1
|
Tai GJ, Ma YJ, Feng JL, Li JP, Qiu S, Yu QQ, Liu RH, Wankumbu SC, Wang X, Li XX, Xu M. NLRP3 inflammasome-mediated premature immunosenescence drives diabetic vascular aging dependent on the induction of perivascular adipose tissue dysfunction. Cardiovasc Res 2025; 121:77-96. [PMID: 38643484 DOI: 10.1093/cvr/cvae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/29/2023] [Accepted: 02/06/2024] [Indexed: 04/23/2024] Open
Abstract
AIMS The vascular aging process accelerated by type 2 diabetes mellitus (T2DM) is responsible for the elevated risk of associated cardiovascular diseases. Metabolic disorder-induced immune senescence has been implicated in multi-organ/tissue damage. Herein, we sought to determine the role of immunosenescence in diabetic vascular aging and to investigate the underlying mechanisms. METHODS AND RESULTS Aging hallmarks of the immune system appear prior to the vasculature in streptozotocin (STZ)/high-fat diet (HFD)-induced T2DM mice or db/db mice. Transplantation of aged splenocytes or diabetic splenocytes into young mice triggered vascular senescence and injury compared with normal control splenocyte transfer. RNA sequencing profile and validation in immune tissues revealed that the toll-like receptor 4-nuclear factor-kappa B-NLRP3 axis might be the mediator of diabetic premature immunosenescence. The absence of Nlrp3 attenuated immune senescence and vascular aging during T2DM. Importantly, senescent immune cells, particularly T cells, provoked perivascular adipose tissue (PVAT) dysfunction and alternations in its secretome, which in turn impair vascular biology. In addition, senescent immune cells may uniquely affect vasoconstriction via influencing PVAT. Lastly, rapamycin alleviated diabetic immune senescence and vascular aging, which may be partly due to NLRP3 signalling inhibition. CONCLUSION These results indicated that NLRP3 inflammasome-mediated immunosenescence precedes and drives diabetic vascular aging. The contribution of senescent immune cells to vascular aging is a combined effect of their direct effects and induction of PVAT dysfunction, the latter of which can uniquely affect vasoconstriction. We further demonstrated that infiltration of senescent T cells in PVAT was increased and associated with PVAT secretome alterations. Our findings suggest that blocking the NLRP3 pathway may prevent early immunosenescence and thus mitigate diabetic vascular aging and damage, and targeting senescent T cells or PVAT might also be the potential therapeutic approach.
Collapse
MESH Headings
- Animals
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- NLR Family, Pyrin Domain-Containing 3 Protein/deficiency
- Inflammasomes/metabolism
- Inflammasomes/genetics
- Inflammasomes/immunology
- Signal Transduction
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/immunology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Experimental/pathology
- Male
- Adipose Tissue/metabolism
- Adipose Tissue/immunology
- Adipose Tissue/physiopathology
- Adipose Tissue/pathology
- Mice, Inbred C57BL
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/immunology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/physiopathology
- Diabetes Mellitus, Type 2/pathology
- Immunosenescence
- Diabetic Angiopathies/metabolism
- Diabetic Angiopathies/immunology
- Diabetic Angiopathies/physiopathology
- Diabetic Angiopathies/genetics
- Diabetic Angiopathies/pathology
- Diabetic Angiopathies/prevention & control
- Cellular Senescence
- Mice, Knockout
- Vasoconstriction
- T-Lymphocytes/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- T-Lymphocytes/pathology
- NF-kappa B/metabolism
- Mice
- Spleen/metabolism
- Spleen/transplantation
- Toll-Like Receptor 4
Collapse
Affiliation(s)
- Guang-Jie Tai
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong jia Lane, Nanjing 210009, China
| | - Yan-Jie Ma
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong jia Lane, Nanjing 210009, China
| | - Jun-Lin Feng
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong jia Lane, Nanjing 210009, China
| | - Jia-Peng Li
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong jia Lane, Nanjing 210009, China
| | - Shu Qiu
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong jia Lane, Nanjing 210009, China
| | - Qing-Qing Yu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Ren-Hua Liu
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong jia Lane, Nanjing 210009, China
| | - Silumbwe Ceaser Wankumbu
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong jia Lane, Nanjing 210009, China
| | - Xin Wang
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Xiao-Xue Li
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Dingjiaqiao, Nanjing 210009, China
| | - Ming Xu
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong jia Lane, Nanjing 210009, China
| |
Collapse
|
2
|
Keane J, Longhi MP. Perivascular Adipose Tissue Niches for Modulating Immune Cell Function. Arterioscler Thromb Vasc Biol 2025. [PMID: 40207368 DOI: 10.1161/atvbaha.124.321696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Perivascular adipose tissue is a unique fat depot surrounding most blood vessels with a significant role in vascular function. While adipocytes compose the vast majority of the perivascular adipose tissue by area, they only account for around 20% of the total cell number. Most of the cellular component belongs to resident immune cells, with macrophages and lymphoid cells representing ≈30% and 15% of total cells, respectively. Recently, new evidence has shown that aside from their well-known role in modulating the inflammatory tone, immune cells in perivascular adipose tissue can control adipogenesis, vessel integrity, and vascular contractility through complex cellular interactions. These interactions are spatially coordinated and influenced by the environmental state. Here, we review the mechanism by which immune cells regulate perivascular adipose tissue function with a special focus on the spatial organization of immune cells and their heterotypic interactions, supporting tissue function in health and disease.
Collapse
Affiliation(s)
- Jack Keane
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - M Paula Longhi
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| |
Collapse
|
3
|
Buckley DJ, Sharma S, Joseph B, Fayyaz AH, Canizales A, Terrebonne KJ, Trott DW. Early life thymectomy induces arterial dysfunction in mice. GeroScience 2024; 46:1035-1051. [PMID: 37354388 PMCID: PMC10828352 DOI: 10.1007/s11357-023-00853-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023] Open
Abstract
Aging of the arteries is characterized by increased large artery stiffness and impaired endothelium-dependent dilation. We have previously shown that in old (22-24 month) mice T cells accumulate within aorta and mesentery. We have also shown that pharmacologic and genetic deletion of these T cells ameliorates age-related arterial dysfunction. These data indicate that T cells contribute to arterial aging; however, it is unknown if aged T cells alone can induce arterial dysfunction in otherwise young mice. To produce an aged-like T cell phenotype, mice were thymectomized at three-weeks of age or were left with their thymus intact. At 9 months of age, thymectomized mice exhibited greater proportions of both CD4 + and CD8 + memory T cells compared to controls in the blood. Similar changes were observed in the T cells accumulating in the aorta and mesentery. We also observed greater numbers of proinflammatory cytokine producing T cells in the aorta and mesentery. The phenotypic T cell changes in the blood, aorta and mesentery of thymectomized mice were similar to those observed when we compared young (4-6 month) to old thymus intact mice. Along with these alterations, compared to controls, thymectomized mice exhibited augmented large artery stiffness and greater aortic collagen deposition as well as impaired mesenteric artery endothelium dependent dilation due to blunted nitric oxide bioavailability. These results indicate that early life thymectomy results in arterial dysfunction and suggest that an aged-like T cell phenotype alone is sufficient to induce arterial dysfunction in otherwise young mice.
