1
|
Jamerson LE, Bradshaw PC. The Roles of White Adipose Tissue and Liver NADPH in Dietary Restriction-Induced Longevity. Antioxidants (Basel) 2024; 13:820. [PMID: 39061889 PMCID: PMC11273496 DOI: 10.3390/antiox13070820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Dietary restriction (DR) protocols frequently employ intermittent fasting. Following a period of fasting, meal consumption increases lipogenic gene expression, including that of NADPH-generating enzymes that fuel lipogenesis in white adipose tissue (WAT) through the induction of transcriptional regulators SREBP-1c and CHREBP. SREBP-1c knockout mice, unlike controls, did not show an extended lifespan on the DR diet. WAT cytoplasmic NADPH is generated by both malic enzyme 1 (ME1) and the pentose phosphate pathway (PPP), while liver cytoplasmic NADPH is primarily synthesized by folate cycle enzymes provided one-carbon units through serine catabolism. During the daily fasting period of the DR diet, fatty acids are released from WAT and are transported to peripheral tissues, where they are used for beta-oxidation and for phospholipid and lipid droplet synthesis, where monounsaturated fatty acids (MUFAs) may activate Nrf1 and inhibit ferroptosis to promote longevity. Decreased WAT NADPH from PPP gene knockout stimulated the browning of WAT and protected from a high-fat diet, while high levels of NADPH-generating enzymes in WAT and macrophages are linked to obesity. But oscillations in WAT [NADPH]/[NADP+] from feeding and fasting cycles may play an important role in maintaining metabolic plasticity to drive longevity. Studies measuring the WAT malate/pyruvate as a proxy for the cytoplasmic [NADPH]/[NADP+], as well as studies using fluorescent biosensors expressed in the WAT of animal models to monitor the changes in cytoplasmic [NADPH]/[NADP+], are needed during ad libitum and DR diets to determine the changes that are associated with longevity.
Collapse
Affiliation(s)
| | - Patrick C. Bradshaw
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| |
Collapse
|
2
|
Gao J, Yang D, Sun Z, Niu J, Bao Y, Liu S, Tan Z, Hao L, Cheng Y, Liu S. Changes in Blood Metabolic Profiles Reveal the Dietary Deficiencies of Specific Nutrients and Physiological Status of Grazing Yaks during the Cold Season in Qinghai Province of China. Metabolites 2022; 12:metabo12080738. [PMID: 36005610 PMCID: PMC9413257 DOI: 10.3390/metabo12080738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 08/09/2022] [Indexed: 11/28/2022] Open
Abstract
This study aimed to investigate the changes in the blood metabolic profiles of grazing yaks during the cold season to reveal their physiological status and seek the nutrients needed to be supplemented. Six castrated yaks (3 years old) with 166.8 kg (standard deviation = 5.3) of liveweight grazed in the Qinghai-Tibetan Plateau were used as experimental animals without supplementary feeding. Blood samples of each animal were collected in October and December 2015, and March 2016 for the analysis of serum biochemicals and metabolome. Results showed serum indices involved in protein metabolism in grazing yaks showed greater differences during the cold season than the metabolisms of energy or minerals. Cold stress in December had minor effects on the serum metabolic profiles of yaks compared with those in October. Yaks in October and December shared seven differential serum metabolites and enrichments of the “arachidonic acid metabolism” and “glycine, serine, and threonine metabolism” pathways compared with those in March caused by the shortage of feeds. Summarily, the nutrient deficiency would be influential on the physiological status of grazing yaks during the cold season, especially on the protein metabolism, which could be improved by supplementary feeds.
Collapse
Affiliation(s)
- Jian Gao
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Deyu Yang
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai Plateau Yak Research Center, Qinghai Academy of Animal Science and Veterinary Medicine of Qinghai University, Xining 810016, China
| | - Zhanying Sun
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianzhang Niu
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai Plateau Yak Research Center, Qinghai Academy of Animal Science and Veterinary Medicine of Qinghai University, Xining 810016, China
| | - Yuhong Bao
- Institute of Grassland Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
| | - Suozhu Liu
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China
| | - Zhankun Tan
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Nyingchi 860000, China
| | - Lizhuang Hao
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai Plateau Yak Research Center, Qinghai Academy of Animal Science and Veterinary Medicine of Qinghai University, Xining 810016, China
- Correspondence: (L.H.); (Y.C.)
| | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (L.H.); (Y.C.)
| | - Shujie Liu
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai Plateau Yak Research Center, Qinghai Academy of Animal Science and Veterinary Medicine of Qinghai University, Xining 810016, China
| |
Collapse
|
3
|
Ferguson BS, Sahoo P, McGrail E, Francois A, Stratton MS. Modestly Increased Incidence of Ketosis in Caloric Restriction Does not Significantly Alter the Effects of Caloric Restriction. J Nutr Health Aging 2022; 26:657-662. [PMID: 35842755 PMCID: PMC9704061 DOI: 10.1007/s12603-022-1815-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Caloric restriction (CR) has been shown to slow the aging processes in a number of preclinical studies and reduces expression of aging-associated biomarkers in human trials. We hypothesized that CR would lead to increased incidence of ketosis and that ketosis in CR individuals would alter the aging-protective effects of CR or biomarkers thereof. DESIGN/SETTING/PARTICIPANTS We analyzed data from the "Comprehensive Assessment of Long-Term Effects of Reducing Intake of Energy (CALERIE, Phase 2)" Public Use Database available at calerie.duke.edu. In this study, non-obese adults between the ages of 21 and 50 were randomized to 25% CR or control (ad lib) diet groups and extensively monitored for two years. Given our focus on the effect of caloric restriction on ketosis, individuals with detectible ketones during the baseline visit (pre-randomization) and those with missing data for ketone testing were excluded from the analysis, leaving 71 control and 117 CR participants. MEASUREMENTS We analyzed the incidence of ketosis as well as ketosis free survival in control and CR participants and assessed the effect of ketosis on a number of clinical lab values, functional assessments, and participant survey data related to aging biology. RESULTS We report that CR was associated with modestly increased incidence of ketosis (4.4% in CR vs 1.9% in control), though CR-associated changes in T3, VO2, SUMPT-WT (weight normalized composite strength score - peak torque), physical functioning, and general health did not appear to be altered by the presence or absence of ketosis. Additional observations of interest include: 1) striking patterns of biomarker expression changes (MCP-1, TNFα, TGF-β1, GH) in both the control and CR participants between the baseline visit and the 24-month post-randomization visit and 2) pro-growth/anti-inflammatory baseline (pre-randomization) biomarker expression profile in CR individuals that later test ketone positive relative to other CR individuals. CONCLUSIONS CR modestly increases the incidence of ketosis in healthy adults, yet the increase in ketosis in CR patients did not significantly affect the aging-protective effects of CR. However, given the relatively small number of participants who were ketone positive, further investigation in larger study cohorts is still required for definitive conclusions.
Collapse
Affiliation(s)
- B S Ferguson
- Matthew S Stratton, Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Ohio State University Wexner Medical Center, Columbus OH, 43210 USA,
| | | | | | | | | |
Collapse
|
4
|
Jin K, Wilson KA, Beck JN, Nelson CS, Brownridge GW, Harrison BR, Djukovic D, Raftery D, Brem RB, Yu S, Drton M, Shojaie A, Kapahi P, Promislow D. Genetic and metabolomic architecture of variation in diet restriction-mediated lifespan extension in Drosophila. PLoS Genet 2020; 16:e1008835. [PMID: 32644988 PMCID: PMC7347105 DOI: 10.1371/journal.pgen.1008835] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/06/2020] [Indexed: 01/08/2023] Open
Abstract
In most organisms, dietary restriction (DR) increases lifespan. However, several studies have found that genotypes within the same species vary widely in how they respond to DR. To explore the mechanisms underlying this variation, we exposed 178 inbred Drosophila melanogaster lines to a DR or ad libitum (AL) diet, and measured a panel of 105 metabolites under both diets. Twenty four out of 105 metabolites were associated with the magnitude of the lifespan response. These included proteinogenic amino acids and metabolites involved in α-ketoglutarate (α-KG)/glutamine metabolism. We confirm the role of α-KG/glutamine synthesis pathways in the DR response through genetic manipulations. We used covariance network analysis to investigate diet-dependent interactions between metabolites, identifying the essential amino acids threonine and arginine as “hub” metabolites in the DR response. Finally, we employ a novel metabolic and genetic bipartite network analysis to reveal multiple genes that influence DR lifespan response, some of which have not previously been implicated in DR regulation. One of these is CCHa2R, a gene that encodes a neuropeptide receptor that influences satiety response and insulin signaling. Across the lines, variation in an intronic single nucleotide variant of CCHa2R correlated with variation in levels of five metabolites, all of which in turn were correlated with DR lifespan response. Inhibition of adult CCHa2R expression extended DR lifespan of flies, confirming the role of CCHa2R in lifespan response. These results provide support for the power of combined genomic and metabolomic analysis to identify key pathways underlying variation in this complex quantitative trait. Dietary restriction extends lifespan across most organisms in which it has been tested. However, several studies have now demonstrated that this effect can vary dramatically across different genotypes within a population. Within a population, dietary restriction might be beneficial for some, yet detrimental for others. Here, we measure the metabolome of 178 genetically characterized fly strains on fully fed and restricted diets. The fly strains vary widely in their lifespan response to dietary restriction. We then use information about each strain’s genome and metabolome (a measure of small molecules circulating in flies) to pinpoint cellular pathways that govern this variation in response. We identify a novel pathway involving the gene CCHa2R, which encodes a neuropeptide receptor that has not previously been implicated in dietary restriction or age-related signaling pathways. This study demonstrates the power of leveraging systems biology and network biology methods to understand how and why different individuals vary in their response to health and lifespan-extending interventions.
