1
|
Murillo-Ortiz BO, Romero-Vázquez MJ, Luevanos-Aguilera AJ, Meza-Herrán PM, Ramos-Rodriguez EM, Martínez-Garza S, Murguia-Perez M. Association Between Telomere Shortening and Erythropoietin Resistance in Patients with Chronic Kidney Disease Undergoing Hemodialysis. Int J Mol Sci 2025; 26:3405. [PMID: 40244253 PMCID: PMC11989996 DOI: 10.3390/ijms26073405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/31/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
The relationship between telomere shortening and patients with chronic kidney disease (CKD) has recently been investigated. Although most patients respond adequately to erythropoiesis-stimulating agents (ESAs), approximately 10% do not, and this is referred to as ESA resistance. The aim of our study was to investigate the relationship between telomere shortening and erythropoietin resistance in patients with CKD on hemodialysis. This cross-sectional, comparative, analytical, and observational study was conducted in patients of both sexes over 18 years of age diagnosed with CKD. Two groups of patients were identified. The first group consisted of 40 patients receiving erythropoiesis-stimulating agents with erythropoietin resistance. The second group consisted of 40 patients with the same characteristics but without erythropoietin resistance. Telomere length was measured by real-time PCR. Eighty patients were included in the study. Mean hemoglobin levels were lower in the erythropoietin resistance group (8.8 ± 1.67 vs. 11.95 ± 1.81, p = 0.001). Differences were observed in hematocrit and albumin levels, which were lower in patients with erythropoietin resistance, while PTH levels were higher in this group (788 ± 538.47 vs. 535.65 ± 603.06, p = 0.001). A significant difference in telomere length (T/S) was observed between the two groups, with shorter telomere length in the erythropoietin resistance group (0.45 ± 0.04 vs. 0.56 ± 0.03, p = 0.01). Telomere shortening may be associated with anemia and erythropoietin resistance in patients with CKD undergoing hemodialysis. This relationship suggests the need to explore whether telomere length recovery improves the response to ESAs.
Collapse
Affiliation(s)
- Blanca Olivia Murillo-Ortiz
- Clinical Epidemiology, Research Unit, OOAD Guanajuato, Mexican Institute of Social Security, León 37328, Guanajuato, Mexico; (M.J.R.-V.); (A.J.L.-A.); (P.M.M.-H.); (S.M.-G.)
| | - Marcos Javier Romero-Vázquez
- Clinical Epidemiology, Research Unit, OOAD Guanajuato, Mexican Institute of Social Security, León 37328, Guanajuato, Mexico; (M.J.R.-V.); (A.J.L.-A.); (P.M.M.-H.); (S.M.-G.)
| | - Angélica Jeanette Luevanos-Aguilera
- Clinical Epidemiology, Research Unit, OOAD Guanajuato, Mexican Institute of Social Security, León 37328, Guanajuato, Mexico; (M.J.R.-V.); (A.J.L.-A.); (P.M.M.-H.); (S.M.-G.)
| | - Paulina Monserrat Meza-Herrán
- Clinical Epidemiology, Research Unit, OOAD Guanajuato, Mexican Institute of Social Security, León 37328, Guanajuato, Mexico; (M.J.R.-V.); (A.J.L.-A.); (P.M.M.-H.); (S.M.-G.)
| | - Edna Montserrat Ramos-Rodriguez
- Department of Hemodialysis, Hospital General Regional No. 58, Institute Mexican of Social Security, León 37268, Guanajuato, Mexico;
| | - Sandra Martínez-Garza
- Clinical Epidemiology, Research Unit, OOAD Guanajuato, Mexican Institute of Social Security, León 37328, Guanajuato, Mexico; (M.J.R.-V.); (A.J.L.-A.); (P.M.M.-H.); (S.M.-G.)
| | - Mario Murguia-Perez
- Departamento de Anatomía Patológica, UMAE Hospital de Especialidades No. 1, Centro Médico Nacional Bajío, Instituto Mexicano del Seguro Social, León 37328, Guanajuato, Mexico
- Laboratorio de Anatomía Patológica e Inmunohistoquímica Especializada DIME, Hospital Médica Campestre, León 37160, Guanajuato, Mexico
| |
Collapse
|
2
|
Gollie JM, Mahalwar G. Cardiovascular Disease in Chronic Kidney Disease: Implications of Cardiorespiratory Fitness, Race, and Sex. Rev Cardiovasc Med 2024; 25:365. [PMID: 39484137 PMCID: PMC11522834 DOI: 10.31083/j.rcm2510365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/05/2024] [Accepted: 07/19/2024] [Indexed: 11/03/2024] Open
Abstract
Cardiovascular disease (CVD) poses a major health burden in adults with chronic kidney disease (CKD). While cardiorespiratory fitness, race, and sex are known to influence the relationship between CVD and mortality in the absence of kidney disease, their roles in patients with CKD remain less clear. Therefore, this narrative review aims to synthesize the existing data on CVD in CKD patients with a specific emphasis on cardiorespiratory fitness, race, and sex. It highlights that both traditional and non-traditional risk factors contribute to CVD development in this population. Additionally, biological, social, and cultural determinants of health contribute to racial disparities and sex differences in CVD outcomes in patients with CKD. Although cardiorespiratory fitness levels also differ by race and sex, their influence on CVD and cardiovascular mortality is consistent across these groups. Furthermore, exercise has been shown to improve cardiorespiratory fitness in CKD patients regardless of race or sex. However, the specific effects of exercise on CVD risk factors in CKD patients, particularly across different races and sexes remains poorly understood and represent a critical area for future research.
Collapse
Affiliation(s)
- Jared M. Gollie
- Research and Development, Washington DC VA Medical Center, Washington, DC 20422, USA
- Health, Human Function, and Rehabilitation Sciences, The George Washington University, Washington, DC 20052, USA
| | - Gauranga Mahalwar
- Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| |
Collapse
|
3
|
Hwang HJ, Kang D, Kim JR, Choi JH, Ryu JK, Herman AB, Ko YG, Park HJ, Gorospe M, Lee JS. FLRT2 prevents endothelial cell senescence and vascular aging by regulating the ITGB4/mTORC2/p53 signaling pathway. JCI Insight 2024; 9:e172678. [PMID: 38587072 PMCID: PMC11128196 DOI: 10.1172/jci.insight.172678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 02/27/2024] [Indexed: 04/09/2024] Open
Abstract
The roles of fibronectin leucine-rich transmembrane protein 2 (FLRT2) in physiological and pathological processes are not well known. Here, we identify a potentially novel function of FLRT2 in preventing endothelial cell senescence and vascular aging. We found that FLRT2 expression was lower in cultured senescent endothelial cells as well as in aged rat and human vascular tissues. FLRT2 mediated endothelial cell senescence via the mTOR complex 2, AKT, and p53 signaling pathway in human endothelial cells. We uncovered that FLRT2 directly associated with integrin subunit beta 4 (ITGB4) and thereby promoted ITGB4 phosphorylation, while inhibition of ITGB4 substantially mitigated the induction of senescence triggered by FLRT2 depletion. Importantly, FLRT2 silencing in mice promoted vascular aging, and overexpression of FLRT2 rescued a premature vascular aging phenotype. Therefore, we propose that FLRT2 could be targeted therapeutically to prevent senescence-associated vascular aging.
Collapse
Affiliation(s)
- Hyun Jung Hwang
- Research Center for Controlling Intercellular Communication and
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon, Korea
| | - Donghee Kang
- Research Center for Controlling Intercellular Communication and
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon, Korea
- Program in Biomedical Science and Engineering, Inha University, Incheon, Korea
| | - Jae-Ryong Kim
- Department of Biochemistry and Molecular Biology and
| | - Joon Hyuk Choi
- Department of Pathology, College of Medicine, Yeungnam University, Daegu, Korea
| | - Ji-Kan Ryu
- Research Center for Controlling Intercellular Communication and
- Department of Urology, College of Medicine, Inha University, Incheon, Korea
| | - Allison B. Herman
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, NIH, Baltimore, Maryland, USA
| | - Young-Gyu Ko
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Heon Joo Park
- Research Center for Controlling Intercellular Communication and
- Program in Biomedical Science and Engineering, Inha University, Incheon, Korea
- Department of Microbiology, College of Medicine, Inha University, Incheon, Korea
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, NIH, Baltimore, Maryland, USA
| | - Jae-Seon Lee
- Research Center for Controlling Intercellular Communication and
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon, Korea
- Program in Biomedical Science and Engineering, Inha University, Incheon, Korea
| |
Collapse
|
4
|
Myette RL, Lamarche C, Odutayo A, Verdin N, Canney M. Cardiovascular Risk in Patients With Glomerular Disease: A Narrative Review of the Epidemiology, Mechanisms, Management, and Patient Priorities. Can J Kidney Health Dis 2024; 11:20543581241232472. [PMID: 38404647 PMCID: PMC10894549 DOI: 10.1177/20543581241232472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/09/2024] [Indexed: 02/27/2024] Open
Abstract
Purpose of review Cardiovascular (CV) disease is a major cause of morbidity and mortality for patients with glomerular disease. Despite the fact that mechanisms underpinning CV disease risk in this population are likely distinct from other forms of kidney disease, treatment and preventive strategies tend to be extrapolated from studies of patients with undifferentiated chronic kidney disease (CKD). There is an unmet need to delineate the pathophysiology of CV disease in patients with glomerular disease, establish unique risk factors, and identify novel therapeutic targets for disease prevention. The aims of this narrative review are to summarize the existing knowledge regarding the epidemiology, molecular mechanisms, and management of CV disease in patients with common glomerular disease, highlight the patient perspective, and propose specific areas for future study. Sources of information The literature for this narrative review was accessed using common research search engines, including PubMed, PubMed Central, Medline, and Google Scholar. Information for the patient perspective section was collected through iterative discussions with a patient partner. Methods We reviewed the epidemiology, molecular mechanisms of disease, management approaches, and the patient perspective in relation to CV disease in patients with glomerulopathies. Throughout, we have highlighted the current knowledge and have discussed future research approaches, both clinical and translational, while integrating the patient perspective. Key findings Patients with glomerular disease have significant CV disease risk driven by multifactorial, molecular mechanisms originating from their glomerular disease but complicated by existing comorbidities, kidney disease, and medication side effects. The current approach to risk stratification and treatment relies heavily on existing data from CKD patients, but this may not always be appropriate given the unique pathophysiology and mechanisms associated with CV disease risk in patients with glomerular disease. We highlight the need for ongoing glomerular disease-focused studies aimed to better delineate CV disease risk, while integrating the patient perspective. Limitations This is a narrative review and does not represent a comprehensive and systematic review of the literature.
