1
|
Hamsho M, Shkorfu W, Ranneh Y, Fadel A. Is isocaloric intermittent fasting superior to calorie restriction? A systematic review and meta-analysis of RCTs. Nutr Metab Cardiovasc Dis 2025; 35:103805. [PMID: 39732588 DOI: 10.1016/j.numecd.2024.103805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/30/2024] [Accepted: 11/20/2024] [Indexed: 12/30/2024]
Abstract
BACKGROUND AND AIM Intermittent fasting (IF) has been demonstrated to enhance human health through several mechanisms. However, it is still unclear whether those health benefits are independent of caloric restriction (CR)-induced weight loss. This systematic review and meta-analysis aimed to compare isocaloric IF and CR regarding anthropometric measurements, adherence, metabolic profile, inflammatory biomarkers, and adipokines in adults and elderlies. METHODS AND RESULTS Comprehensive research was conducted usin four major databases including Embase, PubMed, Scopus, and Google Scholar without date restriction. Mean differences of the change from baseline ± change SD were calculated as the differences between IF and CR groups. Subgroup analysis was performed according to intervention duration (short-, medium-, and long-term). To determine the reliability of our findings, GRADE assessment was performed. As a result, 20 RCTs were included in this systematic review and meta-analysis. IF groups had significant reductions in fat mass (kg) (P = 0.006) and Interleukin-6 (P < 0.00001) in the short term and fat mass (%) (P = 0.0002), waist circumference (P = 0.005), fasting blood insulin (P < 0.00001) and HOMA-IR (P = 0.04) in the long term. CR groups had significantly lower hunger (P = 0.003), fatigue (P = 0.04), and TG (P = 0.03). CONCLUSIONS IF may be an effective alternative to CR but is not superior to CR in enhancing human health. Due to the low number of long-term studies, future studies should focus on conducting longitudinal randomized trials comparing IF and CR in different populations, age groups, and IF patterns.
Collapse
Affiliation(s)
- Mohammed Hamsho
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Yeni Yuzyil University, Istanbul, Turkey.
| | - Wijdan Shkorfu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bahçeşehir University, Istanbul, Turkey.
| | - Yazan Ranneh
- Department of Nutrition and Dietetics, College of Pharmacy, Al-Ain University, Abu Dhabi, United Arab Emirates.
| | - Abdulmannan Fadel
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 1555, Al Ain, United Arab Emirates.
| |
Collapse
|
2
|
He J, Chen D, Xiong W, Wang Y, Chen S, Yang M, Dong Z. A Single-Cell Analysis of the NK-Cell Landscape Reveals That Dietary Restriction Boosts NK-Cell Antitumor Immunity via Eomesodermin. Cancer Immunol Res 2024; 12:1508-1524. [PMID: 39150687 DOI: 10.1158/2326-6066.cir-23-0944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/24/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
Abnormal metabolism in tumor cells represents a potential target for tumor therapy. In this regard, dietary restriction (DR) or its combination with anticancer drugs is of interest as it can impede the growth of tumor cells. In addition to its effects on tumor cells, DR also plays an extrinsic role in restricting tumor growth by regulating immune cells. NK cells are innate immune cells involved in tumor immunosurveillance. However, it remains uncertain whether DR can assist NK cells in controlling tumor growth. In this study, we demonstrate that DR effectively inhibits metastasis of melanoma cells to the lung. Consistent with this, the regression of tumors induced by DR was minimal in mice lacking NK cells. Single-cell RNA sequencing analysis revealed that DR enriched a rejuvenated subset of CD27+CD11b+ NK cells. Mechanistically, DR activated a regulatory network involving the transcription factor Eomesodermin (Eomes), which is essential for NK-cell development. First, DR promoted the expression of Eomes by optimizing mTORC1 signaling. The upregulation of Eomes revived the subset of functional CD27+CD11b+ NK cells by counteracting the expression of T-bet and downstream Zeb2. Moreover, DR enhanced the function and chemotaxis of NK cells by increasing the accessibility of Eomes to chromatin, leading to elevated expression of adhesion molecules and chemokines. Consequently, we conclude that DR therapy enhances tumor immunity through nontumor autonomous mechanisms, including promoting NK-cell tumor immunosurveillance and activation.
Collapse
Affiliation(s)
- Junming He
- Department of Allergy, The First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei, China
- State Key Laboratory of Membrane Biology, School of Medicine and Institute for Immunology, Tsinghua University, Beijing, China
| | - Donglin Chen
- State Key Laboratory of Membrane Biology, School of Medicine and Institute for Immunology, Tsinghua University, Beijing, China
| | - Wei Xiong
- State Key Laboratory of Membrane Biology, School of Medicine and Institute for Immunology, Tsinghua University, Beijing, China
| | - Yuande Wang
- State Key Laboratory of Membrane Biology, School of Medicine and Institute for Immunology, Tsinghua University, Beijing, China
| | - Shasha Chen
- Department of Allergy, The First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei, China
- Innovative Institute of Tumor Immunity and Medicine (ITIM), Hefei, China
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, China
| | - Meixiang Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
- Key Laboratory of Ministry of Education for Viral Pathogenesis and Infection Prevention and Control, The Biomedical Translational Research Institute, Jinan University, Guangzhou, China
- Guangzhou Key Laboratory for Germ-Free Animals and Microbiota Application, School of Medicine, Jinan University, Guangzhou, China
| | - Zhongjun Dong
- Department of Allergy, The First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei, China
- State Key Laboratory of Membrane Biology, School of Medicine and Institute for Immunology, Tsinghua University, Beijing, China
- Innovative Institute of Tumor Immunity and Medicine (ITIM), Hefei, China
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Breuling M, Tomeva E, Ivanovic N, Haslberger A. Butyrate- and Beta-Hydroxybutyrate-Mediated Effects of Interventions with Pro- and Prebiotics, Fasting, and Caloric Restrictions on Depression: A Systematic Review and Meta-Analysis. Life (Basel) 2024; 14:787. [PMID: 39063542 PMCID: PMC11278054 DOI: 10.3390/life14070787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
To examine the butyrate- and beta-hydroxybutyrate (BHB)-modulated effects of pre- and probiotic interventions, fasting, and caloric restriction interventions, a systematic literature review was carried out with a subsequent meta-analysis. Three pre-and probiotic intervention randomized control trials (RCTs) were included in the meta-analysis. A significant increase in butyrate (standardized mean difference (SMD) [confidence interval (CI)] 0.34; [0.02-0.67]) and an improvement in depression scores (SMD [CI] 0.15, [-0.35-0.70]) through pre- and probiotic interventions were shown in the meta-analysis. The intervention duration of the included studies ranged from three days to four weeks, with the examined population being healthy adults. Butyrate was measured in either plasma or feces, and the depression score was obtained under the Swedish core affect scale, the hospital anxiety and depression scale (HADS), or the depression, anxiety, and stress scale-21 items (DASS-21). In addition to butyrate, the total SCFA concentration also seems to be positively associated with pre- and probiotic administration (SMD [CI] 0.55 [0.15-0.95]). Despite the significant short-chain fatty acid (SCFA) and butyrate concentration changes, no significant correlation between butyrate and depression or between SCFAs and depression could be shown through linear regression models. Nevertheless, the regression coefficient b1 = 1.57 (p = 0.17) for butyrate suggests a strong, positive connection between butyrate and depression. Additionally, three studies were qualitatively analyzed, examining fasting as an intervention and revealing a connection between fasting, BHB, and depression. The association between fasting, BHB, and depression or mood elevation appeared to be related to BHB concentrations, which may be due to the similar biochemical properties of BHB and butyrate. Furthermore, caloric restrictions as alternatives to fasting were proposed as potential long-term interventions.
Collapse
Affiliation(s)
- Marian Breuling
- Department of Nutritional Sciences, University of Vienna, A-1090 Vienna, Austria;
| | | | - Nevena Ivanovic
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia;
| | - Alexander Haslberger
- Department of Nutritional Sciences, University of Vienna, A-1090 Vienna, Austria;
| |
Collapse
|
4
|
Almuraikhy S, Sellami M, Naja K, Al-Amri HS, Anwardeen N, Aden A, Dömling A, Elrayess MA. Joint Effects of Exercise and Ramadan Fasting on Telomere Length: Implications for Cellular Aging. Biomedicines 2024; 12:1182. [PMID: 38927389 PMCID: PMC11200901 DOI: 10.3390/biomedicines12061182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/13/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Aging is a fundamental biological process that progressively impairs the functionality of the bodily systems, leading to an increased risk of diseases. Telomere length is one of the most often used biomarkers of aging. Recent research has focused on developing interventions to mitigate the effects of aging and improve the quality of life. The objective of this study was to investigate the combined effect of exercise and Ramadan fasting on telomere length. Twenty-nine young, non-obese, healthy females were randomized into two groups: the control group underwent a 4-week exercise training program, and the second group underwent a 4-week exercise training program while fasting during Ramadan. Blood samples were collected, and measurements of clinical traits, cytokines, oxidative stress, and telomere length were performed before and after intervention. Telomere length increased significantly from baseline in the exercise-while-fasting group, but showed no significant change in the exercise control group. This increase was accompanied by a reduction in TNF-α, among other cytokines. Additionally, a significant positive correlation was observed between the mean change in telomere length and HDL in the exercise-while-fasting group only. This study is the first to report an increase in telomere length after combining Ramadan fasting with training, suggesting that exercising while fasting may be an effective tool for slowing down the aging rate. Further studies using larger and more diverse cohorts are warranted.
Collapse
Affiliation(s)
- Shamma Almuraikhy
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (S.A.); (K.N.); (N.A.)
- Groningen Research Institute of Pharmacy, Drug Design, Groningen University, 9712 CP Groningen, The Netherlands;
| | - Maha Sellami
- Physical Education Department (PE), College of Education, Qatar University, Doha P.O. Box 2713, Qatar; (M.S.); (H.S.A.-A.)
| | - Khaled Naja
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (S.A.); (K.N.); (N.A.)
| | - Hadaia Saleh Al-Amri
- Physical Education Department (PE), College of Education, Qatar University, Doha P.O. Box 2713, Qatar; (M.S.); (H.S.A.-A.)
| | - Najeha Anwardeen
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (S.A.); (K.N.); (N.A.)
| | - Amina Aden
- Hamad Medical Corporation (HMC), Doha P.O. Box 3050, Qatar;
| | - Alexander Dömling
- Groningen Research Institute of Pharmacy, Drug Design, Groningen University, 9712 CP Groningen, The Netherlands;
| | - Mohamed A. Elrayess
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (S.A.); (K.N.); (N.A.)
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
5
|
Zhang S, Lv Y, Qian J, Wei W, Zhu Y, Liu Y, Li L, Zhao C, Gao X, Yang Y, Dong J, Gu Y, Chen Y, Sun Q, Jiao X, Lu J, Yan Z, Wang L, Yuan N, Fang Y, Wang J. Adaptive metabolic response to short-term intensive fasting. Clin Nutr 2024; 43:453-467. [PMID: 38181523 DOI: 10.1016/j.clnu.2023.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/19/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND & AIMS Short-term intensive fasting (STIF), known as beego in Chinese phonetic articulation, has been practiced for more than two thousand years. However, the potential risk of STIF and the body's response to the risk have not been adequately evaluated. This study aims to address this issue, focusing on the STIF-triggered metabolic response of the liver and kidney. METHODS The STIF procedure in the clinical trial includes a 7-day water-only intensive fasting phase and a 7-day gradual refeeding phase followed by a regular diet. The intensive fasting in humans was assisted with psychological induction. To gain insights not available in the clinical trial, we designed a STIF program for mice that resulted in similar phenotypes seen in humans. Plasma metabolic profiling and examination of gene expression as well as liver and kidney function were performed by omics, molecular, biochemical and flow cytometric analyses. A human cell line model was also used for mechanistic study. RESULTS Clinically significant metabolites of fat and protein were found to accumulate during the fasting phase, but they were relieved after gradual refeeding. Metabolomics profiling revealed a universal pattern in the consumption of metabolic intermediates, in which pyruvate and succinate are the two key metabolites during STIF. In the STIF mouse model, the accumulation of metabolites was mostly counteracted by the upregulation of catabolic enzymes in the liver, which was validated in a human cell model. Kidney filtration function was partially affected by STIF but could be recovered by refeeding. STIF also reduced oxidative and inflammatory levels in the liver and kidney. Moreover, STIF improved lipid metabolism in mice with fatty liver without causing accumulation of metabolites after STIF. CONCLUSIONS The accumulation of metabolites induced by STIF can be relieved by spontaneous upregulation of catabolic enzymes, suggesting an adaptive and protective metabolic response to STIF stress in the mammalian body.
