1
|
Hu M, Cheng N, Liu R, Shao L, Yang R, Du S, Chu L, Wang W, Wang H. Red Ginseng Aqueous Extract Superior to White Ginseng Exhibited Anti-Aging Property Through IIS Signaling Pathway in Caenorhabditis elegans. Chem Biodivers 2025:e202500604. [PMID: 40226869 DOI: 10.1002/cbdv.202500604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/10/2025] [Accepted: 04/13/2025] [Indexed: 04/15/2025]
Abstract
The traditional Chinese herbal medicine Panax ginseng can optimize physical health and is anticipated to be a valuable resource for investigating anti-aging therapies. This study investigated the anti-aging effects of red ginseng aqueous extract (RG) and white ginseng aqueous extract (WG). Network pharmacology forecasted that the key mechanisms of anti-aging in white and red ginsengs were the PI3K-Akt and IIS signaling pathways. Experiments conducted on Caenorhabditis elegans (C. elegans) showed that 5 mg/mL WG and RG notably prolonged lifespan and improved stress resistance. The qPCR analysis revealed that changes in upstream genes activated downstream genes in the IIS pathway. Furthermore, forward and reverse validation indicated that WG and RG acted through the IIS pathway in promoting longevity. RG exhibited superior anti-aging effects compared to WG at the same concentration. This might be attributed to the fact that RG contained more reducing sugars, polyphenols, melanoidins, total saponin content, and especially the conversion of ginsenosides. Molecular docking showed that ginsenosides interacted with the key protein DAF-2, with ginsenosides Rg3, Rg5, Rh4, Rf, and Rc binding more strongly than ginsenosides Rb1, Rb2, and Rd. Overall, RG possessed different active ingredients compared to WG and showed superior results in improving aging in C. elegans.
Collapse
Affiliation(s)
- Mengxue Hu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, China
| | - Ningning Cheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, China
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, China
| | - Liangyong Shao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, China
| | - Ran Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, China
| | - Siyu Du
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, China
| | - Lulu Chu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Wenjie Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, China
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology (TUST), Tianjin, China
| |
Collapse
|
2
|
Kühnel H, Seiler M, Feldhofer B, Ebrahimian A, Maurer M. Ganoderma lucidum Extract Modulates Gene Expression Profiles Associated with Antioxidant Defense, Cytoprotection, and Senescence in Human Dermal Fibroblasts: Investigation of Quantitative Gene Expression by qPCR. Curr Issues Mol Biol 2025; 47:130. [PMID: 39996851 PMCID: PMC11854148 DOI: 10.3390/cimb47020130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
Cellular senescence plays a crucial role in skin aging, with senescent dermal fibroblasts contributing to reduced skin elasticity and increased inflammation. This study investigated the potential of Ganoderma lucidum (Reishi) ethanol extract to modulate the senescent phenotype of human dermal fibroblasts. Reishi powder of two different vendors was used. The extract was produced by extracting the Reishi powder for at least three weeks in 40% ethanol at room temperature. Etoposide-induced senescent fibroblasts were treated with Reishi extracts from two commercial sources for 14 days. Gene expression analysis was performed using qPCR to assess senescence makers, antioxidant defense, and extracellular matrix remodeling. Results showed that Reishi extracts significantly upregulated antioxidant and cytoprotective genes, including Heme oxygenase 1 (HO-1), γ-Glutamylcysteine synthetase (γGCS-L), and NAD(P)H dehydrogenase [quinone] 1 (NQO1), compared to untreated controls. Importantly, Reishi treatment suppressed the expression of p16INK4a, a key marker of cellular senescence, while transiently upregulating p21Cip1. The extracts also demonstrated potential senolytic properties, reducing the percentage of senescent cells as measured by senescence-associated β-galactosidase staining. However, Reishi treatment did not mitigate the upregulation of MMP1 and IL-8 in one Reishi treatment group, indicating differences in the preparations of different vendors. These findings suggest that Ganoderma lucidum extract may help alleviate some aspects of cellular senescence in dermal fibroblasts, primarily through enhanced antioxidant defense and cytoprotection, potentially offering a novel approach to combat skin aging.
Collapse
Affiliation(s)
- Harald Kühnel
- Department of Applied Life Sciences, Bioengineering, University of Applied Sciences Campus Wien, Favoritenstraße 222, 1100 Vienna, Austria (B.F.)
| | | | | | | | | |
Collapse
|
3
|
Jin Z, Zhang P, Huang H, Liu J, Jiang C, Zhang H, Ren L, Sun B, Chang X, Gao T, Sun W. Food-derived skin-care ingredient as a promising strategy for skin aging: Current knowledge and future perspectives. Colloids Surf B Biointerfaces 2024; 244:114170. [PMID: 39180992 DOI: 10.1016/j.colsurfb.2024.114170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Skin aging involves complex biochemical reactions and has attracted a growing concern recently. For it, there is a great desire to replace the hazardous and easy-recurring "therapy means" with "daily care" based on some natural and healthy ingredients. According to a novel theory called "homology of cosmetic and food", the safety, efficacy and accessibility of food-derived skin-care ingredients offer an attractive option for combating skin aging, which will be an inevitable trend of dermatology in the future. Ultraviolet (UV) radiation is a major trigger of skin aging. It acts on the skin and generates reactive oxygen species, which causing oxidative stress. More, matrix metalloproteinase and melanin levels are also upregulated by the UV-activated mitogen-activated protein kinase (MAPK) pathway and tyrosinase, respectively, resulting in collagen degradation and melanin deposition in the extracellular matrix. Through the existing studies, the relevant key biomarkers and biochemical pathways can be effectively controlled by skin-care ingredients from animal-derived and plant-derived foods as well as traditional herbs, thus preserving human skin from UV-induced aging in terms of antioxidant, collagen protection and melanin inhibition. To extend their application potential, some carriers represented by nanoliposomes can facilitate the transdermal absorption of food-derived skin-care ingredients by the variation of molecular weight and lipid solubility. The present review will provide an overview of the trigger mechanisms of skin aging, and focus on the molecular biology aspects of food-derived skin-care ingredients in skin matrix and the critical summarize of their research state.
