1
|
Li Z, Duan R, Jiang Q, Liu J, Chen J, Jiang L, Wang T, Li H, Zhang Y, Peng X, Huang Z, Zhu L, Zou W, Lin Y, Su W. Dietary caloric restriction protects experimental autoimmune uveitis by regulating Teff/Treg balance. iScience 2024; 27:111279. [PMID: 39628557 PMCID: PMC11612795 DOI: 10.1016/j.isci.2024.111279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/29/2024] [Accepted: 10/25/2024] [Indexed: 12/06/2024] Open
Abstract
Uveitis, an autoimmune disease, often leads to blindness. CD4+ T cells, including regulatory T cells (Tregs) and effector T cells (Th1 and Th17), play a critical role in its pathogenesis. Caloric restriction (CR) has been shown to alleviate autoimmune diseases. However, careful characterization of the impact of CR on experimental autoimmune uveitis (EAU) is poorly understood. This study used single-cell RNA sequencing to analyze cervical draining lymph nodes in mice under ad libitum (AL) and CR diets, with or without EAU. CR increased Tregs, altered immune cell metabolism, reduced EAU symptoms, and downregulated inflammatory and glycolysis genes. Flow cytometry confirmed CR's inhibitory effect on Th1 and Th17 proliferation and its promotion of Treg proliferation. CR also balanced CD4+ T cells by inhibiting the PI3K/AKT/c-Myc pathway and reducing GM-CSF in Th17 cells. These findings suggest CR as a potential therapeutic strategy for autoimmune diseases.
Collapse
Affiliation(s)
- Zhaohuai Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Runping Duan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Qi Jiang
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Jiaying Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jialing Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510060, China
| | - Loujing Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Tianfu Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - He Li
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Yihan Zhang
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Xuening Peng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Zhaohao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Lei Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Wenjun Zou
- Department of Ophthalmology, Wuxi No.2 People’s Hospital, Jiangnan University Medical Center, Wuxi, Jiangsu, China
| | - Ying Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Wenru Su
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| |
Collapse
|
2
|
Ouyang W, Yan D, Hu J, Liu Z. Multifaceted mitochondrial as a novel therapeutic target in dry eye: insights and interventions. Cell Death Discov 2024; 10:398. [PMID: 39242592 PMCID: PMC11379830 DOI: 10.1038/s41420-024-02159-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024] Open
Abstract
Dry eye, recognized as the most prevalent ocular surface disorder, has risen to prominence as a significant public health issue, adversely impacting the quality of life for individuals across the globe. Despite decades of extensive research into the chronic inflammation that characterizes dry eye, the intricate mechanisms fueling this persistent inflammatory state remain incompletely understood. Among the various cellular components under investigation, mitochondria-essential for cellular energy production and homeostasis-have attracted increasing attention for their role in dry eye pathogenesis. This involvement points to mechanisms such as oxidative stress, apoptosis, and sustained inflammation, which are central to the progression of the disease. This review aims to provide a thorough exploration of mitochondrial dysfunction in dry eye, shedding light on the critical roles played by mitochondrial oxidative stress, apoptosis, and mitochondrial DNA damage. It delves into the mechanisms through which diverse pathogenic factors may trigger mitochondrial dysfunction, thereby contributing to the onset and exacerbation of dry eye. Furthermore, it lays the groundwork for an overview of current therapeutic strategies that specifically target mitochondrial dysfunction, underscoring their potential in managing this complex condition. By spotlighting this burgeoning area of research, our review seeks to catalyze the development of innovative drug discovery and therapeutic approaches. The ultimate goal is to unlock promising avenues for the future management of dry eye, potentially revolutionizing treatment paradigms and improving patient outcomes. Through this comprehensive examination, we endeavor to enrich the scientific community's understanding of dry eye and inspire novel interventions that address the underlying mitochondrial dysfunctions contributing to this widespread disorder.
Collapse
Affiliation(s)
- Weijie Ouyang
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine of Xiamen University, Xiamen, Fujian, China; Department of Ophthalmology, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Dan Yan
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine of Xiamen University, Xiamen, Fujian, China
| | - Jiaoyue Hu
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine of Xiamen University, Department of Ophthalmology of Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China.
| | - Zuguo Liu
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine of Xiamen University, Department of Ophthalmology of Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China; Department of Ophthalmology, the First Affiliated Hospital of University of South China, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
3
|
Lee D, Tomita Y, Shinojima A, Ban N, Yamaguchi S, Nishioka K, Negishi K, Yoshino J, Kurihara T. Nicotinamide mononucleotide, a potential future treatment in ocular diseases. Graefes Arch Clin Exp Ophthalmol 2024; 262:689-700. [PMID: 37335334 DOI: 10.1007/s00417-023-06118-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/21/2023] Open
Abstract
PURPOSE The burden of ocular diseases has been gradually increasing worldwide. Various factors are suggested for the development and progression of ocular diseases, such as ocular inflammation, oxidative stress, and complex metabolic dysregulation. Thus, managing ocular diseases requires the modulation of pathologic signaling pathways through many mechanisms. Nicotinamide mononucleotide (NMN) is a bioactive molecule naturally found in life forms. NMN is a direct precursor of the important molecule nicotinamide adenine dinucleotide (NAD+), an essential co-enzyme required for enormous cellular functions in most life forms. While the recent experimental evidence of NMN treatment in various metabolic diseases has been well-reviewed, NMN treatment in ocular diseases has not been comprehensively summarized yet. In this regard, we aimed to focus on the therapeutic roles of NMN treatment in various ocular diseases with recent advances. METHODS How we came to our current opinion with a recent summary was described based on our own recent reports as well as a search of the related literature. RESULTS We found that NMN treatment might be available for the prevention of and protection from various experimental ocular diseases, as NMN treatment modulated ocular inflammation, oxidative stress, and complex metabolic dysregulation in murine models for eye diseases such as ischemic retinopathy, corneal defect, glaucoma, and age-related macular degeneration. CONCLUSION Our current review suggests and discusses new modes of actions of NMN for the prevention of and protection from various ocular diseases and can urge future research to obtain more solid evidence on a potential future NMN treatment in ocular diseases at the preclinical stages.