Collapse
Affiliation(s)
- David J Buckley
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, 655 W. Mitchell St., Arlington, TX, 76010, USA
| | - Sunita Sharma
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, 655 W. Mitchell St., Arlington, TX, 76010, USA
| | - Blessy Joseph
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, 655 W. Mitchell St., Arlington, TX, 76010, USA
| | - Alia H Fayyaz
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, 655 W. Mitchell St., Arlington, TX, 76010, USA
| | - Alexandra Canizales
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, 655 W. Mitchell St., Arlington, TX, 76010, USA
| | - Konner J Terrebonne
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, 655 W. Mitchell St., Arlington, TX, 76010, USA
| | - Daniel W Trott
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, 655 W. Mitchell St., Arlington, TX, 76010, USA.
| |
Collapse
|
4
|
Wang L, Wang R, Yu X, Shi Y, Li S, Yuan Y. Effects of Calorie Restriction and Fasting on Macrophage: Potential Impact on Disease Outcomes? Mol Nutr Food Res 2023; 67:e2300380. [PMID: 37771201 DOI: 10.1002/mnfr.202300380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/29/2023] [Indexed: 09/30/2023]
Abstract
Energy restriction, including calorie restriction and fasting, has garnered significant attention for its potential therapeutic effects on a range of chronic diseases (such as diabetes, obesity, and cancer) and aging. Since macrophages are critical players in many diseases, their response to energy restriction may impact disease outcomes. However, the diverse metabolic patterns and functions of macrophages can lead to variability in the effects of energy restriction on macrophages across different tissues and disease states. This review outlines the effects of energy restriction on macrophages in several diseases, offering valuable guidance for future studies and insights into the clinical applications of calorie restriction and fasting.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 280 Mohe Road, Shanghai, 201999, China
| | - Rong Wang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 280 Mohe Road, Shanghai, 201999, China
| | - Xiaoyan Yu
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 280 Mohe Road, Shanghai, 201999, China
| | - Yuhuan Shi
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 280 Mohe Road, Shanghai, 201999, China
| | - Shengnan Li
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 280 Mohe Road, Shanghai, 201999, China
| | - Yongfang Yuan
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 280 Mohe Road, Shanghai, 201999, China
| |
Collapse
|
5
|
Krammer C, Yang B, Reichl S, Besson-Girard S, Ji H, Bolini V, Schulte C, Noels H, Schlepckow K, Jocher G, Werner G, Willem M, El Bounkari O, Kapurniotu A, Gokce O, Weber C, Mohanta S, Bernhagen J. Pathways linking aging and atheroprotection in Mif-deficient atherosclerotic mice. FASEB J 2023; 37:e22752. [PMID: 36794636 DOI: 10.1096/fj.202200056r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 11/30/2022] [Accepted: 12/21/2022] [Indexed: 02/17/2023]
Abstract
Atherosclerosis is a chronic inflammatory condition of our arteries and the main underlying pathology of myocardial infarction and stroke. The pathogenesis is age-dependent, but the links between disease progression, age, and atherogenic cytokines and chemokines are incompletely understood. Here, we studied the chemokine-like inflammatory cytokine macrophage migration inhibitory factor (MIF) in atherogenic Apoe-/- mice across different stages of aging and cholesterol-rich high-fat diet (HFD). MIF promotes atherosclerosis by mediating leukocyte recruitment, lesional inflammation, and suppressing atheroprotective B cells. However, links between MIF and advanced atherosclerosis across aging have not been systematically explored. We compared effects of global Mif-gene deficiency in 30-, 42-, and 48-week-old Apoe-/- mice on HFD for 24, 36, or 42 weeks, respectively, and in 52-week-old mice on a 6-week HFD. Mif-deficient mice exhibited reduced atherosclerotic lesions in the 30/24- and 42/36-week-old groups, but atheroprotection, which in the applied Apoe-/- model was limited to lesions in the brachiocephalic artery and abdominal aorta, was not detected in the 48/42- and 52/6-week-old groups. This suggested that atheroprotection afforded by global Mif-gene deletion differs across aging stages and atherogenic diet duration. To characterize this phenotype and study the underlying mechanisms, we determined immune cells in the periphery and vascular lesions, obtained a multiplex cytokine/chemokine profile, and compared the transcriptome between the age-related phenotypes. We found that Mif deficiency promotes lesional macrophage and T-cell counts in younger but not aged mice, with subgroup analysis pointing toward a role for Trem2+ macrophages. The transcriptomic analysis identified pronounced MIF- and aging-dependent changes in pathways predominantly related to lipid synthesis and metabolism, lipid storage, and brown fat cell differentiation, as well as immunity, and atherosclerosis-relevant enriched genes such as Plin1, Ldlr, Cpne7, or Il34, hinting toward effects on lesional lipids, foamy macrophages, and immune cells. Moreover, Mif-deficient aged mice exhibited a distinct plasma cytokine/chemokine signature consistent with the notion that mediators known to drive inflamm'aging are either not downregulated or even upregulated in Mif-deficient aged mice compared with the corresponding younger ones. Lastly, Mif deficiency favored formation of lymphocyte-rich peri-adventitial leukocyte clusters. While the causative contributions of these mechanistic pillars and their interplay will be subject to future scrutiny, our study suggests that atheroprotection due to global Mif-gene deficiency in atherogenic Apoe-/- mice is reduced upon advanced aging and identifies previously unrecognized cellular and molecular targets that could explain this phenotype shift. These observations enhance our understanding of inflamm'aging and MIF pathways in atherosclerosis and may have implications for translational MIF-directed strategies.