Collapse
Affiliation(s)
- Suping Zhang
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China; Suzhou Center for Disease Control and Prevention, Suzhou 215004, China
| | - Yaqi Lv
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Jiawei Qian
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Wen Wei
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China; Susky Life SciTech (Suzhou) Inc., Suzhou 215101, China
| | - Yanfei Zhu
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Yuqing Liu
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Lei Li
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China; Susky Life SciTech (Suzhou) Inc., Suzhou 215101, China
| | - Chen Zhao
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China; Susky Life SciTech (Suzhou) Inc., Suzhou 215101, China
| | - Xueqin Gao
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Yanjun Yang
- Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou 215200, China
| | - Jin Dong
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Yue Gu
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Yuwei Chen
- Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou 215200, China
| | - Qiyuan Sun
- Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou 215200, China
| | - Xuehua Jiao
- Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou 215200, China
| | - Jie Lu
- Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou 215200, China
| | - Zhanjun Yan
- Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou 215200, China
| | - Li Wang
- Department of Community Nursing, School of Nursing, Soochow University, Suzhou 215006, China
| | - Na Yuan
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China; Susky Life SciTech (Suzhou) Inc., Suzhou 215101, China.
| | - Yixuan Fang
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China; Susky Life SciTech (Suzhou) Inc., Suzhou 215101, China.
| | - Jianrong Wang
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China; Susky Life SciTech (Suzhou) Inc., Suzhou 215101, China; Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou 215200, China.
| |
Collapse
|
6
|
Alharbi M, Stephan BC, Shannon OM, Siervo M. Does dietary nitrate boost the effects of caloric restriction on brain health? Potential physiological mechanisms and implications for future research. Nutr Metab (Lond) 2023; 20:45. [PMID: 37880786 PMCID: PMC10599060 DOI: 10.1186/s12986-023-00766-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/07/2023] [Indexed: 10/27/2023] Open
Abstract
Dementia is a highly prevalent and costly disease characterised by deterioration of cognitive and physical capacity due to changes in brain function and structure. Given the absence of effective treatment options for dementia, dietary and other lifestyle approaches have been advocated as potential strategies to reduce the burden of this condition. Maintaining an optimal nutritional status is vital for the preservation of brain function and structure. Several studies have recognised the significant role of nutritional factors to protect and enhance metabolic, cerebrovascular, and neurocognitive functions. Caloric restriction (CR) positively impacts on brain function via a modulation of mitochondrial efficiency, endothelial function, neuro-inflammatory, antioxidant and autophagy responses. Dietary nitrate, which serves as a substrate for the ubiquitous gasotransmitter nitric oxide (NO), has been identified as a promising nutritional intervention that could have an important role in improving vascular and metabolic brain regulation by affecting oxidative metabolism, ROS production, and endothelial and neuronal integrity. Only one study has recently tested the combined effects of both interventions and showed preliminary, positive outcomes cognitive function. This paper explores the potential synergistic effects of a nutritional strategy based on the co-administration of CR and a high-nitrate diet as a potential and more effective (than either intervention alone) strategy to protect brain health and reduce dementia risk.
Collapse
Affiliation(s)
- Mushari Alharbi
- School of Life Sciences, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, 22252, Saudi Arabia
| | - Blossom Cm Stephan
- Curtin Dementia Centre of Excellence, EnAble Institute, Curtin University, Kent Street, Bentley, WA, 6102, Australia
| | - Oliver M Shannon
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Mario Siervo
- Curtin Dementia Centre of Excellence, EnAble Institute, Curtin University, Kent Street, Bentley, WA, 6102, Australia.
| |
Collapse
|
7
|
Gulias JF, Niesi F, Arán M, Correa-García S, Bermúdez-Moretti M. Gcn4 impacts metabolic fluxes to promote yeast chronological lifespan. PLoS One 2023; 18:e0292949. [PMID: 37831681 PMCID: PMC10575530 DOI: 10.1371/journal.pone.0292949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Aging is characterized by a gradual decline in physiological integrity, which impairs functionality and increases susceptibility to mortality. Dietary restriction, mimicking nutrient scarcity without causing malnutrition, is an intervention known to decelerate the aging process. While various hypotheses have been proposed to elucidate how dietary restriction influences aging, the underlying mechanisms remain incompletely understood. This project aimed to investigate the role of the primary regulator of the general amino acid control (GAAC) pathway, the transcription factor Gcn4, in the aging process of S. cerevisiae cells. Under conditions of amino acid deprivation, which activate Gcn4, the deletion of GCN4 led to a diverse array of physiological changes in the cells. Notably, the absence of Gcn4 resulted in heightened mitochondrial activity, likely contributing to the observed increase in reactive oxygen species (ROS) accumulation. Furthermore, these mutant gcn4Δ cells exhibited reduced ethanol production despite maintaining similar glucose consumption rates, suggesting a pivotal role for Gcn4 in regulating the Crabtree effect. Additionally, there was a marked reduction in trehalose, the storage carbohydrate, within the mutant cells compared to the wild-type strain. The intracellular content of free amino acids also exhibited disparities between the wild-type and GCN4-deficient strains. Taken together, our findings indicate that the absence of GCN4 disrupts cellular homeostasis, triggering significant alterations in interconnected intracellular metabolic pathways. These disruptions have far-reaching metabolic consequences that ultimately culminate in a shortened lifespan.
Collapse
Affiliation(s)
- Juan Facundo Gulias
- Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina–CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Florencia Niesi
- Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina–CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Martín Arán
- Fundación Instituto Leloir e Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA)—CONICET, Patricias Argentinas, Buenos Aires, Argentina
| | - Susana Correa-García
- Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina–CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Mariana Bermúdez-Moretti
- Facultad de Ciencias Exactas y Naturales, Departamento Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina–CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| |
Collapse
|
8
|
Schädel P, Wichmann-Costaganna M, Czapka A, Gebert N, Ori A, Werz O. Short-Term Caloric Restriction and Subsequent Re-Feeding Compromise Liver Health and Associated Lipid Mediator Signaling in Aged Mice. Nutrients 2023; 15:3660. [PMID: 37630850 PMCID: PMC10458887 DOI: 10.3390/nu15163660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Aging is characterized by alterations in the inflammatory microenvironment, which is tightly regulated by a complex network of inflammatory mediators. Excessive calorie consumption contributes to age- and lifestyle-associated diseases like obesity, type 2 diabetes, cardiovascular disorders, and cancer, while limited nutrient availability may lead to systemic health-promoting adaptations. Geroprotective effects of short-term caloric restriction (CR) can beneficially regulate innate immune receptors and interferon signaling in the liver of aged mice, but how CR impacts the hepatic release of immunomodulatory mediators like cytokines and lipid mediators (LM) is elusive. Here, we investigated the impact of aging on the inflammatory microenvironment in the liver and its linkage to calorie consumption. The livers of female young and aged C57BL/6JRj mice, as well as of aged mice after caloric restriction (CR) up to 28 days, with and without subsequent re-feeding (2 days), were evaluated. Surprisingly, despite differences in the hepatic proteome of young and old mice, aging did not promote a pro-inflammatory environment in the liver, but it reduced lipoxygenase-mediated formation of LM from polyunsaturated fatty acids without affecting the expression of the involved lipoxygenases and related oxygenases. Moreover, CR failed to ameliorate the secretion of pro-inflammatory cytokines but shifted the LM production to the formation of monohydroxylated LM with inflammation-resolving features. Unexpectedly, re-feeding after CR even further decreased the inflammatory response as LM species were markedly downregulated. Our findings raise the question of how short-term CR is indeed beneficial as a nutritional intervention for healthy elderly subjects and further stress the necessity to address tissue-specific inflammatory states.
Collapse
Affiliation(s)
- Patrick Schädel
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, D-07743 Jena, Germany; (P.S.); (M.W.-C.); (A.C.)
| | - Mareike Wichmann-Costaganna
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, D-07743 Jena, Germany; (P.S.); (M.W.-C.); (A.C.)
| | - Anna Czapka
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, D-07743 Jena, Germany; (P.S.); (M.W.-C.); (A.C.)
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, D-07745 Jena, Germany
| | - Nadja Gebert
- Leibniz Institute on Aging—Fritz Lipmann Institute, D-07745 Jena, Germany; (N.G.); (A.O.)
| | - Alessandro Ori
- Leibniz Institute on Aging—Fritz Lipmann Institute, D-07745 Jena, Germany; (N.G.); (A.O.)
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, D-07743 Jena, Germany; (P.S.); (M.W.-C.); (A.C.)
| |
Collapse
|
9
|
Boccardi V, Pigliautile M, Guazzarini AG, Mecocci P. The Potential of Fasting-Mimicking Diet as a Preventive and Curative Strategy for Alzheimer's Disease. Biomolecules 2023; 13:1133. [PMID: 37509169 PMCID: PMC10377404 DOI: 10.3390/biom13071133] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
This review examines the potential of fasting-mimicking diets (FMDs) in preventing and treating Alzheimer's disease (AD). FMDs are low-calorie diets that mimic the physiological and metabolic effects of fasting, including the activation of cellular stress response pathways and autophagy. Recent studies have shown that FMDs can reduce amyloid-beta accumulation, tau phosphorylation, and inflammation, as well as improve cognitive function in animal models of AD. Human studies have also reported improvements in AD biomarkers, cognitive functions, and subjective well-being measures following FMDs. However, the optimal duration and frequency of FMDs and their long-term safety and efficacy remain to be determined. Despite these uncertainties, FMDs hold promise as a non-pharmacological approach to AD prevention and treatment, and further research in this area is warranted.
Collapse
Affiliation(s)
- Virginia Boccardi
- Department of Medicine and Surgery, Institute of Gerontology and Geriatrics, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Martina Pigliautile
- Department of Medicine and Surgery, Institute of Gerontology and Geriatrics, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Anna Giulia Guazzarini
- Department of Medicine and Surgery, Institute of Gerontology and Geriatrics, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
| | - Patrizia Mecocci
- Department of Medicine and Surgery, Institute of Gerontology and Geriatrics, University of Perugia, Piazzale Gambuli 1, 06132 Perugia, Italy
- Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
10
|
Abstract
The process of aging manifests from a highly interconnected network of biological cascades resulting in the degradation and breakdown of every living organism over time. This natural development increases risk for numerous diseases and can be debilitating. Academic and industrial investigators have long sought to impede, or potentially reverse, aging in the hopes of alleviating clinical burden, restoring functionality, and promoting longevity. Despite widespread investigation, identifying impactful therapeutics has been hindered by narrow experimental validation and the lack of rigorous study design. In this review, we explore the current understanding of the biological mechanisms of aging and how this understanding both informs and limits interpreting data from experimental models based on these mechanisms. We also discuss select therapeutic strategies that have yielded promising data in these model systems with potential clinical translation. Lastly, we propose a unifying approach needed to rigorously vet current and future therapeutics and guide evaluation toward efficacious therapies.
Collapse
Affiliation(s)
- Robert S Rosen
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA;
| | - Martin L Yarmush
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA;
| |
Collapse
|
11
|
Hooshiar SH, Yazdani A, Jafarnejad S. Alternate-day modified fasting diet improves weight loss, subjective sleep quality and daytime dysfunction in women with obesity or overweight: a randomized, controlled trial. Front Nutr 2023; 10:1174293. [PMID: 37275639 PMCID: PMC10233006 DOI: 10.3389/fnut.2023.1174293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/28/2023] [Indexed: 06/07/2023] Open
Abstract
Background Both sleep time and quality can be associated with overweight or obesity. In obese people, visceral fat tissue develops, which results in an increment in the production of cytokines. The increased production of inflammatory cytokines can disturb the sleep/wake cycle. Therefore, weight loss by reducing fat tissue can improve sleep disorders. Intermittent fasting diets are popular and effective diets that can decrease body weight and improve anthropometric data and body composition. The present study aimed to evaluate the effect of Alternate-day Modified Fasting (ADMF) on sleep quality, body weight, and daytime sleepiness. Methods Classification of 56 obese or overweight women, based on age and body mass index (BMI), was done using stratified randomization. Then individuals were assigned to the ADMF group (intervention) or Daily Calorie Restriction (CR) group (control) using the random numbers table for 8 weeks. We measured the Pittsburgh sleep quality Index (PSQI), weight, BMI, and the Epworth sleepiness scale (ESS) as primary outcomes and assessed subjective sleep quality (SSQ), sleep latency, sleep disturbances, habitual sleep efficiency, daytime dysfunction, and sleep duration as secondary outcomes at baseline and after the study. Results Following an ADMF diet resulted in a greater decrease in weight (kg) [-5.23 (1.73) vs. -3.15 (0.88); P < 0.001] and BMI (kg/m2) [-2.05 (0.66) vs. -1.17 (0.34); P < 0.001] compared to CR. No significant differences were found in the changes of PSQI [-0.39 (1.43) vs. -0.45 (1.88); P = 0.73] and ESS [-0.22 (1.24) vs. -0.54 (1.67); P = 0.43] between two groups. Also, following the ADMF diet led to significant changes in SSQ [-0.69 (0.47) vs. -0.08 (0.40); P = <0.001], and daytime dysfunction [-0.65 (0.57) vs. 0.04 (0.75); P: 0.001] in compare with CR diet. Conclusion These results suggested that an ADMF could be a beneficial diet for controlling body weight and BMI. The ADMF diet didn't affect PSQI and ESS in women with overweight or obesity but significantly improved SSQ and daytime dysfunction. Clinical Trial Registration The Iranian Registry of Clinical Trials (IRCT20220522054958N3), https://www.irct.ir/trial/64510.