Collapse
Affiliation(s)
- Zichun Jin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Peng Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Huan Huang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Jialin Liu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Chaoping Jiang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Hanyuan Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Lu Ren
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Bingkun Sun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Xianghan Chang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Tingyue Gao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China
| | - Wenxiu Sun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia 010018, China.
| |
Collapse
|
4
|
Sharika R, Mongkolpobsin K, Rangsinth P, Prasanth MI, Nilkhet S, Pradniwat P, Tencomnao T, Chuchawankul S. Experimental Models in Unraveling the Biological Mechanisms of Mushroom-Derived Bioactives against Aging- and Lifestyle-Related Diseases: A Review. Nutrients 2024; 16:2682. [PMID: 39203820 PMCID: PMC11357205 DOI: 10.3390/nu16162682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/29/2024] [Accepted: 08/10/2024] [Indexed: 09/03/2024] Open
Abstract
Mushrooms have garnered considerable interest among researchers due to their immense nutritional and therapeutic properties. The presence of biologically active primary and secondary metabolites, which includes several micronutrients, including vitamins, essential minerals, and other dietary fibers, makes them an excellent functional food. Moreover, the dietary inclusion of mushrooms has been reported to reduce the incidence of aging- and lifestyle-related diseases, such as cancer, obesity, and stroke, as well as to provide overall health benefits by promoting immunomodulation, antioxidant activity, and enhancement of gut microbial flora. The multifunctional activities of several mushroom extracts have been evaluated by both in vitro and in vivo studies using cell lines along with invertebrate and vertebrate model systems to address human diseases and disorders at functional and molecular levels. Although each model has its own strengths as well as lacunas, various studies have generated a plethora of data regarding the regulating players that are modulated in order to provide various protective activities; hence, this review intends to compile and provide an overview of the plausible mechanism of action of mushroom-derived bioactives, which will be helpful in future medicinal explorations.
Collapse
Affiliation(s)
- Rajasekharan Sharika
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kuljira Mongkolpobsin
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panthakarn Rangsinth
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China;
| | - Mani Iyer Prasanth
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (T.T.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunita Nilkhet
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Paweena Pradniwat
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (T.T.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Siriporn Chuchawankul
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
5
|
Ding X, Ma X, Meng P, Yue J, Li L, Xu L. Potential Effects of Traditional Chinese Medicine in Anti-Aging and Aging-Related Diseases: Current Evidence and Perspectives. Clin Interv Aging 2024; 19:681-693. [PMID: 38706635 PMCID: PMC11070163 DOI: 10.2147/cia.s447514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/17/2024] [Indexed: 05/07/2024] Open
Abstract
Aging and aging-related diseases present a global public health problem. Therefore, the development of efficient anti-aging drugs has become an important area of research. Traditional Chinese medicine is an important complementary and alternative branch of aging-related diseases therapy. Recently, a growing number of studies have revealed that traditional Chinese medicine has a certain delaying effect on the progression of aging and aging-related diseases. Here, we review the progress in research into using traditional Chinese medicine for aging and aging-related diseases (including neurodegenerative diseases, cardiovascular diseases, diabetes, and cancer). Furthermore, we summarize the potential mechanisms of action of traditional Chinese medicine and provide references for further studies on aging and aging-related diseases.
Collapse
Affiliation(s)
- Xue Ding
- Department of Medical, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Xiuxia Ma
- Department of AIDS Clinical Research Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Pengfei Meng
- Department of the First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Jingyu Yue
- Department of AIDS Clinical Research Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Liangping Li
- Department of Graduate, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Liran Xu
- Department of the First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| |
Collapse
|
6
|
Okoro NO, Odiba AS, Han J, Osadebe PO, Omeje EO, Liao G, Liu Y, Jin C, Fang W, Liu H, Wang B. Ganoderma lucidum methyl ganoderate E extends lifespan and modulates aging-related indicators in Caenorhabditis elegans. Food Funct 2024; 15:530-542. [PMID: 38108452 DOI: 10.1039/d3fo04166b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Methyl Ganoderate E (MGE) is a triterpenoid derived from Ganoderma lucidum (Reishi), an edible mushroom, commonly processed into food forms such as soups, drinks, culinary dishes, and supplements. MGE has been shown to inhibit 3T3-L1 murine adipocyte differentiation when combined with other G. lucidum triterpenes. However, the specific effect of MGE on biological processes remains unknown. In this study, we present the first evidence of MGE's anti-aging effect in Caenorhabditis elegans. Through our screening process using the UPRER regulation ability, we evaluated a library of 74 pure compounds isolated from G. lucidum, and MGE exhibited the most promising results. Subsequent experiments demonstrated that MGE extended the lifespan by 26% at 10 μg ml-1 through daf-16, hsf-1, and skn-1-dependent pathways. MGE also enhanced resistance to various molecular stressors, improved healthspan, increased fertility, and reduced the aggregation of alpha-synuclein and amyloid-beta. Transcriptome data revealed that MGE promoted processes associated with proteolysis and neural activity, while not promoting cell death processes. Collectively, our findings suggest that G. lucidum MGE could be considered as a potential anti-aging intervention, adding to the growing list of such interventions.
Collapse
Affiliation(s)
- Nkwachukwu Oziamara Okoro
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China.
