; 14:1151185. [PMID: 37180116 PMCID: PMC10167027 DOI: 10.3389/fimmu.2023.1151185] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
In the working-age population worldwide, diabetic retinopathy (DR), a prevalent complication of diabetes, is the main cause of vision impairment. Chronic low-grade inflammation plays an essential role in DR development. Recently, concerning the pathogenesis of DR, the Nod-Like Receptor Family Pyrin Domain Containing 3 (NLRP3) inflammasome in retinal cells has been determined as a causal factor. In the diabetic eye, the NLRP3 inflammasome is activated by several pathways (such as ROS and ATP). The activation of NPRP3 leads to the secretion of inflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18), and leads to pyroptosis, a rapid inflammatory form of lytic programmed cell death (PCD). Cells that undergo pyroptosis swell and rapture, releasing more inflammatory factors and accelerating DR progression. This review focuses on the mechanisms that activate NLRP3 inflammasome and pyroptosis leading to DR. The present research highlighted some inhibitors of NLRP3/pyroptosis pathways and novel therapeutic measures concerning DR treatment.
Collapse
Affiliation(s)
- Xiaoqin Zheng
- Department of Ophthalmology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jia Wan
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Gang Tan
- Department of Ophthalmology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
26
|
Yang Y, Jiang G, Huang R, Liu Y, Chang X, Fu S. Targeting the NLRP3 inflammasome in diabetic retinopathy: From Pathogenesis to Therapeutic Strategies. Biochem Pharmacol 2023; 212:115569. [PMID: 37100255 DOI: 10.1016/j.bcp.2023.115569] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
Diabetic retinopathy (DR) is a common diabetic microvascular complication and the main cause of vision loss in working-aged people. The NLRP3 inflammasome is a cytosolic multimeric complex that plays a significant role in innate immunity. After sensing injury, the NLRP3 inflammasome induces inflammatory mediator secretion and triggers a form of inflammatory cell death known as pyroptosis. Studies over the past five years have shown increased expression of NLRP3 and related inflammatory mediators in vitreous samples from DR patients at different clinical stages. Many NLRP3-targeted inhibitors have shown great antiangiogenic and anti-inflammatory effects in diabetes mellitus models, suggesting that the NLRP3 inflammasome is involved in the progression of DR. This review covers the molecular mechanisms of NLRP3 inflammasome activation. Furthermore, we discuss the implications of the NLRP3 inflammasome in DR, including the induction of pyroptosis and inflammation and the promotion of microangiopathy and retinal neurodegeneration. We also summarize the research progress on targeting the NLRP3 inflammasome in DR therapeutics with the expectation of providing new insights into DR progression and treatment.
Collapse
Affiliation(s)
- Yuxuan Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, The People's Republic of China, 730000
| | - Gengchen Jiang
- The First Clinical Medical College, Lanzhou University, Lanzhou, The People's Republic of China, 730000
| | - Runchun Huang
- The First Clinical Medical College, Lanzhou University, Lanzhou, The People's Republic of China, 730000
| | - Yi Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, The People's Republic of China, 730000
| | - Xingyu Chang
- The First Clinical Medical College, Lanzhou University, Lanzhou, The People's Republic of China, 730000
| | - Songbo Fu
- Department of Endocrinology, First Hospital of Lanzhou University, Lanzhou, Gansu, The People's Republic of China, 730000; Gansu Province Clinical Research Center for Endocrine Disease, Gansu, The People's Republic of China, 730000.