Collapse
Affiliation(s)
- Robert L. Myette
- Division of Nephrology, Children’s Hospital of Eastern Ontario, Ottawa, Canada
- The Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Caroline Lamarche
- Hôpital Maisonneuve-Rosemont Research Center, Department of Medicine, Division of Nephrology, Université de Montréal, ON, Canada
| | - Ayodele Odutayo
- Division of Nephrology, University Health Network, Toronto, ON, Canada
| | | | - Mark Canney
- The Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Medicine, The Ottawa Hospital Research Institute, University of Ottawa, ON, Canada
| |
Collapse
|
5
|
Figuer A, Alique M, Valera G, Serroukh N, Ceprían N, de Sequera P, Morales E, Carracedo J, Ramírez R, Bodega G. New mechanisms involved in the development of cardiovascular disease in chronic kidney disease. Nefrologia 2023; 43:63-80. [PMID: 37268501 DOI: 10.1016/j.nefroe.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/02/2022] [Indexed: 06/04/2023] Open
Abstract
Chronic kidney disease (CKD) is a pathology with a high worldwide incidence and an upward trend affecting the elderly. When CKD is very advanced, the use of renal replacement therapies is required to prolong its life (dialysis or kidney transplantation). Although dialysis improves many complications of CKD, the disease does not reverse completely. These patients present an increase in oxidative stress, chronic inflammation and the release of extracellular vesicles (EVs), which cause endothelial damage and the development of different cardiovascular diseases (CVD). CKD patients develop premature diseases associated with advanced age, such as CVD. EVs play an essential role in developing CVD in patients with CKD since their number increases in plasma and their content is modified. The EVs of patients with CKD cause endothelial dysfunction, senescence and vascular calcification. In addition, miRNAs free or transported in EVs together with other components carried in these EVs promote endothelial dysfunction, thrombotic and vascular calcification in CKD, among other effects. This review describes the classic factors and focuses on the role of new mechanisms involved in the development of CVD associated with CKD, emphasizing the role of EVs in the development of cardiovascular pathologies in the context of CKD. Moreover, the review summarized the EVs' role as diagnostic and therapeutic tools, acting on EV release or content to avoid the development of CVD in CKD patients.
Collapse
Affiliation(s)
- Andrea Figuer
- Departamento de Biología de Sistemas, Universidad de Alcalá (IRYCIS), Alcalá de Henares (Madrid), Spain
| | - Matilde Alique
- Departamento de Biología de Sistemas, Universidad de Alcalá (IRYCIS), Alcalá de Henares (Madrid), Spain.
| | - Gemma Valera
- Departamento de Biología de Sistemas, Universidad de Alcalá (IRYCIS), Alcalá de Henares (Madrid), Spain
| | - Nadia Serroukh
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (IMAS12), Madrid, Spain
| | - Noemí Ceprían
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (IMAS12), Madrid, Spain
| | - Patricia de Sequera
- Sección de Nefrología, Hospital Universitario Infanta Leonor, Universidad Complutense de Madrid, Madrid, Spain
| | - Enrique Morales
- Sección de Nefrología, Hospital 12 de Octubre, Madrid, Spain
| | - Julia Carracedo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (IMAS12), Madrid, Spain
| | - Rafael Ramírez
- Departamento de Biología de Sistemas, Universidad de Alcalá (IRYCIS), Alcalá de Henares (Madrid), Spain
| | - Guillermo Bodega
- Departamento de Biomedicina y Biotecnología, Universidad de Alcalá, Alcalá de Henares (Madrid), Spain
| |
Collapse
|
6
|
Su N, Tang X, Zhan X, Wang X, Peng F, Wen Y, Feng X, Zhou Q, Wang Q, Chen X, Yang Y, Shang S. The relationship between platelet distribution width and new-onset cardiovascular disease events in patients with peritoneal dialysis. Ren Fail 2022; 44:1640-1648. [PMID: 36285366 PMCID: PMC9621293 DOI: 10.1080/0886022x.2022.2130802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Objectives The global mortality rate from chronic kidney disease (CKD) has increased over the past two decades. Typically, peritoneal dialysis (PD) remains a useful alternative treatment for end-stage renal disease. Cardiovascular disease (CVD) is the main complication in PD patients. In terms of prognosis, it is reported that platelet distribution width (PDW) can predict adverse CVD events. However, the relationship between PDW and new-onset CVD in PD patients is not clear. This study aimed to explore the relationship between PDW and new-onset CVD in PD patients. Methods This was a retrospective cohort study, from 4 July 2005 to 31 December 2019, and a total of 1557 patients were recruited. PDW was respectively categorized into two groups: PDW ≤13.2 fL and PDW >13.2 fL. The primary outcome was a new-onset CVD event. Cox proportional hazards models were performed to assess the hazard ratio (HR). Receiver-operating characteristic (ROC) curves were applied to evaluate the predictive accuracy of the PDW on CVD events. Results During follow-up, 114 new-onset CVD events were recorded. Cox proportional hazards models showed a higher risk of CVD events in patients with high PDW (HR = 1.862 95%CI 1.205–2.877, p = 0.005). Kaplan–Meier cumulative incidence curves showed the risk of the first occurrence of CVD events was greater in the high PDW group (p = 0.006). Conclusions High PDW is associated with new-onset cardiovascular disease events in PD patients.
Collapse
Affiliation(s)
- Ning Su
- Department of Nephrology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Hematology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xingming Tang
- Department of Nephrology, DongGuan SongShan Lake Tungwah Hospital, DongGuan, China
| | - Xiaojiang Zhan
- Department of Nephrology, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Xiaoyang Wang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Fenfen Peng
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yueqiang Wen
- Department of Nephrology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaoran Feng
- Department of Nephrology, Jiujiang No. 1 People’s Hospital, Jiujiang, China
| | - Qian Zhou
- Department of Medical Statistics, Clinical Trials Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qinqin Wang
- Department of Nephrology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xingyu Chen
- Department of Nephrology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuanyuan Yang
- Department of Nephrology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sijia Shang
- Department of Nephrology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
7
|
Akinnibosun OA, Maier MC, Eales J, Tomaszewski M, Charchar FJ. Telomere therapy for chronic kidney disease. Epigenomics 2022; 14:1039-1054. [PMID: 36177720 DOI: 10.2217/epi-2022-0073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chronic kidney disease (CKD) is estimated to affect almost 10% of individuals worldwide and is one of the leading causes of morbidity and mortality. Renal fibrosis, a central pathway in CKD progression (irrespective of etiology), is associated with shortened or dysfunctional telomeres in animal studies. Telomeres are specialized nucleoprotein structures located at the chromosome end that maintain genomic integrity. The mechanisms of associations between telomere length and CKD have not yet been fully elucidated, however, CKD patients with shorter telomere length may have decreased renal function and a higher mortality rate. A plethora of ongoing research has focused on possible therapeutic applications of telomeres with the overall goal to preserve telomere length as a therapy to treat CKD.
Collapse
Affiliation(s)
| | - Michelle C Maier
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat, Victoria, Australia
| | - James Eales
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK.,Manchester Heart Centre and Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Fadi J Charchar
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat, Victoria, Australia.,Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.,Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
El Chamieh C, Liabeuf S, Massy Z. Uremic Toxins and Cardiovascular Risk in Chronic Kidney Disease: What Have We Learned Recently beyond the Past Findings? Toxins (Basel) 2022; 14:280. [PMID: 35448889 PMCID: PMC9028122 DOI: 10.3390/toxins14040280] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022] Open
Abstract
Patients with chronic kidney disease (CKD) have an elevated prevalence of atheromatous (ATH) and/or non-atheromatous (non-ATH) cardiovascular disease (CVD) due to an array of CKD-related risk factors, such as uremic toxins (UTs). Indeed, UTs have a major role in the emergence of a spectrum of CVDs, which constitute the leading cause of death in patients with end-stage renal disease. The European Uremic Toxin Work Group has identified over 100 UTs, more than 25 of which are dietary or gut-derived. Even though relationships between UTs and CVDs have been described in the literature, there are few reviews on the involvement of the most toxic compounds and the corresponding physiopathologic mechanisms. Here, we review the scientific literature on the dietary and gut-derived UTs with the greatest toxicity in vitro and in vivo. A better understanding of these toxins' roles in the elevated prevalence of CVDs among CKD patients might facilitate the development of targeted treatments. Hence, we review (i) ATH and non-ATH CVDs and the respective levels of risk in patients with CKD and (ii) the mechanisms that underlie the influence of dietary and gut-derived UTs on CVDs.