- College of Life Science and Technology, Guangxi University, Nanning 530004, China
- Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria, Nsukka 410001, Nigeria
| | - Arome Solomon Odiba
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China.
- State Key Lab of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Junjie Han
- State Key Lab of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | | | - Edwin Ogechukwu Omeje
- Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria, Nsukka 410001, Nigeria
| | - Guiyan Liao
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China.
| | - Yichen Liu
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China.
- College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Cheng Jin
- State Key Lab of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Wenxia Fang
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China.
- College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Hongwei Liu
- State Key Lab of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Bin Wang
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning 530007, China.
| |
Collapse
|
7
|
Kirchweger B, Zwirchmayr J, Grienke U, Rollinger JM. The role of Caenorhabditis elegans in the discovery of natural products for healthy aging. Nat Prod Rep 2023; 40:1849-1873. [PMID: 37585263 DOI: 10.1039/d3np00021d] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Covering: 2012 to 2023The human population is aging. Thus, the greatest risk factor for numerous diseases, such as diabetes, cancer and neurodegenerative disorders, is increasing worldwide. Age-related diseases do not typically occur in isolation, but as a result of multi-factorial causes, which in turn require holistic approaches to identify and decipher the mode of action of potential remedies. With the advent of C. elegans as the primary model organism for aging, researchers now have a powerful in vivo tool for identifying and studying agents that effect lifespan and health span. Natural products have been focal research subjects in this respect. This review article covers key developments of the last decade (2012-2023) that have led to the discovery of natural products with healthy aging properties in C. elegans. We (i) discuss the state of knowledge on the effects of natural products on worm aging including methods, assays and involved pathways; (ii) analyze the literature on natural compounds in terms of their molecular properties and the translatability of effects on mammals; (iii) examine the literature on multi-component mixtures with special attention to the studied organisms, extraction methods and efforts regarding the characterization of their chemical composition and their bioactive components. (iv) We further propose to combine small in vivo model organisms such as C. elegans and sophisticated analytical approaches ("wormomics") to guide the way to dissect complex natural products with anti-aging properties.
Collapse
Affiliation(s)
- Benjamin Kirchweger
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Julia Zwirchmayr
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Ulrike Grienke
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| | - Judith M Rollinger
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| |
Collapse
|
8
|
Zhong C, Li Y, Li W, Lian S, Li Y, Wu C, Zhang K, Zhou G, Wang W, Xu H, Huang M, Katanaev V, Jia L, Lu Y. Ganoderma lucidum extract promotes tumor cell pyroptosis and inhibits metastasis in breast cancer. Food Chem Toxicol 2023; 174:113654. [PMID: 36758785 DOI: 10.1016/j.fct.2023.113654] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 01/28/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
Regulation of tumor cell death is a fundamental mechanism for tumor treatment. However, most tumors are resistant to cell death. Triggering inflammatory cell death, pyroptosis, may provide a new view of enhancing tumor cell death. Here we report a new role of Ganoderma lucidum extract (GLE) in pyroptotic cell death. Treatment with GLE (50-200 μg/mL) significantly elevated reactive oxygen species (ROS) levels and caused pyroptotic cell death in breast cancer cells. Mechanistically, GLE activates caspase 3 and further cleaves the gasdermin E (GSDME) protein to form pores on the cell membrane, releasing massive amounts of inflammatory factors in breast cancer cells. We also showed that GLE enhanced antitumor immune responses by substantially increasing the subsets of natural killer (NK) and CD8+T cells in the peripheral immune system and tumor microenvironment. In addition, GLE destroys multiple steps of tumor metastasis, including adhesion, migration, invasion, colonization, and angiogenesis. Collectively, these results suggest that GLE provides a potential approach for breast cancer treatment, which may complement chemotherapy or immunotherapy for cancer metastasis.
Collapse
Affiliation(s)
- Chunlian Zhong
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China; Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Yumei Li
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Wulin Li
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China; Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Shu Lian
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China; Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Ye Li
- Fujian Xianzhilou Biological and Technology Co., Ltd., Fuzhou, China
| | - Changhui Wu
- Fujian Xianzhilou Biological and Technology Co., Ltd., Fuzhou, China
| | - Kun Zhang
- Fujian Xianzhilou Biological and Technology Co., Ltd., Fuzhou, China
| | - Guiyu Zhou
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China; Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Weiyu Wang
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China; Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China; College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Huo Xu
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China; Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Mingqing Huang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Vladimir Katanaev
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China; Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lee Jia
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China; Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China.
| | - Yusheng Lu
- Fujian-Taiwan-Hongkong-Macao Science and Technology Cooperation Base of Intelligent Pharmaceutics, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China; Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
9
|
Garcia VO, Fronza M, Von Borowski R, Alves-Silva G, Zimmer AR, Ruaro T, Gnoatto SCB, Dallegrave A, Silveira RMB. First report of chemical composition and cytotoxicity evaluation of Foraminispora rugosa basidiomata from Brazil. BOTANICAL STUDIES 2022; 63:33. [PMID: 36435932 PMCID: PMC9701286 DOI: 10.1186/s40529-022-00363-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Foraminispora rugosa is a species reported from Brazil, Venezuela, French Guiana, Costa Rica and Cuba. It is a basidiomycete in the Ganodermataceae family. In this study, both chemical composition and cytotoxicity of the ethanolic extract of F. rugosa were investigated for the first time. RESULTS Phylogenetic analysis confirmed the identification of the specimens, and the results of cytotoxicity assays showed that at concentrations of 7.8-500.0 µg/mL the ethanolic extract displayed weak cytotoxicity against the tested cell lines. Five oxylipins were identified by ultra high performance liquid chromatography coupled with quadrupole time-of-flight and mass spectrometry (UHPLC-QTOF-MS). CONCLUSIONS This study provides new insights into the current knowledge of bioactive compounds produced by macrofungi, and provides data for future biological assays with relative selectivity and safety.