Collapse
Affiliation(s)
- Saeedeh Hosseini Hooshiar
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Akram Yazdani
- Department of Biostatistics and Epidemiology, Kashan University of Medical Sciences, Kashan, Iran
| | - Sadegh Jafarnejad
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
12
|
Kesidou E, Theotokis P, Damianidou O, Boziki M, Konstantinidou N, Taloumtzis C, Sintila SA, Grigoriadis P, Evangelopoulos ME, Bakirtzis C, Simeonidou C. CNS Ageing in Health and Neurodegenerative Disorders. J Clin Med 2023; 12:2255. [PMID: 36983254 PMCID: PMC10054919 DOI: 10.3390/jcm12062255] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The process of ageing is characteristic of multicellular organisms associated with late stages of the lifecycle and is manifested through a plethora of phenotypes. Its underlying mechanisms are correlated with age-dependent diseases, especially neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) and multiple sclerosis (MS) that are accompanied by social and financial difficulties for patients. Over time, people not only become more prone to neurodegeneration but they also lose the ability to trigger pivotal restorative mechanisms. In this review, we attempt to present the already known molecular and cellular hallmarks that characterize ageing in association with their impact on the central nervous system (CNS)'s structure and function intensifying possible preexisting pathogenetic conditions. A thorough and elucidative study of the underlying mechanisms of ageing will be able to contribute further to the development of new therapeutic interventions to effectively treat age-dependent manifestations of neurodegenerative diseases.
Collapse
Affiliation(s)
- Evangelia Kesidou
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Greece (P.T.)
- Laboratory of Physiology, Faculty of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Greece (P.T.)
| | - Olympia Damianidou
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Greece (P.T.)
| | - Marina Boziki
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Greece (P.T.)
| | - Natalia Konstantinidou
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Greece (P.T.)
| | - Charilaos Taloumtzis
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Greece (P.T.)
| | - Styliani-Aggeliki Sintila
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Greece (P.T.)
| | - Panagiotis Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Greece (P.T.)
| | | | - Christos Bakirtzis
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Greece (P.T.)
| | - Constantina Simeonidou
- Laboratory of Physiology, Faculty of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| |
Collapse
|
13
|
Caloric Restriction (CR) Plus High-Nitrate Beetroot Juice Does Not Amplify CR-Induced Metabolic Adaptation and Improves Vascular and Cognitive Functions in Overweight Adults: A 14-Day Pilot Randomised Trial. Nutrients 2023; 15:nu15040890. [PMID: 36839248 PMCID: PMC9962072 DOI: 10.3390/nu15040890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Caloric restriction (CR) and dietary nitrate supplementation are nutritional interventions with pleiotropic physiological functions. This pilot study investigates the combined effects of CR and nitrate-rich beetroot juice (BRJ) on metabolic, vascular, and cognitive functions in overweight and obese middle-aged and older adults. This was a two-arm, parallel randomized clinical trial including 29 participants allocated to CR + BRJ (n = 15) or CR alone (n = 14) for 14 days. Body composition, resting energy expenditure (REE), and hand-grip strength were measured. Resting blood pressure (BP) and microvascular endothelial function were measured, and Trail-Making Test A and B were used to assess cognitive function. Salivary nitrate and nitrite, and urinary nitrate and 8-isoprostane concentrations were measured. Changes in body composition, REE, and systolic and diastolic BP were similar between the two interventions (p > 0.05). The CR + BRJ intervention produced greater changes in average microvascular flux (p = 0.03), NO-dependent endothelial activity (p = 0.02), and TMT-B cognitive scores (p = 0.012) compared to CR alone. Changes in urinary 8-isoprostane were greater in the CR + BRJ group (p = 0.02), and they were inversely associated with changes in average microvascular flux (r = -0.53, p = 0.003). These preliminary findings suggest that greater effects on vascular and cognitive functions could be achieved by combining CR with dietary nitrate supplementation.
Collapse
|
14
|
Nishio N, Isobe KI. Hen egg only diets support healthy aging in adult mice. J Anim Physiol Anim Nutr (Berl) 2023. [PMID: 36688451 DOI: 10.1111/jpn.13805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 12/12/2022] [Accepted: 12/18/2022] [Indexed: 01/24/2023]
Abstract
Hen eggs (eggs) are a conventional food, known to contain the nutrients required for the growth of chicken embryos. These eggs are rich in important proteins and fats, with a very low amount of carbohydrate, and include all of the vitamins and minerals needed for the development of mice. We found that mice fed eggs grew to the same weight as mice fed a normal chow diet (ND) and remained healthy until the 20-months. As expected, the serological indicators of fat content were higher in egg-only mice than in ND mice. However, surprisingly the serum glucose levels in the egg-only mice were nearly identical to those in the ND mice. Given the high fat content in eggs, we expected that our egg-only mice would develop fatty liver or other metabolic diseases. However, we observed no pathological changes in the livers of egg-only mice until 20-months with their serological indicators (ALT and AST) and histological features (no fat droplets) remaining normal. However, when we examined the pups nursed by mothers of the egg-only diet group we noted that almost the animals died 2 to 4 weeks after birth. This is likely because these pups presented with reduced enzymes for metabolism in their liver when compared to pups of the ND group. In addition, we also found that the expression of various development proteins were severely lacking in liver of these pups. From these results, our report suggested that eggs could support healthy aging in adult mice, but not in pups.
Collapse
Affiliation(s)
- Naomi Nishio
- Department of school health, Faculty of Education, Saitama University, Saitama, Japan
| | - Ken-Ichi Isobe
- Department of Food Science and Nutrition, Nagoya Women's Uuniversity, Nagoya, Japan.,Department of Medical technology, Faculty of Medical Sciences, Shubun University, Ichinomiya, Japan
| |
Collapse
|
15
|
Wu J, Man D, Shi D, Wu W, Wang S, Wang K, Li Y, Yang L, Bian X, Wang Q, Li L. Intermittent Fasting Alleviates Risk Markers in a Murine Model of Ulcerative Colitis by Modulating the Gut Microbiome and Metabolome. Nutrients 2022; 14:nu14245311. [PMID: 36558471 PMCID: PMC9788567 DOI: 10.3390/nu14245311] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Clinical trials have demonstrated the health benefits of intermittent fasting (IF). However, the potential mechanism of IF in alleviating dextran sulfate sodium (DSS)-induced colitis is not fully understood. The present study was mainly designed to explore the dynamic changes in the gut microbiota and metabolome after short-term (2 weeks) or long-term (20 weeks) IF and therefore clarify the potential mechanisms by which IF ameliorates DSS-induced colitis in a murine model. Thirty-two C57BL/6 male mice were equally divided into four groups and underwent IF intervention for 2 weeks (SIF group, n = 8), 20 weeks (LIF group, n = 8), or were allowed free access to food for 2 weeks (SAL group, n = 8) or 20 weeks (LAL group, n = 8). The thirty-two C57BL/6 male mice were accepted for the diet intervention of 2 weeks of IF or fed ad libitum. Colitis was induced by drinking 2% DSS for 7 days. Our findings showed that short-term IF prominently elevates the abundance of Bacteroides, Muibaculum and Akkermansia (p < 0.001, p < 0.001, p < 0.001, respectively), and decreased the abundance of Ruminiclostridium (p < 0.05). Long-term IF, however, decreased the abundance of Akkermansia and obviously increased the abundance of Lactobacillus (p < 0.05, p < 0.001, respectively). Metabolites mainly associated with nucleoside, carbohydrate, amino acid, bile acid, fatty acid, polyol, steroid and amine metabolism were identified in the faeces using untargeted GC/MS. In particular, inosine was extremely enriched after short-term IF and long-term IF (p < 0.01, p < 0.01, respectively); butyrate, 2-methyl butyric acid and valeric acid were significantly decreased after short-term IF (p < 0.001, p < 0.001, p < 0.01, respectively); and 2-methyl butyric acid was significantly increased after long-term IF (p < 0.001). The abundance of lithocholic acid (LCA), one of the secondary bile acids, increased significantly after short-term and long-term IF based on UPLC−MS/MS (p < 0.001, p < 0.5, respectively). Of note, IF markedly mitigated DSS-induced acute colitis symptoms and down-regulated pro-inflammatory cytokines IL-1α, IL-6, keratinocyte-derived chemokine (KC) and G-CSF levels in the serum (p < 0.01, p < 0.001, p < 0.05, p < 0.001, respectively). Furthermore, a correlation analysis indicated that the disease activity index (DAI) score and serum levels of IL-1α, IL-6, KC, and G-CSF were negatively correlated with the relative abundance of Akkermansia and the faecal metabolites LCA and inosine. This study confirmed that IF altered microbiota and reprogramed metabolism, which was a promising development in the attempt to prevent DSS-induced colitis. Moreover, our findings provide new insights regarding the correlations among the mucosal barrier dysfunction, metabolome, and microbiome.
Collapse
Affiliation(s)
- Jingjing Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Da Man
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ding Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Wenrui Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shuting Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Kaicen Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yating Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Liya Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiaoyuan Bian
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qiangqiang Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Correspondence: ; Tel./Fax: +86-571-8723-6759
| |
Collapse
|
16
|
Kyrgiafini MA, Giannoulis T, Moutou KA, Mamuris Z. Investigating the Impact of a Curse: Diseases, Population Isolation, Evolution and the Mother's Curse. Genes (Basel) 2022; 13:2151. [PMID: 36421825 PMCID: PMC9690142 DOI: 10.3390/genes13112151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 09/08/2024] Open
Abstract
The mitochondrion was characterized for years as the energy factory of the cell, but now its role in many more cellular processes is recognized. The mitochondrion and mitochondrial DNA (mtDNA) also possess a set of distinct properties, including maternal inheritance, that creates the Mother's Curse phenomenon. As mtDNA is inherited from females to all offspring, mutations that are harmful to males tend to accumulate more easily. The Mother's Curse is associated with various diseases, and has a significant effect on males, in many cases even affecting their reproductive ability. Sometimes, it even leads to reproductive isolation, as in crosses between different populations, the mitochondrial genome cannot cooperate effectively with the nuclear one resulting in a mito-nuclear incompatibility and reduce the fitness of the hybrids. This phenomenon is observed both in the laboratory and in natural populations, and have the potential to influence their evolution and speciation. Therefore, it turns out that the study of mitochondria is an exciting field that finds many applications, including pest control, and it can shed light on the molecular mechanism of several diseases, improving successful diagnosis and therapeutics. Finally, mito-nuclear co-adaptation, paternal leakage, and kin selection are some mechanisms that can mitigate the impact of the Mother's Curse.
