1
|
Rabie M, El-Tanbouly DM, Kandil EA, Sayed HM. Oxytocin Anti-Apoptotic Potential Mediates Neuroprotection Against 3-Nitropropionic Acid-Induced Huntington's Disease-Like Pathophysiology in Rats: Involvement of Calpain-2/p25 Cdk5/MEF-2 Signaling Pathway. Neurochem Res 2025; 50:148. [PMID: 40252127 DOI: 10.1007/s11064-025-04397-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/21/2025]
Abstract
The increasing interest in the pro-apoptotic function of calpain-2 in the course of Huntington's disease (HD) is attributed to the involvement of its substrate, cyclin-dependent kinase 5 (Cdk5), in neuronal death during neurodegeneration. Oxytocin has been demonstrated to suppress apoptosis in many neurodegenerative disorders. This research aimed to investigate the effect of oxytocin on several calpain 2-induced apoptogenic factors in 3-nitropropionic acid (3-NP) animal model of HD in rats. For 14 days, rats received 3-NP (10 mg/kg, i.p.), and oxytocin (160 µg/kg, i.p.) 1 h before 3-NP administration. Oxytocin reversed the detrimental effects of 3-NP on the striatum, which was evidenced by improvement of motor behavior, as well as histological picture and neurochemical balance. Oxytocin markedly reduced striatal calpain-2 and p25 Cdk5 protein expressions and increased the endogenous calpain inhibitor, calpastatin expression along with the pro-survival factor, myocyte-enhancer factor 2 (MEF-2) contents. Moreover, it suppressed striatal content of the pro-apoptotic biomarkers (BCl-2-associated X protein (Bax), tumor suppressor protein (p53), and caspase-3) and elevated striatal anti-apoptotic B-cell lymphoma/leukemia 2 (BCl-2) content. It repressed the release of mitochondrial cytochrome c and apoptosis-inducing factor (AIF) to hinder caspase-dependent and caspase-independent apoptotic neuronal death. Oxytocin could be a promising candidate for HD management by hampering both mitochondrial and non-mitochondrial apoptosis through inhibition of calpain-2/p25 Cdk5/MEF-2 pathway.
Collapse
Affiliation(s)
- Marwa Rabie
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt.
| | - Dalia M El-Tanbouly
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt
| | - Esraa A Kandil
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt
| | - Helmy M Sayed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt
| |
Collapse
|
2
|
Liu W, Kieu T, Wang Z, Sim H, Lee S, Lee J, Park Y, Kim S, Kook S. PrP C Glycoprotein Is Indispensable for Maintenance of Skeletal Muscle Homeostasis During Aging. J Cachexia Sarcopenia Muscle 2025; 16:e13706. [PMID: 39873124 PMCID: PMC11773342 DOI: 10.1002/jcsm.13706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/22/2024] [Accepted: 12/08/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND The cellular prion protein (PrPC), a glycoprotein encoded by the PRNP gene, is known to modulate muscle mass and exercise capacity. However, the role of PrPC in the maintenance and regeneration of skeletal muscle during ageing remains unclear. METHODS This study investigated the change in PrPC expression during muscle formation using C2C12 cells and evaluated muscle function in Prnp wild-type (WT) and knock-out (KO) mice at different ages (1, 9 and 15 months). To determine the role of PrPC in skeletal muscle homeostasis during ageing, we conducted regeneration experiments via cardiotoxin injection in Prnp mice to assess the effects of PrPC deficiency on the senescence of satellite stem cells (SCs) and regenerative capacity in skeletal muscle. RESULTS Our data demonstrate that PrPC expression increased significantly during muscle differentiation (p < 0.01), correlating with myogenin (immunofluorescence at the differentiation stage). PrPC deficiency disrupted muscle homeostasis, leading to age-associated mitochondrial autophagy (Pink-1, +180%, p < 0.001; Parkin, +161%, p < 0.01) and endoplasmic reticulum stress (SERCA, -26%, p < 0.05; IRE1α, +195%, p < 0.001) while decreasing the level of mitochondrial biogenesis (SIRT-1, -50%, p < 0.01; PGC-1α, -36%, p < 0.05; VDAC, -27%, p < 0.001), and activated oxidative stress (serum myoglobin, +23%, p < 0.001; MDA, +23%, p < 0.05; NFκB, +117%, p < 0.05) during ageing, which accelerated reduced muscle growth or mass accumulation (tibialis anterior muscle mass, -23%, p < 0.001; gastrocnemius muscle mass, -30%, p < 0.001; muscle fibre size, -48%, p < 0.05; MSTN, +160%, p < 0.01; MAFbx, +83%, p < 0.05). Furthermore, PrPC deficiency induced the senescence (β-galactosidase, +60%, p < 0.05; p16, +103%, p < 0.001) of SCs, which was directly related to the defect in muscle recovery, with the senescence-mediated enhancement of adipogenesis (PPARγ, +74%, p < 0.05) during the regeneration process after cardiotoxin-induced muscle injury. CONCLUSIONS Our findings demonstrate that PrPC is indispensable for maintaining skeletal muscle homeostasis during ageing by modulating the functional integrity of mitochondria, ER and SCs.
Collapse
Affiliation(s)
- Wenduo Liu
- Department of Sports Science, College of Natural ScienceJeonbuk National UniversityJeonjuRepublic of Korea
| | - Thi Thu Trang Kieu
- Department of Bioactive Material Sciences, Research Center of Bioactive MaterialsJeonbuk National UniversityJeonjuRepublic of Korea
| | - Zilin Wang
- Department of Sports Science, College of Natural ScienceJeonbuk National UniversityJeonjuRepublic of Korea
| | - Hyun‐Jaung Sim
- Department of Bioactive Material Sciences, Research Center of Bioactive MaterialsJeonbuk National UniversityJeonjuRepublic of Korea
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of DentistryJeonbuk National UniversityJeonjuRepublic of Korea
| | - Seohyeong Lee
- Department of Nutritional SciencesUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Jeong‐Chae Lee
- Department of Bioactive Material Sciences, Research Center of Bioactive MaterialsJeonbuk National UniversityJeonjuRepublic of Korea
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of DentistryJeonbuk National UniversityJeonjuRepublic of Korea
| | - Yoonjung Park
- Laboratory of Integrated Physiology, Department of Health & Human PerformanceUniversity of HoustonTexasUSA
| | - Sang Hyun Kim
- Department of Sports Science, College of Natural ScienceJeonbuk National UniversityJeonjuRepublic of Korea
| | - Sung‐Ho Kook
- Department of Bioactive Material Sciences, Research Center of Bioactive MaterialsJeonbuk National UniversityJeonjuRepublic of Korea
| |
Collapse
|
3
|
Patel PR, Tamas IP, Van Der Bas M, Kegg A, Hilliard BA, Lambi AG, Popoff SN, Barbe MF. Repetitive Overuse Injury Causes Entheseal Damage and Palmar Muscle Fibrosis in Older Rats. Int J Mol Sci 2024; 25:13546. [PMID: 39769311 PMCID: PMC11679654 DOI: 10.3390/ijms252413546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Overuse injury is a frequent diagnosis in occupational medicine and athletics. Using an established model of upper extremity overuse, we sought to characterize changes occurring in the forepaws and forelimbs of mature female rats (14-18 months of age). Thirty-three rats underwent a 4-week shaping period, before performing a high-repetition low-force (HRLF) task for 12 weeks, with the results being compared to 32 mature controls. HRLF animals showed a reduced grip strength versus controls. ELISAs carried out in the HRLF rats, versus controls, showed elevated levels of IL1-α in tendons, IL1-α and TNF-α in distal bones/entheses, and TNF-α, MIP1-α/CCL3, and CINC-2/CXCL-3 in serum, as well as IL-6 in forelimb muscles and tendons, and IL-10 in serum. HRLF rats had elevated collagen deposition in the forepaw intrinsic muscles (i.e., fibrosis), entheseal microdamage, and articular cartilage degradation versus the control rats. CD68/ED1+ osteoclasts and single-nucleated cells were elevated in distal forelimb metaphyses of the HRLF animals, versus controls. Declines in grip strength correlated with muscle fibrosis, entheseal microdamage, articular cartilage damage, distal bone/enthesis IL1-α, and serum IL-6. These data demonstrate inflammatory and persistent degradative changes in the forearm/forepaw tissues of mature female animals exposed to prolonged repetitive tasks, changes with clinical relevance to work-related overuse injuries in mature human females.