Collapse
Affiliation(s)
- Christine Krammer
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Bishan Yang
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Sabrina Reichl
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Simon Besson-Girard
- Systems Neuroscience Laboratory, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Munich, Germany.,Graduate School of Systemic Neurosciences (GSN), LMU Munich, Planegg-Martinsried, Germany
| | - Hao Ji
- Systems Neuroscience Laboratory, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Munich, Germany
| | - Verena Bolini
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Corinna Schulte
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Rhenish-Westphalian Technical University (RWTH) Aachen University, Aachen, Germany
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Rhenish-Westphalian Technical University (RWTH) Aachen University, Aachen, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Kai Schlepckow
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Georg Jocher
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Georg Werner
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael Willem
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Omar El Bounkari
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Aphrodite Kapurniotu
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technical University of Munich (TUM), Munich, Germany
| | - Ozgun Gokce
- Systems Neuroscience Laboratory, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Christian Weber
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Institute for Cardiovascular Prevention, LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany.,Munich Heart Alliance, Munich, Germany
| | - Sarajo Mohanta
- Institute for Cardiovascular Prevention, LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Jürgen Bernhagen
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Munich Heart Alliance, Munich, Germany
| |
Collapse
|
6
|
Islam MT, Tuday E, Allen S, Kim J, Trott DW, Holland WL, Donato AJ, Lesniewski LA. Senolytic drugs, dasatinib and quercetin, attenuate adipose tissue inflammation, and ameliorate metabolic function in old age. Aging Cell 2023; 22:e13767. [PMID: 36637079 PMCID: PMC9924942 DOI: 10.1111/acel.13767] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 01/14/2023] Open
Abstract
Aging results in an elevated burden of senescent cells, senescence-associated secretory phenotype (SASP), and tissue infiltration of immune cells contributing to chronic low-grade inflammation and a host of age-related diseases. Recent evidence suggests that the clearance of senescent cells alleviates chronic inflammation and its associated dysfunction and diseases. However, the effect of this intervention on metabolic function in old age remains poorly understood. Here, we demonstrate that dasatinib and quercetin (D&Q) have senolytic effects, reducing age-related increase in senescence-associated β-galactosidase, expression of p16 and p21 gene and P16 protein in perigonadal white adipose tissue (pgWAT; all p ≤ 0.04). This treatment also suppressed age-related increase in the expression of a subset of pro-inflammatory SASP genes (mcp1, tnf-α, il-1α, il-1β, il-6, cxcl2, and cxcl10), crown-like structures, abundance of T cells and macrophages in pgWAT (all p ≤ 0.04). In the liver and skeletal muscle, we did not find a robust effect of D&Q on senescence and inflammatory SASP markers. Although we did not observe an age-related difference in glucose tolerance, D&Q treatment improved fasting blood glucose (p = 0.001) and glucose tolerance (p = 0.007) in old mice that was concomitant with lower hepatic gluconeogenesis. Additionally, D&Q improved insulin-stimulated suppression of plasma NEFAs (p = 0.01), reduced fed and fasted plasma triglycerides (both p ≤ 0.04), and improved systemic lipid tolerance (p = 0.006). Collectively, results from this study suggest that D&Q attenuates adipose tissue inflammation and improves systemic metabolic function in old age. These findings have implications for the development of therapeutic agents to combat metabolic dysfunction and diseases in old age.
Collapse
Affiliation(s)
- Md Torikul Islam
- Department of Nutrition and Integrative PhysiologyThe University of UtahSalt Lake CityUtahUSA
| | - Eric Tuday
- Geriatric Research Education and Clinical CenterVeteran's Affairs Medical Center‐Salt Lake CitySalt Lake CityUtahUSA
- Division of Cardiology, Department of Internal MedicineThe University of Utah School of MedicineSalt Lake CityUtahUSA
| | - Shanena Allen
- Geriatric Research Education and Clinical CenterVeteran's Affairs Medical Center‐Salt Lake CitySalt Lake CityUtahUSA
| | - John Kim
- Geriatric Research Education and Clinical CenterVeteran's Affairs Medical Center‐Salt Lake CitySalt Lake CityUtahUSA
| | - Daniel W. Trott
- Department of KinesiologyThe University of Texas at ArlingtonArlingtonTexasUSA
| | - William L. Holland
- Department of Nutrition and Integrative PhysiologyThe University of UtahSalt Lake CityUtahUSA
| | - Anthony J. Donato
- Department of Nutrition and Integrative PhysiologyThe University of UtahSalt Lake CityUtahUSA
- Geriatric Research Education and Clinical CenterVeteran's Affairs Medical Center‐Salt Lake CitySalt Lake CityUtahUSA
- Division of Geriatrics, Department of Internal MedicineThe University of Utah School of MedicineSalt Lake CityUtahUSA
- Department of BiochemistryThe University of UtahSalt Lake CityUtahUSA
- Nora Eccles Harrison Cardiovascular Research and Training InstituteThe University of UtahSalt Lake CityUtahUSA
| | - Lisa A. Lesniewski
- Department of Nutrition and Integrative PhysiologyThe University of UtahSalt Lake CityUtahUSA
- Geriatric Research Education and Clinical CenterVeteran's Affairs Medical Center‐Salt Lake CitySalt Lake CityUtahUSA
- Division of Geriatrics, Department of Internal MedicineThe University of Utah School of MedicineSalt Lake CityUtahUSA
- Nora Eccles Harrison Cardiovascular Research and Training InstituteThe University of UtahSalt Lake CityUtahUSA
| |
Collapse
|
7
|
Milenkovic D, Rodriguez‐Mateos A, Lucosz M, Istas G, Declerck K, Sansone R, Deenen R, Köhrer K, Corral‐Jara KF, Altschmied J, Haendeler J, Kelm M, Berghe WV, Heiss C. Flavanol Consumption in Healthy Men Preserves Integrity of Immunological-Endothelial Barrier Cell Functions: Nutri(epi)genomic Analysis. Mol Nutr Food Res 2022; 66:e2100991. [PMID: 35094491 PMCID: PMC9787825 DOI: 10.1002/mnfr.202100991] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/16/2022] [Indexed: 12/30/2022]
Abstract
SCOPE While cocoa flavanol (CF) consumption improves cardiovascular risk biomarkers, molecular mechanisms underlying their protective effects are not understood. OBJECTIVE To investigate nutri(epi)genomic effects of CF and identify regulatory networks potential mediating vascular health benefits. METHODS AND RESULTS Twenty healthy middle-aged men consume CF (bi-daily 450 mg) or control drinks for 1 month. Microarray analysis identifies 2235 differentially expressed genes (DEG) involved in processes regulating immune response, cell adhesion, or cytoskeleton organization. Distinct patterns of DEG correlate with CF-related changes in endothelial function, arterial stiffness, and blood pressure. DEG profile negatively correlates with expression profiles of cardiovascular disease patients. CF modulated DNA methylation profile of genes implicates in cell adhesion, actin cytoskeleton organization, or cell signaling. In silico docking analyses indicate that CF metabolites have the potential of binding to cell signaling proteins and transcription factors. Incubation of plasma obtained after CF consumption decrease monocyte to endothelial adhesion and dose-dependently increase nitric oxide-dependent chemotaxis of circulating angiogenic cells further validating the biological functions of CF metabolites. CONCLUSION In healthy humans, CF consumption may mediate vascular protective effects by modulating gene expression and DNA methylation towards a cardiovascular protective effect, in agreement with clinical results, by preserving integrity of immunological-endothelial barrier functions.