Collapse
Affiliation(s)
- Maria-Anna Kyrgiafini
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Themistoklis Giannoulis
- Laboratory of Biology, Genetics and Bioinformatics, Department of Animal Sciences, University of Thessaly, Gaiopolis, 41336 Larissa, Greece
| | - Katerina A. Moutou
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Zissis Mamuris
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| |
Collapse
|
17
|
Zhao S, Han T, Pei X, Song Y, Zhang Y, Liu L, Wang X, Hou W, Sun C. The association of diet carbohydrates consumption with cognitive function among US older adults modification by daily fasting duration. Front Aging Neurosci 2022; 14:991007. [PMID: 36225887 PMCID: PMC9550221 DOI: 10.3389/fnagi.2022.991007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Dietary carbohydrate consumption was related to cognitive function. Whereas, there was no study investigate the association of dietary carbohydrate consumption with cognitive function modification by daily fasting duration. This study aims to examine the association between dietary carbohydrate consumption and cognitive function among participants with different daily fasting duration. In this cross-sectional study, 2485 adults aged over 60 years from the nationally representative data of the National Health and Nutrition Examination Survey (NHANES, 2011–2014) were enrolled. Percentage energy from carbohydrates was present in both quartiles and continuous forms. Daily fasting duration = 24 – (timing for dinner – breakfast). Cognitive function was assessed by the Consortium to Establish a Registry for Alzheimer’s Disease Word List Learning (CERAD-WL), CERAD Word List Delayed Recall (CERAD-DR), Animal Fluency (AF), and Digit Symbol Substitution (DSST) Test. Multiple logistic regression and linear regression models were developed to examine the association of dietary carbohydrates with cognitive function among participants with different daily fasting duration. Restricted cubic spline models were also applied. Compared with the lowest quartile of percentage energy from carbohydrates, the highest quartile had higher ORs of poor cognitive performance among total participants [(ORCERAD-WL 1.84 95% CI 1.25–2.71); (ORCERAD-DR 1.45 95% CI 1.10–1.91)] and participants with daily fasting duration fewer than 16 h [(ORCERAD-WL 2.14 95% CI 1.29–3.55); (ORCERAD-DR 1.51 95% CI 1.05–2.17)] but not in participants with daily fasting duration of more than 16 h. Further, the negative associations between percentage energy from carbohydrates and CERAD-WL score were still significant in addition to participants whose daily fasting duration was more than 16 h. Additionally, dose-response associations were detected between dietary carbohydrates and cognitive decline, while “U” curves were observed among participants whose daily fasting duration was more than 16 h. This study indicated that dietary carbohydrates consumption was associated with poor cognitive performance, but not in participants whose daily fasting duration was more than 16 h among US older adults. The current analysis provides evidence that a longer daily fasting duration may improve the harmful effect of dietary carbohydrates on cognitive function.
Collapse
|
18
|
Effect of a six-week times restricted eating intervention on the body composition in early elderly men with overweight. Sci Rep 2022; 12:9816. [PMID: 35701451 PMCID: PMC9198237 DOI: 10.1038/s41598-022-13904-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 05/16/2022] [Indexed: 11/12/2022] Open
Abstract
The main aim of the study was to determine the effectiveness of time-restricted eating (TRE) in reducing body fat and lowering body mass index in early elderly men with overweight (65–74 years). An additional goal was to determine the feasibility of applying TRE for extensive use in elderly men. This study included a group of 46 healthy men (EXP = 23 persons, CON = 23 persons). The six-week intervention in the experimental group involved complete abstinence from food intake for 16 h per day, from 08:00 to 12:00 p.m. After the intervention, the body weight decreased in the EXP group (− 1.92 kg) with a 95% CI (1.14–2.70) compared to the CON group. There was also a decrease in the Visceral fat mass (− 0.64 l) with 95% CI (0.46–0.82) and in the waist circumference (− 3.11 cm) with 95% CI (1.89–4.33) in the EXP group compared to the CON group. The skeletal muscle mass did not change significantly. There was no significant change in the control group, either. The application of TRE in early elderly overweight men resulted in positive changes in body composition and visceral fat. All participants succeed in the prescribed diet plan, which shows that TRE is easy to maintain for early elderly overweight men and may become an essential obesity treatment tool in these age groups.
Collapse
|
19
|
Gramont B, Killian M, Bernard E, Martinez L, Bruel S, Galusca B, Barth N, Célarier T. Therapeutic Fasting: Are Patients Aged 65 and Over Ready? Nutrients 2022; 14:nu14102001. [PMID: 35631147 PMCID: PMC9143805 DOI: 10.3390/nu14102001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 01/27/2023] Open
Abstract
While being the main potential beneficiaries of therapeutic fasting’s health benefits, the elderly are frequently thought of as being too fragile to fast. The main objective of our survey was to review the knowledge, practices, and acceptability of therapeutic fasting in subjects aged 65 years and over. From September 2020 to March 2021, an online questionnaire was sent to subjects aged 65 and over, using the mailing list of local organizations working in the field of aging. The mean age of the 290 respondents was 73.8 ± 6.5 years, 75.2% were women and 54.1% had higher education. Among the respondents, 51.7% had already fasted and 80.7% deemed therapeutic fasting interesting, 83.1% would be willing to fast if it was proven beneficial for their health, and 77.2% if it was proven to decrease the burden of chronic diseases. Subjects aged 65 to 74 years considered themselves as having the greatest physical and motivational abilities to perform therapeutic fasting. People aged 65 years, or more, are interested in therapeutic fasting and a large majority would be ready to fast if such practice was proven beneficial. These results pave the way for future clinical trials evaluating therapeutic fasting in elderly subjects.
Collapse
Affiliation(s)
- Baptiste Gramont
- Department of Internal Medicine, Saint-Etienne University Hospital, CEDEX 02, 42055 Saint-Etienne, France;
- Team GIMAP, CIRI—Centre International de Recherche en Infectiologie, Université de Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, INSERM, U1111, Centre National de la Recherche Scientifique (CNRS), UMR530, CEDEX 02, 42023 Saint-Etienne, France
- Correspondence:
| | - Martin Killian
- Department of Internal Medicine, Saint-Etienne University Hospital, CEDEX 02, 42055 Saint-Etienne, France;
- Team GIMAP, CIRI—Centre International de Recherche en Infectiologie, Université de Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, INSERM, U1111, Centre National de la Recherche Scientifique (CNRS), UMR530, CEDEX 02, 42023 Saint-Etienne, France
| | - Elodie Bernard
- Department of General Practice, Université Jean Monnet, CEDEX 02, 42023 Saint-Etienne, France; (E.B.); (S.B.)
| | - Laure Martinez
- Department of Clinical Gerontology, Saint-Etienne University Hospital, CEDEX 02, 42055 Saint-Etienne, France; (L.M.); (T.C.)
| | - Sebastien Bruel
- Department of General Practice, Université Jean Monnet, CEDEX 02, 42023 Saint-Etienne, France; (E.B.); (S.B.)
| | - Bogdan Galusca
- Eating Disorders, Addictions and Extreme Bodyweight Research Group (TAPE) EA 7423, Université Jean Monnet, CEDEX 02, 42023 Saint-Etienne, France;
- Division of Endocrinology, Diabetes, Metabolism and Eating Disorders, Saint-Étienne University Hospital, CEDEX 02, 42055 Saint-Etienne, France
| | - Nathalie Barth
- Chaire Santé des Ainés, Université Jean Monnet, CEDEX 02, 42023 Saint-Etienne, France;
- Gérontopôle Auvergne-Rhône-Alpes, 42100 Saint-Etienne, France
| | - Thomas Célarier
- Department of Clinical Gerontology, Saint-Etienne University Hospital, CEDEX 02, 42055 Saint-Etienne, France; (L.M.); (T.C.)
- Chaire Santé des Ainés, Université Jean Monnet, CEDEX 02, 42023 Saint-Etienne, France;
- Gérontopôle Auvergne-Rhône-Alpes, 42100 Saint-Etienne, France
| |
Collapse
|
20
|
Song DK, Kim YW. Beneficial effects of intermittent fasting: a narrative review. JOURNAL OF YEUNGNAM MEDICAL SCIENCE 2022; 40:4-11. [PMID: 35368155 PMCID: PMC9946909 DOI: 10.12701/jyms.2022.00010] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/28/2022] [Indexed: 11/04/2022]
Abstract
Caloric restriction is a popular approach to treat obesity and its associated chronic illnesses but is difficult to maintain for a long time. Intermittent fasting is an alternative and easily applicable dietary intervention for caloric restriction. Moreover, intermittent fasting has beneficial effects equivalent to those of caloric restriction in terms of body weight control, improvements in glucose homeostasis and lipid profiles, and anti-inflammatory effects. In this review, the beneficial effects of intermittent fasting are discussed.
Collapse
Affiliation(s)
- Dae-Kyu Song
- Department of Physiology & Obesity-mediated Disease Research Center, Keimyung University School of Medicine, Daegu, Korea
| | - Yong-Woon Kim
- Department of Physiology, Yeungnam University College of Medicine, Daegu, Korea,Corresponding author: Yong-Woon Kim, MD, PhD Department of Physiology, Yeungnam University College of Medicine, 170 Hyeonchung-ro, Nam-gu, Daegu 42415, Korea Tel: +82-53-640-6922 • Fax: +82-53-629-7093 • E-mail:
| |
Collapse
|
21
|
Ong JS, Lew LC, Hor YY, Liong MT. Probiotics: The Next Dietary Strategy against Brain Aging. Prev Nutr Food Sci 2022; 27:1-13. [PMID: 35465109 PMCID: PMC9007707 DOI: 10.3746/pnf.2022.27.1.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 11/06/2022] Open
Abstract
Owing to their long history of safe use, probiotic microorganisms, typically from the genus Lactobacillus, have long been recognized, especially in traditional and fermented food industries. Although conventionally used for dairy, meat, and vegetable fermentation, the use of probiotics in health foods, supplements, and nutraceuticals has gradually increased. Over the past two decades, the importance of probiotics in improving gut health and immunity as well as alleviating metabolic diseases has been recognized. The new concept of a gut-heart-brain axis has led to the development of various innovations and strategies related to the introduction of probiotics in food and diet. Probiotics influence gut microbiota profiles, inflammation, and disorders and directly impact brain neurotransmitter pathways. As brain health often declines with age, the concept of probiotics being beneficial for the aging brain has also gained much momentum and emphasis in both research and product development. In this review, the concept of the aging brain, different in vivo aging models, and various aging-related benefits of probiotics are discussed.
Collapse
Affiliation(s)
- Jia-Sin Ong
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Lee-Ching Lew
- Probionic Corporation, Jeonbuk Institute for Food-Bioindustry, Jeonbuk 54810, Korea
| | - Yan-Yan Hor
- Department of Biotechnology, Yeungnam University, Gyeongbuk 38541, Korea
| | - Min-Tze Liong
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| |
Collapse
|
22
|
Wang C, Zhang X, Luo L, Luo Y, Yang X, Ding X, Wang L, Le H, Feldman LER, Men X, Yan C, Huang W, Feng Y, Liu F, Yang XO, Liu M. Adipocyte-derived PGE2 is required for intermittent fasting-induced Treg proliferation and improvement of insulin sensitivity. JCI Insight 2022; 7:153755. [PMID: 35260536 PMCID: PMC8983131 DOI: 10.1172/jci.insight.153755] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
The intermittent fasting (IF) diet has profound benefits for diabetes prevention. However, the precise mechanisms underlying IF's beneficial effects remain poorly defined. Here, we show that the expression levels of cyclooxygenase-2 (COX-2), an enzyme that produces prostaglandins, are suppressed in white adipose tissue (WAT) of obese humans. In addition, the expression of COX-2 in WAT is markedly upregulated by IF in obese mice. Adipocyte-specific depletion of COX-2 led to reduced fractions of CD4+Foxp3+ Tregs and a substantial decrease in the frequency of CD206+ macrophages, an increase in the abundance of γδT cells in WAT under normal chow diet conditions, and attenuation of IF-induced antiinflammatory and insulin-sensitizing effects, despite a similar antiobesity effect in obese mice. Mechanistically, adipocyte-derived prostaglandin E2 (PGE2) promoted Treg proliferation through the CaMKII pathway in vitro and rescued Treg populations in adipose tissue in COX-2-deficient mice. Ultimately, inactivation of Tregs by neutralizing anti-CD25 diminished IF-elicited antiinflammatory and insulin-sensitizing effects, and PGE2 restored the beneficial effects of IF in COX-2-KO mice. Collectively, our study reveals that adipocyte COX-2 is a key regulator of Treg proliferation and that adipocyte-derived PGE2 is essential for IF-elicited type 2 immune response and metabolic benefits.
