1
|
Li S, Lu Q, Lu J, Song X, Gu Y, Duan X, Jiang W, Gu G, Zheng M, Xie L, Fang M. IRF1-RIG-I signaling defects in the aged alveolar epithelial cells may contribute to decreased pulmonary antiviral immune responses. Mech Ageing Dev 2025; 224:112037. [PMID: 39874992 DOI: 10.1016/j.mad.2025.112037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 01/30/2025]
Abstract
BACKGROUND Alveolar epithelial cells (AECs) are the primary targets of many pathogens and play an important role in sensing viruses and regulating immunity. Yet, little is known about the antiviral responses in the aged AECs. METHODS The responses of young or aged AECs after viral infection were analyzed using methods such as flow cytometry, quantitative real-time PCR, Western blot detection, and transwell chemotaxis assay. Deep sequencing and KEGG analysis were used to identify key pathways and genes associated with aged AECs, followed by functional analysis. RESULTS The retinoic acid-inducible gene I (RIG-I) signaling is defective in aged AECs after influenza A virus (IAV) infection. The interferon regulatory factor 1 (IRF1) binds the promoter of RIG-I gene Ddx58 to activate its expression. The regulation of IRF1 is also defective in AECs from aged mice. Fewer NK cells, monocytes, and T cells are recruited by the cell supernatant from PR8-infected aged AECs. Importantly, IRF1-RIG-I signaling is also impaired in the AECs of elderly people after IAV infection. CONCLUSION Ageing impairs IRF1-RIG-I signaling in AECs, and the defective responses in AECs may contribute to reduced immune cell recruitment and activation in aged individuals after pulmonary viral infection.
Collapse
Affiliation(s)
- Shan Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Qianqian Lu
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China; Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Henan University, Kaifeng, Henan Province 475004, China
| | - Jiao Lu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaotong Song
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China; Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Henan University, Kaifeng, Henan Province 475004, China
| | - Yang Gu
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuefeng Duan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wei Jiang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Guanglei Gu
- School of Life Sciences, Henan University, Kaifeng, Henan Province, China; Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Henan University, Kaifeng, Henan Province 475004, China
| | - Mengli Zheng
- College of Pulmonary and Critical Care Medicine, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.
| | - Lixin Xie
- College of Pulmonary and Critical Care Medicine, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.
| | - Min Fang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; School of Life Sciences, Henan University, Kaifeng, Henan Province, China; Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Henan University, Kaifeng, Henan Province 475004, China.
| |
Collapse
|
2
|
Wang L, Mao L, Xiao W, Chen P. Natural killer cells immunosenescence and the impact of lifestyle management. Biochem Biophys Res Commun 2023; 689:149216. [PMID: 37976836 DOI: 10.1016/j.bbrc.2023.149216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/28/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Natural killer cells (NKs) are lymphocytes of the innate immune system that quickly respond to viruses, infections, and tumors during their short cell life cycle. However, it was recently found that NKs undergo quantitative, distributional, structural, and functional phenotypic changes during aging that suppress immune responses, which is known as immunosenescence. The aging host environment, cytokine regulation, cytomegalovirus status, and hypothalamic‒pituitary‒adrenal axis have significant effects on NK function. Different lifestyle management interventions modulate the number and cytotoxic activity of NKs, which are essential for rebuilding the immune barrier against pathogens in elderly individuals. Based on recent studies, we review the phenotypic changes of and potential threats of NKs during aging and explore the underlying mechanisms. By summarizing the effects of lifestyle management on NKs and their application prospects, we aim to provide evidence for enhancing immune system function against immune diseases in elderly individuals.
Collapse
Affiliation(s)
- Lian Wang
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China.
| | - Liwei Mao
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China.
| | - Weihua Xiao
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China.