Collapse
Affiliation(s)
- Carolla El Chamieh
- Center for Research in Epidemiology and Population Health (CESP), Paris-Saclay University, Versailles-Saint-Quentin-en-Yvelines University (UVSQ), INSERM UMRS 1018, F-94807 Villejuif, France;
| | - Sophie Liabeuf
- Pharmacology Department, Amiens University Hospital, F-80000 Amiens, France
- MP3CV Laboratory, EA7517, Jules Verne University of Picardie, F-80000 Amiens, France
| | - Ziad Massy
- Nephrology Department, Ambroise Paré University Hospital, APHP, F-92100 Paris, France
| |
Collapse
|
9
|
Figuer A, Alique M, Valera G, Serroukh N, Ceprían N, de Sequera P, Morales E, Carracedo J, Ramírez R, Bodega G. Nuevos mecanismos implicados en el desarrollo de la enfermedad cardiovascular en la enfermedad renal crónica. Nefrologia 2022. [DOI: 10.1016/j.nefro.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
10
|
Uremic serum damages endothelium by provoking excessive neutrophil extracellular trap formation. Sci Rep 2021; 11:21439. [PMID: 34728714 PMCID: PMC8563801 DOI: 10.1038/s41598-021-00863-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in patients with chronic kidney disease (CKD). Endothelial cell (EC) dysfunction is a key CKD-specific risk factor; however, the mechanisms by which uremia harms the endothelium are still unclear. We report a role for excessive neutrophil extracellular trap (NET) formation induced by uremic serum on EC injury. Level of plasma nucleosome and myeloperoxidase-DNA, established in vivo markers of NETs, as well as intracellular adhesion molecule (ICAM)-1 were measured in hemodialysis (HD) patients and healthy volunteers (HV) and their prognostic role evaluated. For in vitro studies, HV-derived neutrophils and differentiated HL-60 cells by retinoic acid were used to determine the effect of uremic serum-induced NETs on human umbilical vein EC (HUVEC). The level of in vivo NETs was significantly higher in incident HD patients compared to HV, and these markers were strongly associated with ICAM-1. Specifically, nucleosome and ICAM-1 levels were independent predictors of a composite endpoint, all-cause mortality, or vascular access failure. In vitro, HD-derived uremic serum significantly increased NET formation both in dHL-60 and isolated neutrophils compared to control serum, and these NETs decreased EC viability and induced their apoptosis. In addition, the level of ICAM-1, E-selectin and von Willebrand factor in HUVEC supernatant was significantly increased by uremic serum-induced NETs compared to control serum-induced NETs. Dysregulated neutrophil activities in the uremic milieu may play a key role in vascular inflammatory responses. The high mortality and CVD rates in ESRD may be explained in part by excessive NET formation leading to EC damage and dysfunction.
Collapse
|
11
|
Ceprian N, Valera G, Caro J, Yuste C, Serroukh N, González de Pablos I, Oliva C, Figuer A, Praga M, Alique M, Ramirez R, Morales E, Carracedo J. Effect of Kidney Transplantation on Accelerated Immunosenescence and Vascular Changes Induced by Chronic Kidney Disease. Front Med (Lausanne) 2021; 8:705159. [PMID: 34646838 PMCID: PMC8502880 DOI: 10.3389/fmed.2021.705159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
Kidney transplantation is the best option for patients with end-stage renal disease. Despite the improvement in cardiovascular burden (leading cause of mortality among patients with chronic kidney disease), cardiovascular adverse outcomes related to the inflammatory process remain a problem. Thus, the aim of the present study was to characterize the immune profile and microvesicles of patients who underwent transplantation. We investigated the lymphocyte phenotype (CD3, CD4, CD8, CD19, and CD56) and monocyte phenotype (CD14, CD16, CD86, and CD54) in peripheral blood, and endothelium-derived microvesicles (annexin V+CD31+CD41–) in plasma of patients with advanced chronic kidney disease (n = 40), patients with transplantation (n = 40), and healthy subjects (n = 18) recruited from the University Hospital “12 de Octubre” (Madrid, Spain). Patients with kidney transplantation had B-cell lymphopenia, an impairment in co-stimulatory (CD86) and adhesion (CD54) molecules in monocytes, and a reduction in endothelium-derived microvesicles in plasma. The correlations between those parameters explained the modifications in the expression of co-stimulatory and adhesion molecules in monocytes caused by changes in lymphocyte populations, as well as the increase in the levels of endothelial-derived microvesicles in plasma caused by changes in lymphocyte and monocytes populations. Immunosuppressive treatment could directly or indirectly induce those changes. Nevertheless, the particular characteristics of these cells may partly explain the persistence of cardiovascular and renal alterations in patients who underwent transplantation, along with the decrease in arteriosclerotic events compared with advanced chronic kidney disease. In conclusion, the expression of adhesion molecules by monocytes and endothelial-derived microvesicles is related to lymphocyte alterations in patients with kidney transplantation.
Collapse
Affiliation(s)
- Noemi Ceprian
- Departamento de Genética, Fisiología y Microbiología, Universidad Complutense de Madrid, Instituto de Investigacin Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Gemma Valera
- Departamento Biología de Sistemas (Unidad Fisiología), Facultad de Medicina, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá de Henares, Madrid, Spain
| | - Jara Caro
- Departamento de Nefrología, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria 12 de Octubre, Madrid, Spain
| | - Claudia Yuste
- Departamento de Nefrología, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria 12 de Octubre, Madrid, Spain
| | - Nadia Serroukh
- Departamento de Genética, Fisiología y Microbiología, Universidad Complutense de Madrid, Instituto de Investigacin Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | | | - Carlos Oliva
- Departamento de Genética, Fisiología y Microbiología, Universidad Complutense de Madrid, Madrid, Spain
| | - Andrea Figuer
- Departamento Biología de Sistemas (Unidad Fisiología), Facultad de Medicina, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá de Henares, Madrid, Spain
| | - Manuel Praga
- Departamento de Nefrología, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria 12 de Octubre, Madrid, Spain
| | - Matilde Alique
- Departamento Biología de Sistemas (Unidad Fisiología), Facultad de Medicina, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá de Henares, Madrid, Spain
| | - Rafael Ramirez
- Departamento Biología de Sistemas (Unidad Fisiología), Facultad de Medicina, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Alcalá de Henares, Madrid, Spain
| | - Enrique Morales
- Departamento de Nefrología, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria 12 de Octubre, Madrid, Spain
| | - Julia Carracedo
- Departamento de Genética, Fisiología y Microbiología, Universidad Complutense de Madrid, Instituto de Investigacin Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| |
Collapse
|
12
|
Premature Aging in Chronic Kidney Disease: The Outcome of Persistent Inflammation beyond the Bounds. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18158044. [PMID: 34360333 PMCID: PMC8345753 DOI: 10.3390/ijerph18158044] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 01/08/2023]
Abstract
Over the last hundred years, life expectancy in developed countries has increased because of healthier living habits and the treatment of chronic pathologies causing premature aging. Aging is an inexorable, time-dependent, multifactorial process characterized by a series of progressive and irreversible physiological changes associated with loss of functional, psychological, and social capabilities. Numerous factors, such as oxidative stress, inflammation, and cellular senescence, and an irreversible geriatric syndrome known as frailty, contribute to human body deterioration in aging. The speed of aging may differ between individuals depending on the presence or absence of multiple factors (genetic and/or environment) and the subsequent misbalance of homeostasis, together with the increase of frailty, which also plays a key role in developing chronic diseases. In addition, pathological circumstances have been reported to precipitate or accelerate the aging process. This review investigated the mechanisms involved in the developing pathologies, particularly chronic kidney disease, associated with aging.
Collapse
|
13
|
Sosińska-Zawierucha P, Bręborowicz A. Uremic serum induces prothrombotic changes in venous endothelial cells and inflammatory changes in aortic endothelial cells. Ren Fail 2021; 43:401-405. [PMID: 33641611 PMCID: PMC7928024 DOI: 10.1080/0886022x.2021.1890617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background Uremia induces various pathologic changes in the endothelium. However, there is limited information about the differences of these effects in endothelial cells originating from different parts of the vascular tree. Methods The effect of uremic serum obtained from patients with end stage renal failure on the gene expression and secretory activity of venous endothelial cells (VEC) and aortic endothelial cells (AEC) was studied in in vitro culture. Results In VEC, the expression of genes regulating the synthesis of von Willebrand factor (vWF) was increased by 254% (p<.005), vascular endothelial growth factor (VEGF) synthesis by 150% (p<.001), tissue plasminogen activator (t-PA) synthesis by 62% (p<.005), platelet endothelial cell adhesion molecule by 89% (p<.005), and the expression of gene regulating interleukin-6 (IL-6) synthesis was reduced. In AEC, the expression of the gene regulating synthesis of IL-6 was increased by 174% (p<.001), and the expression of the other genes was reduced. The secretion of IL-6 was reduced in VEC by 38% (p<.01) and increased in AEC by 55% (p<.005). In VEC, increased synthesis of VEGF 64% (p<.001) vWF (+34%, p<.01), and t-PA (+53%, p<.002) was observed, and in AEC it was reduced. Conclusions VEC and AEC respond in different ways after exposure to uremic serum. VEC acquires the prothrombotic phenotype, whereas in AEC the inflammatory phenotype appears.
Collapse
Affiliation(s)
| | - Andrzej Bręborowicz
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
14
|
Alique M, Bodega G, Corchete E, García-Menéndez E, de Sequera P, Luque R, Rodríguez-Padrón D, Marqués M, Portolés J, Carracedo J, Ramírez R. Microvesicles from indoxyl sulfate-treated endothelial cells induce vascular calcification in vitro. Comput Struct Biotechnol J 2020; 18:953-966. [PMID: 32368330 PMCID: PMC7184105 DOI: 10.1016/j.csbj.2020.04.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/02/2020] [Accepted: 04/05/2020] [Indexed: 12/12/2022] Open
Abstract
Vascular calcification (VC), an unpredictable pathophysiological process and critical event in patients with cardiovascular diseases (CVDs), is the leading cause of morbi-mortality and disability in chronic kidney disease (CKD) patients worldwide. Currently, no diagnostic method is available for identifying patients at risk of VC development; the pathology is detected when the process is irreversible. Extracellular vesicles (EVs) from endothelial cells might promote VC. Therefore, their evaluation and characterization could be useful for designing new diagnostic tools. The aim of the present study is to investigate whether microvesicles (MVs) from endothelial cells damaged by uremic toxin and indoxyl sulfate (IS) could induce calcification in human vascular smooth muscle cells (VMSCs). Besides, we have also analyzed the molecular mechanisms by which these endothelial MVs can promote VC development. Endothelial damage has been evaluated according to the percentage of senescence in endothelial cells, differential microRNAs in endothelial cells, and the amount of MVs released per cell. To identify the role of MVs in VC, VSMCs were treated with MVs from IS-treated endothelial cells. Calcium, inflammatory gene expression, and procalcification mediator levels in VSMCs were determined. IS-treated endothelial cells underwent senescence and exhibited modulated microRNA expression and an increase in the release of MVs. VSMCs exposed to these MVs modulated the expression of pro-inflammatory genes and some mediators involved in calcification progression. MVs produced by IS-treated endothelial cells promoted calcification in VSMCs.