Collapse
Affiliation(s)
- Kelly Jin
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Kenneth A. Wilson
- Buck Institute for Research on Aging, Novato, California, United States of America
- Davis School of Gerontology, University of Southern California, University Park, Los Angeles, California, United States of America
| | - Jennifer N. Beck
- Buck Institute for Research on Aging, Novato, California, United States of America
| | | | - George W. Brownridge
- Buck Institute for Research on Aging, Novato, California, United States of America
- Dominican University of California, San Rafael, California, United States of America
| | - Benjamin R. Harrison
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Danijel Djukovic
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, United States of America
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, United States of America
| | - Rachel B. Brem
- Buck Institute for Research on Aging, Novato, California, United States of America
- Davis School of Gerontology, University of Southern California, University Park, Los Angeles, California, United States of America
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Shiqing Yu
- Department of Statistics, University of Washington, Seattle, Washington, United States of America
| | - Mathias Drton
- Department of Mathematics, Technical University of Munich, Munich, Germany
| | - Ali Shojaie
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, Novato, California, United States of America
- Davis School of Gerontology, University of Southern California, University Park, Los Angeles, California, United States of America
| | - Daniel Promislow
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Biology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
5
|
Abstract
Calorie restriction (CR), the reduction of dietary intake below energy requirements while maintaining optimal nutrition, is the only known nutritional intervention with the potential to attenuate aging. Evidence from observational, preclinical, and clinical trials suggests the ability to increase life span by 1-5 years with an improvement in health span and quality of life. CR moderates intrinsic processes of aging through cellular and metabolic adaptations and reducing risk for the development of many cardiometabolic diseases. Yet, implementation of CR may require unique considerations for the elderly and other specific populations. The objectives of this review are to summarize the evidence for CR to modify primary and secondary aging; present caveats for implementation in special populations; describe newer, alternative approaches that have comparative effectiveness and fewer deleterious effects; and provide thoughts on the future of this important field of study.
Collapse
Affiliation(s)
- Emily W Flanagan
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana 70808, USA;
| | - Jasper Most
- Nutrition and Movement Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Jacob T Mey
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana 70808, USA;
| | - Leanne M Redman
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana 70808, USA;
| |
Collapse
|
6
|
Martins AD, Jarak I, Morais T, Carvalho RA, Oliveira PF, Monteiro MP, Alves MG. Caloric restriction alters the hormonal profile and testicular metabolome, resulting in alterations of sperm head morphology. Am J Physiol Endocrinol Metab 2020; 318:E33-E43. [PMID: 31770015 DOI: 10.1152/ajpendo.00355.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Energy homeostasis is crucial for all physiological processes. Thus, when there is low energy intake, negative health effects may arise, including in reproductive function. We propose to study whether caloric restriction (CR) changes testicular metabolic profile and ultimately sperm quality. Male Wistar rats (n = 12) were randomized into a CR group fed with 30% fewer calories than weight-matched, ad libitum-fed animals (control group). Circulating hormonal profile, testicular glucagon-like peptide-1 (GLP-1), ghrelin and leptin receptors expression, and sperm parameters were analyzed. Testicular metabolite abundance and glycolysis-related enzymes were studied by NMR and Western blot, respectively. Oxidative stress markers were analyzed in testicular tissue and spermatozoa. Expressions of mitochondrial complexes and mitochondrial biogenesis in testes were determined. CR induced changes in body weight along with altered GLP-1, ghrelin, and leptin circulating levels. In testes, CR led to changes in receptor expression that followed those of the hormone levels; modified testicular metabolome, particularly amino acid content; and decreased oxidative stress-induced damage in testis and spermatozoa, although sperm head defects increased. In sum, CR induced changes in body weight, altering circulating hormonal profile and testicular metabolome and increasing sperm head defects. Ultimately, our data highlight that conditions of CR may compromise male fertility.
Collapse
Affiliation(s)
- Ana D Martins
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar (UMIB-ICBAS), University of Porto, Porto, Portugal
| | - Ivana Jarak
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar (UMIB-ICBAS), University of Porto, Porto, Portugal
| | - Tiago Morais
- Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar (UMIB-ICBAS), University of Porto, Porto, Portugal
- Department of Anatomy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Rui A Carvalho
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Portugal
| | - Pedro F Oliveira
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar (UMIB-ICBAS), University of Porto, Porto, Portugal
- Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Mariana P Monteiro
- Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar (UMIB-ICBAS), University of Porto, Porto, Portugal
- Department of Anatomy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Obesity and Bariatric Services and Centre for Obesity Research, University College of London Hospitals, UCL, London, United Kingdom
| | - Marco G Alves
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar (UMIB-ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
7
|
Calorie restriction and its impact on gut microbial composition and global metabolism. Front Med 2018; 12:634-644. [PMID: 30446879 DOI: 10.1007/s11684-018-0670-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 09/27/2018] [Indexed: 02/08/2023]
Abstract
Calorie restriction (CR) is a dietary regimen that reduces calorie intake without incurring malnutrition or a reduction in essential nutrients. It has long been recognized as a natural strategy for promoting health, extending longevity, and prevents the development of metabolic and age-related diseases. In the present review, we focus on the general effect of CR on gut microbiota composition and global metabolism. We also propose mechanisms for its beneficial effect. Results showed that probiotic and butyrate-producing microbes increased their relative abundance, whereas proinflammatory strains exhibited suppressed relative abundance following CR. Analyses of the gut microbial and host metabolisms revealed that most host microbial co-metabolites were changed due to CR. Examples of dramatic CR-induced changes in host metabolism included a decrease in the rate of lipid biosynthesis and an increase in the rates of fatty acid catabolism, β-oxidation, glycogenolysis, and gluconeogenesis. The observed phenotypes and the further verification of the direct link between gut microbiota and metabolome may benefit patients that are at risk for developing metabolic disease. Thus, improved gut microbiota composition and metabolome are potential biomarkers for determining the effectiveness of dietary interventions for age-related and metabolic diseases.
Collapse
|
8
|
Aw WC, Towarnicki SG, Melvin RG, Youngson NA, Garvin MR, Hu Y, Nielsen S, Thomas T, Pickford R, Bustamante S, Vila-Sanjurjo A, Smyth GK, Ballard JWO. Genotype to phenotype: Diet-by-mitochondrial DNA haplotype interactions drive metabolic flexibility and organismal fitness. PLoS Genet 2018; 14:e1007735. [PMID: 30399141 PMCID: PMC6219761 DOI: 10.1371/journal.pgen.1007735] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/02/2018] [Indexed: 02/07/2023] Open
Abstract
Diet may be modified seasonally or by biogeographic, demographic or cultural shifts. It can differentially influence mitochondrial bioenergetics, retrograde signalling to the nuclear genome, and anterograde signalling to mitochondria. All these interactions have the potential to alter the frequencies of mtDNA haplotypes (mitotypes) in nature and may impact human health. In a model laboratory system, we fed four diets varying in Protein: Carbohydrate (P:C) ratio (1:2, 1:4, 1:8 and 1:16 P:C) to four homoplasmic Drosophila melanogaster mitotypes (nuclear genome standardised) and assayed their frequency in population cages. When fed a high protein 1:2 P:C diet, the frequency of flies harbouring Alstonville mtDNA increased. In contrast, when fed the high carbohydrate 1:16 P:C food the incidence of flies harbouring Dahomey mtDNA increased. This result, driven by differences in larval development, was generalisable to the replacement of the laboratory diet with fruits having high and low P:C ratios, perturbation of the nuclear genome and changes to the microbiome. Structural modelling and cellular assays suggested a V161L mutation in the ND4 subunit of complex I of Dahomey mtDNA was mildly deleterious, reduced mitochondrial functions, increased oxidative stress and resulted in an increase in larval development time on the 1:2 P:C diet. The 1:16 P:C diet triggered a cascade of changes in both mitotypes. In Dahomey larvae, increased feeding fuelled increased β-oxidation and the partial bypass of the complex I mutation. Conversely, Alstonville larvae upregulated genes involved with oxidative phosphorylation, increased glycogen metabolism and they were more physically active. We hypothesise that the increased physical activity diverted energy from growth and cell division and thereby slowed development. These data further question the use of mtDNA as an assumed neutral marker in evolutionary and population genetic studies. Moreover, if humans respond similarly, we posit that individuals with specific mtDNA variations may differentially metabolise carbohydrates, which has implications for a variety of diseases including cardiovascular disease, obesity, and perhaps Parkinson's Disease.
Collapse
Affiliation(s)
- Wen C. Aw
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Samuel G. Towarnicki
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Richard G. Melvin
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Neil A. Youngson
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Michael R. Garvin
- School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Yifang Hu
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Shaun Nielsen
- Centre for Marine Bio-Innovation and School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Torsten Thomas
- Centre for Marine Bio-Innovation and School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Center, The University of New South Wales, Sydney, NSW, Australia
| | - Sonia Bustamante
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Center, The University of New South Wales, Sydney, NSW, Australia
| | - Antón Vila-Sanjurjo
- Grupo GIBE, Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña (UDC), Campus Zapateira s/n, A Coruña, Spain
| | - Gordon K. Smyth
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Victoria, Australia
| | - J. William O. Ballard
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
9
|
Mobbs CV. Glucose-Induced Transcriptional Hysteresis: Role in Obesity, Metabolic Memory, Diabetes, and Aging. Front Endocrinol (Lausanne) 2018; 9:232. [PMID: 29892261 PMCID: PMC5985453 DOI: 10.3389/fendo.2018.00232] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/23/2018] [Indexed: 01/30/2023] Open
Abstract
During differentiation transient, inducers produce permanent changes in gene expression. A similar phenomenon, transcriptional hysteresis, produced by transient or prolonged exposure to glucose, leads to cumulative, persistent, and largely irreversible effects on glucose-regulated gene expression, and may drive key aspects of metabolic memory, obesity, diabetes, and aging, and explain the protective effects of dietary restriction during aging. The most relevant effects of glucose-induced transcriptional hysteresis are the persistent effects of elevated glucose on genes that control glucose metabolism itself. A key observation is that, as with the lac operon, glucose induces genes that promote glycolysis and inhibits gene expression of alternative metabolic pathways including the pentose pathway, beta oxidation, and the TCA cycle. A similar pattern of metabolic gene expression is observed during aging, suggesting that cumulative exposure to glucose during aging produces this metabolic shift. Conversely, dietary restriction, which increases lifespan and delays age-related impairments, produces the opposite metabolic profile, leading to a shift away from glycolysis and toward the use of alternative substrates, including lipid and ketone metabolisms. The effect of glucose on gene expression leads to a positive feedback loop that leads to metastable persistent expression of genes that promote glycolysis and inhibit alternative pathways, a phenomenon first observed in the regulation of the lac operon. On the other hand, this pattern of gene expression can also be inhibited by activation of peroxisome proliferator activating receptor transcription factors that promote beta oxidation and inhibit metabolism of glucose-derived carbon bonds in the TCA cycle. Several pathological consequences may arise from glucose-induced transcriptional hysteresis. First, elevated glucose induces glycolytic genes in pancreatic beta cells, which induces a semi-stable persistent increase in insulin secretion, which could drive obesity and insulin resistance, and also due to glucose toxicity could eventually lead to beta-cell decompensation and diabetes. Diabetic complications persist even after complete normalization of glucose, a phenomenon known as metabolic memory. This too can be explained by persistent bistable expression of glucose-induced glycolytic genes.