Collapse
Affiliation(s)
- Deokho Lee
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Yohei Tomita
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Ari Shinojima
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Norimitsu Ban
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Shintaro Yamaguchi
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Ken Nishioka
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Jun Yoshino
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Toshihide Kurihara
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, 160-8582, Japan.
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, 160-8582, Japan.
| |
Collapse
|
4
|
Yu WY, Chan LYL, Chung A, Lee PH, Woo GC. Bilberry-containing supplements on severe dry eye disease in young and middle-aged adults: A 3-month pilot analysis. Front Nutr 2023; 10:1061818. [PMID: 36742436 PMCID: PMC9892183 DOI: 10.3389/fnut.2023.1061818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
Purpose To explore the effect of bilberry and fish oil combination supplement on a small clinical sample patient-base with severe dry eyes. Methods Twenty-four subjects were recruited with twelve randomly assigned to the intervention and control groups, respectively. Inclusion criteria included severe dry eye symptoms determined by scores >33 from the Ocular Surface Disease Index (OSDI) questionnaire. The intervention group was instructed to take an oral supplement with key ingredients of 600 mg bilberry extract and 240 mg docosahexaenoic acid-refined fish oil once daily for 3 months. The control group did not take any supplements. Mean changes in OSDI score, non-invasive tear break-up time (NITBUT), phenol red thread test (PRT), and percentage of meibomian gland openings were used as outcome measures. Testing was done at baseline, 1-month, and 3-month follow-up. Comparison between the treatment and control groups, and the younger adult and middle-age groups were performed. Results The mean baseline values for the treatment and control groups were not clinically different. The OSDI score, NITBUT, PRT, and percentage of meibomian gland openings improved after taking the supplements for 3 months. The OSDI score, NITBUT, and PRT showed clinical improvements between the intervention and control groups. These improvements were consistent between the two age groups. Conclusion This study suggested preliminary improvements in signs and symptoms of severe dry eyes that were independent of age after taking dietary supplementation of bilberry extract and fish oil for 3 months. Further studies using more device-based measures and a placebo supplement are warranted.
Collapse
Affiliation(s)
- Wing Y. Yu
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Lily Y. L. Chan
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Aden Chung
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Paul H. Lee
- Southampton Clinical Trials Unit, University of Southampton, Southampton, United Kingdom
| | - George C. Woo
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China,Centre for Eye and Vision Research (CEVR), 17W Science Park, Hong Kong SAR, China,*Correspondence: George C. Woo,
| |
Collapse
|
5
|
Inaba T, Ohnishi-Kameyama M, Liu Y, Tanaka Y, Kobori M, Tamaki S, Ito T, Higa K, Shimazaki J, Tsubota K. Quercetin improves lacrimal gland function through its anti-oxidant actions: Evidence from animal studies, and a pilot study in healthy human volunteers. Front Nutr 2022; 9:974530. [PMID: 36313100 PMCID: PMC9599396 DOI: 10.3389/fnut.2022.974530] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Anti-oxidant properties of polyphenols have been gaining medical attention as a preventive factor against aging and/or lifestyle diseases. In this study, we examined the anti-oxidant activity of quercetin improved tear function through its effects on the lacrimal gland in mice and humans. Six week-old diabetic mice, a model for decreased tear production, were fed for 12 weeks ad libitum with an experimental diet containing 0.5% quercetin. As a result, the tear volume was significantly improved compared to the control, despite no changes in body weight, food intake, lacrimal gland morphology or biochemical serum parameters. Moreover, significantly higher SOD-1 and SOD-2 protein levels were detected in the lacrimal glands of quercetin-treated mice by western blot. In addition, quercetin treatment of mouse corneal cell lines exposed to oxidative stress resulted in dose-dependent inhibition of ROS production and enhanced cell survival. Finally, we examined quercetin pharmacokinetics, specifically its presence in serum and tears subsequent to onion consumption in healthy volunteers, and found that the distribution of quercetin and its metabolite shifted from serum to tear following onion intake. An improvement in tear film stability also resulted following the intake by these healthy volunteers of a new, quercetin-rich onion cultivar ("Quergold") in powder form. These results suggested that quercetin improved tear function through its effects on the lacrimal gland in mice and humans.
Collapse
Affiliation(s)
- Takaaki Inaba
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan,Department of Ophthalmology/Cornea Center, Tokyo Dental College Ichikawa General Hospital, Ichikawa, Japan
| | - Mayumi Ohnishi-Kameyama
- Food Research Institute, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Ying Liu
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Yasuhisa Tanaka
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Masuko Kobori
- Food Research Institute, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Shusaku Tamaki
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Tomotaka Ito
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Kazunari Higa
- Department of Ophthalmology/Cornea Center, Tokyo Dental College Ichikawa General Hospital, Ichikawa, Japan
| | - Jun Shimazaki
- Department of Ophthalmology/Cornea Center, Tokyo Dental College Ichikawa General Hospital, Ichikawa, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan,Tsubota Laboratory, Inc., Tokyo, Japan,*Correspondence: Kazuo Tsubota,
| |
Collapse
|
6
|
Keeling E, Lynn SA, Koh YM, Scott JA, Kendall A, Gatherer M, Page A, Cagampang FR, Lotery AJ, Ratnayaka JA. A High Fat "Western-style" Diet Induces AMD-Like Features in Wildtype Mice. Mol Nutr Food Res 2022; 66:e2100823. [PMID: 35306732 PMCID: PMC9287010 DOI: 10.1002/mnfr.202100823] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 03/01/2022] [Indexed: 12/20/2022]
Abstract
Scope The intake of a “Western‐style” diet rich in fats is linked with developing retinopathies including age‐related macular degeneration (AMD). Wildtype mice are given a high fat diet (HFD) to determine how unhealthy foods can bring about retinal degeneration. Methods and results Following weaning, female C57BL/6 mice are maintained on standard chow (7% kcal fat, n = 29) or a HFD (45% kcal fat, n = 27) for 12 months. Animals were sacrificed following electroretinography (ERG) and their eyes analyzed by histology, confocal immunofluorescence, and transmission electron microscopy. HFD mice become obese, but showed normal retinal function compared to chow‐fed controls. However, diminished β3tubulin labeling of retinal cross‐sections indicated fewer/damaged neuronal processes in the inner plexiform layer. AMD‐linked proteins clusterin and TIMP3 accumulated in the retinal pigment epithelium (RPE) and Bruch's membrane (BrM). Neutral lipids also deposited in the outer retinae of HFD mice. Ultrastructural analysis revealed disorganized photoreceptor outer segments, collapsed/misaligned RPE microvilli, vacuoles, convoluted basolateral RPE infolds and BrM changes. Basal laminar‐like deposits were also present alongside abnormal choroidal endothelial cells. Conclusions We show that prolonged exposure to an unhealthy “Western‐style” diet alone can recapitulate early‐intermediate AMD‐like features in wildtype mice, highlighting the importance of diet and nutrition in the etiology of sight‐loss.