| | - Peijie Chen
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, 200438, China; Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
3
|
Bennett AK, Richner M, Mun MD, Richner JM. Type I IFN stimulates lymph node stromal cells from adult and old mice during a West Nile virus infection. Aging Cell 2023; 22:e13796. [PMID: 36802099 PMCID: PMC10086524 DOI: 10.1111/acel.13796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/20/2023] Open
Abstract
Advanced age is a significant risk factor during viral infection due to an age-associated decline in the immune response. Older individuals are especially susceptible to severe neuroinvasive disease after West Nile virus (WNV) infection. Previous studies have characterized age-associated defects in hematopoietic immune cells during WNV infection that culminate in diminished antiviral immunity. Situated amongst immune cells in the draining lymph node (DLN) are structural networks of nonhematopoietic lymph node stromal cells (LNSCs). LNSCs are comprised of numerous, diverse subsets, with critical roles in the coordination of robust immune responses. The contributions of LNSCs to WNV immunity and immune senescence are unclear. Here, we examine LNSC responses to WNV within adult and old DLNs. Acute WNV infection triggered cellular infiltration and LNSC expansion in adults. Comparatively, aged DLNs exhibited diminished leukocyte accumulation, delayed LNSC expansion, and altered fibroblast and endothelial cell subset composition, signified by fewer LECs. We established an ex vivo culture system to probe LNSC function. Adult and old LNSCs both recognized an ongoing viral infection primarily through type I IFN signaling. Gene expression signatures were similar between adult and old LNSCs. Aged LNSCs were found to constitutively upregulate immediate early response genes. Collectively, these data suggest LNSCs uniquely respond to WNV infection. We are the first to report age-associated differences in LNSCs on the population and gene expression level during WNV infection. These changes may compromise antiviral immunity, leading to increased WNV disease in older individuals.
Collapse
Affiliation(s)
- Allison K. Bennett
- Department of Microbiology and ImmunologyUniversity of Illinois College of MedicineChicagoIllinoisUSA
| | - Michelle Richner
- Department of Microbiology and ImmunologyUniversity of Illinois College of MedicineChicagoIllinoisUSA
| | - Madeline D. Mun
- Department of Microbiology and ImmunologyUniversity of Illinois College of MedicineChicagoIllinoisUSA
| | - Justin M. Richner
- Department of Microbiology and ImmunologyUniversity of Illinois College of MedicineChicagoIllinoisUSA
| |
Collapse
|
4
|
Wong DCP, Ding JL. The mechanobiology of NK cells- 'Forcing NK to Sense' target cells. Biochim Biophys Acta Rev Cancer 2023; 1878:188860. [PMID: 36791921 DOI: 10.1016/j.bbcan.2023.188860] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 02/16/2023]
Abstract
Natural killer (NK) cells are innate immune lymphocytes that recognize and kill cancer and infected cells, which makes them unique 'off-the-shelf' candidates for a new generation of immunotherapies. Biomechanical forces in homeostasis and pathophysiology accrue additional immune regulation for NK immune responses. Indeed, cellular and tissue biomechanics impact NK receptor clustering, cytoskeleton remodeling, NK transmigration through endothelial cells, nuclear mechanics, and even NK-dendritic cell interaction, offering a plethora of unexplored yet important dynamic regulation for NK immunotherapy. Such events are made more complex by the heterogeneity of human NK cells. A significant question remains on whether and how biochemical and biomechanical cues collaborate for NK cell mechanotransduction, a process whereby mechanical force is sensed, transduced, and translated to downstream mechanical and biochemical signalling. Herein, we review recent advances in understanding how NK cells perceive and mechanotransduce biophysical cues. We focus on how the cellular cytoskeleton crosstalk regulates NK cell function while bearing in mind the heterogeneity of NK cells, the direct and indirect mechanical cues for NK anti-tumor activity, and finally, engineering advances that are of translational relevance to NK cell biology at the systems level.
Collapse
Affiliation(s)
- Darren Chen Pei Wong
- Department of Biological Sciences, National University of Singapore, 117543, Singapore.
| | - Jeak Ling Ding
- Department of Biological Sciences, National University of Singapore, 117543, Singapore; Integrative Sciences and Engineering Programme, National University of Singapore, 119077, Singapore.
| |
Collapse
|
5
|
Bennett AK, Richner M, Mun MD, Richner JM. Type I IFN stimulates lymph node stromal cells from adult and old mice during a West Nile virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522898. [PMID: 36711838 PMCID: PMC9881888 DOI: 10.1101/2023.01.05.522898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Advanced age is a significant risk factor during viral infection due to an age-associated decline in the immune response. Older individuals are especially susceptible to severe neuroinvasive disease after West Nile virus (WNV) infection. Previous studies have characterized age-associated defects in hematopoietic immune cells during WNV infection that culminate in diminished antiviral immunity. Situated amongst immune cells in the draining lymph node (DLN) are structural networks of nonhematopoietic lymph node stromal cells (LNSCs). LNSCs are comprised of numerous, diverse subsets, with critical roles in the coordination of robust immune responses. The contributions of LNSCs to WNV immunity and immune senescence are unclear. Here, we examine LNSC responses to WNV within adult and old DLNs. Acute WNV infection triggered cellular infiltration and LNSC expansion in adult. Comparatively, aged DLNs exhibited diminished leukocyte accumulation, delayed LNSC expansion, and altered fibroblast and endothelial cell subset composition, signified by fewer LECs. We established an ex vivo culture system to probe LNSC function. Adult and old LNSCs both recognized an ongoing viral infection primarily through type I IFN signaling. Gene expression signatures were similar between adult and old LNSCs. Aged LNSCs were found to constitutively upregulate immediate early response genes. Collectively, these data suggest LNSCs uniquely respond to WNV infection. We are the first to report age-associated differences in LNSCs on the population- and gene expression-level during WNV infection. These changes may compromise antiviral immunity, leading to increased WNV disease in older individuals.