Collapse
Affiliation(s)
- Matilde Alique
- Departamento de Biología de Sistemas, Universidad de Alcalá (IRYCIS), Alcalá de Henares, Madrid, Spain
| | - Guillermo Bodega
- Departamento de Biomedicina y Biotecnología, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Elena Corchete
- Sección de Nefrología, Hospital Universitario Infanta Leonor, Madrid, Spain
| | | | | | - Rafael Luque
- Departamento de Química Orgánica, Universidad de Córdoba, Edificio Marie Curie (C-3), Carretera Nacional IV-A, Km 396, Córdoba, Spain
| | - Daily Rodríguez-Padrón
- Departamento de Química Orgánica, Universidad de Córdoba, Edificio Marie Curie (C-3), Carretera Nacional IV-A, Km 396, Córdoba, Spain
| | - María Marqués
- Servicio Nefrología, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - José Portolés
- Servicio Nefrología, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Julia Carracedo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid/ Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Rafael Ramírez
- Departamento de Biología de Sistemas, Universidad de Alcalá (IRYCIS), Alcalá de Henares, Madrid, Spain
| |
Collapse
|
15
|
Carracedo J, Alique M, Vida C, Bodega G, Ceprián N, Morales E, Praga M, de Sequera P, Ramírez R. Mechanisms of Cardiovascular Disorders in Patients With Chronic Kidney Disease: A Process Related to Accelerated Senescence. Front Cell Dev Biol 2020; 8:185. [PMID: 32266265 PMCID: PMC7099607 DOI: 10.3389/fcell.2020.00185] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/05/2020] [Indexed: 01/08/2023] Open
Abstract
Cardiovascular diseases (CVDs), especially those involving a systemic inflammatory process such as atherosclerosis, remain the leading cause of morbidity and mortality in patients with chronic kidney disease (CKD). CKD is a systemic condition affecting approximately 10% of the general population. The prevalence of CKD has increased over the past decades because of the aging of the population worldwide. Indeed, CVDs in patients with CKD constitute a premature form of CVD observed in the general population. Multiple studies indicate that patients with renal disease undergo accelerated aging, which precipitates the appearance of pathologies, including CVDs, usually associated with advanced age. In this review, we discuss several aspects that characterize CKD-associated CVDs, such as etiopathogenic elements that CKD patients share with the general population, changes in the cellular balance of reactive oxygen species (ROS), and the associated process of cellular senescence. Uremia-associated aging is linked with numerous changes at the cellular and molecular level. These changes are similar to those observed in the normal process of physiologic aging. We also discuss new perspectives in the study of CKD-associated CVDs and epigenetic alterations in intercellular signaling, mediated by microRNAs and/or extracellular vesicles (EVs), which promote vascular damage and subsequent development of CVD. Understanding the processes and factors involved in accelerated senescence and other abnormal intercellular signaling will identify new therapeutic targets and lead to improved methods of diagnosis and monitoring for patients with CKD-associated CVDs.
Collapse
Affiliation(s)
- Julia Carracedo
- Departamento de Genética, Fisiología y Microbiología, Universidad Complutense/Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Matilde Alique
- Departamento Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud (IRYCIS), Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Carmen Vida
- Departamento Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud (IRYCIS), Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Guillermo Bodega
- Departamento de Biomedicina y Biotecnología, Facultad de Biología, Química y Ciencias Ambientales, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Noemí Ceprián
- Departamento de Genética, Fisiología y Microbiología, Universidad Complutense/Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Enrique Morales
- Departamento de Nefrología, Hospital Universitario 12 de Octubre/Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.,Departamento de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Manuel Praga
- Departamento de Nefrología, Hospital Universitario 12 de Octubre/Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.,Departamento de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Patricia de Sequera
- Departamento de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,Sección de Nefrología, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - Rafael Ramírez
- Departamento Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud (IRYCIS), Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
16
|
Cañadas-Garre M, Anderson K, Cappa R, Skelly R, Smyth LJ, McKnight AJ, Maxwell AP. Genetic Susceptibility to Chronic Kidney Disease - Some More Pieces for the Heritability Puzzle. Front Genet 2019; 10:453. [PMID: 31214239 PMCID: PMC6554557 DOI: 10.3389/fgene.2019.00453] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/30/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease (CKD) is a major global health problem with an increasing prevalence partly driven by aging population structure. Both genomic and environmental factors contribute to this complex heterogeneous disease. CKD heritability is estimated to be high (30-75%). Genome-wide association studies (GWAS) and GWAS meta-analyses have identified several genetic loci associated with CKD, including variants in UMOD, SHROOM3, solute carriers, and E3 ubiquitin ligases. However, these genetic markers do not account for all the susceptibility to CKD, and the causal pathways remain incompletely understood; other factors must be contributing to the missing heritability. Less investigated biological factors such as telomere length; mitochondrial proteins, encoded by nuclear genes or specific mitochondrial DNA (mtDNA) encoded genes; structural variants, such as copy number variants (CNVs), insertions, deletions, inversions and translocations are poorly covered and may explain some of the missing heritability. The sex chromosomes, often excluded from GWAS studies, may also help explain gender imbalances in CKD. In this review, we outline recent findings on molecular biomarkers for CKD (telomeres, CNVs, mtDNA variants, sex chromosomes) that typically have received less attention than gene polymorphisms. Shorter telomere length has been associated with renal dysfunction and CKD progression, however, most publications report small numbers of subjects with conflicting findings. CNVs have been linked to congenital anomalies of the kidney and urinary tract, posterior urethral valves, nephronophthisis and immunoglobulin A nephropathy. Information on mtDNA biomarkers for CKD comes primarily from case reports, therefore the data are scarce and diverse. The most consistent finding is the A3243G mutation in the MT-TL1 gene, mainly associated with focal segmental glomerulosclerosis. Only one GWAS has found associations between X-chromosome and renal function (rs12845465 and rs5987107). No loci in the Y-chromosome have reached genome-wide significance. In conclusion, despite the efforts to find the genetic basis of CKD, it remains challenging to explain all of the heritability with currently available methods and datasets. Although additional biomarkers have been investigated in less common suspects such as telomeres, CNVs, mtDNA and sex chromosomes, hidden heritability in CKD remains elusive, and more comprehensive approaches, particularly through the integration of multiple -"omics" data, are needed.
Collapse
Affiliation(s)
- Marisa Cañadas-Garre
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen’s University of Belfast, Belfast, United Kingdom
| | - Kerry Anderson
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen’s University of Belfast, Belfast, United Kingdom
| | - Ruaidhri Cappa
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen’s University of Belfast, Belfast, United Kingdom
| | - Ryan Skelly
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen’s University of Belfast, Belfast, United Kingdom
| | - Laura Jane Smyth
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen’s University of Belfast, Belfast, United Kingdom
| | - Amy Jayne McKnight
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen’s University of Belfast, Belfast, United Kingdom
| | - Alexander Peter Maxwell
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen’s University of Belfast, Belfast, United Kingdom
- Regional Nephrology Unit, Belfast City Hospital, Belfast, United Kingdom
| |
Collapse
|
17
|
Mafra D, Gidlund EK, Borges NA, Magliano DC, Lindholm B, Stenvinkel P, von Walden F. Bioactive food and exercise in chronic kidney disease: Targeting the mitochondria. Eur J Clin Invest 2018; 48:e13020. [PMID: 30144313 DOI: 10.1111/eci.13020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 08/11/2018] [Accepted: 08/22/2018] [Indexed: 12/16/2022]
Abstract
Chronic kidney disease (CKD), which affects 10%-15% of the population, associates with a range of complications-such as cardiovascular disease, frailty, infections, muscle and bone disorders and premature ageing-that could be related to alterations of mitochondrial number, distribution, structure and function. As mitochondrial biogenesis, bioenergetics and the dynamic mitochondrial networks directly or indirectly regulate numerous intra- and extracellular functions, the mitochondria have emerged as an important target for interventions aiming at preventing or improving the treatment of complications in CKD. In this review, we discuss the possible role of bioactive food compounds and exercise in the modulation of the disturbed mitochondrial function in a uraemic milieu.
Collapse
Affiliation(s)
- Denise Mafra
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil.,Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Eva-Karin Gidlund
- Division of Molecular Exercise Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Natália Alvarenga Borges
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - D'Angelo Carlo Magliano
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Bengt Lindholm
- Division of Renal Medicine, Department of Clinical Science Intervention and Technology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science Intervention and Technology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Ferdinand von Walden
- Division of Pediatric Neurology, Department of Women's and Children's health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
Young and Especially Senescent Endothelial Microvesicles Produce NADPH: The Fuel for Their Antioxidant Machinery. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3183794. [PMID: 29849879 PMCID: PMC5907394 DOI: 10.1155/2018/3183794] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/14/2018] [Accepted: 02/25/2018] [Indexed: 01/15/2023]
Abstract
In a previous study, we demonstrated that endothelial microvesicles (eMVs) have a well-developed enzymatic team involved in reactive oxygen species detoxification. In the present paper, we demonstrate that eMVs can synthesize the reducing power (NAD(P)H) that nourishes this enzymatic team, especially those eMVs derived from senescent human umbilical vein endothelial cells. Moreover, we have demonstrated that the molecules that nourish the enzymatic machinery involved in NAD(P)H synthesis are blood plasma metabolites: lactate, pyruvate, glucose, glycerol, and branched-chain amino acids. Drastic biochemical changes are observed in senescent eMVs to optimize the synthesis of reducing power. Mitochondrial activity is diminished and the glycolytic pathway is modified to increase the activity of the pentose phosphate pathway. Different dehydrogenases involved in NADPH synthesis are also increased. Functional experiments have demonstrated that eMVs can synthesize NADPH. In addition, the existence of NADPH in eMVs was confirmed by mass spectrometry. Multiphoton confocal microscopy images corroborate the synthesis of reducing power in eMVs. In conclusion, our present and previous results demonstrate that eMVs can act as autonomous reactive oxygen species scavengers: they use blood metabolites to synthesize the NADPH that fuels their antioxidant machinery. Moreover, senescent eMVs have a stronger reactive oxygen species scavenging capacity than young eMVs.