Collapse
|
10
|
Balasubramanian P, Mattison JA, Anderson RM. Nutrition, metabolism, and targeting aging in nonhuman primates. Ageing Res Rev 2017; 39:29-35. [PMID: 28219777 PMCID: PMC5563491 DOI: 10.1016/j.arr.2017.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 12/29/2016] [Accepted: 02/15/2017] [Indexed: 11/23/2022]
Abstract
This short review focuses on the importance of nonhuman primate nutrition and aging studies and makes the case that a targeted expansion of the use of this highly translatable model would be advantageous to the biology of aging field. First, we describe the high degree of similarity of the model in terms of aging phenotypes including incidence and prevalence of common human age-related diseases. Second, we discuss the importance of the nonhuman primate nutrition and aging studies and the extent to which the outcomes of two ongoing long-term studies of caloric restriction are congruent with short-term equivalent studies in humans. Third, we showcase a number of pharmacological agents previously employed in nonhuman primate studies that display some potential as caloric restriction mimetics. Finally, we present nonhuman primates as an important model for translation of mechanisms of delayed aging identified in studies of shorter-lived animals. Proof of efficacy and safety of candidate longevity agents in nonhuman primates would be a cost-effective means to bring these exciting new avenues a step closer to clinical application.
Collapse
Affiliation(s)
- Priya Balasubramanian
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Julie A Mattison
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Rozalyn M Anderson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA; Geriatic Research, Education, and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
11
|
Mattison JA, Colman RJ, Beasley TM, Allison DB, Kemnitz JW, Roth GS, Ingram DK, Weindruch R, de Cabo R, Anderson RM. Caloric restriction improves health and survival of rhesus monkeys. Nat Commun 2017; 8:14063. [PMID: 28094793 PMCID: PMC5247583 DOI: 10.1038/ncomms14063] [Citation(s) in RCA: 563] [Impact Index Per Article: 70.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 11/24/2016] [Indexed: 12/23/2022] Open
Abstract
Caloric restriction (CR) without malnutrition extends lifespan and delays the onset of age-related disorders in most species but its impact in nonhuman primates has been controversial. In the late 1980s two parallel studies were initiated to determine the effect of CR in rhesus monkeys. The University of Wisconsin study reported a significant positive impact of CR on survival, but the National Institute on Aging study detected no significant survival effect. Here we present a direct comparison of longitudinal data from both studies including survival, bodyweight, food intake, fasting glucose levels and age-related morbidity. We describe differences in study design that could contribute to differences in outcomes, and we report species specificity in the impact of CR in terms of optimal onset and diet. Taken together these data confirm that health benefits of CR are conserved in monkeys and suggest that CR mechanisms are likely translatable to human health. Caloric restriction (CR) delays ageing of model organisms, but whether it works in nonhuman primates has been controversial. Here, the authors pool and reanalyse data from two long-running CR primate studies, concluding that moderate CR indeed improves health and survival of rhesus monkeys.
Collapse
Affiliation(s)
- Julie A Mattison
- Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland 21224, USA
| | - Ricki J Colman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA
| | - T Mark Beasley
- Department of Biostatistics, University of Alabama, Birmingham, Alabama 35294, USA.,Geriatric Research Education and Clinical Center, Birmingham/Atlanta Veterans Administration Hospital, Birmingham, Alabama 35233, USA
| | - David B Allison
- Department of Biostatistics, University of Alabama, Birmingham, Alabama 35294, USA
| | - Joseph W Kemnitz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53792, USA
| | | | - Donald K Ingram
- Pennington Biomedical Research Center, Baton Rouge, Louisiana 70808, USA
| | - Richard Weindruch
- Department of Medicine, University of Wisconsin, Madison, Wisconsin 53792, USA.,Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland 21224, USA
| | - Rozalyn M Anderson
- Department of Medicine, University of Wisconsin, Madison, Wisconsin 53792, USA.,Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705, USA
| |
Collapse
|
12
|
Huang TH, Ables GP. Dietary restrictions, bone density, and bone quality. Ann N Y Acad Sci 2016; 1363:26-39. [PMID: 26881697 DOI: 10.1111/nyas.13004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 12/08/2015] [Accepted: 12/16/2015] [Indexed: 02/06/2023]
Abstract
Caloric restriction (CR), protein restriction (PR), and specific amino acid restriction (e.g., methionine restriction (MR)) are different dietary interventions that have been confirmed with regard to their comprehensive benefits to metabolism and health. Based on bone densitometric measurements, weight loss induced by dietary restriction is known to be accompanied by reduced areal bone mineral density, bone mass, and/or bone size, and it is considered harmful to bone health. However, because of technological advancements in bone densitometric instruments (e.g., high-resolution X-ray tomography), dietary restrictions have been found to cause a reduction in bone mass/size rather than volumetric bone mineral density. Furthermore, when considering bone quality, bone health consists of diverse indices that cannot be fully represented by densitometric measurements alone. Indeed, there is evidence that moderate dietary restrictions do not impair intrinsic bone material properties, despite the reduction in whole-bone strength because of a smaller bone size. In the present review, we integrate research evidence from traditional densitometric measurements, metabolic status assays (e.g., energy metabolism, oxidative stresses, and inflammatory responses), and biomaterial analyses to provide revised conclusions regarding the effects of CR, PR, and MR on the skeleton.
Collapse
Affiliation(s)
- Tsang-hai Huang
- Laboratory of Exercise, Nutrition and Bone Biology, Institute of Physical Education, Health and Leisure Studies, National Cheng Kung University, Tainan, Taiwan
| | - Gene P Ables
- Orentreich Foundation for the Advancement of Science, Cold Spring-on-Hudson, New York
| |
Collapse
|
13
|
Nestor G, Eriksson J, Sandström C, Malmlöf K. Nuclear Magnetic Resonance-Based Blood Metabolic Profiles of Rats Exposed to Short-Term Caloric Restriction. ANAL LETT 2015. [DOI: 10.1080/00032719.2015.1041028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Laye MJ, Tran V, Jones DP, Kapahi P, Promislow DEL. The effects of age and dietary restriction on the tissue-specific metabolome of Drosophila. Aging Cell 2015; 14:797-808. [PMID: 26085309 PMCID: PMC4568967 DOI: 10.1111/acel.12358] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2015] [Indexed: 11/28/2022] Open
Abstract
Dietary restriction (DR) is a robust intervention that extends lifespan and slows the onset of age-related diseases in diverse organisms. While significant progress has been made in attempts to uncover the genetic mechanisms of DR, there are few studies on the effects of DR on the metabolome. In recent years, metabolomic profiling has emerged as a powerful technology to understand the molecular causes and consequences of natural aging and disease-associated phenotypes. Here, we use high-resolution mass spectroscopy and novel computational approaches to examine changes in the metabolome from the head, thorax, abdomen, and whole body at multiple ages in Drosophila fed either a nutrient-rich ad libitum (AL) or nutrient-restricted (DR) diet. Multivariate analysis clearly separates the metabolome by diet in different tissues and different ages. DR significantly altered the metabolome and, in particular, slowed age-related changes in the metabolome. Interestingly, we observed interacting metabolites whose correlation coefficients, but not mean levels, differed significantly between AL and DR. The number and magnitude of positively correlated metabolites was greater under a DR diet. Furthermore, there was a decrease in positive metabolite correlations as flies aged on an AL diet. Conversely, DR enhanced these correlations with age. Metabolic set enrichment analysis identified several known (e.g., amino acid and NAD metabolism) and novel metabolic pathways that may affect how DR effects aging. Our results suggest that network structure of metabolites is altered upon DR and may play an important role in preventing the decline of homeostasis with age.
Collapse
Affiliation(s)
| | - ViLinh Tran
- Division of Pulmonary Allergy & Critical Care Medicine Department of Medicine Emory University Atlanta GA USA
- Department of Medicine Clinical Biomarkers Laboratory Emory University Atlanta GA USA
| | - Dean P. Jones
- Division of Pulmonary Allergy & Critical Care Medicine Department of Medicine Emory University Atlanta GA USA
- Department of Medicine Clinical Biomarkers Laboratory Emory University Atlanta GA USA
| | | | - Daniel E. L. Promislow
- Department of Pathology University of Washington Seattle WA USA
- Department of Biology University of Washington Seattle WA USA
| |
Collapse
|
15
|
Brown-Borg HM, Rakoczy S, Wonderlich JA, Armstrong V, Rojanathammanee L. Altered dietary methionine differentially impacts glutathione and methionine metabolism in long-living growth hormone-deficient Ames dwarf and wild-type mice. LONGEVITY & HEALTHSPAN 2014; 3:10. [PMID: 25584190 PMCID: PMC4290132 DOI: 10.1186/2046-2395-3-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/01/2014] [Indexed: 02/05/2023]
Abstract
Background Extending mammalian health span and life span has been achieved under a variety of dietary restriction protocols. Reducing the intake of a specific amino acid has also been shown to extend health and longevity. We recently reported that methionine (MET) restriction is not effective in life span extension in growth hormone (GH) signaling mutants. To better understand the apparent necessity of GH in the ‘sensing’ of altered dietary MET, the current study was designed to evaluate MET and glutathione (GSH) metabolism (as well as other pathways) in long-living GH-deficient Ames dwarf and wild-type mice following 8 weeks of restricted (0.16%), low (0.43%), or enriched (1.3%) dietary MET consumption. Metabolite expression was examined in liver tissue, while gene and protein expression were evaluated in liver, kidney, and muscle tissues. Results Body weight was maintained in dwarf mice on the MET diets, while wild-type mice on higher levels of MET gained weight. Liver MET levels were similar in Ames mice, while several MET pathway enzymes were elevated regardless of dietary MET intake. Transsulfuration enzymes were also elevated in Ames mice but differences in cysteine levels were not different between genotypes. Dwarf mice maintained higher levels of GSH on MET restriction compared to wild-type mice, while genotype and diet effects were also detected in thioredoxin and glutaredoxin. MET restriction increased transmethylation in both genotypes as indicated by increased S-adenosylmethionine (SAM), betaine, and dimethylglycine. Diet did not impact levels of glycolytic components, but dwarf mice exhibited higher levels of key members of this pathway. Coenzyme A and measures of fatty acid oxidation were elevated in dwarf mice and unaffected by diet. Conclusions This component analysis between Ames and wild-type mice suggests that the life span differences observed may result from the atypical MET metabolism and downstream effects on multiple systems. The overall lack of responsiveness to the different diets is well reflected across many metabolic pathways in dwarf mice indicating the importance of GH signaling in the ability to discriminate dietary amino acid levels. Electronic supplementary material The online version of this article (doi:10.1186/2046-2395-3-10) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Holly M Brown-Borg
- Department of Basic Sciences, University of North Dakota School of Medicine & Health Sciences, 501 N. Columbia Road, Grand Forks, ND 58203 USA
| | - Sharlene Rakoczy
- Department of Basic Sciences, University of North Dakota School of Medicine & Health Sciences, 501 N. Columbia Road, Grand Forks, ND 58203 USA
| | - Joseph A Wonderlich
- Department of Basic Sciences, University of North Dakota School of Medicine & Health Sciences, 501 N. Columbia Road, Grand Forks, ND 58203 USA
| | - Vanessa Armstrong
- Department of Basic Sciences, University of North Dakota School of Medicine & Health Sciences, 501 N. Columbia Road, Grand Forks, ND 58203 USA
| | - Lalida Rojanathammanee
- Department of Basic Sciences, University of North Dakota School of Medicine & Health Sciences, 501 N. Columbia Road, Grand Forks, ND 58203 USA ; School of Sports Science, Institute of Science, Suranaree University of Technology, Muang District, Nakhon Ratchasima, 30000 Thailand
| |
Collapse
|
16
|
Montoliu I, Scherer M, Beguelin F, DaSilva L, Mari D, Salvioli S, Martin FPJ, Capri M, Bucci L, Ostan R, Garagnani P, Monti D, Biagi E, Brigidi P, Kussmann M, Rezzi S, Franceschi C, Collino S. Serum profiling of healthy aging identifies phospho- and sphingolipid species as markers of human longevity. Aging (Albany NY) 2014; 6:9-25. [PMID: 24457528 PMCID: PMC3927806 DOI: 10.18632/aging.100630] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
As centenarians well represent the model of healthy aging, there are many important implications in revealing the underlying molecular mechanisms behind such successful aging. By combining NMR metabonomics and shot-gun lipidomics in serum we analyzed metabolome and lipidome composition of a group of centenarians with respect to elderly individuals. Specifically, NMR metabonomics profiling of serum revealed that centenarians are characterized by a metabolic phenotype distinct from that of elderly subjects, in particular regarding amino acids and lipid species. Shot- gun lipidomics approach displays unique changes in lipids biosynthesis in centenarians, with 41 differently abundant lipid species with respect to elderly subjects. These findings reveal phospho/sphingolipids as putative markers and biological modulators of healthy aging, in humans. Considering the particular actions of these metabolites, these data are suggestive of a better counteractive antioxidant capacity and a well-developed membrane lipid remodelling process in the healthy aging phenotype.