Collapse
Affiliation(s)
- Parth R. Patel
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (P.R.P.); (I.P.T.); (M.V.D.B.); (A.K.); (B.A.H.)
| | - Istvan P. Tamas
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (P.R.P.); (I.P.T.); (M.V.D.B.); (A.K.); (B.A.H.)
| | - Megan Van Der Bas
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (P.R.P.); (I.P.T.); (M.V.D.B.); (A.K.); (B.A.H.)
| | - Abby Kegg
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (P.R.P.); (I.P.T.); (M.V.D.B.); (A.K.); (B.A.H.)
| | - Brendan A. Hilliard
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (P.R.P.); (I.P.T.); (M.V.D.B.); (A.K.); (B.A.H.)
| | - Alex G. Lambi
- Plastic Surgery Section, New Mexico Veterans Administration Health Care System, Albuquerque, NM 87108, USA;
- Department of Surgery, The University of New Mexico School of Medicine, Albuquerque, NM 87106, USA
| | - Steven N. Popoff
- Department of Biomedical Education and Data Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA;
| | - Mary F. Barbe
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (P.R.P.); (I.P.T.); (M.V.D.B.); (A.K.); (B.A.H.)
- Department of Biomedical Education and Data Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA;
| |
Collapse
|
4
|
Xavier A, Bourzac C, Bensidhoum M, Mura C, Portier H, Pallu S. Effect of different running protocols on bone morphology and microarchitecture of the forelimbs in a male Wistar rat model. PLoS One 2024; 19:e0308974. [PMID: 39509380 PMCID: PMC11542884 DOI: 10.1371/journal.pone.0308974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/02/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND It is accepted that the metabolic response of bone tissue depends on the intensity of the mechanical loads, but also on the type and frequency of stress applied to it. Physical exercise such as running involves stresses which, under certain conditions, have been shown to have the best osteogenic effects. However, at high intensity, it can be deleterious for bone tissue. Consequently, there is no clear consensus as to which running modality would have the best osteogenic effects. AIM Our objective was to compare the effects of three running modalities on morphological and micro-architectural parameters on forelimb bones. METHODS Forty male Wistar rats were randomly divided into four groups: high intensity interval training (HIIT), continuous running, combined running ((alternating HIIT and continuous modalities) and sedentary (control). The morphometry, trabecular microarchitecture and cortical porosity of the ulna, radius and humerus were analyzed using micro-tomography. RESULTS All three running modalities resulted in bone adaptation, with an increase in the diaphyseal diameter of all three bones. The combined running protocol had positive effects on the trabecular thickness in the distal ulna. The HIIT protocol resulted in an increase in both medio-lateral diameter and cortical bone area over total area (Ct.Ar/Tt.Ar) at the ulnar shaft compared with sedentary condition. Moreover, the HIIT protocol decreased the mean surface area of the medulla (Ma.Ar) according to sedentary condition at the ulnar shaft. CONCLUSION This study has shown that HIIT resulted in a decrease in trabecular bone fraction in favor of cortical bone area at the ulna.
Collapse
Affiliation(s)
- Andy Xavier
- Laboratoire B3OA UMR7052 CNRS U1271 INSERM, Université de Paris, Paris, France
- Laboratoire INEM UMR7355 CNRS, Université d’Orléans, Orléans, France
- Sport, Physical Activity, Rehabilitation and Movement for Performance and Health (SAPRéM), Université d’Orléans, Orléans, France
| | - Céline Bourzac
- Laboratoire B3OA UMR7052 CNRS U1271 INSERM, Université de Paris, Paris, France
- Plateforme de Recherche Biomédicale, Ecole Nationale Vétérinaire d’Alfort, Maisons-Alfort, France
| | - Morad Bensidhoum
- Laboratoire B3OA UMR7052 CNRS U1271 INSERM, Université de Paris, Paris, France
| | - Catherine Mura
- Laboratoire INEM UMR7355 CNRS, Université d’Orléans, Orléans, France
| | - Hugues Portier
- Laboratoire B3OA UMR7052 CNRS U1271 INSERM, Université de Paris, Paris, France
| | - Stéphane Pallu
- Laboratoire B3OA UMR7052 CNRS U1271 INSERM, Université de Paris, Paris, France
- Sport, Physical Activity, Rehabilitation and Movement for Performance and Health (SAPRéM), Université d’Orléans, Orléans, France
| |
Collapse
|
5
|
Elesawy WH, El-Sahar AE, Sayed RH, Ashour AM, Alsufyani SE, Arab HH, Kandil EA. Repurposing ezetimibe as a neuroprotective agent in a rotenone-induced Parkinson's disease model in rats: Role of AMPK/SIRT-1/PGC-1α signaling and autophagy. Int Immunopharmacol 2024; 138:112640. [PMID: 38981225 DOI: 10.1016/j.intimp.2024.112640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
As a severe neurological disorder, Parkinson's disease (PD) is distinguished by dopaminergic neuronal degeneration in the substantia nigra (SN), culminating in motor impairments. Several studies have shown that activation of the AMPK/SIRT1/PGC1α pathway contributes to an increase in mitochondrial biogenesis and is a promising candidate for the management of PD. Furthermore, turning on the AMPK/SIRT1/PGC1α pathway causes autophagy activation, which is fundamental for maintaining neuronal homeostasis. Interestingly, ezetimibe is an antihyperlipidemic agent that was recently reported to possess pleiotropic properties in neurology by triggering the phosphorylation and activation of AMPK. Thus, our study aimed to investigate the neuroprotective potential of ezetimibe in rats with rotenone-induced PD by activating AMPK. Adult male Wistar rats received rotenone (1.5 mg/kg, s.c.) every other day for 21 days to induce experimental PD. Rats were treated with ezetimibe (5 mg/kg/day, i.p.) 1 h before rotenone. Ezetimibe ameliorated the motor impairments in open field, rotarod and grip strength tests, restored striatal dopamine and tyrosine hydroxylase in the SN, up-regulated p-AMPK, SIRT1, and PGC1α striatal expression, upsurged the expression of ULK1, beclin1, and LC3II/I, reduced Bax/Bcl2 ratio, and alleviated rotenone-induced histopathological changes in striatum and SN. Our findings also verified the contribution of AMPK activation to the neuroprotective effect of ezetimibe by using the AMPK inhibitor dorsomorphin. Together, this work revealed that ezetimibe exerts a neuroprotective impact in rotenone-induced PD by activating AMPK/SIRT-1/PGC-1α signaling, enhancing autophagy, and attenuating apoptosis. Thus, ezetimibe's activation of AMPK could hold significant therapeutic promise for PD management.