Collapse
Affiliation(s)
- Eloise Keeling
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton, SO16 6YD, UK
| | - Savannah A Lynn
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton, SO16 6YD, UK
| | - Yen Min Koh
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton, SO16 6YD, UK
| | - Jenny A Scott
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton, SO16 6YD, UK
| | - Aaron Kendall
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton, SO16 6YD, UK
| | - Maureen Gatherer
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton, SO16 6YD, UK
| | - Anton Page
- Biomedical Imaging Unit, University of Southampton, MP12, Tremona Road, Southampton, SO16 6YD, UK
| | - Felino R Cagampang
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK
| | - Andrew J Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton, SO16 6YD, UK.,Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - J Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton, SO16 6YD, UK
| |
Collapse
|
7
|
Abstract
Glaucoma, a progressive age-related optic neuropathy characterized by the death of retinal ganglion cells, is the most common neurodegenerative cause of irreversible blindness worldwide. The therapeutic management of glaucoma, which is limited to lowering intraocular pressure, is still a challenge since visual loss progresses in a significant percentage of treated patients. Restricted dietary regimens have received considerable attention as adjuvant strategy for attenuating or delaying the progression of neurodegenerative diseases. Here we discuss the literature exploring the effects of modified eating patterns on retinal aging and resistance to stressor stimuli.
Collapse
Affiliation(s)
- Rossella Russo
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Carlo Nucci
- Ophthalmology Unit, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Annagrazia Adornetto
- Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
8
|
Wishart TFL, Flokis M, Shu DY, Das SJ, Lovicu FJ. Hallmarks of lens aging and cataractogenesis. Exp Eye Res 2021; 210:108709. [PMID: 34339681 DOI: 10.1016/j.exer.2021.108709] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/05/2021] [Accepted: 07/26/2021] [Indexed: 12/18/2022]
Abstract
Lens homeostasis and transparency are dependent on the function and intercellular communication of its epithelia. While the lens epithelium is uniquely equipped with functional repair systems to withstand reactive oxygen species (ROS)-mediated oxidative insult, ROS are not necessarily detrimental to lens cells. Lens aging, and the onset of pathogenesis leading to cataract share an underlying theme; a progressive breakdown of oxidative stress repair systems driving a pro-oxidant shift in the intracellular environment, with cumulative ROS-induced damage to lens cell biomolecules leading to cellular dysfunction and pathology. Here we provide an overview of our current understanding of the sources and essential functions of lens ROS, antioxidative defenses, and changes in the major regulatory systems that serve to maintain the finely tuned balance of oxidative signaling vs. oxidative stress in lens cells. Age-related breakdown of these redox homeostasis systems in the lens leads to the onset of cataractogenesis. We propose eight candidate hallmarks that represent common denominators of aging and cataractogenesis in the mammalian lens: oxidative stress, altered cell signaling, loss of proteostasis, mitochondrial dysfunction, dysregulated ion homeostasis, cell senescence, genomic instability and intrinsic apoptotic cell death.
Collapse
Affiliation(s)
| | - Mary Flokis
- School of Medical Sciences, The University of Sydney, NSW, Australia
| | - Daisy Y Shu
- School of Medical Sciences, The University of Sydney, NSW, Australia; Save Sight Institute, The University of Sydney, NSW, Australia; Schepens Eye Research Institute of Mass Eye and Ear. Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Shannon J Das
- School of Medical Sciences, The University of Sydney, NSW, Australia
| | - Frank J Lovicu
- School of Medical Sciences, The University of Sydney, NSW, Australia; Save Sight Institute, The University of Sydney, NSW, Australia.
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW This review explores metabolic syndrome (MetS) as a risk factor that accelerates aging in retinal neurons and may contribute to the neurodegeneration seen in glaucomatous optic neuropathy (GON) and age-related macular degeneration (AMD). RECENT FINDINGS Both animal model experiments and epidemiologic studies suggest that metabolic stress may lead to aberrant regulation of a number of cellular pathways that ultimately lead to premature aging of the cell, including those of a neuronal lineage. SUMMARY GON and AMD are each leading causes of irreversible blindness worldwide. Aging is a significant risk factor in the specific retinal neuron loss that is seen with each condition. Though aging at a cellular level is difficult to define, there are many mechanistic modifiers of aging. Metabolic-related stresses induce inflammation, oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress, alterations to the unfolded protein response, defects in autophagy, alterations to the microbiome, and deposition of advanced glycation end products that can all hasten the aging process. Due to the number of variables related to metabolic health, defining criteria to enable the study of risk factors at a population level is challenging. MetS is a definable constellation of related metabolic risk factors that includes enlarged waist circumference, dyslipidemia, systemic hypertension, and hyperglycemia. MetS has been associated with both GON and AMD and may contribute to disease onset and/or progression in each disease.