Collapse
Affiliation(s)
- Ivan Montoliu
- NESTEC SA, Nestlé Research Center, Vers-chez-les-Blanc, CH-1000 Lausanne 26, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Metabolomics of Human Brain Aging and Age-Related Neurodegenerative Diseases. J Neuropathol Exp Neurol 2014; 73:640-57. [DOI: 10.1097/nen.0000000000000091] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
18
|
Pontoizeau C, Mouchiroud L, Molin L, Mergoud-Dit-Lamarche A, Dallière N, Toulhoat P, Elena-Herrmann B, Solari F. Metabolomics analysis uncovers that dietary restriction buffers metabolic changes associated with aging in Caenorhabditis elegans. J Proteome Res 2014; 13:2910-9. [PMID: 24819046 PMCID: PMC4059273 DOI: 10.1021/pr5000686] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Dietary restriction (DR) is one of
the most universal means of
extending lifespan. Yet, whether and how DR specifically affects the
metabolic changes associated with aging is essentially unknown. Here,
we present a comprehensive and unbiased picture of the metabolic variations
that take place with age at the whole organism level in Caenorhabditis elegans by using 1H high-resolution
magic-angle spinning (HR-MAS) nuclear magnetic resonance (NMR) analysis
of intact worms. We investigate metabolic variations potentially important
for lifespan regulation by comparing the metabolic fingerprint of
two previously described genetic models of DR, the long-lived eat-2(ad465) and slcf-1(tm2258) worms,
as single mutants or in combination with a genetic suppressor of their
lifespan phenotype. Our analysis shows that significant changes in
metabolite profiles precede the major physiological decline that accompanies
aging and that DR protects from some of those metabolic changes. More
specifically, low phosphocholine (PCho) correlates with high life
expectancy. A mutation in the tumor suppressor gene PTEN/DAF-18, which
suppresses the beneficial effects of DR in both C.
elegans and mammals, increases both PCho level and
choline kinase expression. Furthermore, we show that choline kinase
function in the intestine can regulate lifespan. This study highlights
the relevance of NMR metabolomic approaches for identifying potential
biomarkers of aging.
Collapse
Affiliation(s)
- Clément Pontoizeau
- Centre de RMN à très hauts champs, Institut des sciences analytiques, CNRS/ENS Lyon/UCB Lyon1 , 5 rue de la Doua, 69100 Villeurbanne, France
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Yu Z, Wang R, Fok WC, Coles A, Salmon AB, Pérez VI. Rapamycin and dietary restriction induce metabolically distinctive changes in mouse liver. J Gerontol A Biol Sci Med Sci 2014; 70:410-20. [PMID: 24755936 DOI: 10.1093/gerona/glu053] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Dietary restriction (DR) is the gold standard intervention used to delay aging, and much recent research has focused on the identification of possible DR mimetics. Energy sensing pathways, including insulin/IGF1 signaling, sirtuins, and mammalian Target of Rapamycin (mTOR), have been proposed as pathways involved in the antiaging actions of DR, and compounds that affect these pathways have been suggested to act as DR mimetics, including metformin (insulin/IGF1 signaling), resveratrol (sirtuins), and rapamycin (mTOR). Rapamycin is a promising DR mimetic because it significantly increases both health span and life span in mice. Unfortunately, rapamycin also leads to some negative effects, foremost among which is the induction of insulin resistance, potentially limiting its translation into humans. To begin clarifying the mechanism(s) involved in insulin resistance induced by rapamycin, we compared several aspects of liver metabolism in mice treated with DR or rapamycin for 6 months. Our data suggest that although both DR and rapamycin inhibit lipogenesis, activate lipolysis, and increased serum levels of nonesterified fatty acids, only DR further activates β-oxidation of the fatty acids leading to the production of ketone bodies.
Collapse
Affiliation(s)
- Zhen Yu
- Linus Pauling Institute, Oregon State University, Corvallis
| | - Rong Wang
- Linus Pauling Institute, Oregon State University, Corvallis
| | - Wilson C Fok
- Department of Geriatric Medicine, Oklahoma University Health Science Center and Oklahoma City VA Medical Center
| | - Alexander Coles
- Department of Chemistry and Biochemistry, University of Michigan-Flint
| | - Adam B Salmon
- Department of Molecular Medicine, Barshop Institute for Longevity and Aging Studies, and Audie Murphy VA Hospital, South Texas Veterans Health Care System, San Antonio, Texas
| | - Viviana I Pérez
- Linus Pauling Institute, Oregon State University, Corvallis. Department of Biochemistry and Biophysics, Oregon State University, Corvallis.
| |
Collapse
|
20
|
Nikoletopoulou V, Kyriakakis E, Tavernarakis N. Cellular and molecular longevity pathways: the old and the new. Trends Endocrinol Metab 2014; 25:212-23. [PMID: 24388148 DOI: 10.1016/j.tem.2013.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/26/2013] [Accepted: 12/02/2013] [Indexed: 01/08/2023]
Abstract
Human lifespan has been increasing steadily during modern times, mainly due to medical advancements that combat infant mortality and various life-threatening diseases. However, this gratifying longevity rise is accompanied by growing incidences of devastating age-related pathologies. Understanding the cellular and molecular mechanisms that underlie aging and regulate longevity is of utmost relevance towards offsetting the impact of age-associated disorders and increasing the quality of life for the elderly. Several evolutionarily conserved pathways that modulate lifespan have been identified in organisms ranging from yeast to primates. Here we survey recent findings highlighting the interplay of various genetic, epigenetic, and cell-specific factors, and also symbiotic relationships, as longevity determinants. We further discuss outstanding matters within the framework of emerging, integrative views of aging.
Collapse
Affiliation(s)
- Vassiliki Nikoletopoulou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion 71110, Crete, Greece
| | - Emmanouil Kyriakakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion 71110, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion 71110, Crete, Greece.
| |
Collapse
|
21
|
Bennett CF, Wende HV, Simko M, Klum S, Barfield S, Choi H, Pineda VV, Kaeberlein M. Activation of the mitochondrial unfolded protein response does not predict longevity in Caenorhabditis elegans. Nat Commun 2014; 5:3483. [PMID: 24662282 PMCID: PMC3984390 DOI: 10.1038/ncomms4483] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/20/2014] [Indexed: 01/08/2023] Open
Abstract
Recent studies have propagated the model that the mitochondrial unfolded protein response (UPR(mt)) is causal for lifespan extension from inhibition of the electron transport chain (ETC) in Caenorhabditis elegans. Here we report a genome-wide RNAi screen for negative regulators of the UPR(mt). Lifespan analysis of nineteen RNAi clones that induce the hsp-6p::gfp reporter demonstrate differential effects on longevity. Deletion of atfs-1, which is required for induction of the UPR(mt), fails to prevent lifespan extension from knockdown of two genes identified in our screen or following knockdown of the ETC gene cco-1. RNAi knockdown of atfs-1 also has no effect on lifespan extension caused by mutation of the ETC gene isp-1. Constitutive activation of the UPR(mt) by gain of function mutations in atfs-1 fails to extend lifespan. These observations identify several new factors that promote mitochondrial homoeostasis and demonstrate that the UPR(mt), as currently defined, is neither necessary nor sufficient for lifespan extension.
Collapse
Affiliation(s)
| | | | - Marissa Simko
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Shannon Klum
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Sarah Barfield
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Haeri Choi
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Victor V. Pineda
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA, USA
| |
Collapse
|
22
|
Zhang C, Li S, Yang L, Huang P, Li W, Wang S, Zhao G, Zhang M, Pang X, Yan Z, Liu Y, Zhao L. Structural modulation of gut microbiota in life-long calorie-restricted mice. Nat Commun 2014; 4:2163. [PMID: 23860099 PMCID: PMC3717500 DOI: 10.1038/ncomms3163] [Citation(s) in RCA: 365] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/17/2013] [Indexed: 12/16/2022] Open
Abstract
Calorie restriction has been regarded as the only experimental regimen that can effectively lengthen lifespan in various animal models, but the actual mechanism remains controversial. The gut microbiota has been shown to have a pivotal role in host health, and its structure is mostly shaped by diet. Here we show that life-long calorie restriction on both high-fat or low-fat diet, but not voluntary exercise, significantly changes the overall structure of the gut microbiota of C57BL/6 J mice. Calorie restriction enriches phylotypes positively correlated with lifespan, for example, the genus Lactobacillus on low-fat diet, and reduces phylotypes negatively correlated with lifespan. These calorie restriction-induced changes in the gut microbiota are concomitant with significantly reduced serum levels of lipopolysaccharide-binding protein, suggesting that animals under calorie restriction can establish a structurally balanced architecture of gut microbiota that may exert a health benefit to the host via reduction of antigen load from the gut. Calorie restriction has been shown to extend lifespan in diverse model systems, however, the mechanisms underlying this effect remain unclear. Zhang et al. show that calorie restriction changes the structure of the gut microbiota in mice, enriching for phylotypes positively correlated with lifespan.