Collapse
|
19
|
Alique M, Ruíz-Torres MP, Bodega G, Noci MV, Troyano N, Bohórquez L, Luna C, Luque R, Carmona A, Carracedo J, Ramírez R. Microvesicles from the plasma of elderly subjects and from senescent endothelial cells promote vascular calcification. Aging (Albany NY) 2017; 9:778-789. [PMID: 28278131 PMCID: PMC5391231 DOI: 10.18632/aging.101191] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/26/2017] [Indexed: 11/25/2022]
Abstract
Vascular calcification is commonly seen in elderly people, though it can also appear in middle-aged subjects affected by premature vascular aging. The aim of this work is to test the involvement of microvesicles (MVs) produced by senescent endothelial cells (EC) and from plasma of elderly people in vascular calcification. The present work shows that MVs produced by senescent cultured ECs, plus those found in the plasma of elderly subjects, promote calcification in vascular smooth muscle cells. Only MVs from senescent ECs, and from elderly subjects' plasma, induced calcification. This ability correlated with these types of MVs' carriage of: a) increased quantities of annexins (which might act as nucleation sites for calcification), b) increased quantities of bone-morphogenic protein, and c) larger Ca contents. The MVs of senescent, cultured ECs, and those present in the plasma of elderly subjects, promote vascular calcification. The present results provide mechanistic insights into the observed increase in vascular calcification-related diseases in the elderly, and in younger patients with premature vascular aging, paving the way towards novel therapeutic strategies.
Collapse
Affiliation(s)
- Matilde Alique
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.,These authors contributed equally to this paper
| | - María Piedad Ruíz-Torres
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.,These authors contributed equally to this paper
| | - Guillermo Bodega
- Departamento de Biomedicina y Biotecnología, Facultad de Biología, Química y Ciencias Ambientales, Universidad de Alcalá. Alcalá de Henares, Madrid, Spain
| | - María Victoria Noci
- Unidad de Anestesia, Hospital Universitario Reina Sofía/Universidad de Córdoba, Córdoba, Andalucía, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofía/Universidad de Córdoba, Córdoba, Andalucía, Spain
| | - Nuria Troyano
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Lourdes Bohórquez
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Carlos Luna
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofía/Universidad de Córdoba, Córdoba, Andalucía, Spain
| | - Rafael Luque
- Departamento de Química Orgánica, Universidad de Córdoba, Edificio Marie Curie (C-3), Carretera Nacional IV-A, Km 396, E14014, Córdoba, Andalucía, Spain
| | - Andrés Carmona
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofía/Universidad de Córdoba, Córdoba, Andalucía, Spain
| | - Julia Carracedo
- Departamento de Fisiología Animal (II), Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain.,Institute of Investigation, Hospital 12 de Octubre, Madrid, Spain.,These senior authors contributed equally to this paper
| | - Rafael Ramírez
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.,These senior authors contributed equally to this paper
| |
Collapse
|
20
|
Chen ZW, Miu HF, Wang HP, Wu ZN, Wang WJ, Ling YJ, Xu XH, Sun HJ, Jiang X. Pterostilbene protects against uraemia serum-induced endothelial cell damage via activation of Keap1/Nrf2/HO-1 signaling. Int Urol Nephrol 2017; 50:559-570. [DOI: 10.1007/s11255-017-1734-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/25/2017] [Indexed: 12/11/2022]
|
21
|
Kooman JP, Dekker MJ, Usvyat LA, Kotanko P, van der Sande FM, Schalkwijk CG, Shiels PG, Stenvinkel P. Inflammation and premature aging in advanced chronic kidney disease. Am J Physiol Renal Physiol 2017; 313:F938-F950. [PMID: 28701312 DOI: 10.1152/ajprenal.00256.2017] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/29/2017] [Accepted: 07/06/2017] [Indexed: 12/22/2022] Open
Abstract
Systemic inflammation in end-stage renal disease is an established risk factor for mortality and a catalyst for other complications, which are related to a premature aging phenotype, including muscle wasting, vascular calcification, and other forms of premature vascular disease, depression, osteoporosis, and frailty. Uremic inflammation is also mechanistically related to mechanisms involved in the aging process, such as telomere shortening, mitochondrial dysfunction, and altered nutrient sensing, which can have a direct effect on cellular and tissue function. In addition to uremia-specific causes, such as abnormalities in the phosphate-Klotho axis, there are remarkable similarities between the pathophysiology of uremic inflammation and so-called "inflammaging" in the general population. Potentially relevant, but still somewhat unexplored in this respect, are abnormal or misplaced protein structures, as well as abnormalities in tissue homeostasis, which evoke danger signals through damage-associated molecular patterns, as well as the senescence-associated secretory phenotype. Systemic inflammation, in combination with the loss of kidney function, can impair the resilience of the body to external and internal stressors by reduced functional and structural tissue reserves, and by impairing normal organ crosstalk, thus providing an explanation for the greatly increased risk of homeostatic breakdown in this population. In this review, the relationship between uremic inflammation and a premature aging phenotype, as well as potential causes and consequences, are discussed.
Collapse
Affiliation(s)
- Jeroen P Kooman
- Maastricht University Medical Center, Maastricht, Netherlands;
| | | | - Len A Usvyat
- Fresenius Medical Care North America, Waltham, Massachusetts
| | - Peter Kotanko
- Renal Research Institute, New York, New York.,Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | - Paul G Shiels
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; and
| | - Peter Stenvinkel
- Divsion of Renal Medicine, Department of Clinical Science Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
22
|
Neyra JA, Hu MC. Potential application of klotho in human chronic kidney disease. Bone 2017; 100:41-49. [PMID: 28115282 PMCID: PMC5474175 DOI: 10.1016/j.bone.2017.01.017] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 01/18/2017] [Accepted: 01/18/2017] [Indexed: 01/13/2023]
Abstract
The extracellular domain of transmembrane alpha-Klotho (αKlotho, hereinafter simply called Klotho) is cleaved by secretases and released into the circulation as soluble Klotho. Soluble Klotho in the circulation starts to decline early in chronic kidney disease (CKD) stage 2 and urinary Klotho possibly even earlier in CKD stage 1. Therefore soluble Klotho could serve as an early and sensitive marker of kidney function decline. Moreover, preclinical animal data support Klotho deficiency is not just merely a biomarker, but a pathogenic factor for CKD progression and extrarenal CKD complications including cardiovascular disease and disturbed mineral metabolism. Prevention of Klotho decline, re-activation of endogenous Klotho production or supplementation of exogenous Klotho are all associated with attenuation of renal fibrosis, retardation of CKD progression, improvement of mineral metabolism, amelioration of cardiomyopathy, and alleviation of vascular calcification in CKD. Therefore Klotho is not only a diagnostic and/or prognostic marker for CKD, but the treatment of Klotho deficiency may be a promising strategy to prevent, retard, and decrease the burden of comorbidity in CKD.
Collapse
Affiliation(s)
- Javier A Neyra
- Department of Internal Medicine, University of Texas Southwestern Medical Center, USA; Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, USA
| | - Ming Chang Hu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, USA; Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, USA.
| |
Collapse
|
23
|
The Antioxidant Machinery of Young and Senescent Human Umbilical Vein Endothelial Cells and Their Microvesicles. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017. [PMID: 28642812 PMCID: PMC5470024 DOI: 10.1155/2017/7094781] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We examine the antioxidant role of young and senescent human umbilical vein endothelial cells (HUVECs) and their microvesicles (MVs). Proteomic and Western blot studies have shown young HUVECs to have a complete and well-developed antioxidant system. Their MVs also contain antioxidant molecules, though of a smaller and more specific range, specialized in the degradation of hydrogen peroxide and the superoxide anion via the thioredoxin-peroxiredoxin system. Senescence was shown to be associated with a large increase in the size of the antioxidant machinery in both HUVECs and their MVs. These responses might help HUVECs and their MVs deal with the more oxidising conditions found in older cells. Functional analysis confirmed the antioxidant machinery of the MVs to be active and to increase in size with senescence. No glutathione or nonpeptide antioxidant (ascorbic acid and vitamin E) activity was detected in the MVs. Endothelial cells and MVs seem to adapt to higher ROS concentrations in senescence by increasing their antioxidant machinery, although this is not enough to recover completely from the senescence-induced ROS increase. Moreover, MVs could be involved in the regulation of the blood plasma redox status by functioning as ROS scavengers.
Collapse
|
24
|
Nooh HZ, El-Saify GH. Effect of gum arabic on the stomach of uraemic rat. THE EGYPTIAN JOURNAL OF HISTOLOGY 2016; 39:294-306. [DOI: 10.1097/01.ehx.0000508455.22089.92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
25
|
Abstract
Alpha-Klotho (αKlotho) protein is encoded by the gene, Klotho, and functions as a coreceptor for endocrine fibroblast growth factor-23. The extracellular domain of αKlotho is cleaved by secretases and released into the circulation where it is called soluble αKlotho. Soluble αKlotho in the circulation starts to decline in chronic kidney disease (CKD) stage 2 and urinary αKlotho in even earlier CKD stage 1. Therefore soluble αKlotho is an early and sensitive marker of decline in kidney function. Preclinical data from numerous animal experiments support αKlotho deficiency as a pathogenic factor for CKD progression and extrarenal CKD complications including cardiac and vascular disease, hyperparathyroidism, and disturbed mineral metabolism. αKlotho deficiency induces cell senescence and renders cells susceptible to apoptosis induced by a variety of cellular insults including oxidative stress. αKlotho deficiency also leads to defective autophagy and angiogenesis and promotes fibrosis in the kidney and heart. Most importantly, prevention of αKlotho decline, upregulation of endogenous αKlotho production, or direct supplementation of soluble αKlotho are all associated with attenuation of renal fibrosis, retardation of CKD progression, improvement of mineral metabolism, amelioration of cardiac function and morphometry, and alleviation of vascular calcification in CKD. Therefore in rodents, αKlotho is not only a diagnostic and prognostic marker for CKD but the enhancement of endogenous or supplement of exogenous αKlotho are promising therapeutic strategies to prevent, retard, and decrease the comorbidity burden of CKD.
Collapse
Affiliation(s)
- J A Neyra
- University of Texas Southwestern Medical Center, Dallas, TX, United States; Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - M C Hu
- University of Texas Southwestern Medical Center, Dallas, TX, United States; Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
26
|
Buendía P, Ramírez R, Aljama P, Carracedo J. Klotho Prevents Translocation of NFκB. VITAMINS AND HORMONES 2016; 101:119-50. [PMID: 27125740 DOI: 10.1016/bs.vh.2016.02.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Klotho protein is a β-glucuronidase capable of hydrolyzing steroid β-glucuronides. Two molecules are produced by the Klotho gene, a membrane bound form and a circulating form. This protein is recognized as an antiaging gene with pleiotropic functions. The activation of cellular systems is associated with the pathogenesis of several chronic and degenerative diseases associated with an inflammatory state. Inflammation is characterized by an activation of NFκB. Klotho suppresses nuclear factor NFκB activation and the subsequent transcription of proinflammatory genes. This review focuses on the current understanding of Klotho protein function and its relationship with NFκB regulation, emphasizing its potential involvement in the pathophysiologic process.