Collapse
Affiliation(s)
- Wessam H Elesawy
- Department of Pharmacology and Toxicology, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6 October, Egypt
| | - Ayman E El-Sahar
- Biology Department, School of Pharmacy, Newgiza University, Giza, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Ahmed M Ashour
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al Qura University, P.O. Box 13578, Makkah 21955, Saudi Arabia
| | - Shuruq E Alsufyani
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Hany H Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Esraa A Kandil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Farid HA, Sayed RH, El-Shamarka MES, Abdel-Salam OME, El Sayed NS. PI3K/AKT signaling activation by roflumilast ameliorates rotenone-induced Parkinson's disease in rats. Inflammopharmacology 2024; 32:1421-1437. [PMID: 37541971 PMCID: PMC11006765 DOI: 10.1007/s10787-023-01305-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/20/2023] [Indexed: 08/06/2023]
Abstract
Parkinson's disease (PD) is the second most common progressive age-related neurodegenerative disorder. Paramount evidence shed light on the role of PI3K/AKT signaling activation in the treatment of neurodegenerative disorders. PI3K/AKT signaling can be activated via cAMP-dependent pathways achieved by phosphodiesterase 4 (PDE4) inhibition. Roflumilast is a well-known PDE4 inhibitor that is currently used in the treatment of chronic obstructive pulmonary disease. Furthermore, roflumilast has been proposed as a favorable candidate for the treatment of neurological disorders. The current study aimed to unravel the neuroprotective role of roflumilast in the rotenone model of PD in rats. Ninety male rats were allocated into six groups as follows: control, rotenone (1.5 mg/kg/48 h, s.c.), L-dopa (22.5 mg/kg, p.o), and roflumilast (0.2, 0.4 or 0.8 mg/kg, p.o). All treatments were administrated for 21 days 1 h after rotenone injection. Rats treated with roflumilast showed an improvement in motor activity and coordination as well as preservation of dopaminergic neurons in the striatum. Moreover, roflumilast increased cAMP level and activated the PI3K/AKT axis via stimulation of CREB/BDNF/TrkB and SIRT1/PTP1B/IGF1 signaling cascades. Roflumilast also caused an upsurge in mTOR and Nrf2, halted GSK-3β and NF-ĸB, and suppressed FoxO1 and caspase-3. Our study revealed that roflumilast exerted neuroprotective effects in rotenone-induced neurotoxicity in rats. These neuroprotective effects were mediated via the crosstalk between CREB/BDNF/TrkB and SIRT1/PTP1B/IGF1 signaling pathways which activates PI3K/AKT trajectory. Therefore, PDE4 inhibition is likely to offer a reliable persuasive avenue in curing PD via PI3K/AKT signaling activation.
Collapse
Affiliation(s)
- Heba A Farid
- Department of Narcotics, Ergogenic Aids and Poisons, National Research Centre, Cairo, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt.
| | | | - Omar M E Abdel-Salam
- Department of Narcotics, Ergogenic Aids and Poisons, National Research Centre, Cairo, Egypt
| | - Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt
| |
Collapse
|
7
|
Lambi AG, Harris MY, Amin M, Joiner PG, Hilliard BA, Assari S, Popoff SN, Barbe MF. Blocking CCN2 Reduces Established Bone Loss Induced by Prolonged Intense Loading by Increasing Osteoblast Activity in Rats. JBMR Plus 2023; 7:e10783. [PMID: 37701153 PMCID: PMC10494513 DOI: 10.1002/jbm4.10783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 09/14/2023] Open
Abstract
We have an operant model of reaching and grasping in which detrimental bone remodeling is observed rather than beneficial adaptation when rats perform a high-repetition, high-force (HRHF) task long term. Here, adult female Sprague-Dawley rats performed an intense HRHF task for 18 weeks, which we have shown induces radial trabecular bone osteopenia. One cohort was euthanized at this point (to assay the bone changes post task; HRHF-Untreated). Two other cohorts were placed on 6 weeks of rest while being simultaneously treated with either an anti-CCN2 (FG-3019, 40 mg/kg body weight, ip; twice per week; HRHF-Rest/anti-CCN2), or a control IgG (HRHF-Rest/IgG), with the purpose of determining which might improve the trabecular bone decline. Results were compared with food-restricted control rats (FRC). MicroCT analysis of distal metaphysis of radii showed decreased trabecular bone volume fraction (BV/TV) and thickness in HRHF-Untreated rats compared with FRCs; responses improved with HRHF-Rest/anti-CCN2. Rest/IgG also improved trabecular thickness but not BV/TV. Histomorphometry showed that rest with either treatment improved osteoid volume and task-induced increases in osteoclasts. Only the HRHF-Rest/anti-CCN2 treatment improved osteoblast numbers, osteoid width, mineralization, and bone formation rate compared with HRHF-Untreated rats (as well as the latter three attributes compared with HRHF-Rest/IgG rats). Serum ELISA results were in support, showing increased osteocalcin and decreased CTX-1 in HRHF-Rest/anti-CCN2 rats compared with both HRHF-Untreated and HRHF-Rest/IgG rats. These results are highly encouraging for use of anti-CCN2 for therapeutic treatment of bone loss, such as that induced by chronic overuse. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Alex G Lambi
- Department of Orthopedics and RehabilitationUniversity of New MexicoAlbuquerqueNMUSA
| | - Michele Y Harris
- Center for Translational Medicine, Lewis Katz School of MedicineTemple UniversityPhiladelphiaPAUSA
| | - Mamta Amin
- Center for Translational Medicine, Lewis Katz School of MedicineTemple UniversityPhiladelphiaPAUSA
| | - Patrice G Joiner
- Center for Translational Medicine, Lewis Katz School of MedicineTemple UniversityPhiladelphiaPAUSA
| | - Brendan A Hilliard
- Center for Translational Medicine, Lewis Katz School of MedicineTemple UniversityPhiladelphiaPAUSA
| | | | - Steven N Popoff
- Department of Biomedical Education and Data Science, Lewis Katz School of MedicineTemple UniversityPhiladelphiaPAUSA
| | - Mary F Barbe
- Center for Translational Medicine, Lewis Katz School of MedicineTemple UniversityPhiladelphiaPAUSA
| |
Collapse
|
8
|
Manual Therapy Facilitates Homeostatic Adaptation to Bone Microstructural Declines Induced by a Rat Model of Repetitive Forceful Task. Int J Mol Sci 2022; 23:ijms23126586. [PMID: 35743030 PMCID: PMC9223642 DOI: 10.3390/ijms23126586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 01/27/2023] Open
Abstract
The effectiveness of manual therapy in reducing the catabolic effects of performing repetitive intensive force tasks on bones has not been reported. We examined if manual therapy could reduce radial bone microstructural declines in adult female Sprague–Dawley rats performing a 12-week high-repetition and high-force task, with or without simultaneous manual therapy to forelimbs. Additional rats were provided 6 weeks of rest after task cessation, with or without manual therapy. The control rats were untreated or received manual therapy for 12 weeks. The untreated TASK rats showed increased catabolic indices in the radius (decreased trabecular bone volume and numbers, increased osteoclasts in these trabeculae, and mid-diaphyseal cortical bone thinning) and increased serum CTX-1, TNF-α, and muscle macrophages. In contrast, the TASK rats receiving manual therapy showed increased radial bone anabolism (increased trabecular bone volume and osteoblast numbers, decreased osteoclast numbers, and increased mid-diaphyseal total area and periosteal perimeter) and increased serum TNF-α and muscle macrophages. Rest, with or without manual therapy, improved the trabecular thickness and mid-diaphyseal cortical bone attributes but not the mineral density. Thus, preventive manual therapy reduced the net radial bone catabolism by increasing osteogenesis, while rest, with or without manual therapy, was less effective.