Collapse
Affiliation(s)
- Dragan Milenkovic
- Department of NutritionUniversity of California DavisDavisCA95616USA
- INRAEUNHUniversité Clermont AuvergneClermont‐FerrandF‐63000France
| | - Ana Rodriguez‐Mateos
- Division of CardiologyPulmonology, and Vascular MedicineMedical FacultyUniversity Hospital DüsseldorfDüsseldorfGermany
- Department of Nutritional SciencesSchool of Life Course and Population SciencesFaculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Margarete Lucosz
- Division of CardiologyPulmonology, and Vascular MedicineMedical FacultyUniversity Hospital DüsseldorfDüsseldorfGermany
| | - Geoffrey Istas
- Division of CardiologyPulmonology, and Vascular MedicineMedical FacultyUniversity Hospital DüsseldorfDüsseldorfGermany
- Department of Nutritional SciencesSchool of Life Course and Population SciencesFaculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Ken Declerck
- PPESDepartment of Biomedical SciencesUniversity of Antwerp (UA)WilrijkBelgium
| | - Roberto Sansone
- Division of CardiologyPulmonology, and Vascular MedicineMedical FacultyUniversity Hospital DüsseldorfDüsseldorfGermany
| | - René Deenen
- Biological and Medical Research Center (BMFZ)Heinrich Heine UniversityDüsseldorfGermany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ)Heinrich Heine UniversityDüsseldorfGermany
| | | | - Joachim Altschmied
- Environmentally‐induced Cardiovascular DegenerationClinical Chemistry and Laboratory DiagnosticsMedical FacultyUniversity Hospital and Heinrich‐Heine UniversityDüsseldorfGermany
- IUF‐Leibniz Research Institute for Environmental MedicineDüsseldorfGermany
| | - Judith Haendeler
- Environmentally‐induced Cardiovascular DegenerationClinical Chemistry and Laboratory DiagnosticsMedical FacultyUniversity Hospital and Heinrich‐Heine UniversityDüsseldorfGermany
| | - Malte Kelm
- Division of CardiologyPulmonology, and Vascular MedicineMedical FacultyUniversity Hospital DüsseldorfDüsseldorfGermany
| | - Wim Vanden Berghe
- PPESDepartment of Biomedical SciencesUniversity of Antwerp (UA)WilrijkBelgium
| | - Christian Heiss
- Division of CardiologyPulmonology, and Vascular MedicineMedical FacultyUniversity Hospital DüsseldorfDüsseldorfGermany
- Clinical Medicine SectionDepartment of Clinical and Experimental MedicineFaculty of Health and Medical SciencesUniversity of SurreyGuildfordUK
- Department of Vascular MedicineSurrey and Sussex NHS Healthcare TrustEast Surrey HospitalRedhillUK
| |
Collapse
|
8
|
Alharbi KS, Singh Y, Afzal O, Alfawaz Altamimi AS, Kazmi I, Al-Abbasi FA, Alzarea SI, Chellappan DK, Singh SK, Dua K, Gupta G. Molecular explanation of Wnt/βcatenin antagonist pyrvinium mediated calcium equilibrium changes in aging cardiovascular disorders. Mol Biol Rep 2022; 49:11101-11111. [DOI: 10.1007/s11033-022-07863-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/10/2022] [Accepted: 08/11/2022] [Indexed: 10/14/2022]
|
9
|
Mammoto A, Matus K, Mammoto T. Extracellular Matrix in Aging Aorta. Front Cell Dev Biol 2022; 10:822561. [PMID: 35265616 PMCID: PMC8898904 DOI: 10.3389/fcell.2022.822561] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/07/2022] [Indexed: 12/11/2022] Open
Abstract
The aging population is booming all over the world and arterial aging causes various age-associated pathologies such as cardiovascular diseases (CVDs). The aorta is the largest elastic artery, and transforms pulsatile flow generated by the left ventricle into steady flow to maintain circulation in distal tissues and organs. Age-associated structural and functional changes in the aortic wall such as dilation, tortuousness, stiffening and losing elasticity hamper stable peripheral circulation, lead to tissue and organ dysfunctions in aged people. The extracellular matrix (ECM) is a three-dimensional network of macromolecules produced by resident cells. The composition and organization of key ECM components determine the structure-function relationships of the aorta and therefore maintaining their homeostasis is critical for a healthy performance. Age-associated remodeling of the ECM structural components, including fragmentation of elastic fibers and excessive deposition and crosslinking of collagens, is a hallmark of aging and leads to functional stiffening of the aorta. In this mini review, we discuss age-associated alterations of the ECM in the aortic wall and shed light on how understanding the mechanisms of aortic aging can lead to the development of efficient strategy for aortic pathologies and CVDs.
Collapse
Affiliation(s)
- Akiko Mammoto
- Department of Pediatrics, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology and Anatomy, Milwaukee, WI, United States
- *Correspondence: Akiko Mammoto, ; Tadanori Mammoto,
| | - Kienna Matus
- Department of Pediatrics, Milwaukee, WI, United States
| | - Tadanori Mammoto
- Department of Pediatrics, Milwaukee, WI, United States
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
- *Correspondence: Akiko Mammoto, ; Tadanori Mammoto,
| |
Collapse
|
10
|
Kozakova M, Palombo C. Vascular Ageing and Aerobic Exercise. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10666. [PMID: 34682413 PMCID: PMC8535583 DOI: 10.3390/ijerph182010666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022]
Abstract
Impairment of vascular function, in particular endothelial dysfunction and large elastic artery stiffening, represents a major link between ageing and cardiovascular risk. Clinical and experimental studies identified numerous mechanisms responsible for age-related decline of endothelial function and arterial compliance. Since most of these mechanisms are related to oxidative stress or low-grade inflammation, strategies that suppress oxidative stress and inflammation could be effective for preventing age-related changes in arterial function. Indeed, aerobic physical activity, which has been shown to improve intracellular redox balance and mitochondrial health and reduce levels of systemic inflammatory markers, also improves endothelial function and arterial distensibility and reduces risk of cardiovascular diseases. The present paper provides a brief overview of processes underlying age-related changes in arterial function, as well as the mechanisms through which aerobic exercise might prevent or interrupt these processes, and thus attenuate vascular ageing.
Collapse
Affiliation(s)
- Michaela Kozakova
- Department of Clinical and Experimental Medicine, University of Pisa, 56124 Pisa, Italy;
| | - Carlo Palombo
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
11
|
Trott DW, Machin DR, Phuong TTT, Adeyemo AO, Bloom SI, Bramwell RC, Sorensen ES, Lesniewski LA, Donato AJ. T cells mediate cell non-autonomous arterial ageing in mice. J Physiol 2021; 599:3973-3991. [PMID: 34164826 PMCID: PMC8425389 DOI: 10.1113/jp281698] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/21/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Increased large artery stiffness and impaired endothelium-dependent dilatation occur with advanced age. We sought to determine whether T cells mechanistically contribute to age-related arterial dysfunction. We found that old mice exhibited greater proinflammatory T cell accumulation around both the aorta and mesenteric arteries. Pharmacologic depletion or genetic deletion of T cells in old mice resulted in ameliorated large artery stiffness and greater endothelium-dependent dilatation compared with mice with T cells intact. ABSTRACT Ageing of the arteries is characterized by increased large artery stiffness and impaired endothelium-dependent dilatation. T cells contribute to hypertension in acute rodent models but whether they contribute to chronic age-related arterial dysfunction is unknown. To determine whether T cells directly mediate age-related arterial dysfunction, we examined large elastic artery and resistance artery function in young (4-6 months) and old (22-24 months) wild-type mice treated with anti-CD3 F(ab'2) fragments to deplete T cells (150 μg, i.p. every 7 days for 28 days) or isotype control fragments. Old mice exhibited greater numbers of T cells in both aorta and mesenteric vasculature when compared with young mice. Old mice treated with anti-CD3 fragments exhibited depletion of T cells in blood, spleen, aorta and mesenteric vasculature. Old mice also exhibited greater numbers of aortic and mesenteric IFN-γ and TNF-α-producing T cells when compared with young mice. Old control mice exhibited greater large artery stiffness and impaired resistance artery endothelium-dependent dilatation in comparison with young mice. In old mice, large artery stiffness was ameliorated with anti-CD3 treatment. Anti-CD3-treated old mice also exhibited greater endothelium-dependent dilatation than age-matched controls. We also examined arterial function in young and old Rag-1-/- mice, which lack lymphocytes. Rag-1-/- mice exhibited blunted increases in large artery stiffness with age compared with wild-type mice. Old Rag-1-/- mice also exhibited greater endothelium-dependent dilatation compared with old wild-type mice. Collectively, these results demonstrate that T cells play an important role in age-related arterial dysfunction.