Collapse
|
10
|
The Role of Autophagy in Eye Diseases. Life (Basel) 2021; 11:life11030189. [PMID: 33673657 PMCID: PMC7997177 DOI: 10.3390/life11030189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/18/2022] Open
Abstract
Autophagy is a catabolic process that ensures homeostasis in the cells of our organism. It plays a crucial role in protecting eye cells against oxidative damage and external stress factors. Ocular pathologies of high incidence, such as age-related macular degeneration, cataracts, glaucoma, and diabetic retinopathy are of multifactorial origin and are associated with genetic, environmental factors, age, and oxidative stress, among others; the latter factor is one of the most influential in ocular diseases, directly affecting the processes of autophagy activity. Alteration of the normal functioning of autophagy processes can interrupt organelle turnover, leading to the accumulation of cellular debris and causing physiological dysfunction of the eye. The aim of this study is to review research on the role of autophagy processes in the main ocular pathologies, which have a high incidence and result in high costs for the health system. Considering the role of autophagy processes in cell homeostasis and cell viability, the control and modulation of autophagy processes in ocular pathologies could constitute a new therapeutic approach.
Collapse
|
11
|
Favero G, Moretti E, Krajčíková K, Tomečková V, Rezzani R. Evidence of Polyphenols Efficacy against Dry Eye Disease. Antioxidants (Basel) 2021; 10:antiox10020190. [PMID: 33525721 PMCID: PMC7911148 DOI: 10.3390/antiox10020190] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
Dry eye disease is a multifactorial pathology compromising the quality of life of patients, resulting in significant damage of the ocular surface and discomfort. The current therapeutical strategies are not able to definitively resolve the underlying causes and stop the symptoms. Polyphenols are promising natural molecules that are receiving increasing attention for their activity/effects in counteracting the main pathologic mechanisms of dry eye disease and reducing its symptoms. In the present review, a deep literature search focusing on the main polyphenols tested against dry eye disease was conducted, analyzing related in vitro, in vivo, and clinical studies to provide a comprehensive and current review on the state of the art. Polyphenols present multiple effects against dry eye diseases-related ocular surface injury. In particular, the observed beneficial effects of polyphenols on corneal cells are the reduction of the pathological processes of inflammation, oxidative stress, and apoptosis and modulation of the tear film. Due to numerous studies reporting that polyphenols are effective and safe for treating the pathological mechanisms of this ocular surface disease, we believe that future studies should confirm and extend the evidence of polyphenols efficacy in clinical practice against dry eye disease and help to develop new ophthalmic drug(s).
Collapse
Affiliation(s)
- Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (G.F.); (E.M.)
| | - Enrico Moretti
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (G.F.); (E.M.)
| | - Kristína Krajčíková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, 040 12 Košice, Slovakia; (K.K.); (V.T.)
| | - Vladimíra Tomečková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, 040 12 Košice, Slovakia; (K.K.); (V.T.)
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (G.F.); (E.M.)
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
- Correspondence:
| |
Collapse
|
12
|
Di Daniele N, Marrone G, Di Lauro M, Di Daniele F, Palazzetti D, Guerriero C, Noce A. Effects of Caloric Restriction Diet on Arterial Hypertension and Endothelial Dysfunction. Nutrients 2021; 13:nu13010274. [PMID: 33477912 PMCID: PMC7833363 DOI: 10.3390/nu13010274] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 02/06/2023] Open
Abstract
The most common manifestation of cardiovascular (CV) diseases is the presence of arterial hypertension (AH), which impacts on endothelial dysfunction. CV risk is associated with high values of systolic and diastolic blood pressure and depends on the presence of risk factors, both modifiable and not modifiable, such as overweight, obesity, physical exercise, smoking, age, family history, and gender. The main target organs affected by AH are the heart, brain, vessels, kidneys, and eye retina. AH onset can be counteracted or delayed by adopting a proper diet, characterized by a low saturated fat and sodium intake, a high fruit and vegetable intake, a moderate alcohol consumption, and achieving and maintaining over time the ideal body weight. In this review, we analyzed how a new nutritional approach, named caloric restriction diet (CRD), can provide a significant reduction in blood pressure values and an improvement of the endothelial dysfunction. In fact, CRD is able to counteract aging and delay the onset of CV and neurodegenerative diseases through the reduction of body fat mass, systolic and diastolic values, free radicals production, and oxidative stress. Currently, there are few studies on CRD effects in the long term, and it would be advisable to perform observational studies with longer follow-up.
Collapse
Affiliation(s)
- Nicola Di Daniele
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.M.); (M.D.L.); (F.D.D.); (D.P.); (C.G.); (A.N.)
- Correspondence: ; Tel.: +39-062090-2982; Fax: +39-062090-3362
| | - Giulia Marrone
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.M.); (M.D.L.); (F.D.D.); (D.P.); (C.G.); (A.N.)
- School of Applied Medical, Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Manuela Di Lauro
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.M.); (M.D.L.); (F.D.D.); (D.P.); (C.G.); (A.N.)
| | - Francesca Di Daniele
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.M.); (M.D.L.); (F.D.D.); (D.P.); (C.G.); (A.N.)
- School of Applied Medical, Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Daniela Palazzetti
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.M.); (M.D.L.); (F.D.D.); (D.P.); (C.G.); (A.N.)
| | - Cristina Guerriero
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.M.); (M.D.L.); (F.D.D.); (D.P.); (C.G.); (A.N.)
| | - Annalisa Noce
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.M.); (M.D.L.); (F.D.D.); (D.P.); (C.G.); (A.N.)
| |
Collapse
|
13
|
Adjuvant Therapies in Diabetic Retinopathy as an Early Approach to Delay Its Progression: The Importance of Oxidative Stress and Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3096470. [PMID: 32256949 PMCID: PMC7086452 DOI: 10.1155/2020/3096470] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/16/2020] [Accepted: 02/08/2020] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus (DM) is a progressive disease induced by a sustained state of chronic hyperglycemia that can lead to several complications targeting highly metabolic cells. Diabetic retinopathy (DR) is a multifactorial microvascular complication of DM, with high prevalence, which can ultimately lead to visual impairment. The genesis of DR involves a complex variety of pathways such as oxidative stress, inflammation, apoptosis, neurodegeneration, angiogenesis, lipid peroxidation, and endoplasmic reticulum (ER) stress, each possessing potential therapeutic biomarkers. A specific treatment has yet to be developed for early stages of DR since no management is given other than glycemic control until the proliferative stage develops, offering a poor visual prognosis to the patient. In this narrative review article, we evaluate different dietary regimens, such as the Mediterranean diet, Dietary Pattern to Stop Hypertension (DASH) and their functional foods, and low-calorie diets (LCDs). Nutraceuticals have also been assessed in DR on account of their antioxidant, anti-inflammatory, and antiangiogenic properties, which may have an important impact on the physiopathology of DR. These nutraceuticals have shown to lower reactive oxygen species (ROS), important inflammatory factors, cytokines, and endothelial damage biomarkers either as monotherapies or combined therapies or concomitantly with established diabetes management or nonconventional adjuvant drugs like topical nonsteroidal anti-inflammatory drugs (NSAIDs).