Collapse
|
9
|
Dilley A, Harris M, Barbe MF, Bove GM. Aberrant Neuronal Activity in a Model of Work-Related Upper Limb Pain and Dysfunction. THE JOURNAL OF PAIN 2022; 23:852-863. [PMID: 34958943 PMCID: PMC9086086 DOI: 10.1016/j.jpain.2021.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/26/2021] [Accepted: 12/03/2021] [Indexed: 05/03/2023]
Abstract
Work-related musculoskeletal disorders associated with intense repetitive tasks are highly prevalent. Painful symptoms associated with such disorders can be attributed to neuropathy. In this study, we characterized the neuronal discharge from the median nerve in rats trained to perform an operant repetitive task. After 3-weeks of the task, rats developed pain behaviors and a decline in grip strength. Ongoing activity developed in 17.7% of slowly conducting neurons at 3-weeks, similar to neuritis. At 12-weeks, an irregular high frequency neuronal discharge was prevalent in >88.4% of slow and fast conducting neurons. At this time point, 8.3% of slow and 21.2% of fast conducting neurons developed a bursting discharge, which, combined with a reduction in fast-conducting neurons with receptive fields (38.4%), is consistent with marked neuropathology. Taken together, we have shown that an operant repetitive task leads to an active and progressive neuropathy that is characterized by marked neuropathology following 12-weeks task that mainly affects fast conducting neurons. Such aberrant neuronal activity may underlie painful symptoms in patients with work-related musculoskeletal disorders. PERSPECTIVE: Aberrant neuronal activity, similar to that reported in this study, may contribute to upper limb pain and dysfunction in patients with work-related musculoskeletal disorders. In addition, profiles of instantaneous frequencies may provide an effective way of stratifying patients with painful neuropathies.
Collapse
Affiliation(s)
- Andrew Dilley
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, England
| | - Michele Harris
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Mary F Barbe
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Geoffrey M Bove
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania; Bove Consulting, Kennebunkport, Maine.
| |
Collapse
|
10
|
Inosine attenuates 3-nitropropionic acid-induced Huntington's disease-like symptoms in rats via the activation of the A2AR/BDNF/TrKB/ERK/CREB signaling pathway. Life Sci 2022; 300:120569. [PMID: 35472453 DOI: 10.1016/j.lfs.2022.120569] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 12/15/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant inherited neurodegenerative disease characterized by involuntary bizarre movements, psychiatric symptoms, dementia, and early death. Several studies suggested neuroprotective activities of inosine; however its role in HD is yet to be elucidated. The current study aimed to demonstrate the neuroprotective effect of inosine in 3-nitropropionic acid (3-NP)-induced neurotoxicity in rats while investigating possible underlying mechanisms. Rats were randomly divided into five groups; group 1 received i.p. injections of 1% DMSO, whereas groups 2, 3, 4, and 5 received 3-NP (10 mg/kg, i.p.) for 14 days, concomitantly with inosine (200 mg/kg., i.p.) in groups 3, 4, and 5, SCH58261, a selective adenosine 2A receptor (A2AR) antagonist, (0.05 mg/kg, i.p.) in group 4, and PD98059, an extracellular signal-regulated kinase (ERK) inhibitor, (0.3 mg/kg, i.p.) in group 5. Treatment with inosine mitigated 3-NP-induced motor abnormalities and body weight loss. Moreover, inosine boosted the striatal brain-derived neurotrophic factor (BDNF) level, p-tropomyosin receptor kinase B (TrKB), p-ERK, and p-cAMP response element-binding protein (CREB) expression, which subsequently suppressed oxidative stress biomarkers (malondialdehyde and nitric oxide) and pro-inflammatory cytokines (tumor necrosis factor alpha and interleukin-1β) and replenished the glutathione content. Similarly, histopathological analyses revealed decreased striatal injury score, the expression of the glial fibrillary acidic protein, and neuronal loss after inosine treatment. These effects were attenuated by the pre-administration of SCH58261 or PD98059. In conclusion, inosine attenuated 3-NP-induced HD-like symptoms in rats, at least in part, via the activation of the A2AR/BDNF/TrKB/ERK/CREB signaling pathway.
Collapse
|
11
|
El-Saiy KA, Sayed RH, El-Sahar AE, Kandil EA. Modulation of histone deacetylase, the ubiquitin proteasome system, and autophagy underlies the neuroprotective effects of venlafaxine in a rotenone-induced Parkinson's disease model in rats. Chem Biol Interact 2022; 354:109841. [PMID: 35104487 DOI: 10.1016/j.cbi.2022.109841] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 12/17/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by motor and non-motor symptoms. Impairment of the ubiquitin proteasome system (UPS) and autophagy has been suggested to contribute to α-synuclein accumulation, which is identified as the pathological hallmark of PD. Recently, alteration in histone-3 acetylation has also been found to be correlated to PD. Interestingly, the histone deacetylase 6 (HDAC6) enzyme, which regulates the acetylation of histone-3, was shown to be involved in autophagy. Venlafaxine is an antidepressant that was proposed to inhibit HDAC expression in depressive rats' hippocampi. In this study, we aimed to examine the ability of venlafaxine to inhibit striatal HDAC6 and to enhance α-synuclein clearance through the activation of the UPS and autophagy, in addition to treating depression, which is the most debilitating non-motor symptom, in a rotenone model of PD. Venlafaxine administration was noted to decrease α-synuclein accumulation and preserve dopaminergic neurons along with restoration of striatal dopamine levels and motor recovery. Its administration augmented the UPS and autophagic markers (beclin-1, p62, and LC3) with consequent modulation of apoptotic indicators (Bax/Bcl-2 ratio, cytochrome c, and caspase-3). Additionally, venlafaxine inhibited HDAC6 with further enhancement of autophagy and restoration of histone-3 acetylation with subsequent increases in survival gene expressions (Bcl-2 and brain-derived neurotrophic factor). Chloroquine (autophagy inhibitor) was used to indicate the proposed pathway. Moreover, venlafaxine hampered depressive symptoms and improved hippocampal noradrenaline and serotonin levels. Collectively, venlafaxine is suggested to display neuroprotective effects with improvement of motor and non-motor PD symptoms.