Collapse
Affiliation(s)
- P Buendía
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba/Hospital Universitario Reina Sofía, Córdoba, Spain
| | - R Ramírez
- Alcalá de Henares University, Madrid, Spain
| | - P Aljama
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba/Hospital Universitario Reina Sofía, Córdoba, Spain
| | - J Carracedo
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba/Hospital Universitario Reina Sofía, Córdoba, Spain.
| |
Collapse
|
27
|
Luna C, Alique M, Navalmoral E, Noci MV, Bohorquez-Magro L, Carracedo J, Ramírez R. Aging-associated oxidized albumin promotes cellular senescence and endothelial damage. Clin Interv Aging 2016; 11:225-36. [PMID: 27042026 PMCID: PMC4780186 DOI: 10.2147/cia.s91453] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Increased levels of oxidized proteins with aging have been considered a cardiovascular risk factor. However, it is unclear whether oxidized albumin, which is the most abundant serum protein, induces endothelial damage. The results of this study indicated that with aging processes, the levels of oxidized proteins as well as endothelial microparticles release increased, a novel marker of endothelial damage. Among these, oxidized albumin seems to play a principal role. Through in vitro studies, endothelial cells cultured with oxidized albumin exhibited an increment of endothelial damage markers such as adhesion molecules and apoptosis levels. In addition, albumin oxidation increased the amount of endothelial microparticles that were released. Moreover, endothelial cells with increased oxidative stress undergo senescence. In addition, endothelial cells cultured with oxidized albumin shown a reduction in endothelial cell migration measured by wound healing. As a result, we provide the first evidence that oxidized albumin induces endothelial injury which then contributes to the increase of cardiovascular disease in the elderly subjects.
Collapse
Affiliation(s)
- Carlos Luna
- Nephrology Unit, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofía University Hospital, Córdoba, Spain
| | - Matilde Alique
- Department of Systems Biology, Physiology Unit, Universidad de Alcalá, Madrid, Spain
| | - Estefanía Navalmoral
- Department of Systems Biology, Physiology Unit, Universidad de Alcalá, Madrid, Spain
| | | | | | - Julia Carracedo
- Nephrology Unit, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofía University Hospital, Córdoba, Spain
| | - Rafael Ramírez
- Department of Systems Biology, Physiology Unit, Universidad de Alcalá, Madrid, Spain
| |
Collapse
|
28
|
Alique M, Luna C, Carracedo J, Ramírez R. LDL biochemical modifications: a link between atherosclerosis and aging. Food Nutr Res 2015; 59:29240. [PMID: 26637360 PMCID: PMC4670441 DOI: 10.3402/fnr.v59.29240] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/12/2015] [Accepted: 11/12/2015] [Indexed: 01/17/2023] Open
Abstract
Atherosclerosis is an aging disease in which increasing age is a risk factor. Modified low-density lipoprotein (LDL) is a well-known risk marker for cardiovascular disease. High-plasma LDL concentrations and modifications, such as oxidation, glycosylation, carbamylation and glycoxidation, have been shown to be proatherogenic experimentally in vitro and in vivo. Atherosclerosis results from alterations to LDL in the arterial wall by reactive oxygen species (ROS). Evidence suggests that common risk factors for atherosclerosis raise the likelihood that free ROS are produced from endothelial cells and other cells. Furthermore, oxidative stress is an important factor in the induction of endothelial senescence. Thus, endothelial damage and cellular senescence are well-established markers for atherosclerosis. This review examines LDL modifications and discusses the mechanisms of the pathology of atherosclerosis due to aging, including endothelial damage and oxidative stress, and the link between aging and atherosclerosis.
Collapse
Affiliation(s)
- Matilde Alique
- Departamento Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Madrid, Spain;
| | - Carlos Luna
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba, Córdoba, Spain
| | - Julia Carracedo
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba, Córdoba, Spain
| | - Rafael Ramírez
- Departamento Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Madrid, Spain
| |
Collapse
|
29
|
Hohensinner PJ, Kaun C, Buchberger E, Ebenbauer B, Demyanets S, Huk I, Eppel W, Maurer G, Huber K, Wojta J. Age intrinsic loss of telomere protection via TRF1 reduction in endothelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:360-7. [PMID: 26658719 DOI: 10.1016/j.bbamcr.2015.11.034] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 11/26/2015] [Accepted: 11/28/2015] [Indexed: 12/30/2022]
Abstract
Aging is a major factor predisposing for multiple diseases. Telomeres at the ends of chromosomes protect the integrity of chromosomal DNA. A specialized six-protein complex termed shelterin protects the telomere from unwanted interaction with DNA damage pathways. The aim of our study was to evaluate the integrity of telomeres and the stability of telomere protection during aging in endothelial cells (EC). We describe that aging EC can be characterized by an increased cell size (40%, p=0.02) and increased expression of PAI 1 (4 fold, p=0.02), MCP1 (10 fold, p=0.001) and GMCSF (15 fold, p=0.004). Telomeric state in aging cells is defined by an increased telomere oxidation (27%, p=0.01), reduced telomere length (62%, p=0.02), and increased DNA damage foci formation (5% in young EC versus 16% in aged EC, p=0.003). This telomeric dysfunction is accompanied by a reduction in the shelterin component TRF1 (33% mRNA, p=0.001; 24% protein, p=0.007). Overexpression of TRF1 in aging EC reduced telomere-associated DNA damage foci to 5% (p=0.02) and reduced expression levels of MCP1 (18% reduction, p=0.008). Aged EC have increased telomere damage and an intrinsic loss of telomere protection. Reestablishing telomere integrity could therefore be a target for rejuvenating endothelial cell function.
Collapse
Affiliation(s)
- P J Hohensinner
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Vienna, Austria.
| | - C Kaun
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Vienna, Austria
| | - E Buchberger
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - B Ebenbauer
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna, Austria
| | - S Demyanets
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - I Huk
- Department of Surgery, Division of Vascular Surgery, Medical University of Vienna, Vienna, Austria
| | - W Eppel
- Department of Gynecology, Medical University of Vienna, Vienna, Austria
| | - G Maurer
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Vienna, Austria
| | - K Huber
- Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna, Austria; 3rd Medical Department, Wilhelminenhospital, Vienna, Austria
| | - J Wojta
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna, Austria; Core Facilities, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
30
|
Gao C, Xie R, Yu C, Ma R, Dong W, Meng H, Zhang Y, Si Y, Zhang Z, Novakovic V, Zhang Y, Kou J, Bi Y, Li B, Xie R, Gilbert GE, Zhou J, Shi J. Thrombotic Role of Blood and Endothelial Cells in Uremia through Phosphatidylserine Exposure and Microparticle Release. PLoS One 2015; 10:e0142835. [PMID: 26580207 PMCID: PMC4646287 DOI: 10.1371/journal.pone.0142835] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 10/27/2015] [Indexed: 11/18/2022] Open
Abstract
The mechanisms contributing to an increased risk of thrombosis in uremia are complex and require clarification. There is scant morphological evidence of membrane-dependent binding of factor Xa (FXa) and factor Va (FVa) on endothelial cells (EC) in vitro. Our objectives were to confirm that exposed phosphatidylserine (PS) on microparticle (MP), EC, and peripheral blood cell (PBC) has a prothrombotic role in uremic patients and to provide visible and morphological evidence of PS-dependent prothrombinase assembly in vitro. We found that uremic patients had more circulating MP (derived from PBC and EC) than controls. Additionally, patients had more exposed PS on their MPs and PBCs, especially in the hemodialysis group. In vitro, EC exposed more PS in uremic toxins or serum. Moreover, reconstitution experiments showed that at the early stages, PS exposure was partially reversible. Using confocal microscopy, we observed that PS-rich membranes of EC and MP provided binding sites for FVa and FXa. Further, exposure of PS in uremia resulted in increased generation of FXa, thrombin, and fibrin and significantly shortened coagulation time. Lactadherin, a protein that blocks PS, reduced 80% of procoagulant activity on PBC, EC, and MP. Our results suggest that PBC and EC in uremic milieu are easily injured or activated, which exposes PS and causes a release of MP, providing abundant procoagulant membrane surfaces and thus facilitating thrombus formation. Blocking PS binding sites could become a new therapeutic target for preventing thrombosis.
Collapse
Affiliation(s)
- Chunyan Gao
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China
| | - Rui Xie
- Department of Gastrointestinal Oncology, The Third Hospital, Harbin Medical University, Harbin, China
| | - Chengyuan Yu
- Department of Nephrology, The First Hospital, Harbin Medical University, Harbin, China
| | - Ruishuang Ma
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China
| | - Weijun Dong
- Department of general surgery, The fifth Hospital, Harbin Medical University, Harbin, China
| | - Huan Meng
- Department of Cardiology, The Second Hospital, Harbin Medical University, Harbin, China
| | - Yan Zhang
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China
| | - Yu Si
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China
| | - Zhuo Zhang
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China
| | - Valerie Novakovic
- Medicine Departments, VA Boston Healthcare System, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Yong Zhang
- Department of Pharmacology, Harbin Medical University, Harbin, China
| | - Junjie Kou
- Department of Cardiology, The Second Hospital, Harbin Medical University, Harbin, China
| | - Yayan Bi
- Department of Cardiology, The Second Hospital, Harbin Medical University, Harbin, China
| | - Baoxin Li
- Department of Pharmacology, Harbin Medical University, Harbin, China
| | - Rujuan Xie
- Department of Gastrointestinal Oncology, The Third Hospital, Harbin Medical University, Harbin, China
- * E-mail: (JS); (JZ); (RJX)
| | - Gary E. Gilbert
- Medicine Departments, VA Boston Healthcare System, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Jin Zhou
- Department of Medical Laboratory Science and Technology, Harbin Medical University-Daqing, Daqing, China
- * E-mail: (JS); (JZ); (RJX)
| | - Jialan Shi
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
- Medicine Departments, VA Boston Healthcare System, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
- * E-mail: (JS); (JZ); (RJX)
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Cardiovascular disease remains the single most serious contributor to mortality in chronic kidney disease (CKD). Although conventional risk factors are prevalent in CKD, both cardiomyopathy and vasculopathy can be caused by pathophysiologic mechanisms specific to the uremic state. CKD is a state of systemic αKlotho deficiency. Although the molecular mechanism of action of αKlotho is not well understood, the downstream targets and biologic functions of αKlotho are astonishingly pleiotropic. An emerging body of literature links αKlotho to uremic vasculopathy. RECENT FINDINGS The expression of αKlotho in the vasculature is controversial because of conflicting data. Regardless of whether αKlotho acts as a circulating or resident protein, there are good data associating changes in αKlotho levels with vascular pathology including vascular calcification and in-vitro data of the direct action of αKlotho on both the endothelium and vascular smooth muscle cells in terms of cytoprotection and prevention of mineralization. SUMMARY It is critical to understand the pathogenic role of αKlotho on the integral endothelium-vascular smooth muscle network rather than each cell type in isolation in uremic vasculopathy, as αKlotho can serve as a potential prognostic biomarker and a biological therapeutic agent.