Collapse
Affiliation(s)
- Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Walsh ME, Shi Y, Van Remmen H. The effects of dietary restriction on oxidative stress in rodents. Free Radic Biol Med 2014; 66:88-99. [PMID: 23743291 PMCID: PMC4017324 DOI: 10.1016/j.freeradbiomed.2013.05.037] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 05/22/2013] [Accepted: 05/24/2013] [Indexed: 02/07/2023]
Abstract
Oxidative stress is observed during aging and in numerous age-related diseases. Dietary restriction (DR) is a regimen that protects against disease and extends life span in multiple species. However, it is unknown how DR mediates its protective effects. One prominent and consistent effect of DR in a number of systems is the ability to reduce oxidative stress and damage. The purpose of this review is to comprehensively examine the hypothesis that dietary restriction reduces oxidative stress in rodents by decreasing reactive oxygen species (ROS) production and increasing antioxidant enzyme activity, leading to an overall reduction of oxidative damage to macromolecules. The literature reveals that the effects of DR on oxidative stress are complex and likely influenced by a variety of factors, including sex, species, tissue examined, types of ROS and antioxidant enzymes examined, and duration of DR. Here we present a comprehensive review of the existing literature on the effect of DR on mitochondrial ROS generation, antioxidant enzymes, and oxidative damage. In a majority of studies, dietary restriction had little effect on mitochondrial ROS production or antioxidant activity. On the other hand, DR decreased oxidative damage in the majority of cases. Although the effects of DR on endogenous antioxidants are mixed, we find that glutathione levels are the most likely antioxidant to be increased by dietary restriction, which supports the emerging redox-stress hypothesis of aging.
Collapse
Affiliation(s)
- Michael E Walsh
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245, USA
| | - Yun Shi
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245, USA; Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245
| | - Holly Van Remmen
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245, USA; Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245; South Texas Veterans Health Care System, San Antonio, TX, 78229, USA.
| |
Collapse
|
24
|
Reynolds MA. Modifiable risk factors in periodontitis: at the intersection of aging and disease. Periodontol 2000 2013; 64:7-19. [DOI: 10.1111/prd.12047] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2013] [Indexed: 12/14/2022]
|
25
|
Dawson DR, Branch-Mays G, Gonzalez OA, Ebersole JL. Dietary modulation of the inflammatory cascade. Periodontol 2000 2013; 64:161-97. [DOI: 10.1111/j.1600-0757.2012.00458.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
26
|
|
27
|
Transcriptomics and Metabonomics Identify Essential Metabolic Signatures in Calorie Restriction (CR) Regulation across Multiple Mouse Strains. Metabolites 2013; 3:881-911. [PMID: 24958256 PMCID: PMC3937836 DOI: 10.3390/metabo3040881] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/23/2013] [Accepted: 09/25/2013] [Indexed: 12/19/2022] Open
Abstract
Calorie restriction (CR) has long been used to study lifespan effects and oppose the development of a broad array of age-related biological and pathological changes (increase healthspan). Yet, a comprehensive comparison of the metabolic phenotype across different genetic backgrounds to identify common metabolic markers affected by CR is still lacking. Using a system biology approach comprising metabonomics and liver transcriptomics we revealed the effect of CR across multiple mouse strains (129S1/SvlmJ, C57BL6/J, C3H/HeJ, CBA/J, DBA/2J, JC3F1/J). Oligonucleotide microarrays identified 76 genes as differentially expressed in all six strains confirmed. These genes were subjected to quantitative RT-PCR analysis in the C57BL/6J mouse strain, and a CR-induced change expression was confirmed for 14 genes. To fully depict the metabolic pathways affected by CR and complement the changes observed through differential gene expression, the metabolome of C57BL6/J was further characterized in liver tissues, urine and plasma levels using a combination or targeted mass spectrometry and proton nuclear magnetic resonance spectroscopy. Overall, our integrated approach commonly confirms that energy metabolism, stress response, lipids regulators and the insulin/IGF-1 are key determinants factors involved in CR regulation.
Collapse
|
28
|
Yamasoba T, Lin FR, Someya S, Kashio A, Sakamoto T, Kondo K. Current concepts in age-related hearing loss: epidemiology and mechanistic pathways. Hear Res 2013; 303:30-8. [PMID: 23422312 PMCID: PMC3723756 DOI: 10.1016/j.heares.2013.01.021] [Citation(s) in RCA: 389] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/20/2012] [Accepted: 01/29/2013] [Indexed: 01/10/2023]
Abstract
Age-related hearing loss (AHL), also known as presbycusis, is a universal feature of mammalian aging and is characterized by a decline of auditory function, such as increased hearing thresholds and poor frequency resolution. The primary pathology of AHL includes the hair cells, stria vascularis, and afferent spiral ganglion neurons as well as the central auditory pathways. A growing body of evidence in animal studies has suggested that cumulative effect of oxidative stress could induce damage to macromolecules such as mitochondrial DNA (mtDNA) and that the resulting accumulation of mtDNA mutations/deletions and decline of mitochondrial function play an important role in inducing apoptosis of the cochlear cells, thereby the development of AHL. Epidemiological studies have demonstrated four categories of risk factors of AHL in humans: cochlear aging, environment such as noise exposure, genetic predisposition, and health co-morbidities such as cigarette smoking and atherosclerosis. Genetic investigation has identified several putative associating genes, including those related to antioxidant defense and atherosclerosis. Exposure to noise is known to induce excess generation of reactive oxygen species (ROS) in the cochlea, and cumulative oxidative stress can be enhanced by relatively hypoxic situations resulting from the impaired homeostasis of cochlear blood supply due to atherosclerosis, which could be accelerated by genetic and co-morbidity factors. Antioxidant defense system may also be influenced by genetic backgrounds. These may explain the large variations of the onset and extent of AHL among elderly subjects. This article is part of a Special Issue entitled "Annual Reviews 2013".
Collapse
Affiliation(s)
- Tatsuya Yamasoba
- Department of Otolaryngology and Head and Neck Surgery, University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
29
|
Yamada Y, Colman RJ, Kemnitz JW, Baum ST, Anderson RM, Weindruch R, Schoeller DA. Long-term calorie restriction decreases metabolic cost of movement and prevents decrease of physical activity during aging in rhesus monkeys. Exp Gerontol 2013; 48:1226-35. [PMID: 23954367 DOI: 10.1016/j.exger.2013.08.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 07/18/2013] [Accepted: 08/05/2013] [Indexed: 12/19/2022]
Abstract
BACKGROUND Short-term (<1 year) calorie restriction (CR) has been reported to decrease physical activity and metabolic rate in humans and non-human primate models; however, studies examining the very long-term (>10 year) effect of CR on these parameters are lacking. OBJECTIVE The objective of this study was to examine metabolic and behavioral adaptations to long-term CR longitudinally in rhesus macaques. DESIGN Eighteen (10 male, 8 female) control (C) and 24 (14 male, 10 female) age matched CR rhesus monkeys between 19.6 and 31.9 years old were examined after 13 and 18 years of moderate adult-onset CR. Energy expenditure (EE) was examined by doubly labeled water (DLW; TEE) and respiratory chamber (24 h EE). Physical activity was assessed both by metabolic equivalent (MET) in a respiratory chamber and by an accelerometer. Metabolic cost of movements during 24 h was also calculated. Age and fat-free mass were included as covariates. RESULTS Adjusted total and 24 h EE were not different between C and CR. Sleeping metabolic rate was significantly lower, and physical activity level was higher in CR than in C independent from the CR-induced changes in body composition. The duration of physical activity above 1.6 METs was significantly higher in CR than in C, and CR had significantly higher accelerometer activity counts than C. Metabolic cost of movements during 24 h was significantly lower in CR than in C. The accelerometer activity counts were significantly decreased after seven years in C animals, but not in CR animals. CONCLUSIONS The results suggest that long-term CR decreases basal metabolic rate, but maintains higher physical activity with lower metabolic cost of movements compared with C.
Collapse
Affiliation(s)
- Yosuke Yamada
- Nutritional Sciences, University of Wisconsin-Madison, United States.
| | | | | | | | | | | | | |
Collapse
|
30
|
Collino S, Martin FPJ, Rezzi S. Clinical metabolomics paves the way towards future healthcare strategies. Br J Clin Pharmacol 2013; 75:619-29. [PMID: 22348240 DOI: 10.1111/j.1365-2125.2012.04216.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Metabolomics is recognized as a powerful top-down system biological approach to understand genetic-environment-health paradigms paving new avenues to identify clinically relevant biomarkers. It is nowadays commonly used in clinical applications shedding new light on physiological regulatory processes of complex mammalian systems with regard to disease aetiology, diagnostic stratification and, potentially, mechanism of action of therapeutic solutions. A key feature of metabolomics lies in its ability to underpin the complex metabolic interactions of the host with its commensal microbial partners providing a new way to define individual and population phenotypes. This review aims at describing recent applications of metabolomics in clinical fields with insight into diseases, diagnostics/monitoring and improvement of homeostatic metabolic regulation.