Collapse
Affiliation(s)
- Chunqing Wang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Xing Zhang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Liping Luo
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Yan Luo
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Xin Yang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Xiaofeng Ding
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Lu Wang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Huyen Le
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Lily Elizabeth R. Feldman
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Xuebo Men
- Baodi Clinical College of Tian Jin Medical University, Tianjin, China
| | - Cen Yan
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Wendong Huang
- Department of Diabetes Complications & Metabolism Research, City of Hope, Duarte, California, USA
| | - Yingmei Feng
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Feng Liu
- Metabolic Syndrome Research Center, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xuexian O. Yang
- Department of Molecular Genetics and Microbiology and,Autophagy Inflammation and Metabolism Center for Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Meilian Liu
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA.,Autophagy Inflammation and Metabolism Center for Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
23
|
Adamczyk P, Siwacki S, Ponikowska I, Juszczak K. Calculation of basal metabolic rate in patients with morbid obesity treated in spa conditions. J Hum Nutr Diet 2022; 35:919-923. [PMID: 35137998 DOI: 10.1111/jhn.12996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/01/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND The purpose of this study is to calculate the basal metabolic rate with the Mifflin equation based on the expected body mass for normal body mass index values in obese patients treated in spa conditions. METHODS Authors recruited patients with morbid obesity (body mass index>40 kg/m2 ) and non-obese controls (body mass index<30 kg/m2 ). Authors included 104 patients with morbid obesity (mean body mass index ±standard deviation, 46.9 ± 2.1) treated in spa conditions, and 90 non-obese controls (mean body mass index 28 ± 1.3). RESULTS The mean basal metabolic rate calculated based on actual body mass was 2088 ± 303 kcal in patients with morbid obesity, and it was 1424 ± 268 kcal in non-obese controls. Basal metabolic rate calculated based on expected body mass for normal body mass index decreased significantly in patients with morbid obesity (p<0.01), but not in non-obese controls. Accordingly, energy expenditure and planned caloric intake was significantly lower when basal metabolic rate was calculated based on expected body mass than actual body mass in patients with morbid obesity, but not in non-obese controls (p<0.01). CONCLUSIONS Expected body mass for normal body mass index, should be used to calculate basal metabolic rate in patients with morbid obesity. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Szymon Siwacki
- Department of Balneology and Physical Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz of the Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | | | - Kajetan Juszczak
- Clinic of General and Oncological Urology, Ludwik Rydygier Collegium Medicum in Bydgoszcz of the Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| |
Collapse
|
24
|
Nardon M, Venturelli M, Ruzzante F, Longo VD, Bertucco M. Fasting-Mimicking-Diet does not reduce skeletal muscle function in healthy young adults: a randomized control trial. Eur J Appl Physiol 2022; 122:651-661. [PMID: 35034194 DOI: 10.1007/s00421-021-04867-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/02/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE The aim of this study was to evaluate the short- and long-term effects of the Fasting-Mimicking-Diet (FMD) intervention on neuromuscular parameters of force production in healthy young men. METHODS Twenty-four physically active men completed the study. Participants were randomly assigned to Fasting-Mimicking (FMD) or Normal Diet (ND) and asked to follow three cycles of dietary intervention. Neuromuscular parameters of force production during maximal voluntary isometric contractions (MVCs) with the leg extensors muscles and anthropometrics were measured at baseline (T0), at the end of the first cycle (T1), and 7-10 days after the 3rd cycle of the nutritional intervention (T2). The study was registered on Clinicaltrials.gov (No. NCT04476615). RESULTS There was a significant decrease in body mass at T1 for FMD (- 2.6 kg, ∆ from baseline, on average; p < 0.05) but not in ND (- 0.1 kg;). Neuromuscular parameters of force production, muscle volume, and MVC torque did not change or differ between groups across visits. Results were similar even when parameters were normalized by muscle volume. CONCLUSION The consumption of FMD in a group of young healthy male subjects showed to be feasible, and it did not affect neuromuscular parameters of force production. The results suggest that FMD could be safely adopted by strength athletes without detrimental effects on force and muscle volume. Further research in clinical population at risk of muscle mass loss, such as elderly and obese subjects with sarcopenia, is warranted.
Collapse
Affiliation(s)
- Mauro Nardon
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Via Felice Casorati 43, 37131, Verona, Italy
| | - Massimo Venturelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Via Felice Casorati 43, 37131, Verona, Italy
| | - Federico Ruzzante
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Via Felice Casorati 43, 37131, Verona, Italy
| | - Valter D Longo
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.,IFOM, FIRC Institute of Molecular Oncology, 20139, Milan, Italy
| | - Matteo Bertucco
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Via Felice Casorati 43, 37131, Verona, Italy.
| |
Collapse
|
25
|
Nicolson GL, Ferreira de Mattos G, Ash M, Settineri R, Escribá PV. Fundamentals of Membrane Lipid Replacement: A Natural Medicine Approach to Repairing Cellular Membranes and Reducing Fatigue, Pain, and Other Symptoms While Restoring Function in Chronic Illnesses and Aging. MEMBRANES 2021; 11:944. [PMID: 34940446 PMCID: PMC8707623 DOI: 10.3390/membranes11120944] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022]
Abstract
Membrane Lipid Replacement (MLR) uses natural membrane lipid supplements to safely replace damaged, oxidized lipids in membranes in order to restore membrane function, decrease symptoms and improve health. Oral MLR supplements contain mixtures of cell membrane glycerolphospholipids, fatty acids, and other lipids, and can be used to replace and remove damaged cellular and intracellular membrane lipids. Membrane injury, caused mainly by oxidative damage, occurs in essentially all chronic and acute medical conditions, including cancer and degenerative diseases, and in normal processes, such as aging and development. After ingestion, the protected MLR glycerolphospholipids and other lipids are dispersed, absorbed, and internalized in the small intestines, where they can be partitioned into circulating lipoproteins, globules, liposomes, micelles, membranes, and other carriers and transported in the lymphatics and blood circulation to tissues and cellular sites where they are taken in by cells and partitioned into various cellular membranes. Once inside cells, the glycerolphospholipids and other lipids are transferred to various intracellular membranes by lipid carriers, globules, liposomes, chylomicrons, or by direct membrane-membrane interactions. The entire process appears to be driven by 'bulk flow' or mass action principles, where surplus concentrations of replacement lipids can stimulate the natural exchange and removal of damaged membrane lipids while the replacement lipids undergo further enzymatic alterations. Clinical studies have demonstrated the advantages of MLR in restoring membrane and organelle function and reducing fatigue, pain, and other symptoms in chronic illness and aging patients.
Collapse
Affiliation(s)
- Garth L. Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, CA 92647, USA
| | - Gonzalo Ferreira de Mattos
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Department of Biophysics, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay;
| | - Michael Ash
- Clinical Education, Newton Abbot, Devon TQ12 4SG, UK;
| | | | - Pablo V. Escribá
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, 07122 Palma de Mallorca, Spain;
| |
Collapse
|
26
|
Parveen S. Impact of calorie restriction and intermittent fasting on periodontal health. Periodontol 2000 2021; 87:315-324. [PMID: 34463980 DOI: 10.1111/prd.12400] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The scientific evidence indicates that calorie restriction and intermittent fasting are among the appropriate strategies targeting factual causative factors of various inflammatory and lifestyle-related disorders. Periodontitis is a common oral inflammatory disease leading to bone loss that is associated with various systemic problems. Previous studies suggest that calorie restriction may dampen inflammation and concomitant tissue damage under inflammatory conditions, such as periodontal diseases in nonhuman primates. However, insufficient research has been carried out to assess the effects of a calorie-restricted diet on the initiation and progression of periodontal disease in humans. This review of the literature aims to describe the general concepts of calorie restriction, its clinical implications, and related therapeutic potential in controlling periodontal inflammation. The review shows that fasting regimen groups have shown lesser bone loss because of an increase in osteoprogenitor cells than non-fasting groups. Calorie restriction dampens the inflammatory response and reduces circulating inflammatory mediators like tumor necrosis factor-alpha, interleukin-6, matrix metalloproteinase-8, matrix metalloproteinase-9, and interleukin-1-beta in gingival crevicular fluid. However, the incorporation of this form of dietary intervention continues to be challenging in our current society, in which obesity is a major public concern. Calorie restriction and intermittent fasting can play a key role in the cost-effective resolution of periodontal inflammation as a primary prevention strategy for the management of chronic inflammatory diseases, including periodontal diseases.
Collapse
Affiliation(s)
- Sameena Parveen
- Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
27
|
Categorizing the characteristics of human carcinogens: a need for specificity. Arch Toxicol 2021; 95:2883-2889. [PMID: 34148101 DOI: 10.1007/s00204-021-03109-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
The International Agency for Research on Cancer (IARC) has recently proposed employing "ten key characteristics of human carcinogens" (TKCs) to determine the potential of agents for harmful effects. The TKCs seem likely to confuse the unsatisfactory correlation from testing regimes that have ignored the differences evident when cellular changes are compared in short and long-lived species, with their very different stem cell and somatic cell phylogenies. The proposed characteristics are so broad that their use will lead to an increase in the current unacceptably high rate of false positives. It could be an informative experiment to take well-established approved therapeutics with well-known human safety profiles and test them against this new TKC paradigm. Cancers are initiated and driven by heritable and transient changes in gene expression, expand clonally, and progress via additional associated acquired mutations and epigenetic alterations that provide cells with an evolutionary advantage. The genotoxicity testing protocols currently employed and required by regulation, emphasize testing for the mutational potential of the test agent. Two-year, chronic rodent cancer bioassays are intended to test for the entire spectrum of carcinogenic transformation. The use of cytotoxic doses causing increased, sustained cell proliferation that facilitates accumulated genetic damage leads to a high false-positive rate of tumor induction. Current cancer hazard assessment protocols and weight-of-the-evidence analysis of agent-specific cancer risk align poorly with the pathogenesis of human carcinoma and so need modernization and improvement in ways suggested here.
Collapse
|
28
|
Williamson E, Moore DR. A Muscle-Centric Perspective on Intermittent Fasting: A Suboptimal Dietary Strategy for Supporting Muscle Protein Remodeling and Muscle Mass? Front Nutr 2021; 8:640621. [PMID: 34179054 PMCID: PMC8219935 DOI: 10.3389/fnut.2021.640621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/19/2021] [Indexed: 01/04/2023] Open
Abstract
Muscle protein is constantly “turning over” through the breakdown of old/damaged proteins and the resynthesis of new functional proteins, the algebraic difference determining net muscle gain, maintenance, or loss. This turnover, which is sensitive to the nutritional environment, ultimately determines the mass, quality, and health of skeletal muscle over time. Intermittent fasting has become a topic of interest in the health community as an avenue to improve health and body composition primarily via caloric deficiency as well as enhanced lipolysis and fat oxidation secondary to attenuated daily insulin response. However, this approach belies the established anti-catabolic effect of insulin on skeletal muscle. More importantly, muscle protein synthesis, which is the primary regulated turnover variable in healthy humans, is stimulated by the consumption of dietary amino acids, a process that is saturated at a moderate protein intake. While limited research has explored the effect of intermittent fasting on muscle-related outcomes, we propose that infrequent meal feeding and periods of prolonged fasting characteristic of models of intermittent fasting may be counter-productive to optimizing muscle protein turnover and net muscle protein balance. The present commentary will discuss the regulation of muscle protein turnover across fasted and fed cycles and contrast it with studies exploring how dietary manipulation alters the partitioning of fat and lean body mass. It is our position that intermittent fasting likely represents a suboptimal dietary approach to remodel skeletal muscle, which could impact the ability to maintain or enhance muscle mass and quality, especially during periods of reduced energy availability.
Collapse
Affiliation(s)
- Eric Williamson
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
29
|
Ho TT, Dellorusso PV, Verovskaya EV, Bakker ST, Flach J, Smith LK, Ventura PB, Lansinger OM, Hérault A, Zhang SY, Kang YA, Mitchell CA, Villeda SA, Passegué E. Aged hematopoietic stem cells are refractory to bloodborne systemic rejuvenation interventions. J Exp Med 2021; 218:212183. [PMID: 34032859 PMCID: PMC8155813 DOI: 10.1084/jem.20210223] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/24/2021] [Accepted: 04/15/2021] [Indexed: 01/13/2023] Open
Abstract
While young blood can restore many aged tissues, its effects on the aged blood system itself and old hematopoietic stem cells (HSCs) have not been determined. Here, we used transplantation, parabiosis, plasma transfer, exercise, calorie restriction, and aging mutant mice to understand the effects of age-regulated systemic factors on HSCs and their bone marrow (BM) niche. We found that neither exposure to young blood, nor long-term residence in young niches after parabiont separation, nor direct heterochronic transplantation had any observable rejuvenating effects on old HSCs. Likewise, exercise and calorie restriction did not improve old HSC function, nor old BM niches. Conversely, young HSCs were not affected by systemic pro-aging conditions, and HSC function was not impacted by mutations influencing organismal aging in established long-lived or progeroid genetic models. Therefore, the blood system that carries factors with either rejuvenating or pro-aging properties for many other tissues is itself refractory to those factors.