Collapse
|
32
|
García-Jérez A, Luengo A, Carracedo J, Ramírez-Chamond R, Rodriguez-Puyol D, Rodriguez-Puyol M, Calleros L. Effect of uraemia on endothelial cell damage is mediated by the integrin linked kinase pathway. J Physiol 2014; 593:601-18; discussion 618. [PMID: 25398526 DOI: 10.1113/jphysiol.2014.283887] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/08/2014] [Indexed: 12/24/2022] Open
Abstract
KEY POINTS Patients with chronic kidney disease have a higher risk of developing cardiovascular diseases than the general population. Their vascular endothelium is dysfunctional, among other things, because it is permanently exposed to uraemic toxins, several of which have poor clearance by conventional dialysis. Recent studies have demonstrated the important role of integrin-linked kinase (ILK) in the maintenance of endothelial integrity and in this study we investigate the involvement of ILK in the mechanism underlying vascular endothelial damage that occurs in uraemia. For the first time, we demonstrate the implication of ILK in the protection against endothelial cell damage (inhibition of proliferation, toxicity, oxidative stress and programed cell death) induced by uraemic serum from chronic kidney disease patients and uraemic toxins. This molecular mechanism may have clinical relevance because it highlights the importance of maintaining high levels of ILK activity to help preserve endothelial integrity, at least in early stages of chronic kidney disease. ABSTRACT Patients with chronic kidney disease (CKD) have a higher risk of developing cardiovascular diseases. Their vascular endothelium is dysfunctional, among other things, because it is permanently exposed to uraemic toxins, several of which, mostly protein-bound compounds such as indoxyl sulfate (IS) and p-cresyl sulphate, having poor clearance by conventional dialysis, induce endothelial toxicity. However, the molecular mechanism by which uraemic toxins regulate early stages of endothelial dysfunction remains unclear. Recent studies have demonstrated the important role of integrin-linked kinase (ILK) in the maintenance of endothelial integrity. In this study, we investigate the involvement of ILK in the mechanism underlying vascular endothelial damage that occurs in uraemia. First, we show that incubation of EA.hy926 cells with human uraemic serum from CKD patients upregulates ILK activity. This ILK activation also occurs when the cells are exposed to IS (25-100 μg ml(-1)), p-cresol (10-100 μg ml(-1)) or both combined, compared to human serum control. Next, we observed that high doses of both toxins together induce a slight decrease in cell proliferation and increase apoptosis and reactive oxygen species production. Interestingly, these toxic effects displayed a strong increase when the ILK protein is knocked down by small interfering RNA, even at low doses of uraemic toxins. Abrogation of AKT has demonstrated the ILK/AKT signalling pathway involved in these processes. This study has demonstrated the implication of ILK in the protection against endothelial cell damage induced by uraemic toxins, a molecular mechanism that could play a protective role in the early stages of endothelial dysfunction observed in uraemic patients.
Collapse
Affiliation(s)
- Andrea García-Jérez
- Department of Systems Biology, Universidad de Alcalá, Madrid, Spain; IRSIN, Spain; REDinREN (Instituto de Salud Carlos III), Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
33
|
Rodrigues SD, França KC, Dallin FT, Fujihara CK, Nascimento AJ, Pecoits-Filho R, Nakao LS. N-acetylcysteine as a potential strategy to attenuate the oxidative stress induced by uremic serum in the vascular system. Life Sci 2014; 121:110-6. [PMID: 25500303 DOI: 10.1016/j.lfs.2014.11.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 10/31/2014] [Accepted: 11/20/2014] [Indexed: 12/11/2022]
Abstract
AIMS Chronic kidney disease (CKD) progression is accompanied by systemic oxidative stress, which contributes to an increase in the risk of cardiovascular diseases (CVDs). N-acetylcysteine (NAC) is among the most studied antioxidants, but its therapeutic benefits in CKD-associated CVDs remain controversial. Here, we investigated whether NAC could inhibit the oxidative stress induced by uremia in vitro and in vivo. MAIN METHODS Endothelial and smooth muscle cells were challenged with human uremic or non-uremic sera, and the effects of a pre-treatment with 2mM NAC were evaluated. Reactive oxygen species (ROS) production, protein oxidation and total glutathione/glutathione disulfide (tGSH/GSSG) ratios were measured. Five-sixths nephrectomized or sham-operated rats were orally treated (in the drinking water) with 60 mg/kg/day NAC or not treated for 53 days. Plasma cysteine/cystine reduction potential Eh(Cyss/2Cys) was determined as a novel marker of the systemic oxidative stress. KEY FINDINGS NAC inhibited all the determined oxidative stress parameters, likely by increasing the tGSH/GSSG ratio, in both cell lines exposed to uremic serum. Orally administered NAC attenuated the systemic oxidative stress in uremic rats. SIGNIFICANCE The present results indicate that NAC, by preventing GSH depletion in vascular cells exposed to uremic serum and by attenuating the systemic oxidative stress during CKD progression, emerges as a potential strategy to prevent the oxidative stress induced by uremic toxicity in the vascular system.
Collapse
Affiliation(s)
- Silvia D Rodrigues
- Departamento de Patologia Básica, Universidade Federal do Paraná, Centro Politécnico, Curitiba 81531-980, Brazil
| | - Karime C França
- Departamento de Patologia Básica, Universidade Federal do Paraná, Centro Politécnico, Curitiba 81531-980, Brazil
| | - Fernando T Dallin
- Departamento de Patologia Básica, Universidade Federal do Paraná, Centro Politécnico, Curitiba 81531-980, Brazil
| | - Clarice K Fujihara
- Laboratório de Fisiopatologia Renal, Faculdade de Medicina, Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Aguinaldo J Nascimento
- Programa de Pós-Graduação em Ciências Farmacêuticas,Universidade Federal do Paraná, Curitiba 80210-170, Brazil
| | - Roberto Pecoits-Filho
- School of Medicine, Pontifícia Universidade Católica do Paraná, Rua Imaculada Conceição 1155, Curitiba 80215-901, Brazil
| | - Lia S Nakao
- Departamento de Patologia Básica, Universidade Federal do Paraná, Centro Politécnico, Curitiba 81531-980, Brazil.
| |
Collapse
|
34
|
Kooman JP, Kotanko P, Schols AMWJ, Shiels PG, Stenvinkel P. Chronic kidney disease and premature ageing. Nat Rev Nephrol 2014; 10:732-42. [PMID: 25287433 DOI: 10.1038/nrneph.2014.185] [Citation(s) in RCA: 272] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chronic kidney disease (CKD) shares many phenotypic similarities with other chronic diseases, including heart failure, chronic obstructive pulmonary disease, HIV infection and rheumatoid arthritis. The most apparent similarity is premature ageing, involving accelerated vascular disease and muscle wasting. We propose that in addition to a sedentary lifestyle and psychosocial and socioeconomic determinants, four major disease-induced mechanisms underlie premature ageing in CKD: an increase in allostatic load, activation of the 'stress resistance response', activation of age-promoting mechanisms and impairment of anti-ageing pathways. The most effective current interventions to modulate premature ageing-treatment of the underlying disease, optimal nutrition, correction of the internal environment and exercise training-reduce systemic inflammation and oxidative stress and induce muscle anabolism. Deeper mechanistic insight into the phenomena of premature ageing as well as early diagnosis of CKD might improve the application and efficacy of these interventions and provide novel leads to combat muscle wasting and vascular impairment in chronic diseases.
Collapse
Affiliation(s)
- Jeroen P Kooman
- Department of Internal Medicine, Division of Nephrology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastrich, Netherlands
| | - Peter Kotanko
- Renal Research Institute, 315 East 62nd Street, 4th floor, NY 10065, New York, USA
| | - Annemie M W J Schols
- Department of Respiratory Medicine, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastrich, Netherlands
| | - Paul G Shiels
- Institute of Cancer Sciences, Wolfson Wohl Translational Research Centre, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, UK
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, Huddinge, Karolinska Institutet, SE-14157 Stockholm, Sweden
| |
Collapse
|
35
|
Buendía P, Carracedo J, Soriano S, Madueño JA, Ortiz A, Martín-Malo A, Aljama P, Ramírez R. Klotho Prevents NFκB Translocation and Protects Endothelial Cell From Senescence Induced by Uremia. J Gerontol A Biol Sci Med Sci 2014; 70:1198-209. [PMID: 25246106 DOI: 10.1093/gerona/glu170] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 08/14/2014] [Indexed: 12/25/2022] Open
Abstract
In patients with renal disease, uremia raises oxidative stress and senescence in endothelial cells, which can lead to endothelial dysfunction and cardiovascular disease. Klotho protein is a β-glucuronidase capable of hydrolyzing steroid β-glucuronides. This protein is recognized as an antiaging gene, that modulate both stress-induced senescence and functional response. The aim of the study was to investigate how senescence and oxidative stress induced by uremia in endothelial cells affects Klotho expression and whether intra or extracellular Klotho has effects on the response of these cells. Senescence and oxidative stress was obtained by exposure to uremic serum. Telomere length, the enzyme β-galactosidase, and oxidative stress were studied by flow cytometry. Nuclear factor kappa B activity was determined by electrophoretic mobility shift assay. The expression of Klotho decreased with the uremia and preceded the manifestations of cell aging. Levels of intracellular Klotho decreases associated to endothelial senescence, and exogenous Klotho prevents cellular senescence by inhibiting the increase in oxidative stress induced by uremia and diminished the nuclear factor kappa B-DNA binding ability.