Collapse
Affiliation(s)
- Khalid A El-Saiy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Ayman E El-Sahar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Esraa A Kandil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
12
|
Rader EP, Naimo MA, Ensey J, Baker BA. Improved impedance to maladaptation and enhanced VCAM-1 upregulation with resistance-type training in the long-lived Snell dwarf ( Pit1dw/dw) mouse. Aging (Albany NY) 2022; 14:1157-1185. [PMID: 35113807 PMCID: PMC8876912 DOI: 10.18632/aging.203875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Snell dwarf mice with the Pit1dw/dw mutation are deficient in growth hormone, prolactin, and thyroid stimulating hormone and exhibit >40% lifespan extension. This longevity is accompanied by compromised muscular performance. However, research regarding young (3-month-old) Snell dwarf mice demonstrate exceptional responsivity to resistance-type training especially in terms of a shifted fiber type distribution and increased protein levels of vascular cell adhesion molecule-1 (VCAM-1), a possible mediator of such remodeling. In the present study, we investigated whether this responsiveness persists at 12 months of age. Unlike 12-month-old control mice, age-matched Snell dwarf mice remained resistant to training-induced maladaptive decreases in performance and muscle mass. This was accompanied by retainment of the remodeling capacity in muscles of Snell dwarf mice to increase VCAM-1 protein levels and a shift in myosin heavy chain (MHC) isoform distribution with training. Even decreasing training frequency for control mice, an alteration which protected muscles from maladaptation at 12 months of age, did not result in the overt remodeling observed for Snell dwarf mice. The results demonstrate a distinct remodeling response to resistance-type exercise operative in the context of the Pit1dw/dw mutation of long-lived Snell dwarf mice.
Collapse
Affiliation(s)
- Erik P. Rader
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Marshall A. Naimo
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
- West Virginia School of Medicine, Division of Exercise Physiology, Morgantown, WV 26506, USA
| | - James Ensey
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Brent A. Baker
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| |
Collapse
|
13
|
Barbe MF, Amin M, Gingery A, Lambi AG, Popoff SN. Blocking CCN2 preferentially inhibits osteoclastogenesis induced by repetitive high force bone loading. Connect Tissue Res 2021; 62:115-132. [PMID: 32683988 PMCID: PMC8189320 DOI: 10.1080/03008207.2020.1788546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose/Aim: We recently found that blocking CCN2 signaling using a monoclonal antibody (FG-3019) may be a novel therapeutic strategy for reducing overuse-induced tissue fibrosis. Since CCN2 plays roles in osteoclastogenesis, and persistent performance of a high repetition high force (HRHF) lever pulling task results in a loss in trabecular bone volume in the radius, we examined here whether blocking CCN2 signaling would reduce the early catabolic effects of performing a HRHF task for 3 weeks. Materials and Methods: Young adult, female, Sprague-Dawley rats were operantly shaped to learn to pull at high force levels, before performing the HRHF task for 3 weeks. HRHF task rats were then left untreated (HRHF Untreated), treated in task weeks 2 and 3 with a monoclonal antibody that antagonizes CCN2 (HRHF+FG-3019), or treated with an IgG (HRHF+IgG), while continuing to perform the task. Non-task control rats were left untreated. Results: In metaphyseal trabeculae of the distal radius, HRHF Untreated and HRHF-IgG rats showed increased osteoblast numbers and other indices of bone formation, compared to controls, yet decreased trabecular bone volume, increased osteoclast numbers, and increased serum CTX-1 (a serum biomarker of bone resorption). HRHF+FG-3019 rats also showed increased osteoblast numbers and bone formation, but in contrast to HRHF Untreated and HRHF-IgG rats, showed higher trabecular bone volume, and reduced osteoclast numbers and serum CTX-1 levels (and statistically similar to Control levels). Conclusions: HRHF loading increased bone formation in each task group, yet blocking CCN2 dampened trabecular bone catabolism by reducing osteoclast numbers and activity.
Collapse
Affiliation(s)
- Mary F Barbe
- Department of Anatomy & Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Mamta Amin
- Department of Anatomy & Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Anne Gingery
- Department of Orthopedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alex G Lambi
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, USA
| | - Steven N Popoff
- Department of Anatomy & Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
14
|
Barbe MF, Popoff SN. Occupational Activities: Factors That Tip the Balance From Bone Accrual to Bone Loss. Exerc Sport Sci Rev 2020; 48:59-66. [PMID: 32004169 PMCID: PMC7077966 DOI: 10.1249/jes.0000000000000217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bone adaptation to persistent overloading can be counteracted by superimposed inflammatory and loading-induced damage that can tip the balance from bone accrual to loss. Supplemental digital content is available in the text. It is commonly assumed that beneficial adaptations in bone occur with vigorous exercise, yet any adaptive re/modeling in bone undergoing persistent overloading can be counteracted by superimposed inflammatory, compressive, and tensile loading–induced damage responses above thresholds of tissue fatigue failure and repair. This leads to a tenuous balance between achieving bone accrual and loss.
Collapse
Affiliation(s)
- Mary F Barbe
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | | |
Collapse
|
15
|
Calcium Fluxes in Work-Related Muscle Disorder: Implications from a Rat Model. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5040818. [PMID: 31662979 PMCID: PMC6791278 DOI: 10.1155/2019/5040818] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/13/2019] [Accepted: 08/20/2019] [Indexed: 01/16/2023]
Abstract
Introduction Ca2+ regulatory excitation-contraction coupling properties are key topics of interest in the development of work-related muscle myalgia and may constitute an underlying cause of muscle pain and loss of force generating capacity. Method A well-established rat model of high repetition high force (HRHF) work was used to investigate if such exposure leads to an increase in cytosolic Ca2+ concentration ([Ca2+]i) and changes in sarcoplasmic reticulum (SR) vesicle Ca2+ uptake and release rates. Result Six weeks exposure of rats to HRHF increased indicators of fatigue, pain behaviors, and [Ca2+]i, the latter implied by around 50-100% increases in pCam, as well as in the Ca2+ handling proteins RyR1 and Casq1 accompanied by an ∼10% increased SR Ca2+ uptake rate in extensor and flexor muscles compared to those of control rats. This demonstrated a work-related altered myocellular Ca2+ regulation, SR Ca2+ handling, and SR protein expression. Discussion These disturbances may mirror intracellular changes in early stages of human work-related myalgic muscle. Increased uptake of Ca2+ into the SR may reflect an early adaptation to avoid a sustained detrimental increase in [Ca2+]i similar to the previous findings of deteriorated Ca2+ regulation and impaired function in fatigued human muscle.