Collapse
Affiliation(s)
- Theodore T Ho
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Medicine, Hematology/Oncology Division, University of California, San Francisco, San Francisco, CA
| | - Paul V Dellorusso
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY
| | - Evgenia V Verovskaya
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Medicine, Hematology/Oncology Division, University of California, San Francisco, San Francisco, CA.,Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY
| | - Sietske T Bakker
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Medicine, Hematology/Oncology Division, University of California, San Francisco, San Francisco, CA
| | - Johanna Flach
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Medicine, Hematology/Oncology Division, University of California, San Francisco, San Francisco, CA
| | - Lucas K Smith
- Department of Anatomy, University of California, San Francisco, San Francisco, CA
| | - Patrick B Ventura
- Department of Anatomy, University of California, San Francisco, San Francisco, CA
| | - Olivia M Lansinger
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Medicine, Hematology/Oncology Division, University of California, San Francisco, San Francisco, CA
| | - Aurélie Hérault
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Medicine, Hematology/Oncology Division, University of California, San Francisco, San Francisco, CA
| | - Si Yi Zhang
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Medicine, Hematology/Oncology Division, University of California, San Francisco, San Francisco, CA
| | - Yoon-A Kang
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Medicine, Hematology/Oncology Division, University of California, San Francisco, San Francisco, CA.,Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY
| | - Carl A Mitchell
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY
| | - Saul A Villeda
- Department of Anatomy, University of California, San Francisco, San Francisco, CA
| | - Emmanuelle Passegué
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Medicine, Hematology/Oncology Division, University of California, San Francisco, San Francisco, CA.,Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
30
|
Kayamba V. Nutrition and upper gastrointestinal cancers: An overview of current understandings. Semin Cancer Biol 2021; 83:605-616. [DOI: 10.1016/j.semcancer.2021.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 02/09/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023]
|
31
|
Torres W, Nava M, Galbán N, Gómez Y, Morillo V, Rojas M, Cano C, Chacín M, D Marco L, Herazo Y, Velasco M, Bermúdez V, Rojas-Quintero J. Anti-Aging Effect of Metformin: A Molecular and Therapeutical Perspective. Curr Pharm Des 2021; 26:4496-4508. [PMID: 32674728 DOI: 10.2174/1381612826666200716161610] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/09/2020] [Indexed: 12/25/2022]
Abstract
Aging is a time-dependent inevitable process, in which cellular homeostasis is affected, which has an impact on tissue function. This represents a risk factor for the development of numerous non-transmissible diseases. In consequence, the scientific community continues to search for therapeutic measures capable of improving quality of life and delaying cellular aging. At the center of this research is metformin, a widely used drug in Type 2 Diabetes Mellitus treatment that has a reduced adverse effects profile. Furthermore, there is evidence that this drug has beneficial health effects that go beyond its anti-hyperglycemic properties. Among these effects, its geronto-protection capability stands out. There is growing evidence that points out to an increased life expectancy as well as the quality of life in model organisms treated with metformin. Therefore, there is an abundance of research centered on elucidating the mechanism through which metformin has its anti-aging effects. Among these, the AMPK, mTORC1, SIRT1, FOXO, NF.kB, and DICER1 pathways can be mentioned. Furthermore, studies have highlighted the possibility of a role for the gut microbiome in these processes. The next step is the design of clinical essays that have as a goal evaluating the efficacy and safety of metformin as an anti-aging drug in humans to create a paradigm in the medical horizon. The question being if metformin is, in fact, the new antiaging therapy in humans?
Collapse
Affiliation(s)
- Wheeler Torres
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Manuel Nava
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Nestor Galbán
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Yosselin Gómez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Valery Morillo
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Milagros Rojas
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | - Maricarmen Chacín
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| | - Luis D Marco
- Hospital Clínico Universitario, INCLIVA, Nephrology Department, Valencia, España
| | - Yaneth Herazo
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| | - Manuel Velasco
- Clinical Pharmacologic Unit, Vargas School of Medicine, Universidad Central de Venezuela, Caracas,
Venezuela
| | - Valmore Bermúdez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| | - Joselyn Rojas-Quintero
- Pulmonary and Critical Care Medicine Department, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA 02115, USA
| |
Collapse
|
32
|
De Souza AMA, Linares A, Speth RC, Campos GV, Ji H, Chianca D, Sandberg K, De Menezes RCA. Severe food restriction activates the central renin angiotensin system. Physiol Rep 2020; 8:e14338. [PMID: 31925945 PMCID: PMC6954120 DOI: 10.14814/phy2.14338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We previously showed that 2 weeks of a severe food restricted (sFR) diet (40% of the caloric intake of the control (CT) diet) up‐regulated the circulating renin angiotensin (Ang) system (RAS) in female Fischer rats, most likely as a result of the fall in plasma volume. In this study, we investigated the role of the central RAS in the mean arterial pressure (MAP) and heart rate (HR) dysregulation associated with sFR. Although sFR reduced basal mean MAP and HR, the magnitude of the pressor response to intracerebroventricular (icv) microinjection of Ang‐[1‐8] was not affected; however, HR was 57 ± 13 bpm lower 26 min after Ang‐[1‐8] microinjection in the sFR rats and a similar response was observed after losartan was microinjected. The major catabolic pathway of Ang‐[1‐8] in the hypothalamus was via Ang‐[1‐7]; however, no differences were detected in the rate of Ang‐[1‐8] synthesis or degradation between CT and sFR animals. While sFR had no effect on the AT1R binding in the subfornical organ (SFO), the organum vasculosum laminae terminalis (OVLT) and median preoptic nucleus (MnPO) of the paraventricular anteroventral third ventricle, ligand binding increased 1.4‐fold in the paraventricular nucleus (PVN) of the hypothalamus. These findings suggest that sFR stimulates the central RAS by increasing AT1R expression in the PVN as a compensatory response to the reduction in basal MAP and HR. These findings have implications for people experiencing a period of sFR since an activated central RAS could increase their risk of disorders involving over activation of the RAS including renal and cardiovascular diseases.
Collapse
Affiliation(s)
| | - Andrea Linares
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Robert C Speth
- Division of Nephrology & Hypertension, Department of Medicine, Georgetown University, Washington, DC, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Glenda V Campos
- Division of Nephrology & Hypertension, Department of Medicine, Georgetown University, Washington, DC, USA
| | - Hong Ji
- Division of Nephrology & Hypertension, Department of Medicine, Georgetown University, Washington, DC, USA
| | - Deoclécio Chianca
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade, Federal de Ouro Preto, Ouro Preto, Brazil
| | - Kathryn Sandberg
- Division of Nephrology & Hypertension, Department of Medicine, Georgetown University, Washington, DC, USA
| | - Rodrigo C A De Menezes
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade, Federal de Ouro Preto, Ouro Preto, Brazil
| |
Collapse
|
33
|
Sarro AA, Payedimarri AB, Concina DD, Farsoni MF, Piu NN, Rinaldi C, Panella MP. The efficacy of fasting regimens on health outcomes: a systematic overview. Minerva Gastroenterol (Torino) 2020; 67:289-298. [PMID: 32914941 DOI: 10.23736/s2724-5985.20.02757-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Fasting can be defined as abstinence or reduction from food, drink, or both, for a defined period. There are many different types of fasting regimens, such as Ramadan fasting, intermittent fasting, Christian Orthodox fasting. The aim of this overview is to provide an exhaustive summary on the beneficial effects and harms associated with fasting regimens and discuss mechanisms by which this non-pharmacological approach might lead to improve human health. EVIDENCE ACQUISITION A systematic search was performed on MEDLINE (PubMed), Embase, Cochrane Library and CINHAL. We included systematic reviews (SRs) that report on impact of different types of fasting regimens on health. Selection of SRs, data extraction and quality assessment were undertaken in duplicate. EVIDENCE SYNTHESIS A total of 21 SRs were included. Cumulatively, 97 health outcomes were identified. Of them, cardiovascular risk factors were the most frequently analyzed. Ramadan fasting is associated with significant improvements in body weight and visceral lean mass, high-density lipoprotein cholesterol (HDL-c), and with reductions in low-density lipoprotein cholesterol (LDL-c) and total cholesterol (T-chol), especially in cardiac patients. Similarly, reviews on Intermittent and Orthodox fasting proved benefits of those on weight, BMI, lipidic and glucose profile, inflammatory markers. CONCLUSIONS Fasting regimens showed potential beneficial effects on several health indicators in adult populations. Nevertheless, evidence on some specific health dimensions (cognitive function, well-being, quality of life) is limited. Thus, in the future, further RCTs or cohort studies with good methodological quality and larger sample sizes are warranted to better understand the underlying biological mechanism and the benefits on multidimensional aspects of health.
Collapse
Affiliation(s)
- Andrea A Sarro
- Department of Translational Medicine (DIMET), University of Eastern Piedmont, Novara, Italy -
| | - Anil B Payedimarri
- Department of Translational Medicine (DIMET), University of Eastern Piedmont, Novara, Italy
| | - Diego D Concina
- Department of Translational Medicine (DIMET), University of Eastern Piedmont, Novara, Italy
| | - Marco F Farsoni
- Department of Translational Medicine (DIMET), University of Eastern Piedmont, Novara, Italy
| | - Nicola N Piu
- Department of Translational Medicine (DIMET), University of Eastern Piedmont, Novara, Italy
| | - Carmela Rinaldi
- Department of Translational Medicine (DIMET), University of Eastern Piedmont, Novara, Italy.,Maggiore della Carità University Hospital, Novara, Italy
| | - Massimiliano P Panella
- Department of Translational Medicine (DIMET), University of Eastern Piedmont, Novara, Italy
| |
Collapse
|
34
|
Intermittent Fasting Enhanced the Cognitive Function in Older Adults with Mild Cognitive Impairment by Inducing Biochemical and Metabolic changes: A 3-Year Progressive Study. Nutrients 2020; 12:nu12092644. [PMID: 32872655 PMCID: PMC7551340 DOI: 10.3390/nu12092644] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/15/2022] Open
Abstract
Intermittent fasting (IF) refers to various dietary regimens that cycle between a period of non-fasting and a period of total fasting. This study aimed to determine the effects of IF on cognitive function among elderly individuals who practice IF who have mild cognitive impairment (MCI). A total of 99 elderly subjects with MCI of Malay ethnicity without any terminal illness were recruited from a larger cohort study, LRGS TUA. The subjects were divided into three groups, comprising those who were regularly practicing IF (r-IF), irregularly practicing IF (i-IF), and non-fasters (n-IF). Upon 36 months of follow-up, more MCI subjects in the r-IF group reverted to successful aging with no cognitive impairment and diseases (24.3%) compared to those in i-IF (14.2%) and n-IF groups (3.7%). The r-IF group’s subjects exhibited significant increment in superoxide dismutase (SOD) activity and reduction in body weight, levels of insulin, fasting blood glucose, malondialdehyde (MDA), C-reactive protein (CRP), and DNA damage. Moreover, metabolomics analysis showed that IF may modulate cognitive function via various metabolite pathways, including the synthesis and degradation of ketone bodies, butanoate metabolism, pyruvate metabolism, and glycolysis and gluconeogenesis pathways. Overall, the MCI-afflicted older adults who practiced IF regularly had better cognitive scores and reverted to better cognitive function at 36 months follow-up.
Collapse
|
35
|
Abstract
Calorie restriction (CR), the reduction of dietary intake below energy requirements while maintaining optimal nutrition, is the only known nutritional intervention with the potential to attenuate aging. Evidence from observational, preclinical, and clinical trials suggests the ability to increase life span by 1-5 years with an improvement in health span and quality of life. CR moderates intrinsic processes of aging through cellular and metabolic adaptations and reducing risk for the development of many cardiometabolic diseases. Yet, implementation of CR may require unique considerations for the elderly and other specific populations. The objectives of this review are to summarize the evidence for CR to modify primary and secondary aging; present caveats for implementation in special populations; describe newer, alternative approaches that have comparative effectiveness and fewer deleterious effects; and provide thoughts on the future of this important field of study.
Collapse
Affiliation(s)
- Emily W Flanagan
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana 70808, USA;
| | - Jasper Most
- Nutrition and Movement Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Jacob T Mey
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana 70808, USA;
| | - Leanne M Redman
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana 70808, USA;
| |
Collapse
|
36
|
Suresh SN, Chakravorty A, Giridharan M, Garimella L, Manjithaya R. Pharmacological Tools to Modulate Autophagy in Neurodegenerative Diseases. J Mol Biol 2020; 432:2822-2842. [PMID: 32105729 DOI: 10.1016/j.jmb.2020.02.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/03/2020] [Accepted: 02/12/2020] [Indexed: 12/11/2022]
Abstract
Considerable evidences suggest a link between autophagy dysfunction, protein aggregation, and neurodegenerative diseases. Given that autophagy is a conserved intracellular housekeeping process, modulation of autophagy flux in various model organisms have highlighted its importance for maintaining proteostasis. In postmitotic cells such as neurons, compromised autophagy is sufficient to cause accumulation of ubiquitinated aggregates, neuronal dysfunction, degeneration, and loss of motor coordination-all hallmarks of neurodegenerative diseases. Reciprocally, enhanced autophagy flux augments cellular and organismal health, in addition to extending life span. These genetic studies not-withstanding a plethora of small molecule modulators of autophagy flux have been reported that alleviate disease symptoms in models of neurodegenerative diseases. This review summarizes the potential of such molecules to be, perhaps, one of the first autophagy drugs for treating these currently incurable diseases.