Collapse
Affiliation(s)
- V O Garcia
- Institute of Biosciences, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, Rio Grande do Sul, 91501-970, Brazil.
- , Av. Roraima, 1000. Prédio 21, Sala 5231, Santa Maria, 97105-900, Brazil.
| | - M Fronza
- University of Vila Velha, Avenida Comissário José Dantas de Melo, 21 - Boa Vista II, Espírito Santo, 29102-920, Brazil
| | - R Von Borowski
- Faculty of Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre, Rio Grande do Sul, 90610-000, Brazil
| | - G Alves-Silva
- Institute of Biosciences, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, Rio Grande do Sul, 91501-970, Brazil
| | - A R Zimmer
- Faculty of Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre, Rio Grande do Sul, 90610-000, Brazil
| | - T Ruaro
- Faculty of Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre, Rio Grande do Sul, 90610-000, Brazil
| | - S C B Gnoatto
- Faculty of Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre, Rio Grande do Sul, 90610-000, Brazil
| | - A Dallegrave
- Institute of Chemistry, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, Rio Grande do Sul, 91501-970, Brazil
| | - R M B Silveira
- Institute of Biosciences, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, Rio Grande do Sul, 91501-970, Brazil
| |
Collapse
|
10
|
Guo X, Dong Z, Li Q, Wan D, Zhong J, Dongzhi D, Huang M. Flavonoids from Rhododendron nivale Hook. f delay aging via modulation of gut microbiota and glutathione metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154270. [PMID: 35760023 DOI: 10.1016/j.phymed.2022.154270] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/30/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Rhododendron nivale Hook. f (R.n), one of the four Manna Stash used in Tibetan medicine to delay aging, possesses anti-aging pharmacological activity. However, which R.n ingredients contain anti-aging properties and the underlying mechanisms involved are unclear. HYPOTHESIS/PURPOSE Based on interactions between gut microbiota and natural medicines and the important role of gut microbiota in anti-aging, the study investigated the hypothesis that R.n possesses anti-aging properties and the interaction of gut microbiota with R.n is responsible for its anti-aging effects. STUDY DESIGN The primary active ingredients of R.n and their target function and pathway enrichment were explored. An aging mouse model was used to clarify the underlying anti-aging mechanisms of R.n. METHODS Chromatography, spectroscopy, nuclear magnetic technology, and pharmacology were used to reveal the major active ingredients of ethanol extract residues of R.n (RNEA). The target function and pathway enrichment of these active ingredients were explored. Plasma metabolomics coupled with intestinal flora evaluation and bioinformatics analysis was used to clarify the underlying anti-aging mechanisms of RNEA. RESULTS Myricetin-3-β-D-xylopyranoside, hyperin, goospetin-8-methyl ether 3-β-D-galactoside, and diplomorphanin B were separated and identified from RNEA. The network pharmacology study revealed that the active ingredients' target function and pathway enrichment focused mainly on the glutathione antioxidant system. In a D-galactose-induced mouse model of aging, RNEA was shown to possess suitable anti-aging pharmacological activity, as indicated by the amelioration of memory loss and weakened superoxide dismutase and glutathione peroxidase activities. Plasma metabolomics coupled with intestinal flora examination and bioinformatics analysis revealed that RNEA could regulate the expression of glutathione-related enzymes and ameliorate D-galactose-induced imbalances in methionine, glycine, and serine, and betaine and galactose metabolism. The results showed that RNEA reshaped the disordered intestinal flora and mitigated the D-galactose-mediated decline in glutathione oxidase expression, further confirming that the anti-aging effect of RNEA was closely related to regulation of the glutathione antioxidant system. CONCLUSION RNEA, consisting of myricetin-3-β-D-xylopyranoside, hyperin, goospetin-8-methyl ether 3-β-D-galactoside, and diplomorphanin B, possesses anti-aging activity. The anti-aging effect of RNEA might be due to reshaping intestinal flora homeostasis, increasing the expression of glutathione peroxidase 4 in the intestines and liver, enhancing glutathione peroxidase activity, and reinforcing the glutathione antioxidant system.
Collapse
Affiliation(s)
- Xiao Guo
- State Key Laboratory of Tibetan Medicine Research and Development, Tibetan Medicine Research Center, Tibetan Medicial College, Qinghai University, Xining, Qinghai 810016, China
| | - Zhen Dong
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Qien Li
- State Key Laboratory of Tibetan Medicine Research and Development, Tibetan Medicine Research Center, Tibetan Medicial College, Qinghai University, Xining, Qinghai 810016, China
| | - Digao Wan
- State Key Laboratory of Tibetan Medicine Research and Development, Tibetan Medicine Research Center, Tibetan Medicial College, Qinghai University, Xining, Qinghai 810016, China
| | - Jiangbin Zhong
- State Key Laboratory of Tibetan Medicine Research and Development, Tibetan Medicine Research Center, Tibetan Medicial College, Qinghai University, Xining, Qinghai 810016, China
| | - Duojie Dongzhi
- State Key Laboratory of Tibetan Medicine Research and Development, Tibetan Medicine Research Center, Tibetan Medicial College, Qinghai University, Xining, Qinghai 810016, China
| | - Meizhou Huang
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
11
|
Wang Y, Liu H, Fu G, Li Y, Ji X, Zhang S, Qiao K. Paecilomyces variotii extract increases lifespan and protects against oxidative stress in Caenorhabditis elegans through SKN-1, but not DAF-16. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
12
|
Yao L, Sun J, Liang Y, Feng T, Wang H, Sun M, Yu W. Volatile fingerprints of Torreya grandis hydrosols under different downstream processes using HS-GC–IMS and the enhanced stability and bioactivity of hydrosols by high pressure homogenization. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Kolniak-Ostek J, Oszmiański J, Szyjka A, Moreira H, Barg E. Anticancer and Antioxidant Activities in Ganoderma lucidum Wild Mushrooms in Poland, as Well as Their Phenolic and Triterpenoid Compounds. Int J Mol Sci 2022; 23:ijms23169359. [PMID: 36012645 PMCID: PMC9408863 DOI: 10.3390/ijms23169359] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
The goal of this study was to the assess anti-cancer and antioxidant properties of the Ganoderma lucidum fruiting body, and to identify bioactive compounds found in their extracts. Significant antiproliferative activity was observed against MCF-7, MCF-7/DX, LOVO, LOVO/DX, MDA-MB 231, SW 620, and NHDF cell lines. With IC50 values of 25.38 µg/mL and 47.90 µg/mL, respectively, the extract was most effective against MDA-MB 231 and SW 620 cell lines. The bioactive compounds were identified using an ACQUITY UPLC-PDA-MS system. The extracts contained 13 triterpenoids and 28 polyphenols from the flavonols, phenolic acids, flavones, flavan-3-ols, and stilbenes families. Ganoderic acid derivative was found to be the most abundant triterpenoid (162.4 mg/g DW), followed by ganoderic acid B (145.6 mg/g DW). Resveratrol was the most abundant phenolic in the extract (5155.7 mg/100 g DM). The findings could explain why G. lucidum extracts are used in folk medicine.