Collapse
|
16
|
Elbaz EM, Helmy HS, El-Sahar AE, Saad MA, Sayed RH. Lercanidipine boosts the efficacy of mesenchymal stem cell therapy in 3-NP-induced Huntington's disease model rats via modulation of the calcium/calcineurin/NFATc4 and Wnt/β-catenin signalling pathways. Neurochem Int 2019; 131:104548. [PMID: 31539560 DOI: 10.1016/j.neuint.2019.104548] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/22/2019] [Accepted: 09/16/2019] [Indexed: 12/26/2022]
Abstract
3-Nitropropionic acid (3-NP) induces a spectrum of Huntington's disease (HD)-like neuropathologies in the rat striatum. The present study aimed to demonstrate the neuroprotective effect of lercanidipine (LER) in rats with 3-NP-induced neurotoxicity, address the possible additional protective effect of combined treatment with bone marrow-derived mesenchymal stem cells (BM-MSCs) and LER, and investigate the possible involvement of the Ca2+/calcineurin (CaN)/nuclear factor of activated T cells c4 (NFATc4) and Wnt/β-catenin signalling pathways. Rats were injected with 3-NP (10 mg/kg/day, i.p.) for two weeks and were divided into four subgroups; the first served as the control HD group, the second received a daily dose of LER (0.5 mg/kg, i.p.), the third received a single injection of BM-MSCs (1 x 106/rat, i.v.) and the last received a combination of both BM-MSCs and LER. The combined therapy improved motor and behaviour performance. Meanwhile, this treatment led to a marked reduction in striatal cytosolic Ca2+, CaN, tumour necrosis factor-alpha, and NFATc4 expression and the Bax/Bcl2 ratio. Combined therapy also increased striatal brain-derived neurotrophic factor, FOXP3, Wnt, and β-catenin protein expression. Furthermore, haematoxylin-eosin and Nissl staining revealed an amelioration of striatum tissue injury with the combined treatment. In conclusion, the current study provides evidence for a neuroprotective effect of LER and/or BM-MSCs in 3-NP-induced neurotoxicity in rats. Interestingly, combined LER/BM-MSC therapy was superior to cell therapy alone in inhibiting 3-NP-induced neurological insults via modulation of the Ca2+/CaN/NFATc4 and Wnt/β-catenin signalling pathways. LER/BM-MSC combined therapy may represent a feasible approach for improving the beneficial effects of stem cell therapy in HD.
Collapse
Affiliation(s)
- Eman M Elbaz
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hebatullah S Helmy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ayman E El-Sahar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Muhammed A Saad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; School of Pharmacy, Newgiza University, Cairo, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
17
|
Barbe MF, Massicotte VS, Assari S, Monroy MA, Frara N, Harris MY, Amin M, King T, Cruz GE, Popoff SN. Prolonged high force high repetition pulling induces osteocyte apoptosis and trabecular bone loss in distal radius, while low force high repetition pulling induces bone anabolism. Bone 2018; 110:267-283. [PMID: 29476978 PMCID: PMC5878749 DOI: 10.1016/j.bone.2018.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/23/2018] [Accepted: 02/16/2018] [Indexed: 01/14/2023]
Abstract
We have an operant rat model of upper extremity reaching and grasping in which we examined the impact of performing a high force high repetition (High-ForceHR) versus a low force low repetition (Low-ForceHR) task for 18weeks on the radius and ulna, compared to age-matched controls. High-ForceHR rats performed at 4 reaches/min and 50% of their maximum voluntary pulling force for 2h/day, 3days/week. Low-ForceHR rats performed at 6% maximum voluntary pulling force. High-ForceHR rats showed decreased trabecular bone volume in the distal metaphyseal radius, decreased anabolic indices in this same bone region (e.g., decreased osteoblasts and bone formation rate), and increased catabolic indices (e.g., microcracks, increased osteocyte apoptosis, secreted sclerostin, RANKL, and osteoclast numbers), compared to controls. Distal metaphyseal trabeculae in the ulna of High-ForceHR rats showed a non-significant decrease in bone volume, some catabolic indices (e.g., decreased trabecular numbers) yet also some anabolic indices (e.g., increased osteoblasts and trabecular thickness). In contrast, the mid-diaphyseal region of High-ForceHR rats' radial and ulnar bones showed few to no microarchitecture differences and no changes in apoptosis, sclerostin or RANKL levels, compared to controls. In further contrast, Low-ForceHR rats showed increased trabecular bone volume in the radius in the distal metaphysis and increased cortical bone area its mid-diaphysis. These changes were accompanied by increased anabolic indices, no microcracks or osteocyte apoptosis, and decreased RANKL in each region, compared to controls. Ulnar bones of Low-ForceHR rats also showed increased anabolic indices, although fewer than in the adjacent radius. Thus, prolonged performance of an upper extremity reaching and grasping task is loading-, region-, and bone-dependent, with high force loads at high repetition rates inducing region-specific increases in bone degradative changes that were most prominent in distal radial trabeculae, while low force task loads at high repetition rates induced adaptive bone responses.
Collapse
Affiliation(s)
- Mary F Barbe
- Lewis Katz School of Medicine at Temple University, Department of Anatomy and Cell Biology, Philadelphia, PA 19140, United States.
| | - Vicky S Massicotte
- Lewis Katz School of Medicine at Temple University, Department of Anatomy and Cell Biology, Philadelphia, PA 19140, United States
| | - Soroush Assari
- Temple University College of Engineering, Department of Mechanical Engineering, Philadelphia, PA 19122, United States
| | - M Alexandra Monroy
- Perelman School of Medicine, University of Pennsylvania, Department of Radiation Oncology, Philadelphia, PA 19104, United States
| | - Nagat Frara
- Lewis Katz School of Medicine at Temple University, Department of Anatomy and Cell Biology, Philadelphia, PA 19140, United States
| | - Michele Y Harris
- Lewis Katz School of Medicine at Temple University, Department of Anatomy and Cell Biology, Philadelphia, PA 19140, United States
| | - Mamta Amin
- Lewis Katz School of Medicine at Temple University, Department of Anatomy and Cell Biology, Philadelphia, PA 19140, United States
| | - Tamara King
- College of Osteopathic Medicine, Department of Biomedical Sciences, Biddeford, ME 04005, United States
| | - Geneva E Cruz
- Lewis Katz School of Medicine at Temple University, Department of Anatomy and Cell Biology, Philadelphia, PA 19140, United States
| | - Steve N Popoff
- Lewis Katz School of Medicine at Temple University, Department of Anatomy and Cell Biology, Philadelphia, PA 19140, United States
| |
Collapse
|
18
|
Rader EP, Naimo MA, Ensey J, Baker BA. High-intensity stretch-shortening contraction training modifies responsivity of skeletal muscle in old male rats. Exp Gerontol 2018; 104:118-126. [PMID: 29438735 DOI: 10.1016/j.exger.2018.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/25/2018] [Accepted: 02/08/2018] [Indexed: 12/22/2022]
Abstract
Utilization of high-intensity resistance training to counter age-related sarcopenia is currently debated because of the potential for maladaptation when training design is inappropriate. Training design is problematic because the influence of various loading variables (e.g. contraction mode, repetition number, and training frequency) is still not well characterized at old age. To address this in a precisely controlled manner, we developed a rodent model of high-intensity training consisting of maximally-activated stretch-shortening contractions (SSCs), contractions typical during resistance training. With this model, we determined that at old age, high-repetition SSC training (80 SSCs: 8 sets of 10 repetitions) performed frequently (i.e. 3 days per week) for 4.5 weeks induced strength deficits with no muscle mass gain while decreasing frequency to 2 days per week promoted increases in muscle mass and muscle quality (i.e. performance normalized to muscle mass). This finding confirmed the popular notion that decreasing training frequency has a robust effect with age. Meanwhile, the influence of other loading variables remains contentious. The aim of the present study was to assess muscle adaptation following modulation of contraction mode and repetition number during high-intensity SSC training. Muscles of young (3 month old) and old (30 month old) male rats were exposed to 4.5 weeks of low-repetition static training of 4 (i.e. 4 sets of one repetition) isometric (ISO) contractions 3 days per week or a more moderate-repetition dynamic training of 40 SSCs (i.e. 4 sets of 10 repetitions) 3 days per week. For young rats, performance and muscle mass increased regardless of training protocol. For old rats, no muscle mass adaptation was observed for 4 ISO training while 40 SSC training induced muscle mass gain without improvement in muscle quality, an outcome distinct from modulating training frequency. Muscle mass gain for old rats was accompanied by decreased protein levels of tumor necrosis factor alpha, a mediator of age-related chronic inflammatory signaling, to young levels. These findings suggest that while dynamic high-intensity training with a moderate number of repetitions has a limited capacity for altering muscle quality, such training is a viable strategy for countering age-related inflammatory signaling and modifying muscle mass.