Collapse
Affiliation(s)
- S N Suresh
- Centre for Brain Research, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Anushka Chakravorty
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, Karnataka, India
| | - Mridhula Giridharan
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, Karnataka, India
| | - Lakshmi Garimella
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, Karnataka, India
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, Karnataka, India; Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, Karnataka, India.
| |
Collapse
|
37
|
Parvaresh A, Razavi R, Abbasi B, Yaghoobloo K, Hassanzadeh A, Mohammadifard N, Safavi SM, Hadi A, Clark CC. Modified alternate-day fasting vs. calorie restriction in the treatment of patients with metabolic syndrome: A randomized clinical trial. Complement Ther Med 2019; 47:102187. [DOI: 10.1016/j.ctim.2019.08.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/09/2019] [Accepted: 08/27/2019] [Indexed: 12/20/2022] Open
|
38
|
Hodgson R, Kennedy BK, Masliah E, Scearce-Levie K, Tate B, Venkateswaran A, Braithwaite SP. Aging: therapeutics for a healthy future. Neurosci Biobehav Rev 2019; 108:453-458. [PMID: 31783058 DOI: 10.1016/j.neubiorev.2019.11.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 09/22/2019] [Accepted: 11/25/2019] [Indexed: 01/29/2023]
Abstract
Increased healthcare and pharmaceutical understanding has led to the eradication of many childhood, infectious and preventable diseases; however, we are now experiencing the impact of aging disorders as the lifespan increases. These disorders have already become a major burden on society and threaten to become a defining challenge of our generation. Indications such as Alzheimer's disease gain headlines and have focused the thinking of many towards dementia and cognitive decline in aging. Indications related to neurological function and related behaviors are thus an extremely important starting point in the consideration of therapeutics.However, the reality is that pathological aging covers a spectrum of significant neurological and peripheral indications. Development of therapeutics to treat aging and age-related disorders is therefore a huge need, but represents a largely unexplored path. Fundamental scientific questions need to be considered as we embark towards a goal of improving health in old age, including how we 1) define aging as a therapeutic target, 2) model aging preclinically and 3) effectively translate from preclinical models to man. Furthermore, the challenges associated with identifying novel therapeutics in a financial, regulatory and clinical sense need to be contemplated carefully to ensure we address the unmet need in our increasingly elderly population. The complexity of the challenge requires different perspectives, cross-functional partnerships and diverse concepts. We seek to raise issues to guide the field, considering the current state of thinking to aid in identifying roadblocks and important challenges early. The need for therapeutics that address aging and age-related disorders is acute, but the promise of effective treatments provides huge opportunities that, as a community, we all seek to enable effectively as soon as possible.
Collapse
Affiliation(s)
- Robert Hodgson
- Charles River Laboratories, Wilmington, MA, United States; CNS Biology, Takeda, San Diego, CA, United States
| | - Brian K Kennedy
- Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Buck Institute for Research on Aging, Novato, CA, United States
| | | | | | | | | | | |
Collapse
|
39
|
Stekovic S, Hofer SJ, Tripolt N, Aon MA, Royer P, Pein L, Stadler JT, Pendl T, Prietl B, Url J, Schroeder S, Tadic J, Eisenberg T, Magnes C, Stumpe M, Zuegner E, Bordag N, Riedl R, Schmidt A, Kolesnik E, Verheyen N, Springer A, Madl T, Sinner F, de Cabo R, Kroemer G, Obermayer-Pietsch B, Dengjel J, Sourij H, Pieber TR, Madeo F. Alternate Day Fasting Improves Physiological and Molecular Markers of Aging in Healthy, Non-obese Humans. Cell Metab 2019; 30:462-476.e6. [PMID: 31471173 DOI: 10.1016/j.cmet.2019.07.016] [Citation(s) in RCA: 257] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/17/2019] [Accepted: 07/30/2019] [Indexed: 01/11/2023]
Abstract
Caloric restriction and intermittent fasting are known to prolong life- and healthspan in model organisms, while their effects on humans are less well studied. In a randomized controlled trial study (ClinicalTrials.gov identifier: NCT02673515), we show that 4 weeks of strict alternate day fasting (ADF) improved markers of general health in healthy, middle-aged humans while causing a 37% calorie reduction on average. No adverse effects occurred even after >6 months. ADF improved cardiovascular markers, reduced fat mass (particularly the trunk fat), improving the fat-to-lean ratio, and increased β-hydroxybutyrate, even on non-fasting days. On fasting days, the pro-aging amino-acid methionine, among others, was periodically depleted, while polyunsaturated fatty acids were elevated. We found reduced levels sICAM-1 (an age-associated inflammatory marker), low-density lipoprotein, and the metabolic regulator triiodothyronine after long-term ADF. These results shed light on the physiological impact of ADF and supports its safety. ADF could eventually become a clinically relevant intervention.
Collapse
Affiliation(s)
- Slaven Stekovic
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstraße 50, Graz 8010, Austria
| | - Sebastian J Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstraße 50, Graz 8010, Austria; BioTechMed Graz, Graz 8010, Austria
| | - Norbert Tripolt
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Miguel A Aon
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA; Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Philipp Royer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstraße 50, Graz 8010, Austria
| | - Lukas Pein
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstraße 50, Graz 8010, Austria; Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Julia T Stadler
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstraße 50, Graz 8010, Austria; Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Tobias Pendl
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstraße 50, Graz 8010, Austria
| | - Barbara Prietl
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Austria; Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Jasmin Url
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Austria; Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Sabrina Schroeder
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstraße 50, Graz 8010, Austria; BioTechMed Graz, Graz 8010, Austria
| | - Jelena Tadic
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstraße 50, Graz 8010, Austria
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstraße 50, Graz 8010, Austria; BioTechMed Graz, Graz 8010, Austria; NAWI Graz Central Lab Gracia, NAWI Graz, Graz, Austria
| | - Christoph Magnes
- HEALTH Institute for Biomedicine and Health Sciences, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Neue Stiftingtalstraße 2, Graz, Austria
| | - Michael Stumpe
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Elmar Zuegner
- HEALTH Institute for Biomedicine and Health Sciences, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Neue Stiftingtalstraße 2, Graz, Austria
| | - Natalie Bordag
- HEALTH Institute for Biomedicine and Health Sciences, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Neue Stiftingtalstraße 2, Graz, Austria
| | - Regina Riedl
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Austria
| | - Albrecht Schmidt
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Ewald Kolesnik
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Nicolas Verheyen
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Austria
| | - Anna Springer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/, VI 8010 Graz, Austria
| | - Tobias Madl
- BioTechMed Graz, Graz 8010, Austria; Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/, VI 8010 Graz, Austria
| | - Frank Sinner
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Austria; HEALTH Institute for Biomedicine and Health Sciences, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Neue Stiftingtalstraße 2, Graz, Austria
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Guido Kroemer
- Equipe 11 labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Cell Biology and Metabolomics platforms, Gustave Roussy Cancer Campus, Villejuif, France; INSERM U1138, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden; Center of Systems Medicine, Chinese Academy of Science Sciences, Suzhou, China
| | - Barbara Obermayer-Pietsch
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Austria; Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland; Department of Dermatology, Medical Center, University of Freiburg, Hauptstr. 7, 79104 Freiburg, Germany
| | - Harald Sourij
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Austria; Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Thomas R Pieber
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Austria; Center for Biomarker Research in Medicine (CBmed), Graz, Austria; HEALTH Institute for Biomedicine and Health Sciences, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Neue Stiftingtalstraße 2, Graz, Austria
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstraße 50, Graz 8010, Austria; BioTechMed Graz, Graz 8010, Austria.
| |
Collapse
|
40
|
The Effects of Time Restricted Feeding on Overweight, Older Adults: A Pilot Study. Nutrients 2019; 11:nu11071500. [PMID: 31262054 PMCID: PMC6682944 DOI: 10.3390/nu11071500] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/18/2019] [Accepted: 06/28/2019] [Indexed: 12/26/2022] Open
Abstract
A growing body of evidence indicates that time restricted feeding (TRF), a popular form of intermittent fasting, can activate similar biological pathways as caloric restriction, the only intervention consistently found to extend healthy lifespan in a variety of species. Thus, TRF may have the potential to also improve function in older adults. Given the challenges many individuals have in following calorie restriction regimens over long-time periods, evaluation of alternative approaches that may produce weight loss and improve function in overweight, older adults is important. Ten overweight, sedentary older adults (≥65 years) at risk for, or with mobility impairments, defined by slow gait speed (<1.0 m/s) participated in this trial. All participants received the intervention and were instructed to fast for approximately 16 h per day over the entire four-week intervention. Outcomes included changes in body weight, waist circumference, cognitive and physical function, health-related quality of life, and adverse events. Adherence levels were high (mean = 84%) based on days goal was met, and mean weight loss was 2.6 kg (p < 0.01). Since body composition was not measured in this study, it is unclear if the observed weight loss was due to loss of fat mass, muscle mass, or the combination of fat and muscle mass. There were no significant changes in other outcomes; however, there were clinically meaningful changes in walking speed and improvements in quality of life, with few reported adverse events. The findings of this pilot study suggest that time restricted feeding is an acceptable and feasible eating pattern for overweight, sedentary older adults to follow.
Collapse
|
41
|
Yang Y, Zhang Y, Xu Y, Luo T, Ge Y, Jiang Y, Shi Y, Sun J, Le G. Dietary methionine restriction improves the gut microbiota and reduces intestinal permeability and inflammation in high-fat-fed mice. Food Funct 2019; 10:5952-5968. [DOI: 10.1039/c9fo00766k] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Dietary methionine restriction improved the intestinal microbiota composition, barrier function, oxidative stress, and inflammation in high-fat-fed mice.
Collapse
Affiliation(s)
- Yuhui Yang
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- College of Grain and Food Science
| | - Yuanhong Zhang
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Yuncong Xu
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Tingyu Luo
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Yueting Ge
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Yuge Jiang
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Yonghui Shi
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Jin Sun
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Guowei Le
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| |
Collapse
|
42
|
Vekshin NL, Frolova MS. A Multiparametric Equation for Calculation of the Animal Lifespan. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s0006350919010214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
43
|
Burton DGA, Wilmot C, Griffiths HR. Personalising nutrition for older adults: The InCluSilver project. NUTR BULL 2018. [DOI: 10.1111/nbu.12356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
44
|
Evidence-based nutritional and pharmacological interventions targeting chronic low-grade inflammation in middle-age and older adults: A systematic review and meta-analysis. Ageing Res Rev 2018; 46:42-59. [PMID: 29803716 DOI: 10.1016/j.arr.2018.05.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/21/2018] [Accepted: 05/21/2018] [Indexed: 12/20/2022]
Abstract
Growing evidence suggests chronic low-grade inflammation (LGI) as a possible mechanism underlying the aging process. Some biological and pharmaceutical compounds may reduce systemic inflammation and potentially avert functional decline occurring with aging. The aim of the present meta-analysis was to examine the association of pre-selected interventions on two established biomarkers of inflammation, interleukin-6 (IL-6), and C-reactive protein (CRP) in middle-age and older adults with chronic LGI. We reviewed the literature on potential anti-inflammatory compounds, selecting them based on safety, tolerability, acceptability, innovation, affordability, and evidence from randomized controlled trials. Six compounds met all five inclusion criteria for our systematic review and meta-analysis: angiotensin II receptor blockers (ARBs), metformin, omega-3, probiotics, resveratrol and vitamin D. We searched in MEDLINE, PubMed and EMBASE database until January 2017. A total of 49 articles fulfilled the selection criteria. Effect size of each study and pooled effect size for each compound were measured by the standardized mean difference. I2 was computed to measure heterogeneity of effects across studies. The following compounds showed a significant small to large effect in reducing IL-6 levels: probiotics (-0.68 pg/ml), ARBs (-0.37 pg/ml) and omega-3 (-0.19 pg/ml). For CRP, a significant small to medium effect was observed with probiotics (-0.43 mg/L), ARBs (-0.2 mg/L), omega-3 (-0.17 mg/L) and metformin (-0.16 mg/L). Resveratrol and vitamin D were not associated with any significant reductions in either biomarker. These results suggest that nutritional and pharmaceutical compounds can significantly reduce established biomarkers of systemic inflammation in middle-age and older adults. The findings should be interpreted with caution, however, due to the evidence of heterogeneity across the studies.