Collapse
Affiliation(s)
- Joanna Kolniak-Ostek
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630 Wroclaw, Poland
- Correspondence:
| | - Jan Oszmiański
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630 Wroclaw, Poland
| | - Anna Szyjka
- Department of Basic Medical Sciences, Faculty of Pharmacy, Wroclaw Medical University, 211 Borowska Street, 50-556 Wrocław, Poland
| | - Helena Moreira
- Department of Basic Medical Sciences, Faculty of Pharmacy, Wroclaw Medical University, 211 Borowska Street, 50-556 Wrocław, Poland
| | - Ewa Barg
- Department of Basic Medical Sciences, Faculty of Pharmacy, Wroclaw Medical University, 211 Borowska Street, 50-556 Wrocław, Poland
| |
Collapse
|
14
|
Chen W, Chen Z, Shan S, Wu A, Zhao C, Ye X, Zheng X, Zhu R. Cyanidin-3-O-glucoside promotes stress tolerance and lifespan extension of Caenorhabditis elegans exposed to polystyrene via DAF-16 pathway. Mech Ageing Dev 2022; 207:111723. [PMID: 35988813 DOI: 10.1016/j.mad.2022.111723] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/12/2022] [Accepted: 08/11/2022] [Indexed: 10/15/2022]
Abstract
Microplastic pollution has attracted growing attention due to its prevalent and persistent exposure to general population through the food chain, but few reports have focused on the toxicological prevention of polystyrene (PS). Using the wild-type and mutant strains, this study explored the impacts of PS and cyanidin-3-O-glucoside (C3G) on stress tolerance and lifespan of Caenorhabditis elegans (C. elegans). In N2 nematodes, PS exposure initiated the oxidative stress and subsequent lifespan reduction, while these adverse impacts could be positively improved by C3G treatment. Considering the pivotal role of DAF-16 pathway in stress tolerance and lifespan regulation, the expression of the daf-16 gene and its downstream antioxidant genes (clt-2, hsp-16.1, sod-3, sod-5) were examined, and found to be significantly enhanced by C3G. Since the sod-3 gene was up-regulated the most fold by C3G, the activity of SOD enzyme that encoded by the sod-3 was examined, and could be obviously enhanced upon C3G treatment. This explained the improved oxidative stress and delayed oxidation-associated aging after C3G intervention. Nevertheless, these positive effects of C3G were weakened in daf-16(-) mutant strain (with deleted DAF-16 gene), for which the beneficial effects of C3G in promoting stress resistance and lifespan extension were inhibited. These findings suggested that the DAF-16 gene and its downstream antioxidant genes, have participated in C3G's regulations on redox balance and lifespan that impacted by nano-polystyrene particles. This study highlighted the link between dietary components and environmentally driven disturbance.
Collapse
Affiliation(s)
- Wen Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Zhen Chen
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Shuo Shan
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fujian 350002, China
| | - Xiang Ye
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Ruiyu Zhu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
15
|
Meng X, Yang Y, Wu Y, Zhang Y, Zhang H, Zhou W, Guo M, Li L. Inflammatory factor expression in HaCaT cells and melanin synthesis in melanocytes: Effects of Ganoderma lucidum fermentation broth containing Chinese medicine. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2096067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Xianyao Meng
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| | - Yunli Yang
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| | - Yuehang Wu
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| | - Ying Zhang
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| | - Hongyan Zhang
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| | - Weiqiang Zhou
- Nutrition & Health Research Institute, COFCO Corporation, Beijing, China
| | - Miaomiao Guo
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| | - Li Li
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
16
|
Ding W, Zhang X, Yin X, Zhang Q, Wang Y, Guo C, Chen Y. Ganoderma lucidum aqueous extract inducing PHGPx to inhibite membrane lipid hydroperoxides and regulate oxidative stress based on single-cell animal transcriptome. Sci Rep 2022; 12:3139. [PMID: 35210474 PMCID: PMC8873301 DOI: 10.1038/s41598-022-06985-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 02/10/2022] [Indexed: 11/09/2022] Open
Abstract
In this study, the single-cell eukaryotic model organism Tetrahymena thermophila was used as an experimental material to reveal the anti-aging mechanism of Ganoderma lucidum aqueous extract. After treatment with the G. lucidum aqueous extract, the logarithmic phase was extended, and the maximum density of T. thermophila increased to 5.5 × 104 cells/mL. The aqueous extract was more effective than the main active monomers of G. lucidum. The membrane integrity in the cell including mitochondria and nucleus appeared improvement after treatment with the G. lucidum aqueous extract, which observed by ammonia silver staining and transmission electron microscopy. Gene Ontology (GO) functional enrichment of the differentially expressed genes in transcriptome showed that the G. lucidum aqueous extract promoted the biological metabolic process of membrane components. According to Kyoto Encyclopedia of Genes and Genomes (KEGG), the glutathione metabolism process was enhanced in both growth phases. Protein–protein interaction (PPI) network analysis illustrated that phospholipid hydroperoxide glutathione peroxidase (PHGPx) played a key role in the anti-aging mechanism. The results suggested that G. lucidum aqueous extract improved the GPX activity as well as reduced the malondialdehyde content and cell damage. More importantly, the expression of PHGPx was promoted to reduce the oxidation degree of the membrane lipids and enhance the integrity of the membrane to achieve anti-aging effects.