Collapse
Affiliation(s)
- Erik P Rader
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States.
| | - Marshall A Naimo
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States; West Virginia University School of Medicine, Division of Exercise Physiology, Morgantown, WV 26506, United States
| | - James Ensey
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States
| | - Brent A Baker
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States
| |
Collapse
|
19
|
Gold JE, Hallman DM, Hellström F, Björklund M, Crenshaw AG, Mathiassen SE, Barbe MF, Ali S. Systematic review of quantitative imaging biomarkers for neck and shoulder musculoskeletal disorders. BMC Musculoskelet Disord 2017; 18:395. [PMID: 28899384 PMCID: PMC5596923 DOI: 10.1186/s12891-017-1694-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 07/24/2017] [Indexed: 01/04/2023] Open
Abstract
Background This study systematically summarizes quantitative imaging biomarker research in non-traumatic neck and shoulder musculoskeletal disorders (MSDs). There were two research questions: 1) Are there quantitative imaging biomarkers associated with the presence of neck and shoulder MSDs?, 2) Are there quantitative imaging biomarkers associated with the severity of neck and shoulder MSDs? Methods PubMed and SCOPUS were used for the literature search. One hundred and twenty-five studies met primary inclusion criteria. Data were extracted from 49 sufficient quality studies. Results Most of the 125 studies were cross-sectional and utilized convenience samples of patients as both cases and controls. Only half controlled for potential confounders via exclusion or in the analysis. Approximately one-third reported response rates. In sufficient quality articles, 82% demonstrated at least one statistically significant association between the MSD(s) and biomarker(s) studied. The literature synthesis suggested that neck muscle size may be decreased in neck pain, and trapezius myalgia and neck/shoulder pain may be associated with reduced vascularity in the trapezius and reduced trapezius oxygen saturation at rest and in response to upper extremity tasks. Reduced vascularity in the supraspinatus tendon may also be a feature in rotator cuff tears. Five of eight studies showed an association between a quantitative imaging marker and MSD severity. Conclusions Although research on quantitative imaging biomarkers is still in a nascent stage, some MSD biomarkers were identified. There are limitations in the articles examined, including possible selection bias and inattention to potentially confounding factors. Recommendations for future studies are provided. Electronic supplementary material The online version of this article (doi:10.1186/s12891-017-1694-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Judith E Gold
- Centre for Musculoskeletal Research, Department of Occupational and Public Health Sciences, University of Gävle, Gävle, Sweden. .,Gold Standard Research Consulting, 830 Montgomery Ave, Bryn Mawr, PA, USA.
| | - David M Hallman
- Centre for Musculoskeletal Research, Department of Occupational and Public Health Sciences, University of Gävle, Gävle, Sweden
| | - Fredrik Hellström
- Centre for Musculoskeletal Research, Department of Occupational and Public Health Sciences, University of Gävle, Gävle, Sweden
| | - Martin Björklund
- Centre for Musculoskeletal Research, Department of Occupational and Public Health Sciences, University of Gävle, Gävle, Sweden.,Department of Community Medicine and Rehabilitation, Physiotherapy, Umeå University, Umeå, Sweden
| | - Albert G Crenshaw
- Centre for Musculoskeletal Research, Department of Occupational and Public Health Sciences, University of Gävle, Gävle, Sweden
| | - Svend Erik Mathiassen
- Centre for Musculoskeletal Research, Department of Occupational and Public Health Sciences, University of Gävle, Gävle, Sweden
| | - Mary F Barbe
- Department of Anatomy and Cell Biology, Temple University Medical School, Philadelphia, PA, USA
| | - Sayed Ali
- Department of Radiology, Temple University Medical School, Philadelphia, PA, USA
| |
Collapse
|
20
|
Effectiveness of conservative interventions for sickness and pain behaviors induced by a high repetition high force upper extremity task. BMC Neurosci 2017; 18:36. [PMID: 28356066 PMCID: PMC5371184 DOI: 10.1186/s12868-017-0354-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 03/16/2017] [Indexed: 11/29/2022] Open
Abstract
Background Systemic inflammation is known to induce sickness behaviors, including decreased social interaction and pain. We have reported increased serum inflammatory cytokines in a rat model of repetitive strain injury (rats perform an upper extremity reaching task for prolonged periods). Here, we sought to determine if sickness behaviors are induced in this model and the effectiveness of conservative treatments. Methods Experimental rats underwent initial training to learn a high force reaching task (10 min/day, 5 days/week for 6 weeks), with or without ibuprofen treatment (TRHF vs. TRHF + IBU rats). Subsets of trained animals went on to perform a high repetition high force (HRHF) task for 6 or 12 weeks (2 h/day, 3 days/week) without treatment, or received two secondary interventions: ibuprofen (HRHF + IBU) or a move to a lower demand low repetition low force task (HRHF-to-LRLF), beginning in task week 5. Mixed-effects models with repeated measures assays were used to assay duration of social interaction, aggression, forepaw withdrawal thresholds and reach performance abilities. One-way and two-way ANOVAs were used to assay tissue responses. Corrections for multiple comparisons were made. Results TRHF + IBU rats did not develop behavioral declines or systemic increases in IL-1beta and IL-6, observed in untreated TRHF rats. Untreated HRHF rats showed social interaction declines, difficulties performing the operant task and forepaw mechanical allodynia. Untreated HRHF rats also had increased serum levels of several inflammatory cytokines and chemokines, neuroinflammatory responses (e.g., increased TNFalpha) in the brain, median nerve and spinal cord, and Substance P and neurokinin 1 immunoexpression in the spinal cord. HRHF + IBU and HRHF-to-LRLF rats showed improved social interaction and reduced inflammatory serum, nerve and brain changes. However, neither secondary treatment rescued HRHF-task induced forepaw allodynia, or completely attenuated task performance declines or spinal cord responses. Conclusions These results suggest that inflammatory mechanisms induced by prolonged performance of high physical demand tasks mediate the development of social interaction declines and aggression. However, persistent spinal cord sensitization was associated with persistent behavioral indices of discomfort, despite use of conservative secondary interventions indicating the need for prevention or more effective interventions. Electronic supplementary material The online version of this article (doi:10.1186/s12868-017-0354-3) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
Chen R, Schwander M, Barbe MF, Chan MM. Ossicular Bone Damage and Hearing Loss in Rheumatoid Arthritis: A Correlated Functional and High Resolution Morphometric Study in Collagen-Induced Arthritic Mice. PLoS One 2016; 11:e0164078. [PMID: 27690307 PMCID: PMC5045188 DOI: 10.1371/journal.pone.0164078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/19/2016] [Indexed: 01/13/2023] Open
Abstract
Globally, a body of comparative case-control studies suggests that rheumatoid arthritis (RA) patients are more prone to developing hearing loss (HL). However, experimental evidence that supports this hypothesis is still lacking because the human auditory organ is not readily accessible. The aim of this study was to determine the association between bone damage to the ossicles of the middle ear and HL, using a widely accepted murine model of collagen-induced arthritis (RA mice). Diarthrodial joints in the middle ear were examined with microcomputer tomography (microCT), and hearing function was assessed by auditory brainstem response (ABR). RA mice exhibited significantly decreased hearing sensitivity compared to age-matched controls. Additionally, a significant narrowing of the incudostapedial joint space and an increase in the porosity of the stapes were observed. The absolute latencies of all ABR waves were prolonged, but mean interpeak latencies were not statistically different. The observed bone defects in the middle ear that were accompanied by changes in ABR responses were consistent with conductive HL. This combination suggests that conductive impairment is at least part of the etiology of RA-induced HL in a murine model. Whether the inner ear sustains bone erosion or other pathology, and whether the cochlear nerve sustains pathology await subsequent studies. Considering the fact that certain anti-inflammatories are ototoxic in high doses, monitoring RA patients’ auditory function is advisable as part of the effort to ensure their well-being.