Collapse
|
45
|
Aguilera JM, Kim BK, Park DJ. Particular Alimentations for Nutrition, Health and Pleasure. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 87:371-408. [PMID: 30678818 DOI: 10.1016/bs.afnr.2018.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
People around the world select their foods and meals according to particular choices based on physiological disorders and diseases, traditions, lifestyles, beliefs, etc. In this chapter, two of these particular alimentations are reviewed: those of the gourmet and the frail elderly. They take place in an environment where food is usually synonymous of body health disregarding its effects on social, cultural and psychological aspects, including emotions. Based on an extensive literature review, it is proposed that the paradigm changes from food equals health to food means well-being, the latter encompassing physical and physiological aspects as well as psychological, emotional and social aspects at the individual and societal levels. The growing food and nutrition requirements of an aging population are reviewed and special nutritious and enjoyable products available for this group are discussed.
Collapse
Affiliation(s)
- José Miguel Aguilera
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Bum-Keun Kim
- Division of Strategic Food Research, Korea Food Research Institute, Seoul, South Korea
| | - Dong June Park
- Division of Strategic Food Research, Korea Food Research Institute, Seoul, South Korea
| |
Collapse
|
46
|
Tulsian R, Velingkaar N, Kondratov R. Caloric restriction effects on liver mTOR signaling are time-of-day dependent. Aging (Albany NY) 2018; 10:1640-1648. [PMID: 30018180 PMCID: PMC6075448 DOI: 10.18632/aging.101498] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/10/2018] [Indexed: 04/08/2023]
Abstract
The regulation of mechanistic target of rapamycin (mTOR) signaling contributes to the metabolic effects of a calorie restriction (CR) diet. We assayed the effect of CR on the activity of mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2) in the liver of mice at six different times across the day. CR effects on mTORC1 and mTORC2 activities were time-of-day dependent. CR induced mTORC1 activity at one time, reduced at two times and has no effect during other times. CR induced mTORC2 activity at one time of the day and has no effects at other times. Circadian clocks are implemented in the regulation of mTOR signaling in mammals and mechanisms of CR. We assayed the effect of CR on mTOR signaling in the liver of mice deficient for circadian transcriptional regulators BMAL1 and CRYs. The CR induced suppression of mTORC1 activity was observed in both clock mutants, while up regulation of mTORC2 was observed in the liver of CRY deficient but not in the liver of BMAL1 deficient mice. Our finding revealed that CR has different time dependent effect on the activity of mTOR complexes 1 and 2 and suggest that circadian clock protein BMAL1 is involved in the up regulation of mTORC2 upon CR in mammals.
Collapse
Affiliation(s)
- Richa Tulsian
- Department of Biological, Geological, and Environmental Sciences and Center for Gene Regulation in Health and Diseases, Cleveland State University, Cleveland, OH 44115, USA
| | - Nikkhil Velingkaar
- Department of Biological, Geological, and Environmental Sciences and Center for Gene Regulation in Health and Diseases, Cleveland State University, Cleveland, OH 44115, USA
| | - Roman Kondratov
- Department of Biological, Geological, and Environmental Sciences and Center for Gene Regulation in Health and Diseases, Cleveland State University, Cleveland, OH 44115, USA
| |
Collapse
|
47
|
Smith BM, Yao X, Chen KS, Kirby ED. A Larger Social Network Enhances Novel Object Location Memory and Reduces Hippocampal Microgliosis in Aged Mice. Front Aging Neurosci 2018; 10:142. [PMID: 29904345 PMCID: PMC5990613 DOI: 10.3389/fnagi.2018.00142] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/27/2018] [Indexed: 02/03/2023] Open
Abstract
The mammalian hippocampus shows marked decline in function with aging across many species, including humans and laboratory rodent models. This decline frequently manifests in memory impairments that occur even in the absence of dementia pathology. In humans, a number of factors correlate with preserved hippocampal memory in aging, such as exercise, cognitive stimulation and number of social ties. While interventional studies and animal models clearly indicate that exercise and cognitive stimulation lead to hippocampal preservation, there is relatively little research on whether a decline in social ties leads to cognitive decline or vice versa. Even in animal studies of environmental enrichment in aging, the focus typically falls on physical enrichment such as a rotating cast of toys, rather than the role of social interactions. The present studies investigated the hypothesis that a greater number of social ties in aging mice would lead to improved hippocampal function. Aged, female C57/Bl6 mice were housed for 3 months in pairs or large groups (7 mice per cage). Group-housed mice showed greater novel object location memory and stronger preference for a spatial navigation strategy in the Barnes maze, though no difference in escape latency, compared to pair-housed mice. Group-housed mice did not differ from pair-housed mice in basal corticosterone levels or adult hippocampal neurogenesis. Group-housed mice did, however, show reduced numbers of Iba1/CD68+ microglia in the hippocampus. These findings suggest that group housing led to better memory function and reduced markers of neuroinflammation in aged mice. More broadly, they support a causative link between social ties and hippocampal function, suggesting that merely having a larger social network can positively influence the aging brain. Future research should address the molecular mechanisms by which a greater number of social ties alters hippocampal function.
Collapse
Affiliation(s)
- Bryon M Smith
- Department of Psychology, The Ohio State University, Columbus, OH, United States
| | - Xinyue Yao
- Department of Psychology, The Ohio State University, Columbus, OH, United States
| | - Kelly S Chen
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, United States
| | - Elizabeth D Kirby
- Department of Psychology, The Ohio State University, Columbus, OH, United States.,Department of Neuroscience, The Ohio State University, Columbus, OH, United States.,Center for Chronic Brain Injury, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
48
|
Anton SD, Moehl K, Donahoo WT, Marosi K, Lee S, Mainous AG, Leeuwenburgh C, Mattson MP. Flipping the Metabolic Switch: Understanding and Applying the Health Benefits of Fasting. Obesity (Silver Spring) 2018; 26:254-268. [PMID: 29086496 PMCID: PMC5783752 DOI: 10.1002/oby.22065] [Citation(s) in RCA: 392] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/14/2017] [Accepted: 09/26/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Intermittent fasting (IF) is a term used to describe a variety of eating patterns in which no or few calories are consumed for time periods that can range from 12 hours to several days, on a recurring basis. This review is focused on the physiological responses of major organ systems, including the musculoskeletal system, to the onset of the metabolic switch: the point of negative energy balance at which liver glycogen stores are depleted and fatty acids are mobilized (typically beyond 12 hours after cessation of food intake). RESULTS AND CONCLUSIONS Emerging findings suggest that the metabolic switch from glucose to fatty acid-derived ketones represents an evolutionarily conserved trigger point that shifts metabolism from lipid/cholesterol synthesis and fat storage to mobilization of fat through fatty acid oxidation and fatty acid-derived ketones, which serve to preserve muscle mass and function. Thus, IF regimens that induce the metabolic switch have the potential to improve body composition in overweight individuals. Moreover, IF regimens also induce the coordinated activation of signaling pathways that optimize physiological function, enhance performance, and slow aging and disease processes. Future randomized controlled IF trials should use biomarkers of the metabolic switch (e.g., plasma ketone levels) as a measure of compliance and of the magnitude of negative energy balance during the fasting period.
Collapse
Affiliation(s)
- Stephen D. Anton
- Department of Aging and Geriatric Research, Institute on Aging, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL 32610
| | - Keelin Moehl
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
| | - William T. Donahoo
- Division of Endocrinology, Diabetes and Metabolism, University of Florida College of Medicine, Gainesville, FL 32610
| | - Krisztina Marosi
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
| | - Stephanie Lee
- Department of Aging and Geriatric Research, Institute on Aging, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL 32610
| | - Arch G. Mainous
- Department of Health Services Research, Management and Policy; Department of Community Health and Family Medicine, University of Florida, Gainesville, FL 32610
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, Institute on Aging, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL 32610
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
49
|
Huang YJ, Zhang L, Shi LY, Wang YY, Yang YB, Ke B, Zhang TY, Qin J. Caloric restriction ameliorates acrolein-induced neurotoxicity in rats. Neurotoxicology 2018; 65:44-51. [PMID: 29355571 DOI: 10.1016/j.neuro.2018.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/03/2018] [Accepted: 01/15/2018] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Acrolein, a highly reactive unsaturated aldehyde, is a ubiquitous environmental pollutant and oxidative damage induced by acrolein is hypothesized to involve in the etiology of Alzheimer's disease (AD). Calorie restriction (CR) is the only non-genetic intervention that has consistently been verified to retard aging by ameliorating oxidative stress. Therefore, we investigated the effects of CR on acrolein-induced neurotoxicity in Sprague-Dawley (SD) rats. METHODS A total of 45 weaned and specific-pathogen-free SD rats (male, weighing 180-220 g) were gavage-fed with acrolein (2.5 mg/kg/day) and fed ab libitum of 10 g/day or 7 g/day (representing 30% CR regimen), or gavage-fed with same volume of tap water and fed al libitum as vehicle control for 12 weeks. After behavioral test conducted by Morris Water Maze, SD rats were sacrificed and brain tissues were prepared for histochemical evaluation and Western blotting to detect alterations in oxidative stress, BDNF/TrkB pathway and key enzymes involved in amyloid precursor protein (APP) metabolism. RESULTS Treatment with 30% CR in SD rats significantly attenuated acrolein-induced cognitive impairment. Oxidative damage including deletion of glutathione and superoxide dismutase and sharp rise in malondialdehyde were notably improved by 30% CR. Further study suggested that 30% CR showed protective effects against acrolein by modulating BDNF/TrkB signaling pathways. Moreover, 30% CR restored acrolein-induced changes of APP, β-secretase, α-secretase and receptor for advanced glycation end products. CONCLUSION These findings suggest that CR may provide a promising approach for the treatment of AD, targeting acrolein.
Collapse
Affiliation(s)
- Ying-Juan Huang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Li Zhang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Lan-Ying Shi
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yuan-Yuan Wang
- Department of Traditional Chinese Medicine, The Eastern Hospital of The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510700, China
| | - Yu-Bin Yang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Bin Ke
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ting-Ying Zhang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jian Qin
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China.
| |
Collapse
|
50
|
Tatulli G, Mitro N, Cannata SM, Audano M, Caruso D, D’Arcangelo G, Lettieri-Barbato D, Aquilano K. Intermittent Fasting Applied in Combination with Rotenone Treatment Exacerbates Dopamine Neurons Degeneration in Mice. Front Cell Neurosci 2018; 12:4. [PMID: 29387000 PMCID: PMC5776087 DOI: 10.3389/fncel.2018.00004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/03/2018] [Indexed: 01/04/2023] Open
Abstract
Intermittent fasting (IF) was suggested to be a powerful nutritional strategy to prevent the onset of age-related neurodegenerative diseases associated with compromised brain bioenergetics. Whether the application of IF in combination with a mitochondrial insult could buffer the neurodegenerative process has never been explored yet. Herein, we defined the effects of IF in C57BL/6J mice treated once per 24 h with rotenone (Rot) for 28 days. Rot is a neurotoxin that inhibits the mitochondrial complex I and causes dopamine neurons degeneration, thus reproducing the neurodegenerative process observed in Parkinson's disease (PD). IF (24 h alternate-day fasting) was applied alone or in concomitance with Rot treatment (Rot/IF). IF and Rot/IF groups showed the same degree of weight loss when compared to control and Rot groups. An accelerating rotarod test revealed that only Rot/IF mice have a decreased ability to sustain the test at the higher speeds. Rot/IF group showed a more marked decrease of dopaminergic neurons and increase in alpha-synuclein (α-syn) accumulation with respect to Rot group in the substantia nigra (SN). Through lipidomics and metabolomics analyses, we found that in the SN of Rot/IF mice a significant elevation of excitatory amino acids, inflammatory lysophospholipids and sphingolipids occurred. Collectively, our data suggest that, when applied in combination with neurotoxin exposure, IF does not exert neuroprotective effects but rather exacerbate neuronal death by increasing the levels of excitatory amino acids and inflammatory lipids in association with altered brain membrane composition.
Collapse
Affiliation(s)
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | | | - Matteo Audano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | | | - Daniele Lettieri-Barbato
- IRCCS San Raffaele La Pisana, Rome, Italy
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Katia Aquilano
- IRCCS San Raffaele La Pisana, Rome, Italy
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|