Collapse
Affiliation(s)
- Sebastiano Collino
- Nestec Ltd, Nestlé Research Center, BioAnalytical Science, Metabolomics and Biomarkers, PO Box 44, CH-1000 Lausanne 26, Switzerland
| | | | | |
Collapse
|
31
|
Heestand BN, Shen Y, Liu W, Magner DB, Storm N, Meharg C, Habermann B, Antebi A. Dietary restriction induced longevity is mediated by nuclear receptor NHR-62 in Caenorhabditis elegans. PLoS Genet 2013; 9:e1003651. [PMID: 23935515 PMCID: PMC3723528 DOI: 10.1371/journal.pgen.1003651] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 06/04/2013] [Indexed: 11/18/2022] Open
Abstract
Dietary restriction (DR) extends lifespan in a wide variety of species, yet the underlying mechanisms are not well understood. Here we show that the Caenorhabditis elegans HNF4α-related nuclear hormone receptor NHR-62 is required for metabolic and physiologic responses associated with DR-induced longevity. nhr-62 mediates the longevity of eat-2 mutants, a genetic mimetic of dietary restriction, and blunts the longevity response of DR induced by bacterial food dilution at low nutrient levels. Metabolic changes associated with DR, including decreased Oil Red O staining, decreased triglyceride levels, and increased autophagy are partly reversed by mutation of nhr-62. Additionally, the DR fatty acid profile is altered in nhr-62 mutants. Expression profiles reveal that several hundred genes induced by DR depend on the activity of NHR-62, including a putative lipase required for the DR response. This study provides critical evidence of nuclear hormone receptor regulation of the DR longevity response, suggesting hormonal and metabolic control of life span. Dietary restriction extends the life span of diverse species across taxa, yet the underlying mechanisms are poorly understood. In humans there are clear health benefits associated with DR such as improved serum cholesterol and lipid levels. In Caenorhabditis elegans, genes implicated in the TOR pathway, autophagy, protein synthesis and energy homeostasis have been shown to modulate the dietary restriction response; however their mechanism of action is still unclear. In this work, we find that the C. elegans nuclear hormone receptor, nhr-62, is required for longevity in multiple DR regimens, providing the first evidence of a nuclear receptor required for DR-induced longevity. Additionally, nhr-62 is required for physiologic changes associated with DR, including increased autophagy and decreased levels of triglycerides, possibly through lipolysis. Moreover, nhr-62 is responsible for regulating hundreds of genes under DR, as measured by qPCR and RNA-seq. Importantly, this work is the first to report transcriptome analysis of DR in C. elegans and the first to provide functional evidence that nuclear receptors are key regulators of the DR longevity response, which imply hormonal and metabolic control of longevity, possibly through alterations in fat metabolism, lipolysis, and autophagy.
Collapse
Affiliation(s)
- Bree N. Heestand
- Interdepartmental Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yidong Shen
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Wei Liu
- Department of Molecular and Cellular Biology, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, United States of America
| | | | - Nadia Storm
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Caroline Meharg
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Institute for Global Food Security, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom
| | | | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Department of Molecular and Cellular Biology, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, United States of America
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
32
|
Richards SE, Wang Y, Claus SP, Lawler D, Kochhar S, Holmes E, Nicholson JK. Metabolic phenotype modulation by caloric restriction in a lifelong dog study. J Proteome Res 2013; 12:3117-27. [PMID: 23713866 DOI: 10.1021/pr301097k] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Modeling aging and age-related pathologies presents a substantial analytical challenge given the complexity of gene-environment influences and interactions operating on an individual. A top-down systems approach is used to model the effects of lifelong caloric restriction, which is known to extend life span in several animal models. The metabolic phenotypes of caloric-restricted (CR; n = 24) and pair-housed control-fed (CF; n = 24) Labrador Retriever dogs were investigated by use of orthogonal projection to latent structures discriminant analysis (OPLS-DA) to model both generic and age-specific responses to caloric restriction from the ¹H NMR blood serum profiles of young and older dogs. Three aging metabolic phenotypes were resolved: (i) an aging metabolic phenotype independent of diet, characterized by high levels of glutamine, creatinine, methylamine, dimethylamine, trimethylamine N-oxide, and glycerophosphocholine and decreasing levels of glycine, aspartate, creatine and citrate indicative of metabolic changes associated largely with muscle mass; (ii) an aging metabolic phenotype specific to CR dogs that consisted of relatively lower levels of glucose, acetate, choline, and tyrosine and relatively higher serum levels of phosphocholine with increased age in the CR population; (iii) an aging metabolic phenotype specific to CF dogs including lower levels of liproprotein fatty acyl groups and allantoin and relatively higher levels of formate with increased age in the CF population. There was no diet metabotype that consistently differentiated the CF and CR dogs irrespective of age. Glucose consistently discriminated between feeding regimes in dogs (≥312 weeks), being relatively lower in the CR group. However, it was observed that creatine and amino acids (valine, leucine, isoleucine, lysine, and phenylalanine) were lower in the CR dogs (<312 weeks), suggestive of differences in energy source utilization. ¹H NMR spectroscopic analysis of longitudinal serum profiles enabled an unbiased evaluation of the metabolic markers modulated by a lifetime of caloric restriction and showed differences in the metabolic phenotype of aging due to caloric restriction, which contributes to longevity studies in caloric-restricted animals. Furthermore, OPLS-DA provided a framework such that significant metabolites relating to life extension could be differentiated and integrated with aging processes.
Collapse
Affiliation(s)
- Selena E Richards
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, UK.
| | | | | | | | | | | | | |
Collapse
|
33
|
de Castro NM, Yaqoob P, de la Fuente M, Baeza I, Claus SP. Premature Impairment of Methylation Pathway and Cardiac Metabolic Dysfunction in fa/fa Obese Zucker Rats. J Proteome Res 2013; 12:1935-45. [DOI: 10.1021/pr400025y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Nuria M. de Castro
- Department of Animal Physiology,
Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Parveen Yaqoob
- Department of Food and Nutritional
Sciences, The University of Reading, Whiteknights
campus, P.O. Box 226, Reading RG6 6AP, U.K
| | - Mónica de la Fuente
- Department of Animal Physiology,
Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Isabel Baeza
- Department of Animal Physiology,
Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Sandrine P. Claus
- Department of Food and Nutritional
Sciences, The University of Reading, Whiteknights
campus, P.O. Box 226, Reading RG6 6AP, U.K
| |
Collapse
|
34
|
Collino S, Montoliu I, Martin FPJ, Scherer M, Mari D, Salvioli S, Bucci L, Ostan R, Monti D, Biagi E, Brigidi P, Franceschi C, Rezzi S. Metabolic signatures of extreme longevity in northern Italian centenarians reveal a complex remodeling of lipids, amino acids, and gut microbiota metabolism. PLoS One 2013; 8:e56564. [PMID: 23483888 PMCID: PMC3590212 DOI: 10.1371/journal.pone.0056564 10.1371/annotation/5fb9fa6f-4889-4407-8430-6dfc7ecdfbdd] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The aging phenotype in humans has been thoroughly studied but a detailed metabolic profiling capable of shading light on the underpinning biological processes of longevity is still missing. Here using a combined metabonomics approach compromising holistic (1)H-NMR profiling and targeted MS approaches, we report for the first time the metabolic phenotype of longevity in a well characterized human aging cohort compromising mostly female centenarians, elderly, and young individuals. With increasing age, targeted MS profiling of blood serum displayed a marked decrease in tryptophan concentration, while an unique alteration of specific glycerophospholipids and sphingolipids are seen in the longevity phenotype. We hypothesized that the overall lipidome changes specific to longevity putatively reflect centenarians' unique capacity to adapt/respond to the accumulating oxidative and chronic inflammatory conditions characteristic of their extreme aging phenotype. Our data in centenarians support promotion of cellular detoxification mechanisms through specific modulation of the arachidonic acid metabolic cascade as we underpinned increased concentration of 8,9-EpETrE, suggesting enhanced cytochrome P450 (CYP) enzyme activity. Such effective mechanism might result in the activation of an anti-oxidative response, as displayed by decreased circulating levels of 9-HODE and 9-oxoODE, markers of lipid peroxidation and oxidative products of linoleic acid. Lastly, we also revealed that the longevity process deeply affects the structure and composition of the human gut microbiota as shown by the increased extrection of phenylacetylglutamine (PAG) and p-cresol sulfate (PCS) in urine of centenarians. Together, our novel approach in this representative Italian longevity cohort support the hypothesis that a complex remodeling of lipid, amino acid metabolism, and of gut microbiota functionality are key regulatory processes marking exceptional longevity in humans.
Collapse
Affiliation(s)
- Sebastiano Collino
- Proteomics and Metabonomics, Nestlé Institute of Health Sciences SA, Campus EPFL, Quartier de l'innovation, Lausanne, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Collino S, Montoliu I, Martin FPJ, Scherer M, Mari D, Salvioli S, Bucci L, Ostan R, Monti D, Biagi E, Brigidi P, Franceschi C, Rezzi S. Metabolic signatures of extreme longevity in northern Italian centenarians reveal a complex remodeling of lipids, amino acids, and gut microbiota metabolism. PLoS One 2013; 8:e56564. [PMID: 23483888 PMCID: PMC3590212 DOI: 10.1371/journal.pone.0056564] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 01/11/2013] [Indexed: 12/14/2022] Open
Abstract
The aging phenotype in humans has been thoroughly studied but a detailed metabolic profiling capable of shading light on the underpinning biological processes of longevity is still missing. Here using a combined metabonomics approach compromising holistic 1H-NMR profiling and targeted MS approaches, we report for the first time the metabolic phenotype of longevity in a well characterized human aging cohort compromising mostly female centenarians, elderly, and young individuals. With increasing age, targeted MS profiling of blood serum displayed a marked decrease in tryptophan concentration, while an unique alteration of specific glycerophospholipids and sphingolipids are seen in the longevity phenotype. We hypothesized that the overall lipidome changes specific to longevity putatively reflect centenarians' unique capacity to adapt/respond to the accumulating oxidative and chronic inflammatory conditions characteristic of their extreme aging phenotype. Our data in centenarians support promotion of cellular detoxification mechanisms through specific modulation of the arachidonic acid metabolic cascade as we underpinned increased concentration of 8,9-EpETrE, suggesting enhanced cytochrome P450 (CYP) enzyme activity. Such effective mechanism might result in the activation of an anti-oxidative response, as displayed by decreased circulating levels of 9-HODE and 9-oxoODE, markers of lipid peroxidation and oxidative products of linoleic acid. Lastly, we also revealed that the longevity process deeply affects the structure and composition of the human gut microbiota as shown by the increased extrection of phenylacetylglutamine (PAG) and p-cresol sulfate (PCS) in urine of centenarians. Together, our novel approach in this representative Italian longevity cohort support the hypothesis that a complex remodeling of lipid, amino acid metabolism, and of gut microbiota functionality are key regulatory processes marking exceptional longevity in humans.
Collapse
Affiliation(s)
- Sebastiano Collino
- Proteomics and Metabonomics, Nestlé Institute of Health Sciences SA, Campus EPFL, Quartier de l'innovation, Lausanne, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Claus SP, Swann JR. Nutrimetabonomics:applications for nutritional sciences, with specific reference to gut microbial interactions. Annu Rev Food Sci Technol 2013; 4:381-99. [PMID: 23297777 DOI: 10.1146/annurev-food-030212-182612] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Understanding the role of the diet in determining human health and disease is one major objective of modern nutrition. Mammalian biocomplexity necessitates the incorporation of systems biology technologies into contemporary nutritional research. Metabonomics is a powerful approach that simultaneously measures the low-molecular-weight compounds in a biological sample, enabling the metabolic status of a biological system to be characterized. Such biochemical profiles contain latent information relating to inherent parameters, such as the genotype, and environmental factors, including the diet and gut microbiota. Nutritional metabonomics, or nutrimetabonomics, is being increasingly applied to study molecular interactions between the diet and the global metabolic system. This review discusses three primary areas in which nutrimetabonomics has enjoyed successful application in nutritional research: the illumination of molecular relationships between nutrition and biochemical processes; elucidation of biomarker signatures of food components for use in dietary surveillance; and the study of complex trans-genomic interactions between the mammalian host and its resident gut microbiome. Finally, this review illustrates the potential for nutrimetabonomics in nutritional science as an indispensable tool to achieve personalized nutrition.