Collapse
Affiliation(s)
- Wenqiao Ding
- Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, 150025, China.,College of Biology and Food Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - Xueying Zhang
- Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, 150025, China
| | - Xiaoyu Yin
- Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, 150025, China
| | - Qing Zhang
- Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, 150025, China
| | - Ying Wang
- Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, 150025, China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Ying Chen
- Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin, 150025, China. .,School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| |
Collapse
|
17
|
Yadav D, Negi PS. Bioactive components of mushrooms: Processing effects and health benefits. Food Res Int 2021; 148:110599. [PMID: 34507744 DOI: 10.1016/j.foodres.2021.110599] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
Mushrooms have been recognized for their culinary attributes for long and were relished in the most influential civilizations in history. Currently, they are the focus of renewed research because of their therapeutic abilities. Nutritional benefits from mushrooms are in the form of a significant source of essential proteins, dietary non-digestible carbohydrates, unsaturated fats, minerals, as well as various vitamins, which have enhanced its consumption, and also resulted in the development of various processed mushroom products. Mushrooms are also a crucial ingredient in traditional medicine for their healing potential and curative properties. The literature on the nutritional, nutraceutical, and therapeutic potential of mushrooms, and their use as functional foods for the maintenance of health was reviewed, and the available literature indicates the enormous potential of the bioactive compounds present in mushrooms. Future research should be focused on the development of processes to retain the mushroom bioactive components, and valorization of waste generated during processing. Further, the mechanisms of action of mushroom bioactive components should be studied in detail to delineate their diverse roles and functions in the prevention and treatment of several diseases.
Collapse
Affiliation(s)
- Divya Yadav
- Department of Fruit and Vegetables Technology, CSIR-Central Food Technological Research Institute, Mysuru 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Pradeep Singh Negi
- Department of Fruit and Vegetables Technology, CSIR-Central Food Technological Research Institute, Mysuru 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
18
|
Liu X, Liu H, Chen Z, Xiao J, Cao Y. DAF-16 acts as the "hub" of astaxanthin's anti-aging mechanism to improve aging-related physiological functions in Caenorhabditis elegans. Food Funct 2021; 12:9098-9110. [PMID: 34397058 DOI: 10.1039/d1fo01069g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Astaxanthin (AX) is a xanthophyll carotenoid that can effectively inhibit the production of peroxides and thereby protect the body from oxidative damage. In recent years, AX had been shown to have anti-aging properties, both in vivo and in vitro. However, the underlying mechanisms by which AX regulates senescence related proteins and signaling pathways remain unclear. Therefore, we used Caenorhabditis elegans (C. elegans) model binding proteomics to reveal AX anti-aging activity and its molecular mechanism. Our results suggest that AX promotes the health and lifespan of C. elegans by improving mobility, reducing the accumulation of age pigments, and increasing resistance to heat stress. In terms of the underlying mechanism, AX helps prolong the life of worms by regulating AGE-1 in the insulin signaling pathway, promoting the transport of DAF-16 into the nucleus and then up-regulating the expression level of DAF-16's downstream proteins (such as superoxide dismutase [Mn] 2 (SOD-3), heat shock proteins (HSPs), glutathione s-transferase (GST-4), etc.). Furthermore, AX may be a relevant response target for activation of dietary restriction pathways in vivo as a dietary restriction mimic. Meanwhile, proteomics data confirmed that there were 15 proteins enriched in the longevity regulation pathway. AX mainly regulates oxidative stress and the aging process by modulating the insulin signaling pathway around DAF-16 as the "hub". In addition to the insulin signaling pathway, other pathways including dietary restriction, AMP-activated protein kinase (AMPK), and mammal target of rapamycin (mTOR) are also dependent on DAF-16. These findings expand and deepen our knowledge of the underlying mechanism by which AX extends the lifespan of C. elegans.