Collapse
|
14
|
Kojima T, Dogru M, Kawashima M, Nakamura S, Tsubota K. Advances in the diagnosis and treatment of dry eye. Prog Retin Eye Res 2020; 78:100842. [PMID: 32004729 DOI: 10.1016/j.preteyeres.2020.100842] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/19/2020] [Accepted: 01/24/2020] [Indexed: 02/07/2023]
Abstract
The core mechanism of dry eye is the tear film instability. Tear film-oriented diagnosis (TFOD) is a concept to clarify the cause of tear film instability by tear film, and tear film-oriented treatment (TFOT) is a concept to treat dry eye disease by replacing the lacking components of the tear film layer based on the TFOD. In TFOD, the fluorescein breakup pattern of the tear film is important, and the subtype of dry eye can be judged to some extent from the breakup patterns. Current noninvasive devices related to the dynamic analysis of the tear film and visual acuity enabled the diagnosis of dry eye, subtype analysis, and the extent of severity. In Asian countries, secretagogues represent the main treatment in TFOT. Since meibomian gland dysfunction is a factor that greatly affects the tear breakup time, its treatment is also essential in the dry eye treatment strategy. A newly discovered dry eye subtype is the short breakup time-type (BUT) of dry eye. The only abnormal finding in this disease is the short BUT, suggesting a relationship with ocular neuropathic pain and eye strain. Recently, data from many studies have accumulated which show that dry eye is a life-style disease. In addition to the treatment of dry eyes, it is becoming possible to prevent the onset by intervening with the daily habits, diet, exercise and sleep, etc. It has been pointed out that oxidative stress is also involved in the pathology of dry eye, and intervention is being carried out by improving diet and taking supplements. Future research will be needed to link clinical findings to the molecular biological findings in the tear film.
Collapse
Affiliation(s)
- Takashi Kojima
- Department of Ophthalmology, Keio University School of Medicine, Japan
| | - Murat Dogru
- Department of Ophthalmology, Keio University School of Medicine, Japan
| | - Motoko Kawashima
- Department of Ophthalmology, Keio University School of Medicine, Japan
| | - Shigeru Nakamura
- Department of Ophthalmology, Keio University School of Medicine, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Japan; Tsubota Laboratory, Inc., Tokyo, Japan.
| |
Collapse
|
15
|
Affiliation(s)
- Motoko Kawashima
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
16
|
Harada C, Kimura A, Guo X, Namekata K, Harada T. Recent advances in genetically modified animal models of glaucoma and their roles in drug repositioning. Br J Ophthalmol 2018; 103:161-166. [PMID: 30366949 PMCID: PMC6362806 DOI: 10.1136/bjophthalmol-2018-312724] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/21/2018] [Accepted: 08/25/2018] [Indexed: 12/18/2022]
Abstract
Glaucoma is one of the leading causes of vision loss in the world. Currently, pharmacological intervention for glaucoma therapy is limited to eye drops that reduce intraocular pressure (IOP). Recent studies have shown that various factors as well as IOP are involved in the pathogenesis of glaucoma, especially in the subtype of normal tension glaucoma. To date, various animal models of glaucoma have been established, including glutamate/aspartate transporter knockout (KO) mice, excitatory amino acid carrier 1 KO mice, optineurin E50K knock-in mice, DBA/2J mice and experimentally induced models. These animal models are very useful for elucidating the pathogenesis of glaucoma and for identifying potential therapeutic targets. However, each model represents only some aspects of glaucoma, never the whole disease. This review will summarise the benefits and limitations of using disease models of glaucoma and recent basic research in retinal protection using existing drugs.
Collapse
Affiliation(s)
- Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Atsuko Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| |
Collapse
|
17
|
Corso-Díaz X, Jaeger C, Chaitankar V, Swaroop A. Epigenetic control of gene regulation during development and disease: A view from the retina. Prog Retin Eye Res 2018; 65:1-27. [PMID: 29544768 PMCID: PMC6054546 DOI: 10.1016/j.preteyeres.2018.03.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 02/01/2018] [Accepted: 03/08/2018] [Indexed: 12/20/2022]
Abstract
Complex biological processes, such as organogenesis and homeostasis, are stringently regulated by genetic programs that are fine-tuned by epigenetic factors to establish cell fates and/or to respond to the microenvironment. Gene regulatory networks that guide cell differentiation and function are modulated and stabilized by modifications to DNA, RNA and proteins. In this review, we focus on two key epigenetic changes - DNA methylation and histone modifications - and discuss their contribution to retinal development, aging and disease, especially in the context of age-related macular degeneration (AMD) and diabetic retinopathy. We highlight less-studied roles of DNA methylation and provide the RNA expression profiles of epigenetic enzymes in human and mouse retina in comparison to other tissues. We also review computational tools and emergent technologies to profile, analyze and integrate epigenetic information. We suggest implementation of editing tools and single-cell technologies to trace and perturb the epigenome for delineating its role in transcriptional regulation. Finally, we present our thoughts on exciting avenues for exploring epigenome in retinal metabolism, disease modeling, and regeneration.