Collapse
Affiliation(s)
- Sandrine P Claus
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AP, UK
| | | |
Collapse
|
37
|
Geier FM, Fuchs S, Valbuena G, Leroi AM, Bundy JG. Profiling the metabolic signature of senescence. Methods Mol Biol 2013; 965:355-371. [PMID: 23296671 DOI: 10.1007/978-1-62703-239-1_24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Aging is a complex process, which involves changes in different cellular functions that all can be integrated on the metabolite level. This means that different gene regulation pathways that affect aging might lead to similar changes in metabolism and result in a metabolic signature of senescence. In this chapter, we describe how to establish a metabolic signature of senescence by analyzing the metabolome of various longevity mutants of the model organism Caenorhabditis elegans using gas chromatography-mass spectrometry (GC-MS). Since longevity-associated genes exist for other model organisms and humans, this analysis could be universally applied to body fluids or whole tissue samples for studing the relationship between senescence and metabolism.
Collapse
Affiliation(s)
- Florian M Geier
- Biomolecular Medicine, Department of Surgery and Cancer, Imperial College, London, UK
| | | | | | | | | |
Collapse
|
38
|
Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature 2012; 489:318-21. [PMID: 22932268 DOI: 10.1038/nature11432] [Citation(s) in RCA: 755] [Impact Index Per Article: 58.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 07/23/2012] [Indexed: 12/31/2022]
Abstract
Calorie restriction (CR), a reduction of 10–40% in intake of a nutritious diet, is often reported as the most robust non-genetic mechanism to extend lifespan and healthspan. CR is frequently used as a tool to understand mechanisms behind ageing and age-associated diseases. In addition to and independently of increasing lifespan, CR has been reported to delay or prevent the occurrence of many chronic diseases in a variety of animals. Beneficial effects of CR on outcomes such as immune function, motor coordination and resistance to sarcopenia in rhesus monkeys have recently been reported. We report here that a CR regimen implemented in young and older age rhesus monkeys at the National Institute on Aging (NIA) has not improved survival outcomes. Our findings contrast with an ongoing study at the Wisconsin National Primate Research Center (WNPRC), which reported improved survival associated with 30% CR initiated in adult rhesus monkeys (7–14 years) and a preliminary report with a small number of CR monkeys. Over the years, both NIA and WNPRC have extensively documented beneficial health effects of CR in these two apparently parallel studies. The implications of the WNPRC findings were important as they extended CR findings beyond the laboratory rodent and to a long-lived primate. Our study suggests a separation between health effects, morbidity and mortality, and similar to what has been shown in rodents, study design, husbandry and diet composition may strongly affect the life-prolonging effect of CR in a long-lived nonhuman primate.
Collapse
|
39
|
Selman C, Hempenstall S. Evidence of a metabolic memory to early-life dietary restriction in male C57BL/6 mice. LONGEVITY & HEALTHSPAN 2012; 1:2. [PMID: 24764508 PMCID: PMC3886256 DOI: 10.1186/2046-2395-1-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 12/08/2011] [Indexed: 12/21/2022]
Abstract
Background Dietary restriction (DR) extends lifespan and induces beneficial metabolic effects in many animals. What is far less clear is whether animals retain a metabolic memory to previous DR exposure, that is, can early-life DR preserve beneficial metabolic effects later in life even after the resumption of ad libitum (AL) feeding. We examined a range of metabolic parameters (body mass, body composition (lean and fat mass), glucose tolerance, fed blood glucose, fasting plasma insulin and insulin-like growth factor 1 (IGF-1), insulin sensitivity) in male C57BL/6 mice dietary switched from DR to AL (DR-AL) at 11 months of age (mid life). The converse switch (AL-DR) was also undertaken at this time. We then compared metabolic parameters of the switched mice to one another and to age-matched mice maintained exclusively on an AL or DR diet from early life (3 months of age) at 1 month, 6 months or 10 months post switch. Results Male mice dietary switched from AL-DR in mid life adopted the metabolic phenotype of mice exposed to DR from early life, so by the 10-month timepoint the AL-DR mice overlapped significantly with the DR mice in terms of their metabolic phenotype. Those animals switched from DR-AL in mid life showed clear evidence of a glycemic memory, with significantly improved glucose tolerance relative to mice maintained exclusively on AL feeding from early life. This difference in glucose tolerance was still apparent 10 months after the dietary switch, despite body mass, fasting insulin levels and insulin sensitivity all being similar to AL mice at this time. Conclusions Male C57BL/6 mice retain a long-term glycemic memory of early-life DR, in that glucose tolerance is enhanced in mice switched from DR-AL in mid life, relative to AL mice, even 10 months following the dietary switch. These data therefore indicate that the phenotypic benefits of DR are not completely dissipated following a return to AL feeding. The challenge now is to understand the molecular mechanisms underlying these effects, the time course of these effects and whether similar interventions can confer comparable benefits in humans.
Collapse
Affiliation(s)
- Colin Selman
- Integrative and Environmental Physiology, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen,, AB24 2TZ, UK
| | - Sarah Hempenstall
- Integrative and Environmental Physiology, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen,, AB24 2TZ, UK
| |
Collapse
|
40
|
Edible dry bean consumption (Phaseolus vulgaris L.) modulates cardiovascular risk factors and diet-induced obesity in rats and mice. Br J Nutr 2012; 108 Suppl 1:S66-73. [DOI: 10.1017/s0007114512000839] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Pulses are grain legumes that have sustained the civilisations of the world throughout their development; yet this staple food crop has fallen into disuse, particularly in Westernised societies, and decreased consumption parallels increased prevalence of CVD. The objective of the present study was to identify mechanisms that account for the cardioprotective activity of dry bean (Phaseolus vulgaris L.), one of the four primary pulse crops, which is widely produced and consumed globally. Laboratory assays that can be used for in vivo screening of dry beans and other pulses to identify those with the greatest potential to benefit human health are also reported. Sprague–Dawley rats and a diet-induced obesity model in C57Bl/6 mice were used to assess the effect of cooked dry bean incorporated into a purified diet formulation on plasma lipids and hepatic proteins involved in the regulation of lipid biosynthesis. In both animal species, short-term feeding of a bean-containing diet reduced plasma total cholesterol and LDL-cholesterol without affecting HDL-cholesterol or total TAG. Mechanisms associated with cholesterol catabolism and excretion are the likely targets of the bean effect. Unexpectedly, bean-fed obese mice experienced weight loss as well as an improved plasma lipid profile within a 12 d time frame. These findings support the use of short-term (7–14 d) assays to investigate mechanisms that account for the cardioprotective and weight regulatory effects of dry bean and to screen dry bean germplasm resources for types of bean with high protective activity. These same assays can be used to identify the bioactive components of bean that account for the observed effects.
Collapse
|
41
|
Tazhibi M, Bahraini N. Comparison of energy intake and requirement of young students in Isfahan, Iran. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2012; 17:686-8. [PMID: 23798932 PMCID: PMC3685788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Revised: 04/21/2012] [Accepted: 05/29/2012] [Indexed: 11/13/2022]
Abstract
BACKGROUND Estimation of energy intakes is required for understanding of growth and disease in young students. This study was conducted to estimate the energy intake of young students and compare with their energy requirements. MATERIALS AND METHODS In this cross-sectional study, using simple random sampling, 400 students, aged 14-18 years, were selected in 2010. Hariss-Benedict equations were used to estimate the energy requirement of each group. RESULTS Mean and standard error of energy intake and requirements of males was 2155 ± 30 and 1670 ± 18, respectively, and of females was 2700 ± 21, 2300 ± 4 kcal, respectively. Differences of means, energy intake, and requirement in both sexes were significant (P < 0.001). CONCLUSION Because of their age (14-18 years), which is called growth age, energy intake was lower than their needs.
Collapse
Affiliation(s)
- Mehdi Tazhibi
- School of Health, Isfahan University of Medical Sciences, Iran
| | - Nimah Bahraini
- School of Health, Isfahan University of Medical Sciences, Iran
| |
Collapse
|
42
|
Willette AA, Bendlin BB, Colman RJ, Kastman EK, Field AS, Alexander AL, Sridharan A, Allison DB, Anderson R, Voytko ML, Kemnitz JW, Weindruch RH, Johnson SC. Calorie restriction reduces the influence of glucoregulatory dysfunction on regional brain volume in aged rhesus monkeys. Diabetes 2012; 61:1036-42. [PMID: 22415875 PMCID: PMC3331743 DOI: 10.2337/db11-1187] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Insulin signaling dysregulation is related to neural atrophy in hippocampus and other areas affected by neurovascular and neurodegenerative disorders. It is not known if long-term calorie restriction (CR) can ameliorate this relationship through improved insulin signaling or if such an effect might influence task learning and performance. To model this hypothesis, magnetic resonance imaging was conducted on 27 CR and 17 control rhesus monkeys aged 19-31 years from a longitudinal study. Voxel-based regression analyses were used to associate insulin sensitivity with brain volume and microstructure cross-sectionally. Monkey motor assessment panel (mMAP) performance was used as a measure of task performance. CR improved glucoregulation parameters and related indices. Higher insulin sensitivity predicted more gray matter in parietal and frontal cortices across groups. An insulin sensitivity × dietary condition interaction indicated that CR animals had more gray matter in hippocampus and other areas per unit increase relative to controls, suggesting a beneficial effect. Finally, bilateral hippocampal volume adjusted by insulin sensitivity, but not volume itself, was significantly associated with mMAP learning and performance. These results suggest that CR improves glucose regulation and may positively influence specific brain regions and at least motor task performance. Additional studies are warranted to validate these relationships.