Collapse
Affiliation(s)
- Xiaojuan Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China. and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Han Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China. and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zhiqing Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China. and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China. and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China. and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
19
|
Shi H, Hu X, Zheng H, Li C, Sun L, Guo Z, Huang W, Yu R, Song L, Zhu J. Two novel antioxidant peptides derived from Arca subcrenata against oxidative stress and extend lifespan in Caenorhabditis elegans. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
20
|
Peng HH, Wu CY, Hsiao YC, Martel J, Ke PY, Chiu CY, Liau JC, Chang IT, Su YH, Ko YF, Young JD, Ojcius DM. Ganoderma lucidum stimulates autophagy-dependent longevity pathways in Caenorhabditis elegans and human cells. Aging (Albany NY) 2021; 13:13474-13495. [PMID: 34091442 PMCID: PMC8202889 DOI: 10.18632/aging.203068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/29/2021] [Indexed: 12/24/2022]
Abstract
The medicinal fungus Ganoderma lucidum is used as a dietary supplement and health tonic, but whether it affects longevity remains unclear. We show here that a water extract of G. lucidum mycelium extends lifespan of the nematode Caenorhabditis elegans. The G. lucidum extract reduces the level of fibrillarin (FIB-1), a nucleolar protein that correlates inversely with longevity in various organisms. Furthermore, G. lucidum treatment increases expression of the autophagosomal protein marker LGG-1, and lifespan extension is abrogated in mutant C. elegans strains that lack atg-18, daf-16, or sir-2.1, indicating that autophagy and stress resistance pathways are required to extend lifespan. In cultured human cells, G. lucidum increases concentrations of the LGG-1 ortholog LC3 and reduces levels of phosphorylated mTOR, a known inhibitor of autophagy. Notably, low molecular weight compounds (<10 kDa) isolated from the G. lucidum water extract prolong lifespan of C. elegans and the same compounds induce autophagy in human cells. These results suggest that G. lucidum can increase longevity by inducing autophagy and stress resistance.
Collapse
Affiliation(s)
- Hsin-Hsin Peng
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan.,Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Cheng-Yeu Wu
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan.,Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Research Center of Bacterial Pathogenesis, Chang Gung University, Taoyuan, Taiwan
| | - Yuan-Chao Hsiao
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jan Martel
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan.,Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Po-Yuan Ke
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Liver Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chen-Yaw Chiu
- Biochemical Engineering Research Center, Ming Chi University of Technology, New Taipei City, Taiwan
| | | | - I-Te Chang
- Chang Gung Biotechnology Corporation, Taipei, Taiwan
| | - Yu-Hsiu Su
- Chang Gung Biotechnology Corporation, Taipei, Taiwan
| | - Yun-Fei Ko
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Biochemical Engineering Research Center, Ming Chi University of Technology, New Taipei City, Taiwan.,Chang Gung Biotechnology Corporation, Taipei, Taiwan
| | - John D Young
- Chang Gung Biotechnology Corporation, Taipei, Taiwan
| | - David M Ojcius
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan.,Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA 94103, USA
| |
Collapse
|
21
|
Wang L, Zuo X, Ouyang Z, Qiao P, Wang F. A Systematic Review of Antiaging Effects of 23 Traditional Chinese Medicines. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5591573. [PMID: 34055012 PMCID: PMC8143881 DOI: 10.1155/2021/5591573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/13/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Aging is an inevitable stage of body development. At the same time, aging is a major cause of cancer, cardiovascular disease, and neurodegenerative diseases. Chinese herbal medicine is a natural substance that can effectively delay aging and is expected to be developed as antiaging drugs in the future. Aim of the review. This paper reviews the antiaging effects of 23 traditional Chinese herbal medicines or their active components. Materials and methods. We reviewed the literature published in the last five years on Chinese herbal medicines or their active ingredients and their antiaging role obtained through the following databases: PubMed, EMBASE, Scopus, and Web of Science. RESULTS A total of 2485 papers were found, and 212 papers were screened after removing the duplicates and reading the titles. Twenty-three studies met the requirements of this review and were included. Among these studies, 13 articles used Caenorhabditis elegans as the animal model, and 10 articles used other animal models or cell lines. CONCLUSION Chinese herbal medicines or their active components play an antiaging role by regulating genes related to aging through a variety of signaling pathways. Chinese herbal medicines are expected to be developed as antiaging drugs or used in the medical cosmetology industry.
Collapse
Affiliation(s)
- Lixin Wang
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xu Zuo
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Zhuoer Ouyang
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Ping Qiao
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Fang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
22
|
Zeng M, Qi L, Guo Y, Zhu X, Tang X, Yong T, Xie Y, Wu Q, Zhang M, Chen D. Long-Term Administration of Triterpenoids From Ganoderma lucidum Mitigates Age-Associated Brain Physiological Decline via Regulating Sphingolipid Metabolism and Enhancing Autophagy in Mice. Front Aging Neurosci 2021; 13:628860. [PMID: 34025387 PMCID: PMC8134542 DOI: 10.3389/fnagi.2021.628860] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
With the advent of the aging society, how to grow old healthily has become an important issue for the whole of society. Effective intervention strategies for healthy aging are most desired, due to the complexity and diversity of genetic information, it is a pressing concern to find a single drug or treatment to improve longevity. In this study, long-term administration of triterpenoids of Ganoderma lucidum (TGL) can mitigate brain physiological decline in normal aging mice. In addition, the age-associated pathological features, including cataract formation, hair loss, and skin relaxation, brown adipose tissue accumulation, the β-galactosidase staining degree of kidney, the iron death of spleen, and liver functions exhibit improvement. We used the APP/PS1 mice and 3 × Tg-AD mice model of Alzheimer's Disease (AD) to further verify the improvement of brain function by TGL and found that Ganoderic acid A might be the effective constituent of TGL for anti-aging of the brain in the 3 × Tg-AD mice. A potential mechanism of action may involve the regulation of sphingolipid metabolism, prolonging of telomere length, and enhance autophagy, which allows for the removal of pathological metabolites.