Collapse
|
6
|
Brauning A, Rae M, Zhu G, Fulton E, Admasu TD, Stolzing A, Sharma A. Aging of the Immune System: Focus on Natural Killer Cells Phenotype and Functions. Cells 2022; 11:cells11061017. [PMID: 35326467 PMCID: PMC8947539 DOI: 10.3390/cells11061017] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 02/01/2023] Open
Abstract
Aging is the greatest risk factor for nearly all major chronic diseases, including cardiovascular diseases, cancer, Alzheimer’s and other neurodegenerative diseases of aging. Age-related impairment of immune function (immunosenescence) is one important cause of age-related morbidity and mortality, which may extend beyond its role in infectious disease. One aspect of immunosenescence that has received less attention is age-related natural killer (NK) cell dysfunction, characterized by reduced cytokine secretion and decreased target cell cytotoxicity, accompanied by and despite an increase in NK cell numbers with age. Moreover, recent studies have revealed that NK cells are the central actors in the immunosurveillance of senescent cells, whose age-related accumulation is itself a probable contributor to the chronic sterile low-grade inflammation developed with aging (“inflammaging”). NK cell dysfunction is therefore implicated in the increasing burden of infection, malignancy, inflammatory disorders, and senescent cells with age. This review will focus on recent advances and open questions in understanding the interplay between systemic inflammation, senescence burden, and NK cell dysfunction in the context of aging. Understanding the factors driving and enforcing NK cell aging may potentially lead to therapies countering age-related diseases and underlying drivers of the biological aging process itself.
Collapse
Affiliation(s)
- Ashley Brauning
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
| | - Michael Rae
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
| | - Gina Zhu
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
| | - Elena Fulton
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
| | - Tesfahun Dessale Admasu
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
| | - Alexandra Stolzing
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
- Centre for Biological Engineering, Wolfson School of Electrical, Material and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK
- Correspondence: (A.S.); (A.S.)
| | - Amit Sharma
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
- Correspondence: (A.S.); (A.S.)
| |
Collapse
|
7
|
Friedrich SK, Schmitz R, Bergerhausen M, Lang J, Duhan V, Hardt C, Tenbusch M, Prinz M, Asano K, Bhat H, Hamdan TA, Lang PA, Lang KS. Replication of Influenza A Virus in Secondary Lymphatic Tissue Contributes to Innate Immune Activation. Pathogens 2021; 10:pathogens10050622. [PMID: 34069514 PMCID: PMC8160763 DOI: 10.3390/pathogens10050622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 11/23/2022] Open
Abstract
The replication of viruses in secondary lymphoid organs guarantees sufficient amounts of pattern-recognition receptor ligands and antigens to activate the innate and adaptive immune system. Viruses with broad cell tropism usually replicate in lymphoid organs; however, whether a virus with a narrow tropism relies on replication in the secondary lymphoid organs to activate the immune system remains not well studied. In this study, we used the artificial intravenous route of infection to determine whether Influenza A virus (IAV) replication can occur in secondary lymphatic organs (SLO) and whether such replication correlates with innate immune activation. Indeed, we found that IAV replicates in secondary lymphatic tissue. IAV replication was dependent on the expression of Sialic acid residues in antigen-presenting cells and on the expression of the interferon-inhibitor UBP43 (Usp18). The replication of IAV correlated with innate immune activation, resulting in IAV eradication. The genetic deletion of Usp18 curbed IAV replication and limited innate immune activation. In conclusion, we found that IAV replicates in SLO, a mechanism which allows innate immune activation.