Collapse
Affiliation(s)
- Rensa Chen
- Department of Microbiology and Immunology, Lewis Katz School of Medicine-Temple University, Philadelphia, PA, 19140, United States of America
| | - Martin Schwander
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, United States of America
| | - Mary F. Barbe
- Department of Anatomy, Lewis Katz School of Medicine-Temple University, Philadelphia, PA, 19140, United States of America
| | - Marion M. Chan
- Department of Microbiology and Immunology, Lewis Katz School of Medicine-Temple University, Philadelphia, PA, 19140, United States of America
- * E-mail:
| |
Collapse
|
22
|
Barbe MF, Xin DL, Hadrévi J, Elliott ME, Barr-Gillespie AE. Sickness behaviors (reduced social interaction and pain behaviors) are linked to inflammatory mechanisms in a rat model of work-related musculoskeletal disorders. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/1541931213601225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We sought to determine if sickness behaviors (decreased social interaction and pain) are induced in a rat model of work-related overuse and effectiveness of anti-inflammatory treatments. Rats first trained to learn a high force reaching task (15 min/week day for 6 wks), with subsets treated prophylactically with ibuprofen or anti-TNFalpha. Others performed a high repetition high force (HRHF) task for 6 or 12 weeks (2 hrs/day, 3 days/wk) untreated, or with ibuprofen, anti-TNFalpha or rest treatments beginning task week 5. Untreated HRHF rats had increased IL-1beta, IL-6 and TNFalpha in serum and brain, increased Substance P in spinal cord, decreased social interaction and increased forepaw allodynia. Secondary anti-inflammatory treatments attenuated social interaction and brain changes, but not allodynia or spinal cord changes; rest provided partial attenuation. Prophylactic treatments prevented all changes. Thus, inflammatory mechanisms mediate the development of sickness behaviors induced by work-related overuse, but not maintenance of allodynia.
Collapse
Affiliation(s)
- MF Barbe
- Dept of Anatomy and Cell Biology, Temple Univ School of Medicine, Philadelphia, PA, USA
| | - DL Xin
- Dept of Surgery, Univ of Pennsylvania, Philadelphia
| | - J Hadrévi
- Dept of Public Health & Clinical Medicine, Occupational and Environmental Medicine, Umeå Univ, Umeå, Sweden
| | - ME Elliott
- Dept of Neurosurgery, Thomas Jefferson Univ, Philadelphia
| | | |
Collapse
|
23
|
Rader EP, Naimo MA, Layner KN, Triscuit AM, Chetlin RD, Ensey J, Baker BA. Enhancement of Skeletal Muscle in Aged Rats Following High-Intensity Stretch-Shortening Contraction Training. Rejuvenation Res 2016; 20:93-102. [PMID: 27378453 DOI: 10.1089/rej.2016.1816] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Exercise is the most accessible, efficacious, and multifactorial intervention to improve health and treat chronic disease. High-intensity resistance exercise, in particular, also maximizes skeletal muscle size and strength-outcomes crucial at advanced age. However, such training is capable of inducing muscle maladaptation when misapplied at old age. Therefore, characterization of parameters (e.g., mode and frequency) that foster adaptation is an active research area. To address this issue, we utilized a rodent model that allowed training at maximal intensity in terms of muscle activation and tested the hypothesis that muscles of old rats adapt to stretch-shortening contraction (SSC) training, provided the training frequency is sufficiently low. At termination of training, normalized muscle mass (i.e., muscle mass divided by tibia length) and muscle quality (isometric force divided by normalized muscle mass) were determined. For young rats, normalized muscle mass increased by ∼20% regardless of training frequency. No difference was observed for muscle quality values after 2 days versus 3 days per week training (0.65 ± 0.09 N/mg/mm vs. 0.59 ± 0.05 N/mg/mm, respectively). For old rats following 3 days per week training, normalized muscle mass was unaltered and muscle quality was 30% lower than young levels. Following 2 days per week training at old age, normalized muscle mass increased by 17% and muscle quality was restored to young levels. To investigate this enhanced response, oxidative stress was assessed by lipid peroxidation quantification. For young rats, lipid peroxidation levels were unaltered by training. With aging, baseline levels of lipid peroxidation increased by 1.5-fold. For old rats, only 2 days per week training decreased lipid peroxidation to levels indistinguishable from young values. These results imply that, appropriately scheduled high-intensity SSC training at old age is capable of restoring muscle to a younger phenotype in terms of lipid peroxidation levels and muscle quality.
Collapse
Affiliation(s)
- Erik P Rader
- 1 Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health , Morgantown, West Virginia
| | - Marshall A Naimo
- 1 Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health , Morgantown, West Virginia.,2 West Virginia School of Medicine , Division of Exercise Physiology, Morgantown, West Virginia
| | - Kayla N Layner
- 1 Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health , Morgantown, West Virginia
| | - Alyssa M Triscuit
- 1 Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health , Morgantown, West Virginia
| | - Robert D Chetlin
- 1 Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health , Morgantown, West Virginia.,3 Department of Sports Medicine, Mercyhurst University , Erie, Pennsylvania
| | - James Ensey
- 1 Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health , Morgantown, West Virginia
| | - Brent A Baker
- 1 Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health , Morgantown, West Virginia
| |
Collapse
|