| |
Collapse
|
27
|
Zhu X, Zhou C, Zhao S, Zheng Z. Role of m6A methylation in retinal diseases. Exp Eye Res 2023; 231:109489. [PMID: 37084873 DOI: 10.1016/j.exer.2023.109489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/06/2023] [Accepted: 04/19/2023] [Indexed: 04/23/2023]
Abstract
Retinal diseases remain among the leading causes of visual impairment in developed countries, despite great efforts in prevention and early intervention. Due to the limited efficacy of current retinal therapies, novel therapeutic methods are urgently required. Over the past two decades, advances in next-generation sequencing technology have facilitated research on RNA modifications, which can elucidate the relevance of epigenetic mechanisms to disease. N6-methyladenosine (m6A), formed by methylation of adenosine at the N6-position, is the most widely studied RNA modification and plays an important role in RNA metabolism. It is dynamically regulated by writers (methyltransferases) and erasers (demethylases), and recognized by readers (m6A binding proteins). Although the discovery of m6A methylation can be traced back to the 1970s, its regulatory roles in retinal diseases are rarely appreciated. Here, we provide an overview of m6A methylation, and discuss its effects and possible mechanisms on retinal diseases, including diabetic retinopathy, age-related macular degeneration, retinoblastoma, retinitis pigmentosa, and proliferative vitreoretinopathy. Furthermore, we highlight potential agents targeting m6A methylation for retinal disease treatment and discuss the limitations and challenges of research in the field of m6A methylation.
Collapse
Affiliation(s)
- Xinyu Zhu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Chuandi Zhou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Shuzhi Zhao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China.
| | - Zhi Zheng
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China.
| |
Collapse
|
28
|
Yang X, Huang Z, Xu M, Chen Y, Cao M, Yi G, Fu M. Autophagy in the retinal neurovascular unit: New perspectives into diabetic retinopathy. J Diabetes 2023; 15:382-396. [PMID: 36864557 PMCID: PMC10172025 DOI: 10.1111/1753-0407.13373] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/08/2023] [Accepted: 02/18/2023] [Indexed: 03/04/2023] Open
Abstract
Diabetic retinopathy (DR) is one of the most prevalent retinal disorders worldwide, and it is a major cause of vision impairment in individuals of productive age. Research has demonstrated the significance of autophagy in DR, which is a critical intracellular homeostasis mechanism required for the destruction and recovery of cytoplasmic components. Autophagy maintains the physiological function of senescent and impaired organelles under stress situations, thereby regulating cell fate via various signals. As the retina's functional and fundamental unit, the retinal neurovascular unit (NVU) is critical in keeping the retinal environment's stability and supporting the needs of retinal metabolism. However, autophagy is essential for the normal NVU structure and function. We discuss the strong association between DR and autophagy in this review, as well as the many kinds of autophagy and its crucial physiological activities in the retina. By evaluating the pathological changes of retinal NVU in DR and the latest advancements in the molecular mechanisms of autophagy that may be involved in the pathophysiology of DR in NVU, we seek to propose new ideas and methods for the prevention and treatment of DR.
Collapse
Affiliation(s)
- Xiongyi Yang
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Zexin Huang
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
- The Second Clinical School, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Mei Xu
- The Second People's Hospital of Jingmen, Jingmen, Hubei, People's Republic of China
| | - Yanxia Chen
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Mingzhe Cao
- Department of Ophthalmology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, P. R. China
| | - Guoguo Yi
- Department of Ophthalmology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, P. R. China
| | - Min Fu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
29
|
m6A Modification-Association with Oxidative Stress and Implications on Eye Diseases. Antioxidants (Basel) 2023; 12:antiox12020510. [PMID: 36830067 PMCID: PMC9952187 DOI: 10.3390/antiox12020510] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Oxidative stress (OS) refers to a state of imbalance between oxidation and antioxidation. OS is considered to be an important factor leading to aging and a range of diseases. The eyes are highly oxygen-consuming organs. Due to its continuous exposure to ultraviolet light, the eye is particularly vulnerable to the impact of OS, leading to eye diseases such as corneal disease, cataracts, glaucoma, etc. The N6-methyladenosine (m6A) modification is the most investigated RNA post-transcriptional modification and participates in a variety of cellular biological processes. In this study, we review the role of m6A modification in oxidative stress-induced eye diseases and some therapeutic methods to provide a relatively overall understanding of m6A modification in oxidative stress-related eye diseases.
Collapse
|
30
|
Wilms tumor 1 associated protein promotes epithelial mesenchymal transition of gastric cancer cells by accelerating TGF-β and enhances chemoradiotherapy resistance. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04320-7. [DOI: 10.1007/s00432-022-04320-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/22/2022] [Indexed: 10/15/2022]
|