Collapse
Affiliation(s)
- Ximena Corso-Díaz
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Catherine Jaeger
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Vijender Chaitankar
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
18
|
Audelan T, Legrand M, M'Garrech M, Best AL, Barreau E, Labetoulle M, Rousseau A. [Ocular surface aging: Pathophysiology and consequences for management]. J Fr Ophtalmol 2018; 41:262-270. [PMID: 29573862 DOI: 10.1016/j.jfo.2017.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/24/2017] [Accepted: 12/22/2017] [Indexed: 11/15/2022]
Abstract
All the components of the ocular surface and the lacrimal system are affected by aging. Aging induces lacrimal gland fibrosis, Meibomian gland dysfunction, loss of corneal sensitivity, decreased corneal cell density, impairment of immune defences, increased local inflammation associated with hormonal changes, conjunctivochalasis, lid abnormalities, etc. Furthermore, homeostasis of the ocular surface may be altered by various age-related systemic comorbidities and iatrogenic interventions. Altogether, aging is considered the most predominant risk factor for dry eye disease. The increasing knowledge of the pathophysiology of aging of the ocular surface allows for refinement of the management of ocular surface disease in the elderly.
Collapse
Affiliation(s)
- T Audelan
- Service d'ophtalmologie, hôpital de Bicêtre, Assistance publique-Hôpitaux de Paris, DHU vision et handicap, université Paris-Sud, Le Kremlin-Bicêtre, 78, rue du Général-Leclerc, 94275 Le Kremlin-Bicêtre cedex, France
| | - M Legrand
- Service d'ophtalmologie, hôpital de Bicêtre, Assistance publique-Hôpitaux de Paris, DHU vision et handicap, université Paris-Sud, Le Kremlin-Bicêtre, 78, rue du Général-Leclerc, 94275 Le Kremlin-Bicêtre cedex, France
| | - M M'Garrech
- Service d'ophtalmologie, hôpital de Bicêtre, Assistance publique-Hôpitaux de Paris, DHU vision et handicap, université Paris-Sud, Le Kremlin-Bicêtre, 78, rue du Général-Leclerc, 94275 Le Kremlin-Bicêtre cedex, France
| | - A-L Best
- Service d'ophtalmologie, hôpital de Bicêtre, Assistance publique-Hôpitaux de Paris, DHU vision et handicap, université Paris-Sud, Le Kremlin-Bicêtre, 78, rue du Général-Leclerc, 94275 Le Kremlin-Bicêtre cedex, France
| | - E Barreau
- Service d'ophtalmologie, hôpital de Bicêtre, Assistance publique-Hôpitaux de Paris, DHU vision et handicap, université Paris-Sud, Le Kremlin-Bicêtre, 78, rue du Général-Leclerc, 94275 Le Kremlin-Bicêtre cedex, France
| | - M Labetoulle
- Service d'ophtalmologie, hôpital de Bicêtre, Assistance publique-Hôpitaux de Paris, DHU vision et handicap, université Paris-Sud, Le Kremlin-Bicêtre, 78, rue du Général-Leclerc, 94275 Le Kremlin-Bicêtre cedex, France; Immunologie des infections virales et maladies auto-immunes UMR 1184, CEA, Fontenay-aux-Roses, France
| | - A Rousseau
- Service d'ophtalmologie, hôpital de Bicêtre, Assistance publique-Hôpitaux de Paris, DHU vision et handicap, université Paris-Sud, Le Kremlin-Bicêtre, 78, rue du Général-Leclerc, 94275 Le Kremlin-Bicêtre cedex, France; Immunologie des infections virales et maladies auto-immunes UMR 1184, CEA, Fontenay-aux-Roses, France.
| |
Collapse
|
19
|
Bianchi S, Giovannini L. Inhibition of mTOR/S6K1/4E-BP1 Signaling by Nutraceutical SIRT1 Modulators. Nutr Cancer 2018. [DOI: 10.1080/01635581.2018.1446093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Sara Bianchi
- Department of Translational Research and New Technologies in Medicine and Surgery, Pharmacology, Medical School, University of Pisa, Pisa, Italy
| | - Luca Giovannini
- Department of Translational Research and New Technologies in Medicine and Surgery, Pharmacology, Medical School, University of Pisa, Pisa, Italy
| |
Collapse
|
20
|
Inoue S, Kawashima M, Hisamura R, Imada T, Izuta Y, Nakamura S, Ito M, Tsubota K. Clinical Evaluation of a Royal Jelly Supplementation for the Restoration of Dry Eye: A Prospective Randomized Double Blind Placebo Controlled Study and an Experimental Mouse Model. PLoS One 2017; 12:e0169069. [PMID: 28060936 PMCID: PMC5217957 DOI: 10.1371/journal.pone.0169069] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 11/26/2016] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Dry eye is a multifactorial disease characterized by ocular discomfort and visual impairment. Lacrimal gland function has been shown to decrease with aging, a known potent risk factor for dry eye. We have previously found that orally administrated royal jelly (RJ) restored tear secretion in a rat model of dry eye. METHODS AND FINDINGS We examined the effects of RJ oral administration on dry eye in this prospective, randomized, double-blind, placebo-controlled study. Forty-three Japanese patients aged 20-60 years with subjective dry eye symptoms were randomized to an RJ group (1200 mg/tablet, six tablets daily) or a placebo group for 8 weeks. Keratoconjunctival epithelial damage, tear film break-up time, tear secretion volume, meibum grade, biochemical data, and subjective dry eye symptoms based on a questionnaire were investigated at baseline, and at 4 and 8 weeks after intervention. Adverse events were reported via medical interviews. In the RJ group, tear volume significantly increased after intervention (p = 0.0009). In particular, patients with a baseline Schirmer value of ≤10 mm showed a significant increase compared with baseline volume (p = 0.0005) and volume in the placebo group (p = 0.0051). No adverse events were reported. We also investigated the effect of RJ (300 mg/kg per day) administration using a mouse model of dry eye. Orally repeated administration of RJ preserved tear secretion, potentially through direct activation of the secretory function of the lacrimal glands. CONCLUSION Our results suggest that RJ improves tear volume in patients with dry eye. TRIAL REGISTRATION Registered NO. the University Hospital Medical Information Network in Japan (UMIN000014446).