Collapse
Affiliation(s)
- Auriel A. Willette
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, Wisconsin
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Barbara B. Bendlin
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Ricki J. Colman
- Wisconsin National Primate Research Center, Madison, Wisconsin
| | - Erik K. Kastman
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Aaron S. Field
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Andrew L. Alexander
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, Wisconsin
| | - Aadhavi Sridharan
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin
| | - David B. Allison
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rozalyn Anderson
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
- Wisconsin National Primate Research Center, Madison, Wisconsin
| | - Mary-Lou Voytko
- Department of Neurobiology and Anatomy Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina
| | - Joseph W. Kemnitz
- Wisconsin National Primate Research Center, Madison, Wisconsin
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Institute for Clinical and Translational Research, University of Wisconsin-Madison, Madison, Wisconsin
| | - Richard H. Weindruch
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Sterling C. Johnson
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, Wisconsin
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- Wisconsin National Primate Research Center, Madison, Wisconsin
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin
- Corresponding author: Sterling C. Johnson,
| |
Collapse
|
43
|
Wijeyesekera A, Selman C, Barton RH, Holmes E, Nicholson JK, Withers DJ. Metabotyping of long-lived mice using 1H NMR spectroscopy. J Proteome Res 2012; 11:2224-35. [PMID: 22225495 PMCID: PMC4467904 DOI: 10.1021/pr2010154] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Significant advances in understanding aging have been achieved through studying model organisms with extended healthy lifespans. Employing 1H NMR spectroscopy, we characterized the plasma metabolic phenotype (metabotype) of three long-lived murine models: 30% dietary restricted (DR), insulin receptor substrate 1 null (Irs1-/-), and Ames dwarf (Prop1df/df). A panel of metabolic differences were generated for each model relative to their controls, and subsequently, the three long-lived models were compared to one another. Concentrations of mobile very low density lipoproteins, trimethylamine, and choline were significantly decreased in the plasma of all three models. Metabolites including glucose, choline, glycerophosphocholine, and various lipids were significantly reduced, while acetoacetate, d-3-hydroxybutyrate and trimethylamine-N-oxide levels were increased in DR compared to ad libitum fed controls. Plasma lipids and glycerophosphocholine were also decreased in Irs1-/- mice compared to controls, as were methionine and citrate. In contrast, high density lipoproteins and glycerophosphocholine were increased in Ames dwarf mice, as were methionine and citrate. Pairwise comparisons indicated that differences existed between the metabotypes of the different long-lived mice models. Irs1-/- mice, for example, had elevated glucose, acetate, acetone, and creatine but lower methionine relative to DR mice and Ames dwarfs. Our study identified several potential candidate biomarkers directionally altered across all three models that may be predictive of longevity but also identified differences in the metabolic signatures. This comparative approach suggests that the metabolic networks underlying lifespan extension may not be exactly the same for each model of longevity and is consistent with multifactorial control of the aging process.
Collapse
Affiliation(s)
- Anisha Wijeyesekera
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | | | | | | | | | | |
Collapse
|
44
|
Sharma N, Bhat AD, Kassa AD, Xiao Y, Arias EB, Cartee GD. Improved insulin sensitivity with calorie restriction does not require reduced JNK1/2, p38, or ERK1/2 phosphorylation in skeletal muscle of 9-month-old rats. Am J Physiol Regul Integr Comp Physiol 2011; 302:R126-36. [PMID: 22012698 DOI: 10.1152/ajpregu.00372.2011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Calorie restriction [CR; ∼40% below ad libitum (AL) intake] improves the health of many species, including rats, by mechanisms that may be partly related to enhanced insulin sensitivity for glucose disposal by skeletal muscle. Excessive activation of several mitogen-activated protein kinases (MAPKs), including JNK1/2, p38, and ERK1/2 has been linked to insulin resistance. Although insulin can activate ERK1/2, this effect is not required for insulin-mediated glucose uptake. We hypothesized that skeletal muscle from male 9-mo-old Fischer 344/Brown Norway rats CR (35-40% beginning at 3 mo old) versus AL rats would have 1) attenuated activation of JNK1/2, p38, and ERK1/2 under basal conditions; and 2) no difference for insulin-induced ERK1/2 activation. In contrast to our hypothesis, there were significant CR-related increases in the phosphorylation of p38 (epitrochlearis, soleus, and gastrocnemius), JNK1 (epitrochlearis and soleus), and JNK2 (gastrocnemius). Consistent with our hypothesis, CR did not alter insulin-mediated ERK1/2 activation. The greater JNK1/2 and p38 phosphorylation with CR was not attributable to diet effects on muscle oxidative stress (assessed by protein carbonyls and 4-hydroxynonenal protein conjugates). In muscles from the same rats used for the present study, we previously reported a CR-related increase in insulin-mediated glucose uptake by the epitrochlearis and the soleus (Sharma N, Arias EB, Bhat AD, Sequea DA, Ho S, Croff KK, Sajan MP, Farese RV, Cartee GD. Am J Physiol Endocrinol Metab 300: E966-E978, 2011). The present results indicate that the improved insulin sensitivity with CR is not attributable to attenuated MAPK phosphorylation in skeletal muscle.
Collapse
Affiliation(s)
- Naveen Sharma
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, 48109-2214, USA
| | | | | | | | | | | |
Collapse
|
45
|
Manzanero S, Gelderblom M, Magnus T, Arumugam TV. Calorie restriction and stroke. EXPERIMENTAL & TRANSLATIONAL STROKE MEDICINE 2011; 3:8. [PMID: 21910904 PMCID: PMC3179731 DOI: 10.1186/2040-7378-3-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 09/12/2011] [Indexed: 12/15/2022]
Abstract
Stroke, a major cause of disability and mortality in the elderly, occurs when a cerebral blood vessel is occluded or ruptured, resulting in ischemic damage and death of brain cells. The injury mechanism involves metabolic and oxidative stress, excitotoxicity, apoptosis and inflammatory processes, including activation of glial cells and infiltration of leukocytes. In animal models, dietary energy restriction, by daily calorie reduction (CR) or intermittent fasting (IF), extends lifespan and decreases the development of age-related diseases. Dietary energy restriction may also benefit neurons, as suggested by experimental evidence showing that CR and IF protect neurons against degeneration in animal models. Recent findings by our group and others suggest the possibility that dietary energy restriction may protect against stroke induced brain injury, in part by inducing the expression of neurotrophic factors, such as brain-derived neurotrophic factor (BDNF) and basic fibroblast growth factor (bFGF); protein chaperones, including heat shock protein 70 (Hsp70) and glucose regulated protein 78 (GRP78); antioxidant enzymes, such as superoxide dismutases (SOD) and heme oxygenase-1 (HO-1), silent information regulator T1 (SIRT1), uncoupling proteins and anti-inflammatory cytokines. This article discusses the protective mechanisms activated by dietary energy restriction in ischemic stroke.
Collapse
Affiliation(s)
- Silvia Manzanero
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia.
| | | | | | | |
Collapse
|
46
|
|
47
|
|
48
|
Emmerson E, Hardman MJ. The role of estrogen deficiency in skin ageing and wound healing. Biogerontology 2011; 13:3-20. [PMID: 21369728 DOI: 10.1007/s10522-011-9322-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 02/11/2011] [Indexed: 12/12/2022]
Abstract
The links between hormonal signalling and lifespan have been well documented in a range of model organisms. For example, in C. elegans or D. melanogaster, lifespan can be modulated by ablating germline cells, or manipulating reproductive history or pregnenolone signalling. In mammalian systems, however, hormonal contribution to longevity is less well understood. With increasing age human steroid hormone profiles change substantially, particularly following menopause in women. This article reviews recent links between steroid sex hormones and ageing, with special emphasis on the skin and wound repair. Estrogen, which substantially decreases with advancing age in both males and females, protects against multiple aspects of cellular ageing in rodent models, including oxidative damage, telomere shortening and cellular senescence. Estrogen's effects are particularly pronounced in the skin where cutaneous changes post-menopause are well documented, and can be partially reversed by classical Hormone Replacement Therapy (HRT). Our research shows that while chronological ageing has clear effects on skin wound healing, falling estrogen levels are the principle mediator of these effects. Thus, both HRT and topical estrogen replacement substantially accelerate healing in elderly humans, but are associated with unwanted deleterious effects, particularly cancer promotion. In fact, much current research effort is being invested in exploring the therapeutic potential of estrogen signalling manipulation to reverse age-associated pathology in peripheral tissues. In the case of the skin the differential targeting of estrogen receptors to promote healing in aged subjects is a real therapeutic possibility.
Collapse
Affiliation(s)
- Elaine Emmerson
- The University of Manchester, A V Hill Building, Manchester, UK
| | | |
Collapse
|
49
|
Martin FPJ, Spanier B, Collino S, Montoliu I, Kolmeder C, Giesbertz P, Affolter M, Kussmann M, Daniel H, Kochhar S, Rezzi S. Metabotyping of Caenorhabditis elegans and their culture media revealed unique metabolic phenotypes associated to amino acid deficiency and insulin-like signaling. J Proteome Res 2011; 10:990-1003. [PMID: 21275419 DOI: 10.1021/pr100703a] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Insulin/IGF-like signaling (IIS) and nutrient sensing are among the most potent regulators of health status and aging. Here, a global view of the metabolic changes in C. elegans with impaired function of IIS represented by daf-2 and daf-16 and the intestinal di- and tripeptide transport pept-1 was generated using (1)H nuclear magnetic resonance spectroscopic analysis of worm extracts and spent culture media. We showed that specific metabolic profiles were significantly associated with each type of mutant. On the basis of the metabonomics data, selected underlying processes were further investigated using proteomic and transcriptomic approaches. The observed changes suggest a decreased activity of the one carbon metabolism in pept-1(lg601) mutants. Higher concentration of branched-chain amino acids (BCAA) and altered transcript levels of genes involved in BCAA metabolism were observed in long-living strains daf-2(e1370) and daf-2(e1370);pept-1(lg601) when compared to wild types and daf-16(m26);daf-2(e1370);pept-1(lg601) C. elegans, suggesting a DAF-16-dependent mechanism.
Collapse
|
50
|
Abstract
Calorie restriction (CR) is the only dietary intervention that repeatedly extends both median and maximal lifespan in a broad range of species. Although there has been considerable interest in CR and its ability to retard aging, the mechanism has remained elusive. In contrast to studies in rodent and nonmammalian systems that are now beginning to provide mechanistic insights into how CR promotes longevity, the efficacy of CR in delaying primate aging has yet to be fully demonstrated. Here we review some of the insights from CR studies in short-lived species. We describe the advantages of using the rhesus monkey as a model for human aging and detail how CR can be successfully implemented in this species. We discuss the findings from our ongoing longitudinal study and outline the effects to date of CR on rhesus monkey health. Finally, we highlight the importance of primate studies in the context of aging research and its potential to advance our understanding of human aging and health.
Collapse
Affiliation(s)
- Ricki J Colman
- Wisconsin National Primate Research Center, SMPH, University of Wisconsin, Madison, Wisconsin 53715, USA.
| | | |
Collapse
|