Collapse
Affiliation(s)
- Sarah-Kim Friedrich
- Institute of Immunology, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany; (S.-K.F.); (R.S.); (M.B.); (J.L.); (V.D.); (C.H.); (H.B.)
| | - Rosa Schmitz
- Institute of Immunology, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany; (S.-K.F.); (R.S.); (M.B.); (J.L.); (V.D.); (C.H.); (H.B.)
| | - Michael Bergerhausen
- Institute of Immunology, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany; (S.-K.F.); (R.S.); (M.B.); (J.L.); (V.D.); (C.H.); (H.B.)
| | - Judith Lang
- Institute of Immunology, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany; (S.-K.F.); (R.S.); (M.B.); (J.L.); (V.D.); (C.H.); (H.B.)
| | - Vikas Duhan
- Institute of Immunology, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany; (S.-K.F.); (R.S.); (M.B.); (J.L.); (V.D.); (C.H.); (H.B.)
| | - Cornelia Hardt
- Institute of Immunology, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany; (S.-K.F.); (R.S.); (M.B.); (J.L.); (V.D.); (C.H.); (H.B.)
| | - Matthias Tenbusch
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
- Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, 79106 Freiburg, Germany
- Centre for NeuroModulation (NeuroModBasics), University of Freiburg, 79106 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79106 Freiburg, Germany
| | - Kenichi Asano
- Laboratory of Immune Regulation, School of Life Science, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan;
| | - Hilal Bhat
- Institute of Immunology, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany; (S.-K.F.); (R.S.); (M.B.); (J.L.); (V.D.); (C.H.); (H.B.)
- Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, Robert Koch-Strasse 21, 50931 Köln, Germany
| | - Thamer A. Hamdan
- Institute of Immunology, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany; (S.-K.F.); (R.S.); (M.B.); (J.L.); (V.D.); (C.H.); (H.B.)
- Department of Medical Laboratories, Faculty of Health Sciences, American University of Madaba, Amman 11821, Jordan
- Correspondence: (T.A.H.); (K.S.L.)
| | - Philipp Alexander Lang
- Institute of Molecular Medicine II, University of Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany;
| | - Karl Sebastian Lang
- Institute of Immunology, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany; (S.-K.F.); (R.S.); (M.B.); (J.L.); (V.D.); (C.H.); (H.B.)
- Correspondence: (T.A.H.); (K.S.L.)
| |
Collapse
|
8
|
Jiang D, Gao T, Liang S, Mu W, Fu S, Liu Y, Yang R, Zhang Z, Liu Y, Zhang N. Lymph Node Delivery Strategy Enables the Activation of Cytotoxic T Lymphocytes and Natural Killer Cells to Augment Cancer Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:22213-22224. [PMID: 33955746 DOI: 10.1021/acsami.1c03709] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Lymph nodes are the main sites for immune activation and surveillance. Effective delivery of immunomodulators into lymph nodes to trigger antitumor immunity is essential for cancer treatment. Here, we propose a lymph node delivery strategy to modulate the immune response by activating cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells simultaneously. Novel pH/redox dual-sensitive micelles were prepared using poly(l-histidine)-poly(ethylene glycol) (PLH-PEG) as a skeleton, which can effectively deliver immunomodulators to the lymph nodes due to their suitable particle size. At 48 h after subcutaneous injection, the accumulation efficiency in lymph nodes increased 8.12-fold compared with the control group. Subsequently, Trp2/CpG-coloaded pH/redox dual-sensitive micelles (Trp2/CpG-NPs) acted on antigen-presenting cells, fully promoting CTL activation through dendritic cell antigen cross-presentation and macrophage repolarization. IL-15-loaded pH/redox dual-sensitive micelles (IL-15-NPs) were developed to activate the killing effect of NK cells by interacting with IL-15 receptors. In the tumor-bearing mice model, this lymph node delivery strategy showed significant antitumor efficiency and the tumor inhibition rate reached 93.76%. Meanwhile, the infiltration of CTLs and NK cells in tumor tissues increased, and the immunosuppressive microenvironment was relieved by the repolarization of macrophages from M2-type to M1-type. Overall, this study highlighted the potential of the lymph node delivery strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Dandan Jiang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Tong Gao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Shuang Liang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Weiwei Mu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Shunli Fu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Yang Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Rui Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Zipeng Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Yongjun Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| | - Na Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012, China
| |
Collapse
|
9
|