Collapse
Affiliation(s)
- Paula Buendía
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, Hospital Universitaro Reina Sofía, Córdoba, Spain
| | - Julia Carracedo
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, Hospital Universitaro Reina Sofía, Córdoba, Spain.
| | - Sagrario Soriano
- Nephrology Unit, Hospital Universitaro Reina Sofía, Córdoba, Spain
| | - Juan Antonio Madueño
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, Hospital Universitaro Reina Sofía, Córdoba, Spain
| | - Alberto Ortiz
- REDinREN, Servicio de Nefrología, Fundación para la Investigación Biomédica del Hospital Universitario La Paz, Instituto de Salud Carlos III, Fondos FEDER, Madrid, Spain. Unidad de Diálisis, Fundación Jiménez Díaz, Madrid, Spain
| | | | | | - Rafael Ramírez
- REDinREN, Servicio de Nefrología, Fundación para la Investigación Biomédica del Hospital Universitario La Paz, Instituto de Salud Carlos III, Fondos FEDER, Madrid, Spain. Physiology Department, Alcala de Henares University, Madrid, Spain
| |
Collapse
|
36
|
Tian XL, Li Y. Endothelial cell senescence and age-related vascular diseases. J Genet Genomics 2014; 41:485-95. [PMID: 25269674 DOI: 10.1016/j.jgg.2014.08.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 07/31/2014] [Accepted: 08/06/2014] [Indexed: 10/24/2022]
Abstract
Advanced age is an independent risk factor for ageing-related complex diseases, such as coronary artery disease, stroke, and hypertension, which are common but life threatening and related to the ageing-associated vascular dysfunction. On the other hand, patients with progeria syndromes suffer from serious atherosclerosis, suggesting that the impaired vascular functions may be critical to organismal ageing, or vice versa. However, it remains largely unknown how vascular cells, particularly endothelial cell, become senescent and how the senescence impairs the vascular functions and contributes to the age-related vascular diseases over time. Here, we review the recent progress on the characteristics of vascular ageing and endothelial cell senescence in vitro and in vivo, evaluate how genetic and environmental factors as well as autophagy and stem cell influence endothelial cell senescence and how the senescence contributes to the age-related vascular phenotypes, such as atherosclerosis and increased vascular stiffness, and explore the possibility whether we can delay the age-related vascular diseases through the control of vascular ageing.
Collapse
Affiliation(s)
- Xiao-Li Tian
- Department of Human Population Genetics and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine (IMM), Peking University, Beijing 100871, China.
| | - Yang Li
- Department of Human Population Genetics and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine (IMM), Peking University, Beijing 100871, China
| |
Collapse
|
37
|
Koizumi M, Tatebe J, Watanabe I, Yamazaki J, Ikeda T, Morita T. Aryl hydrocarbon receptor mediates indoxyl sulfate-induced cellular senescence in human umbilical vein endothelial cells. J Atheroscler Thromb 2014; 21:904-16. [PMID: 24727683 DOI: 10.5551/jat.23663] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Vascular senescence, which is accelerated in individuals with chronic kidney disease (CKD), contributes to the development of cardio-renal syndrome, and various uremic toxins may play important roles in the mechanisms underlying this phenomenon. We recently reported that indoxyl sulfate (IS), a uremic toxin, directly activates aryl hydrocarbon receptor (AhR) and generates oxidative stress through NADPH oxidase-4 in human umbilical vein endothelial cells (HUVECs). In the current study, we sought to examine whether IS regulates sirtuin 1 (Sirt1) and affects endothelial senescence via AhR activation. METHODS HUVECs were incubated with 500 μmol/L of IS for the indicated time periods. In order to evaluate changes in the senescence of the HUVECs, the number of senescence-associated β-galactosidase (SA β-gal)-positive cells was determined using an image analysis software program. The intracellular nicotinamide phosphoribosyltransferase (iNampt) activity, cellular NAD(+)/NADPH ratio and Sirt1 activity were analyzed according to a colorimetric assay to determine the mechanism of cellular senescence. Furthermore, we evaluated the involvement of AhR in the senescence-related changes induced by IS using AhR antagonists. RESULTS IS decreased the iNampt activity, NAD(+)/NADPH ratio and Sirt1 activity, resulting in an increase in the percentage of SA β-gal-positive cells. On the other hand, the AhR antagonists restored the IS-induced decrease in the NAD(+) content in association with an improvement in the iNampt activity and ameliorated the senescence-related changes. Taken together, these results indicate that IS impairs the iNampt-NAD(+)-Sirt1 system via AhR activation, which in turn promotes endothelial senescence. CONCLUSIONS The IS-AhR pathway induces endothelial senescence. Therefore, blocking the effects of AhR in the endothelium may provide a new therapeutic tool for treating cardio-renal syndrome.
Collapse
Affiliation(s)
- Masayuki Koizumi
- Department of Cardiovascular Medicine, Toho University Faculty of Medicine
| | | | | | | | | | | |
Collapse
|
38
|
Yiang GT, Tsai HF, Chen JR, Chou PL, Wu TK, Liu HC, Chang WJ, Liu LC, Tseng HH, Yu YL. RC-6 ribonuclease induces caspase activation, cellular senescence and neuron-like morphology in NT2 embryonal carcinoma cells. Oncol Rep 2014; 31:1738-44. [PMID: 24535104 DOI: 10.3892/or.2014.3023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 11/25/2013] [Indexed: 11/05/2022] Open
Abstract
Frog ribonucleases have been demonstrated to have anticancer activities. However, whether RC-6 ribonuclease exerts anticancer activity on human embryonal carcinoma cells remains unclear. In the present study, RC-6 induced cytotoxicity in NT2 cells (a human embryonal carcinoma cell line) and our studies showed that RC-6 can exert anticancer effects and induce caspase-9 and -3 activities. Moreover, to date, there is no evidence that frog ribonuclease-induced cytotoxicity effects are related to cellular senescence. Therefore, our studies showed that RC-6 can increase p16 and p21 protein levels and induce cellular senescence in NT2 cells. Notably, similar to retinoic acid-differentiated NT2 cells, neuron-like morphology was found on some remaining live cells after RC-6 treatment. In conclusion, our study is the first to demonstrate that RC-6 can induce cytotoxic effects, caspase-9/-3 activities, cellular senescence and neuron-like morphology in NT2 cells.
Collapse
Affiliation(s)
- Giou-Teng Yiang
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan, R.O.C
| | - Hsiu-Feng Tsai
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan, R.O.C
| | - Jer-Rong Chen
- Department of Surgery, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
| | - Pei-Lun Chou
- Division of Allergy-Immunology-Rheumatology, Department of Internal Medicine, Saint Mary's Hospital Luodong, Yilan 265, Taiwan, R.O.C
| | - Tsai-Kun Wu
- Division of Renal Medicine, Tungs' Taichung Metroharbor Hospital, Taichung 435, Taiwan, R.O.C
| | - Hsiao-Chun Liu
- Department of Nursing, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan, R.O.C
| | - Wei-Jung Chang
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Liang-Chih Liu
- Department of Surgery, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
| | - Hsu-Hung Tseng
- Division of General Surgery, Taichung Hospital, Ministry of Health and Welfare, Taichung 403, Taiwan, R.O.C
| | - Yung-Luen Yu
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan, R.O.C
| |
Collapse
|
39
|
Kovačević P, Dragić S, Rajkovača Z, Veljković S, Kovačević T. Serum levels of nitric oxide and endothelin-1 in patients treated with continuous ambulatory peritoneal dialysis. Ren Fail 2013; 36:437-40. [DOI: 10.3109/0886022x.2013.867812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
40
|
Mistry Y, Poolman T, Williams B, Herbert KE. A role for mitochondrial oxidants in stress-induced premature senescence of human vascular smooth muscle cells. Redox Biol 2013; 1:411-7. [PMID: 24191234 PMCID: PMC3814954 DOI: 10.1016/j.redox.2013.08.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 08/15/2013] [Accepted: 08/16/2013] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are a major source of cellular oxidants and have been implicated in aging and associated pathologies, notably cardiovascular diseases. Vascular cell senescence is observed in experimental and human cardiovascular pathologies. Our previous data highlighted a role for angiotensin II in the induction of telomere-dependent and -independent premature senescence of human vascular smooth muscle cells and suggested this was due to production of superoxide by NADPH oxidase. However, since a role for mitochondrial oxidants was not ruled out we hypothesise that angiotensin II mediates senescence by mitochondrial superoxide generation and suggest that inhibition of superoxide may prevent vascular smooth muscle cell aging in vitro. Cellular senescence was induced using a stress-induced premature senescence protocol consisting of three successive once-daily exposure of cells to 1×10−8 mol/L angiotensin II and was dependent upon the type-1 angiotensin II receptor. Angiotensin stimulated NADPH-dependent superoxide production as estimated using lucigenin chemiluminescence in cell lysates and this was attenuated by the mitochondrial electron transport chain inhibitor, rotenone. Angiotensin also resulted in an increase in mitoSOX fluorescence indicating stimulation of mitochondrial superoxide. Significantly, the induction of senescence by angiotensin II was abrogated by rotenone and by the mitochondria-targeted superoxide dismutase mimetic, mitoTEMPO. These data suggest that mitochondrial superoxide is necessary for the induction of stress-induced premature senescence by angiotensin II and taken together with other data suggest that mitochondrial cross-talk with NADPH oxidases, via as yet unidentified signalling pathways, is likely to play a key role. Angiotensin II causes stress-induced premature senescence in hVSMC. Mitochondrial superoxide is necessary for premature senescence. Mitochondrial cross-talk with NADPH oxidases is implicated in this mechanism.
Collapse
Affiliation(s)
- Yogita Mistry
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester LE3 9QP, UK
| | | | | | | |
Collapse
|