Collapse
Affiliation(s)
- Daniel W Trott
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
- Department of Kinesiology, University of Texas at Arlington, Texas, USA
| | - Daniel R Machin
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Tam T T Phuong
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - AdeLola O Adeyemo
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Samuel I Bloom
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA
| | - R Colton Bramwell
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Eric S Sorensen
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Lisa A Lesniewski
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA
- Geriatrics Research Education and Clinical Center, Veteran's Affairs Medical Center, Salt Lake City, Utah, USA
| | - Anthony J Donato
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA
- Geriatrics Research Education and Clinical Center, Veteran's Affairs Medical Center, Salt Lake City, Utah, USA
- Department of Biochemistry, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
12
|
Yan X, Imano N, Tamaki K, Sano M, Shinmura K. The effect of caloric restriction on the increase in senescence-associated T cells and metabolic disorders in aged mice. PLoS One 2021; 16:e0252547. [PMID: 34143796 PMCID: PMC8213184 DOI: 10.1371/journal.pone.0252547] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
Aging is associated with functional decline in the immune system and increases the risk of chronic diseases owing to smoldering inflammation. In the present study, we demonstrated an age-related increase in the accumulation of Programmed Death-1 (PD-1)+ memory-phenotype T cells that are considered “senescence-associated T cells” in both the visceral adipose tissue and spleen. As caloric restriction is an established intervention scientifically proven to exert anti-aging effects and greatly affects physiological and pathophysiological alterations with advanced age, we evaluated the effect of caloric restriction on the increase in this T-cell subpopulation and glucose tolerance in aged mice. Long-term caloric restriction significantly decreased the number of PD-1+ memory-phenotype cluster of differentiation (CD) 4+ and CD8+ T cells in the spleen and visceral adipose tissue, decreased M1-type macrophage accumulation in visceral adipose tissue, and improved insulin resistance in aged mice. Furthermore, the immunological depletion of PD-1+ T cells reduced adipose inflammation and improved insulin resistance in aged mice. Taken together with our previous report, these results indicate that senescence-related T-cell subpopulations are involved in the development of chronic inflammation and insulin resistance in the context of chronological aging and obesity. Thus, long-term caloric restriction and specific deletion of senescence-related T cells are promising interventions to regulate age-related chronic diseases.
Collapse
Affiliation(s)
- Xiaoxiang Yan
- Ruijin Hospital, Institute of Cardiovascular Diseases and Department of Cardiology, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Natsumi Imano
- Department of General Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Kayoko Tamaki
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
- Department of General Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Ken Shinmura
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
- Department of General Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
- * E-mail: ,
| |
Collapse
|
13
|
Trott DW, Islam MT, Buckley DJ, Donato AJ, Dutson T, Sorensen ES, Cai J, Gogulamudi VR, Phuong TTT, Lesniewski LA. T lymphocyte depletion ameliorates age-related metabolic impairments in mice. GeroScience 2021; 43:1331-1347. [PMID: 33893902 PMCID: PMC8190228 DOI: 10.1007/s11357-021-00368-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/15/2021] [Indexed: 10/21/2022] Open
Abstract
Both glucose tolerance and adaptive immune function exhibit significant age-related alterations. The influence of the immune system on obesity-associated glucose intolerance is well characterized; however, whether the immune system contributes to age-related glucose intolerance is not as well understood. Here, we report that advancing age results in an increase in T cell infiltration in the epididymal white adipose tissue (eWAT), liver, and skeletal muscle. Subtype analyses show that both CD4+, CD8+ T cells are greater with advancing age in each of these tissues and that aging results in a blunted CD4 to CD8 ratio. Anti-CD3 F(ab')2 fragments depleted CD4+ and CD8+ cells in eWAT, CD4+ cells only in the liver, and did not deplete quadriceps T cells. In old mice, T cells producing both interferon-γ and tumor necrosis factor-α are accumulated in the eWAT and liver, and a greater proportion of skeletal muscle T cells produced interferon-γ. Aging resulted in increased proportion and numbers of T regulatory cells in eWAT, but not in the liver or muscle. Aging also resulted in greater numbers of eWAT and quadriceps CD206- macrophages and eWAT, liver and quadriceps B cells; neither cell type was altered by anti-CD3 treatment. Anti-CD3 treatment improved glucose tolerance in old mice and was accompanied by improved signaling related to liver and skeletal muscle insulin utilization and decreased gluconeogenesis-related gene expression in the liver. Our findings indicate a critical role of the adaptive immune system in the age-related metabolic dysfunction.
Collapse
Affiliation(s)
- Daniel W Trott
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA
| | - Md Torikul Islam
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - David J Buckley
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA
| | - Anthony J Donato
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
- Geriatrics Research Education and Clinical Center, Veteran's Affairs Medical Center, GRECC Bldg 2 Rm 2D08, 500 Foothill Drive, Salt Lake City, UT, 84148, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Tavia Dutson
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Eric S Sorensen
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Jinjin Cai
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | | | - Tam T T Phuong
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Lisa A Lesniewski
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA.
- Geriatrics Research Education and Clinical Center, Veteran's Affairs Medical Center, GRECC Bldg 2 Rm 2D08, 500 Foothill Drive, Salt Lake City, UT, 84148, USA.
| |
Collapse
|
14
|
Aalkjær C, Nilsson H, De Mey JGR. Sympathetic and Sensory-Motor Nerves in Peripheral Small Arteries. Physiol Rev 2020; 101:495-544. [PMID: 33270533 DOI: 10.1152/physrev.00007.2020] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Small arteries, which play important roles in controlling blood flow, blood pressure, and capillary pressure, are under nervous influence. Their innervation is predominantly sympathetic and sensory motor in nature, and while some arteries are densely innervated, others are only sparsely so. Innervation of small arteries is a key mechanism in regulating vascular resistance. In the second half of the previous century, the physiology and pharmacology of this innervation were very actively investigated. In the past 10-20 yr, the activity in this field was more limited. With this review we highlight what has been learned during recent years with respect to development of small arteries and their innervation, some aspects of excitation-release coupling, interaction between sympathetic and sensory-motor nerves, cross talk between endothelium and vascular nerves, and some aspects of their role in vascular inflammation and hypertension. We also highlight what remains to be investigated to further increase our understanding of this fundamental aspect of vascular physiology.