Ben-Shmuel A, Sabag B, Biber G, Barda-Saad M. The Role of the Cytoskeleton in Regulating the Natural Killer Cell Immune Response in Health and Disease: From Signaling Dynamics to Function. Front Cell Dev Biol 2021; 9:609532. [PMID: 33598461 PMCID: PMC7882700 DOI: 10.3389/fcell.2021.609532] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/11/2021] [Indexed: 01/13/2023] Open
Abstract
Natural killer (NK) cells are innate lymphoid cells, which play key roles in elimination of virally infected and malignant cells. The balance between activating and inhibitory signals derived from NK surface receptors govern the NK cell immune response. The cytoskeleton facilitates most NK cell effector functions, such as motility, infiltration, conjugation with target cells, immunological synapse assembly, and cytotoxicity. Though many studies have characterized signaling pathways that promote actin reorganization in immune cells, it is not completely clear how particular cytoskeletal architectures at the immunological synapse promote effector functions, and how cytoskeletal dynamics impact downstream signaling pathways and activation. Moreover, pioneering studies employing advanced imaging techniques have only begun to uncover the architectural complexity dictating the NK cell activation threshold; it is becoming clear that a distinct organization of the cytoskeleton and signaling receptors at the NK immunological synapse plays a decisive role in activation and tolerance. Here, we review the roles of the actin cytoskeleton in NK cells. We focus on how actin dynamics impact cytolytic granule secretion, NK cell motility, and NK cell infiltration through tissues into inflammatory sites. We will also describe the additional cytoskeletal components, non-muscle Myosin II and microtubules that play pivotal roles in NK cell activity. Furthermore, special emphasis will be placed on the role of the cytoskeleton in assembly of immunological synapses, and how mutations or downregulation of cytoskeletal accessory proteins impact NK cell function in health and disease.
Collapse
Affiliation(s)
- Aviad Ben-Shmuel
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Batel Sabag
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Guy Biber
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Mira Barda-Saad
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
10
|
Tarazona R, Lopez-Sejas N, Guerrero B, Hassouneh F, Valhondo I, Pera A, Sanchez-Correa B, Pastor N, Duran E, Alonso C, Solana R. Current progress in NK cell biology and NK cell-based cancer immunotherapy. Cancer Immunol Immunother 2020; 69:879-899. [PMID: 32130453 DOI: 10.1007/s00262-020-02532-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 02/21/2020] [Indexed: 12/12/2022]
Abstract
A better understanding of the complex interactions between the immune system and tumour cells from different origins has opened the possibility to design novel procedures of antitumoral immunotherapy. One of these novel approaches is based on the use of autologous or allogeneic natural killer (NK) cells to treat cancer. In the last decade, different strategies to activate NK cells and their use in adoptive NK cell-based therapy have been established. Although NK cells are often considered as a uniform cell population, several phenotypic and functionally distinct NK cells subsets exist in healthy individuals, that are differentially affected by ageing or by apparently innocuous viruses such as cytomegalovirus (CMV). In addition, further alterations in the expression of activating and inhibitory receptors are found in NK cells from cancer patients, likely because of their interaction with tumour cells. Thus, NK cells represent a promising strategy for adoptive immunotherapy of cancer already tested in phase 1/2 clinical trials. However, the existence of NK cell subpopulations expressing different patterns of activating and inhibitory receptors and different functional capacities, that can be found to be altered not only in cancer patients but also in healthy individuals stratified by age or CMV infection, makes necessary a personalized definition of the procedures used in the selection, expansion, and activation of the relevant NK cell subsets to be successfully used in NK cell-based immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Alejandra Pera
- University of Cordoba, Córdoba, Spain.,Instituto Maimónides de Investigación Biomédica (IMIBIC), Córdoba, Spain
| | | | - Nieves Pastor
- Department of Medicine, Faculty of Veterinary, University of Extremadura, Cáceres, Spain
| | - Esther Duran
- Department of Medicine, Faculty of Veterinary, University of Extremadura, Cáceres, Spain
| | - Corona Alonso
- Instituto Maimónides de Investigación Biomédica (IMIBIC), Córdoba, Spain. .,Reina Sofia University Hospital, Córdoba, Spain. .,Immunology Unit, IMIBIC-Reina Sofia University Hospital-University of Cordoba, Av. Menendez Pidal, 14004, Córdoba, Spain.
| | - Rafael Solana
- University of Cordoba, Córdoba, Spain. .,Instituto Maimónides de Investigación Biomédica (IMIBIC), Córdoba, Spain. .,Reina Sofia University Hospital, Córdoba, Spain. .,Immunology Unit, IMIBIC-Reina Sofia University Hospital-University of Cordoba, Av. Menendez Pidal, 14004, Córdoba, Spain.
| |
Collapse
|