Collapse
Affiliation(s)
- Sachiko Inoue
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
- Haneginomori Eye Clinic, Daita, Setagaya-ku, Tokyo, Japan
| | - Motoko Kawashima
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Ryuji Hisamura
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Toshihiro Imada
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yusuke Izuta
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Shigeru Nakamura
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Masataka Ito
- Developmental Anatomy and Regenerative Biology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
21
|
Chai P, Ni H, Zhang H, Fan X. The Evolving Functions of Autophagy in Ocular Health: A Double-edged Sword. Int J Biol Sci 2016; 12:1332-1340. [PMID: 27877085 PMCID: PMC5118779 DOI: 10.7150/ijbs.16245] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/08/2016] [Indexed: 12/19/2022] Open
Abstract
Autophagy plays an adaptive role in cell survival, development, differentiation and intracellular homeostasis. Autophagy is recognized as a 'self-cannibalizing' process that is active during stresses such as starvation, chemotherapy, infection, ageing, and oxygen shortage to protect organisms from various irritants and to regenerate materials and energy. However, autophagy can also lead to a form of programmed cell death distinct from apoptosis. Components of the autophagic pathway are constitutively expressed at a high level in the eye, including in the cornea, lens, retina, and orbit. In addition, the activation of autophagy is directly linked to the development of eye diseases such as age-related macular degeneration (ARMD), cataracts, diabetic retinopathy (DR), glaucoma, photoreceptor degeneration, ocular tumours, ocular infections and thyroid-associated ophthalmopathy (TAO). A high level of autophagy defends against external stress; however, excessive autophagy can result in deterioration, as observed in ocular diseases such as ARMD and DR. This review summarizes recent developments elucidating the relationship between autophagy and ocular diseases and the potential roles of autophagy in the pathogenesis and treatment of these diseases.
Collapse
Affiliation(s)
- Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Hongyan Ni
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - He Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
22
|
Role of nutraceutical SIRT1 modulators in AMPK and mTOR pathway: Evidence of a synergistic effect. Nutrition 2016; 34:82-96. [PMID: 28063518 DOI: 10.1016/j.nut.2016.09.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 08/04/2016] [Accepted: 09/23/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the effect of different natural substances on SIRT1 expression and on AMPK and mTOR phosphorylation. Moreover, we investigated the presence of a synergistic effect between the substances. METHODS Human cervical carcinoma cells were seeded in 12-well plates, then incubated with the nine tested substances (resveratrol, quercetin, berberine, catechin, tyrosol, ferulic acid, niclosamide, curcumin, and malvidin) at different concentrations and left in incubation for 3, 6, and 24 h. The targeting proteins' expression and phosphorylation were evaluated by immunoblotting, and cytotoxicity tests were performed by CellTiter-Blue Cell Viability Assay. RESULTS No statistically significant decrease (P > 0.05) in the number of viable cells was found. The expression of SIRT1 was significantly increased in all experimental groups compared with the control group (P < 0.001). Instead, the simultaneous administration involved a significant and synergistic increase in the expression of SIRT1 for some but not all of the tested compounds. Finally, the individual administration of berberine, quercetin, ferulic acid, and tyrosol resulted in a statistically significant increase in AMPK activation and mTOR inhibition, whereas their associated administration did not reveal a synergistic effect. CONCLUSIONS Our results provide evidence that all compounds have the potential to stimulate SIRT1 and sustain the stimulating action of resveratrol on SIRT1, already widely reported in the literature. In this regard, we confirm the interaction of these substances also with the pathway of AMPK and mTOR, in support of the studies that highlight the importance of SIRT1/AMPK and mTOR pathway in many diseases.
Collapse
|
23
|
Kandarakis SA, Piperi C, Moschonas DP, Korkolopoulou P, Papalois A, Papavassiliou AG. Dietary glycotoxins induce RAGE and VEGF up-regulation in the retina of normal rats. Exp Eye Res 2015; 137:1-10. [PMID: 26026876 DOI: 10.1016/j.exer.2015.05.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/18/2015] [Accepted: 05/26/2015] [Indexed: 10/23/2022]
Abstract
Exogenous intake of glycotoxins present in western diet accelerates the accumulation of advanced glycation end products (AGEs) in multiple organs leading to potential tissue damage. Advanced ageing and diabetic conditions have been associated with AGEs deposition in multiple eye compartments including Bruch's membrane, optic nerve, lens and cornea. However, the impact of dietary AGEs in ocular physiology has not been extensively studied. The present study investigates the direct effects of a high AGE content diet in the ocular tissues of normal rats of different age. Two groups of baby (4 weeks of age) and adult (12 weeks of age) female Wistar rats (n = 73) were allocated to high- or low-AGE diet for 3 months. Upon completion of experimental protocol, somatometric, hormonal and biochemical parameters were evaluated in all groups. Circulating and tissue AGE levels were estimated along with their signaling receptor (receptor for AGEs, RAGE) and vascular endothelial growth factor A (VEGF-A) expression in ocular tissues of the different subgroups. High AGE intake was associated with elevated serum AGEs (p = 0.0001), fructosamine (p = 0.0004) and CRP levels (p = 0.0001) compared to low AGE. High peripheral AGE levels were positively correlated with significant increased tissue immunoreactivity of AGEs and RAGE in retinal and uveal tissues as well as retinal VEGF-A expression. Up-regulation of RAGE and VEGF-A expression was observed in the ocular tissue of both baby and adult animals fed with high-AGE diet. Co-localization of AGEs and RAGE staining was observed mainly in the inner retinal layers and the retinal pigment epithelium (RPE) of all groups. VEGF-A expression was elevated in the RPE, the inner nuclear layer and the retinal ganglion cell layer of the animals exposed to high-AGE diet. In conclusion, dietary AGEs intake affects the physiology of ocular tissues by up-regulating RAGE and VEGF-A expression contributing to enhanced inflammatory responses and pathologic neovascularization in normal organisms independent of ageing.