Collapse
Affiliation(s)
| | - Holger Nilsson
- Department Physiology, Gothenburg University, Gothenburg, Sweden
| | - Jo G R De Mey
- Deptartment Pharmacology and Personalized Medicine, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
15
|
Makin RD, Argyle D, Hirahara S, Nagasaka Y, Zhang M, Yan Z, Kerur N, Ambati J, Gelfand BD. Voluntary Exercise Suppresses Choroidal Neovascularization in Mice. Invest Ophthalmol Vis Sci 2020; 61:52. [PMID: 32460310 PMCID: PMC7405794 DOI: 10.1167/iovs.61.5.52] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 04/16/2020] [Indexed: 11/28/2022] Open
Abstract
Purpose To determine the effect of voluntary exercise on choroidal neovascularization (CNV) in mice. Methods Age-matched wild-type C57BL/6J mice were housed in cages equipped with or without running wheels. After four weeks of voluntary running or sedentariness, mice were subjected to laser injury to induce CNV. After surgical recovery, mice were placed back in cages with or without exercise wheels for seven days. CNV lesion volumes were measured by confocal microscopy. The effect of wheel running only in the seven days after injury was also evaluated. Macrophage abundance and cytokine expression were quantified. Results In the first study, exercise-trained mice exhibited a 45% reduction in CNV volume compared to sedentary mice. In the replication study, a 32% reduction in CNV volume in exercise-trained mice was observed (P = 0.029). Combining these two studies, voluntary exercise was found to reduce CNV by 41% (P = 0.0005). Exercise-trained male and female mice had similar CNV volumes (P = 0.99). The daily running distance did not correlate with CNV lesion size. Exercise only after the laser injury without a preconditioning period did not reduce CNV size (P = 0.41). CNV lesions of exercise-trained mice also exhibited significantly lower F4/80+ macrophage staining and Vegfa and Ccl2 mRNA expression. Conclusions These findings provide the first experimental evidence that voluntary exercise improves CNV outcomes. These studies indicate that exercise before laser treatment is required to improve CNV outcomes.
Collapse
Affiliation(s)
- Ryan D. Makin
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, Virginia, United States
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, Virginia, United States
- Molecular and Cellular Basis of Disease Graduate Program, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Dionne Argyle
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, Virginia, United States
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, Virginia, United States
- Molecular and Cellular Basis of Disease Graduate Program, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Shuichiro Hirahara
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, Virginia, United States
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Yosuke Nagasaka
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, Virginia, United States
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Mei Zhang
- Center for Skeletal Muscle Research at the Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, United States
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Zhen Yan
- Center for Skeletal Muscle Research at the Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, United States
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, United States
- Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia, United States
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Nagaraj Kerur
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, Virginia, United States
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Jayakrishna Ambati
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, Virginia, United States
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, Virginia, United States
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, United States
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Bradley D. Gelfand
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, Virginia, United States
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, Virginia, United States
- Department of Biomedical Engineering, University of Virginia, Charlottesville, United States
| |
Collapse
|
16
|
Chiang HY, Chu PH, Lee TH. MFG-E8 mediates arterial aging by promoting the proinflammatory phenotype of vascular smooth muscle cells. J Biomed Sci 2019; 26:61. [PMID: 31470852 PMCID: PMC6716880 DOI: 10.1186/s12929-019-0559-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 08/22/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Among older adults, arterial aging is the major factor contributing to increased risk for cardiovascular disease-related morbidity and mortality. The chronic vascular inflammation that accompanies aging causes diffuse intimal-medial thickening of the arterial wall, thus increasing the vulnerability of aged vessels to vascular insults. Milk fat globule-epidermal growth factor 8 (MFG-E8) is a biomarker for aging arteries. This integrin-binding glycoprotein, induced by angiotensin II, facilitates vascular smooth muscle cell (VSMC) proliferation and invasion in aging vasculatures. This study investigated whether MFG-E8 directly mediates the initial inflammatory responses in aged arteries or VSMCs. METHODS A model of neointimal hyperplasia was induced in the common carotid artery (CCA) of aged mice to exacerbate age-associated vascular remodeling. Recombinant MFG-E8 (rMFG-E8) was administered to the injured artery using Pluronic gel to accentuate the effect on age-related vascular pathophysiology. The MFG-E8 level, leukocyte infiltration, and proinflammatory cell adhesion molecule (CAM) expression in the arterial wall were evaluated through immunohistochemistry. By using immunofluorescence and immunoblotting, the activation of the critical proinflammatory transcription factor nuclear factor (NF)-κB in the injured CCAs was analyzed. Immunofluorescence, immunoblotting, and quantitative real-time polymerase chain reaction were conducted using VSMCs isolated from the aortas of young and aged mice to assess NF-κB nuclear translocation, NF-κB-dependent gene expression, and cell proliferation. The extent of intimal-medial thickening in the injured vessels was analyzed morphometrically. Finally, Transwell migration assay was used to examine VSMC migration. RESULTS Endogenous MFG-E8 expression in aged CCAs was significantly induced by ligation injury. Aged CCAs treated with rMFG-E8 exhibited increased leukocyte extravasation, CAM expression, and considerably increased NF-κB activation induced by rMFG-E8 in the ligated vessels. Exposure of early passage VSMCs from aged aortas to rMFG-E8 substantially increased NF-κB activation, proinflammatory gene expression, and cell proliferation. However, rMFG-E8 attenuated VSMC migration. CONCLUSIONS MFG-E8 promoted the proinflammatory phenotypic shift of aged VSMCs and arteries, rendering the vasculature prone to vascular diseases. MFG-E8 may constitute a novel therapeutic target for retarding the aging processes in such vessels.
Collapse
Affiliation(s)
- Hou-Yu Chiang
- Department of Anatomy, College of Medicine, Chang Gung University, 259 Wenhua 1st Rd., Guishan Dist, Taoyuan City, 33302, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Pao-Hsien Chu
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ting-Hein Lee
- Department of Anatomy, College of Medicine, Chang Gung University, 259 Wenhua 1st Rd., Guishan Dist, Taoyuan City, 33302, Taiwan. .,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan.
| |
Collapse
|
17
|
Trott DW, Fadel PJ. Inflammation as a mediator of arterial ageing. Exp Physiol 2019; 104:1455-1471. [PMID: 31325339 DOI: 10.1113/ep087499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/17/2019] [Indexed: 12/22/2022]
Abstract
NEW FINDINGS What is the topic of this review? This review summarizes and synthesizes what is known about the contribution of inflammation to age-related arterial dysfunction. What advances does it highlight? This review details observational evidence for the relationship of age-related inflammation and arterial dysfunction, insight from autoimmune inflammatory diseases and their effects on arterial function, interventional evidence linking inflammation and age-related arterial dysfunction, insight into age-related arterial inflammation from preclinical models and interventions to ameliorate age-related inflammation and arterial dysfunction. ABSTRACT Advanced age is a primary risk factor for cardiovascular disease, the leading cause of death in the industrialized world. Two major components of arterial ageing are stiffening of the large arteries and impaired endothelium-dependent dilatation in multiple vascular beds. These two alterations are major contributors to the development of overt cardiovascular disease. Increasing inflammation with advanced age is likely to play a role in this arterial dysfunction. The purpose of this review is to synthesize what is known about inflammation and its relationship to age-related arterial dysfunction. This review discusses both the initial observational evidence for the relationship of age-related inflammation and arterial dysfunction and the evidence that inflammatory autoimmune diseases are associated with a premature arterial ageing phenotype. We next discuss interventional and mechanistic evidence linking inflammation and age-related arterial dysfunction in older adults. We also attempt to summarize the relevant evidence from preclinical models. Lastly, we discuss interventions in both humans and animals that have been shown to ameliorate age-related arterial inflammation and dysfunction. The available evidence provides a strong basis for the role of inflammation in both large artery stiffening and impairment of endothelium-dependent dilatation; however, the specific inflammatory mediators, the initiating factors and the relative importance of the endothelium, smooth muscle cells, perivascular adipose tissue and immune cells in arterial inflammation are not well understood. With the expansion of the ageing population, ameliorating age-related arterial inflammation represents an important potential strategy for preserving vascular health in the elderly.