Collapse
Affiliation(s)
- Stylianos A Kandarakis
- Department of Biological Chemistry, University of Athens Medical School, 11527 Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, University of Athens Medical School, 11527 Athens, Greece
| | - Dimitrios P Moschonas
- Department of Biological Chemistry, University of Athens Medical School, 11527 Athens, Greece
| | | | - Apostolos Papalois
- Experimental-Research Center, ELPEN Pharmaceuticals, 19009 Pikermi, Athens, Greece
| | | |
Collapse
|
24
|
Ergin V, Bali EB, Hariry RE, Karasu C. Natural products and the aging process. Horm Mol Biol Clin Investig 2015; 16:55-64. [PMID: 25436747 DOI: 10.1515/hmbci-2013-0031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 07/26/2013] [Indexed: 11/15/2022]
Abstract
Abstract Literature surveys show that the most of the research that have been conducted on the effect of herbal remedies on many tissue pathologies, including metabolic disturbances, cardiovascular decline, neurodegeneration, cataract, diabetic retinopathy and skin inflammation, all lead to an accelerated aging process. The increased carbonylation of proteins (carbonyl stress) disturbing their function has been indicated as an underlying mechanism of cellular senescence and age-related diseases. Because it is also linked to the carbonyl stress, aging chronic disease and inflammation plays an important role in understanding the clinical implications of cellular stress response and relevant markers. Greater knowledge of the molecular and cellular mechanisms involved in several pathologies associated with aging would provide a better understanding to help us to develop suitable strategies, use specific targets to mitigate the effect of human aging, prevent particularly chronic degenerative diseases and improve quality of life. However, research is lacking on the herbal compounds affecting cellular aging signaling as well as studies regarding the action mechanism(s) of natural products in prevention of the age-related disease. This review provides leads for identifying new medicinal agents or potential phytochemical drugs from plant sources for the prevention or delaying cellular aging processes and the treatment of some disorders related with accelerated body aging.
Collapse
|
25
|
Long YC, Tan TMC, Takao I, Tang BL. The biochemistry and cell biology of aging: metabolic regulation through mitochondrial signaling. Am J Physiol Endocrinol Metab 2014; 306:E581-91. [PMID: 24452454 DOI: 10.1152/ajpendo.00665.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cellular and organ metabolism affects organismal lifespan. Aging is characterized by increased risks for metabolic disorders, with age-associated degenerative diseases exhibiting varying degrees of mitochondrial dysfunction. The traditional view of the role of mitochondria generated reactive oxygen species (ROS) in cellular aging, assumed to be causative and simply detrimental for a long time now, is in need of reassessment. While there is little doubt that high levels of ROS are detrimental, mounting evidence points toward a lifespan extension effect exerted by mild to moderate ROS elevation. Dietary caloric restriction, inhibition of insulin-like growth factor-I signaling, and inhibition of the nutrient-sensing mechanistic target of rapamycin are robust longevity-promoting interventions. All of these appear to elicit mitochondrial retrograde signaling processes (defined as signaling from the mitochondria to the rest of the cell, for example, the mitochondrial unfolded protein response, or UPR(mt)). The effects of mitochondrial retrograde signaling may even spread to other cells/tissues in a noncell autonomous manner by yet unidentified signaling mediators. Multiple recent publications support the notion that an evolutionarily conserved, mitochondria-initiated signaling is central to the genetic and epigenetic regulation of cellular aging and organismal lifespan.
Collapse
Affiliation(s)
- Yun Chau Long
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, Singapore; and
| | | | | | | |
Collapse
|
26
|
Ergin V, Hariry RE, Karasu C. Carbonyl stress in aging process: role of vitamins and phytochemicals as redox regulators. Aging Dis 2013; 4:276-94. [PMID: 24124633 DOI: 10.14336/ad.2013.0400276] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/01/2013] [Accepted: 08/02/2013] [Indexed: 12/15/2022] Open
Abstract
There is a growing scientific agreement that the cellular redox regulators such as antioxidants, particularly the natural polyphenolic forms, may help lower the incidence of some pathologies, including metabolic diseases like diabetes and diabesity, cardiovascular and neurodegenerative abnormalities, and certain cancers or even have anti-aging properties. The recent researches indicate that the degree of metabolic modulation and adaptation response of cells to reductants as well as oxidants establish their survival and homeostasis, which is linked with very critical balance in imbalances in cellular redox capacity and signaling, and that might be an answer the questions why some antioxidants or phytochemicals potentially could do more harm than good, or why some proteins lose their function by increase interactions with glyco- and lipo-oxidation mediates in the cells (carbonyl stress). Nonetheless, pursue of healthy aging has led the use of antioxidants as a means to disrupt age-associated physiological dysfunctions, dysregulated metabolic processes or prevention of many age-related diseases. Although it is still early to define their exact clinical benefits for treating age-related disease, a diet rich in polyphenolic or other forms of antioxidants does seem to offer hope in delaying the onset of age-related disorders. It is now clear that any deficiency in antioxidant vitamins, inadequate enzymatic antioxidant defenses can distinctive for many age-related disease, and protein carbonylation can used as an indicator of oxidative stress associated diseases and aging status. This review examines antioxidant compounds and plant polyphenols as redox regulators in health, disease and aging processes with hope that a better understanding of the many mechanisms involved with these distinct compounds, which may lead to better health and novel treatment approaches for age-related diseases.
Collapse
Affiliation(s)
- Volkan Ergin
- Cellular Stress Response and Signal Transduction Research Laboratory, Department of Medical Pharmacology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | | | | |
Collapse
|
27
|
Abstract
Aging is associated with a host of biological changes that contribute to a progressive decline in cognitive and physical function, ultimately leading to a loss of independence, and increased risk of mortality. To date, prolonged caloric restriction (i.e., a reduction in caloric intake without malnutrition) is the only non-genetic intervention that has consistently been found to extend both mean and maximal life span across a variety of species. Most individuals have difficulty sustaining prolonged caloric restriction, which has led to a search for alternative approaches that can produce similar to benefits as caloric restriction. A growing body of evidence indicates that fasting periods and intermittent fasting regimens in particular can trigger similar biological pathways as caloric restriction. For this reason, there is increasing scientific interest in further exploring the biological and metabolic effects of intermittent fasting periods, as well as whether long-term compliance may be improved by this type of dietary approach. This special will highlight the latest scientific findings related to the effects of both caloric restriction and intermittent fasting across various species including yeast, fruit flies, worms, rodents, primates, and humans. A specific emphasis is placed on translational research with findings from basic bench to bedside reviewed and practical clinical implications discussed.
Collapse
Affiliation(s)
- Stephen Anton
- University of Florida, Department of Aging and Geriatric Research, Institute on Aging, Gainesville, FL 32610, United States.
| | | |
Collapse
|