Collapse
Affiliation(s)
- Daniel W Trott
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA
| | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
18
|
Greenwood BN, Fleshner M. Voluntary Wheel Running: A Useful Rodent Model for Investigating the Mechanisms of Stress Robustness and Neural Circuits of Exercise Motivation. Curr Opin Behav Sci 2019; 28:78-84. [PMID: 32766411 DOI: 10.1016/j.cobeha.2019.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite evidence that exercise reduces the negative impacts of stressor exposure and promotes stress robustness, health and well-being, most people fail to achieve recommended levels of physical activity. One reason for this failure could be our fundamental lack of understanding the brain motivational and motor circuits underlying voluntary exercise behavior. Wheel running is an animal model used to reveal mechanisms of exercise-induced stress robustness. Here we detail the strengths and weakness of wheel running as a model; and propose that running begins as a purposeful, goal-directed behavior that becomes habitual with continued access. This fresh perspective could aid in the development of novel strategies to motivate and sustain exercise behavior and maximize the stress-robust phenotype.
Collapse
Affiliation(s)
- Benjamin N Greenwood
- University of Colorado-Denver, Department of Psychology, Campus Box 173, PO Box 173364, Denver, CO 80217-3364,
| | - Monika Fleshner
- University of Colorado-Boulder, Department of Integrative Physiology, Center for Neuroscience, UCB 354, Boulder, CO 80303.,University of Colorado-Boulder, Center for Neuroscience, UCB 354, Boulder, CO 80303,
| |
Collapse
|
19
|
Walker AE, Breevoort SR, Durrant JR, Liu Y, Machin DR, Dobson PS, Nielson EI, Meza AJ, Islam MT, Donato AJ, Lesniewski LA. The pro-atherogenic response to disturbed blood flow is increased by a western diet, but not by old age. Sci Rep 2019; 9:2925. [PMID: 30814657 PMCID: PMC6393500 DOI: 10.1038/s41598-019-39466-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/24/2019] [Indexed: 12/12/2022] Open
Abstract
Atherogenic remodeling often occurs at arterial locations with disturbed blood flow (i.e., low or oscillatory) and both aging and western diet (WD) increase the likelihood for pro-atherogenic remodeling. However, it is unknown if old age and/or a WD modify the pro-atherogenic response to disturbed blood flow. We induced disturbed blood flow by partial carotid ligation (PCL) of the left carotid artery in young and old, normal chow (NC) or WD fed male B6D2F1 mice. Three weeks post-PCL, ligated carotid arteries had greater intima media thickness, neointima formation, and macrophage content compared with un-ligated arteries. WD led to greater remodeling and macrophage content in the ligated artery compared with NC mice, but these outcomes were similar between young and old mice. In contrast, nitrotyrosine content, a marker of oxidative stress, did not differ between WD and NC fed mice, but was greater in old compared with young mice in both ligated and un-ligated carotid arteries. In primary vascular smooth muscle cells, aging reduced proliferation, whereas conditioned media from fatty acid treated endothelial cells increased proliferation. Taken together, these findings suggest that the remodeling and pro-inflammatory response to disturbed blood flow is increased by WD, but is not increased by aging.
Collapse
Affiliation(s)
- Ashley E Walker
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA. .,Department of Human Physiology, University of Oregon, Eugene, Oregon, USA.
| | - Sarah R Breevoort
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | | | - Yu Liu
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Daniel R Machin
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.,Geriatrics Research Education and Clinical Center, Veteran's Affairs Medical Center, Salt Lake City, Utah, USA
| | - Parker S Dobson
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Elizabeth I Nielson
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Antonio J Meza
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Md Torikul Islam
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA
| | - Anthony J Donato
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.,Geriatrics Research Education and Clinical Center, Veteran's Affairs Medical Center, Salt Lake City, Utah, USA.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA
| | - Lisa A Lesniewski
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.,Geriatrics Research Education and Clinical Center, Veteran's Affairs Medical Center, Salt Lake City, Utah, USA.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
20
|
Kalathookunnel Antony A, Lian Z, Wu H. T Cells in Adipose Tissue in Aging. Front Immunol 2018; 9:2945. [PMID: 30619305 PMCID: PMC6299975 DOI: 10.3389/fimmu.2018.02945] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/30/2018] [Indexed: 12/20/2022] Open
Abstract
Similar to obesity, aging is associated with visceral adiposity and insulin resistance. Inflammation in adipose tissue, mainly evidenced by increased accumulation and proinflammatory polarization of T cells and macrophages, has been well-documented in obesity and may contribute to the associated metabolic dysfunctions including insulin resistance. Studies show that increased inflammation, including inflammation in adipose tissue, also occurs in aging, so-called "inflamm-aging." Aging-associated inflammation in adipose tissue has some similarities but also differences compared to obesity-related inflammation. In particular, conventional T cells are elevated in adipose tissue in both obesity and aging and have been implicated in metabolic functions in obesity. However, the changes and also possibly functions of regulatory T cells (Treg) in adipose tissue are different in aging and obesity. In this review, we will summarize recent advances in research on the changes of these immune cells in adipose tissue with aging and obesity and discuss their possible contributions to metabolism and the potential of these immune cells as novel therapeutic targets for prevention and treatment of metabolic diseases associated with aging or obesity.
Collapse
Affiliation(s)
| | - Zeqin Lian
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Huaizhu Wu
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
21
|
Abstract
Advancing age promotes cardiovascular disease (CVD), the leading cause of death in the United States and many developed nations. Two major age-related arterial phenotypes, large elastic artery stiffening and endothelial dysfunction, are independent predictors of future CVD diagnosis and likely are responsible for the development of CVD in older adults. Not limited to traditional CVD, these age-related changes in the vasculature also contribute to other age-related diseases that influence mammalian health span and potential life span. This review explores mechanisms that influence age-related large elastic artery stiffening and endothelial dysfunction at the tissue level via inflammation and oxidative stress and at the cellular level via Klotho and energy-sensing pathways (AMPK [AMP-activated protein kinase], SIRT [sirtuins], and mTOR [mammalian target of rapamycin]). We also discuss how long-term calorie restriction-a health span- and life span-extending intervention-can prevent many of these age-related vascular phenotypes through the prevention of deleterious alterations in these mechanisms. Lastly, we discuss emerging novel mechanisms of vascular aging, including senescence and genomic instability within cells of the vasculature. As the population of older adults steadily expands, elucidating the cellular and molecular mechanisms of vascular dysfunction with age is critical to better direct appropriate and measured strategies that use pharmacological and lifestyle interventions to reduce risk of CVD within this population.
Collapse
Affiliation(s)
- Anthony J. Donato
- University of Utah, Department of Internal Medicine, Division of Geriatrics, Salt Lake City, Utah
- Veterans Affairs Medical Center-Salt Lake City, Geriatrics Research Education and Clinical Center, Salt Lake City, Utah
| | - Daniel R. Machin
- University of Utah, Department of Internal Medicine, Division of Geriatrics, Salt Lake City, Utah
- Veterans Affairs Medical Center-Salt Lake City, Geriatrics Research Education and Clinical Center, Salt Lake City, Utah
| | - Lisa A. Lesniewski
- University of Utah, Department of Internal Medicine, Division of Geriatrics, Salt Lake City, Utah
- Veterans Affairs Medical Center-Salt Lake City, Geriatrics Research Education and Clinical Center, Salt Lake City, Utah
| |
Collapse
|
22
|
Wang Z, Meng S, Cao L, Chen Y, Zuo Z, Peng S. Critical role of NLRP3-caspase-1 pathway in age-dependent isoflurane-induced microglial inflammatory response and cognitive impairment. J Neuroinflammation 2018; 15:109. [PMID: 29665808 PMCID: PMC5904978 DOI: 10.1186/s12974-018-1137-1] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/26/2018] [Indexed: 02/08/2023] Open
Abstract
Background Elderly patients are more likely to suffer from postoperative cognitive dysfunction (POCD) after surgery and anesthesia. Except for declined organ function, the particular pathogenesis of POCD in elderly patients remains unknown. This study is carried out to determine the critical role of the NOD-like receptor protein 3 (NLRP3)-caspase-1 pathway in isoflurane-induced cognitive impairment. Methods Young (6–8 months old) and aged (14 months old) healthy male C57BL/6 mice were exposed to 1.5% isoflurane for 2 h. Some mice received intraperitoneal injection of Ac-YVAD-cmk (8 mg/kg), a specific inhibitor of caspase-1, 30 min before the isoflurane exposure. Morris water maze test was carried out 1 week after the isoflurane anesthesia. Brain tissues were harvested 24 h after the isoflurane anesthesia. Western blotting was carried out to detect the expression of NLRP3, interleukin (IL)-1β, and IL-18 in the hippocampus. Mouse microglial cell line BV-2 and primary microglial cultures were primed by lipopolysaccharide for 30 min before being exposed to isoflurane. NLRP3 was downregulated by RNA interference. Results Compared to young mice, aged mice had an increased expression of NLRP3 in the hippocampus. Isoflurane induced cognitive impairment and hippocampal inflammation in aged mice but not in young mice. These effects were attenuated by Ac-YVAD-cmk pretreatment (P < 0.05). Isoflurane activated NLRP3-caspase-1 pathway and increased the secretion of IL-18 and IL-1β in cells pretreated with lipopolysaccharide but not in cells without pretreatment. Downregulation of NLRP3 attenuated the activation of NLRP3 inflammasome by isoflurane. Conclusions NLRP3 priming status in aged mouse brain may be involved in isoflurane-induced hippocampal inflammation and cognitive impairment. Electronic supplementary material The online version of this article (10.1186/s12974-018-1137-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhi Wang
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510289, Guangdong, China
| | - Shiyu Meng
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510289, Guangdong, China
| | - Lin Cao
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510289, Guangdong, China
| | - Ying Chen
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510289, Guangdong, China
| | - Zhiyi Zuo
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510289, Guangdong, China. .,Laboratory of RNA and Major Diseases of Brain and Heart, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Department of Anesthesiology, University of Virginia, Charlottesville, USA.
| | - Shuling Peng
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510289, Guangdong, China.
| |
Collapse
|
23
|
Transcriptome Analysis of the Thymus in Short-Term Calorie-Restricted Mice Using RNA-seq. Int J Genomics 2018; 2018:7647980. [PMID: 29511668 PMCID: PMC5817327 DOI: 10.1155/2018/7647980] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/09/2017] [Accepted: 12/03/2017] [Indexed: 12/14/2022] Open
Abstract
Calorie restriction (CR), which is a factor that expands lifespan and an important player in immune response, is an effective protective method against cancer development. Thymus, which plays a critical role in the development of the immune system, reacts to nutrition deficiency quickly. RNA-seq-based transcriptome sequencing was performed to thymus tissues of MMTV-TGF-α mice subjected to ad libitum (AL), chronic calorie restriction (CCR), and intermittent calorie restriction (ICR) diets in this study. Three cDNA libraries were sequenced using Illumina HiSeq™ 4000 to produce 100 base pair-end reads. On average, 105 million clean reads were mapped and in total 6091 significantly differentially expressed genes (DEGs) were identified (p < 0.05). These DEGs were clustered into Gene Ontology (GO) categories. The expression pattern revealed by RNA-seq was validated by quantitative real-time PCR (qPCR) analysis of four important genes, which are leptin, ghrelin, Igf1, and adinopectin. RNA-seq data has been deposited in NCBI Gene Expression Omnibus (GEO) database (GSE95371). We report the use of RNA sequencing to find DEGs that are affected by different feeding regimes in the thymus.
Collapse
|
24
|
Selected life-extending interventions reduce arterial CXCL10 and macrophage colony-stimulating factor in aged mouse arteries. Cytokine 2017; 96:102-106. [PMID: 28390264 DOI: 10.1016/j.cyto.2017.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/24/2017] [Accepted: 03/31/2017] [Indexed: 12/30/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the industrialized world. Aging is the most predictive risk factor for CVD and is associated with arterial inflammation which contributes to increased CVD risk. Although age-related arterial inflammation has been described in both humans and animals, only a limited number of inflammatory mediators, cytokines and chemokines have been identified. In this investigation we sought to determine whether lifespan extending interventions, including crowded litter early life nutrient deprivation (CL), traditional lifelong caloric restriction (CR) and lifelong Rapamycin treatment (Rap) would attenuate age-related arterial inflammation using multi analyte profiling. Aortas from Young (4-6months), Old (22months), Old CL, Old CR and Old Rap mice were homogenized and cytokine concentrations were assessed using Luminex Multi Analyte Profiling. Chemokines involved in immune cell recruitment, such as CCL2, CXCL9, CXCL10, GMCSF and MCSF, were increased in Old vs. Young (p<0.05). The age-related increase of CXCL10 was prevented by CR (p<0.05 vs. Old). MSCF concentrations were lower in aortas of Rap treated mice (p<0.05 vs. Old). Interleukins (IL), IL-1α, IL-1β and IL-10, were also greater in Old vs. Young mice (p<0.05). These data demonstrate selected lifespan extending interventions can prevent or limit age-related increases in selected aortic chemokines.
Collapse
|