Collapse
Affiliation(s)
- Miao Zeng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Longkai Qi
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yinrui Guo
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiangxiang Zhu
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,Academy of Life Sciences, Jinan University, Guangzhou, China
| | - Xiaocui Tang
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Tianqiao Yong
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yizhen Xie
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Mei Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Diling Chen
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
23
|
Teseo S, Houot B, Yang K, Monnier V, Liu G, Tricoire H. G. sinense and P. notoginseng Extracts Improve Healthspan of Aging Flies and Provide Protection in A Huntington Disease Model. Aging Dis 2021; 12:425-440. [PMID: 33815875 PMCID: PMC7990376 DOI: 10.14336/ad.2020.0714-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/14/2020] [Indexed: 12/30/2022] Open
Abstract
In the last decades, the strong increase in the proportion of older people worldwide, and the increased prevalence of age associated degenerative diseases, have put a stronger focus on aging biology. In spite of important progresses in our understanding of the aging process, an integrative view is still lacking and there is still need for efficient anti-aging interventions that could improve healthspan, reduce incidence of age-related disease and, eventually, increase the lifespan. Interestingly, some compounds from traditional medicine have been found to possess anti-oxidative and anti-inflammatory properties, suggesting that they could play a role as anti-aging compounds, although in depth in vivo investigations are still scarce. In this study we used one the major aging model organisms, Drosophila melanogaster, to investigate the ability of four herb extracts (HEs: Dendrobium candidum, Ophiopogon japonicum, Ganoderma sinense and Panax notoginseng) widely used in traditional Chinese medicine (TCM) to slow down aging and improve healthspan of aged animals. Combining multiple approaches (stress resistance assays, lifespan and metabolic measurements, functional heart characterizations and behavioral assays), we show that these four HEs provide in vivo protection from various insults, albeit with significant compound-specific differences. Importantly, extracts of P. notoginseng and G. sinense increase the healthspan of aging animals, as shown by increased activity during aging and improved heart function. In addition, these two compounds also provide protection in a Drosophila model of Huntington’s disease (HD), suggesting that, besides their anti-aging properties in normal individuals, they could be also efficient in the protection against age-related diseases.
Collapse
Affiliation(s)
- Serafino Teseo
- 1Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France.,2School of Biological Sciences, Nanyang Technological University, Singapore
| | - Benjamin Houot
- 1Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France
| | | | | | | | - Hervé Tricoire
- 1Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France
| |
Collapse
|
24
|
Zhang Y, Cai H, Tao Z, Yuan C, Jiang Z, Liu J, Kurihara H, Xu W. Ganoderma lucidum spore oil (GLSO), a novel antioxidant, extends the average life span in Drosophila melanogaster. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2020.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Phu HT, Thuan DTB, Nguyen THD, Posadino AM, Eid AH, Pintus G. Herbal Medicine for Slowing Aging and Aging-associated Conditions: Efficacy, Mechanisms and Safety. Curr Vasc Pharmacol 2020; 18:369-393. [PMID: 31418664 DOI: 10.2174/1570161117666190715121939] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 12/12/2022]
Abstract
Aging and aging-associated diseases are issues with unsatisfactory answers in the medical field. Aging causes important physical changes which, even in the absence of the usual risk factors, render the cardiovascular system prone to some diseases. Although aging cannot be prevented, slowing down the rate of aging is entirely possible to achieve. In some traditional medicine, medicinal herbs such as Ginseng, Radix Astragali, Ganoderma lucidum, Ginkgo biloba, and Gynostemma pentaphyllum are recognized by the "nourishing of life" and their role as anti-aging phytotherapeutics is increasingly gaining attention. By mainly employing PubMed here we identify and critically analysed 30 years of published studies focusing on the above herbs' active components against aging and aging-associated conditions. Although many plant-based compounds appear to exert an anti-aging effect, the most effective resulted in being flavonoids, terpenoids, saponins, and polysaccharides, which include astragaloside, ginkgolide, ginsenoside, and gypenoside specifically covered in this review. Their effects as antiaging factors, improvers of cognitive impairments, and reducers of cardiovascular risks are described, as well as the molecular mechanisms underlying the above-mentioned effects along with their potential safety. Telomere and telomerase, PPAR-α, GLUTs, FOXO1, caspase-3, bcl-2, along with SIRT1/AMPK, PI3K/Akt, NF-κB, and insulin/insulin-like growth factor-1 pathways appear to be their preferential targets. Moreover, their ability to work as antioxidants and to improve the resistance to DNA damage is also discussed. Although our literature review indicates that these traditional herbal medicines are safe, tolerable, and free of toxic effects, additional well-designed, large-scale randomized control trials need to be performed to evaluate short- and long-term effects and efficacy of these medicinal herbs.
Collapse
Affiliation(s)
- Hoa T Phu
- Department of Biochemistry, Hue University of Medicine and Pharmacy, Hue, Vietnam
| | - Duong T B Thuan
- Department of Biochemistry, Hue University of Medicine and Pharmacy, Hue, Vietnam
| | - Thi H D Nguyen
- Department of Physiology, Hue University of Medicine and Pharmacy, Hue, Vietnam
| | - Anna M Posadino
- Department of Biomedical Sciences, Faculty of Medicine, University of Sassari, Sassari, Italy
| | - Ali H Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Gianfranco Pintus
- Department of Biomedical Sciences, Faculty of Medicine, University of Sassari, Sassari, Italy.,Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar.,Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
26
|
Luo X, Wang J, Chen H, Zhou A, Song M, Zhong Q, Chen H, Cao Y. Identification of Flavoanoids From Finger Citron and Evaluation on Their Antioxidative and Antiaging Activities. Front Nutr 2020; 7:584900. [PMID: 33195374 PMCID: PMC7649818 DOI: 10.3389/fnut.2020.584900] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
Finger citron (Citrus medica L. var. sarcodactylis Swingle) is a traditional Chinese herb and considered as a healthy food. Flavonoids are the major bioactive substances in Finger citron. In this study, the major flavonoids of finger citron (FFC) were purified with AB-8 macroporous resins, and then three of them were identified as diosmetin-6-8-di-C-glucoside, hesperidin and diosmetin-6-C-glucoside, and other two were preliminarily inferred as limocitrol 3-alpha-l-arabinopyranosyl-(1->3)-galactoside and scutellarein 4′-methyl ether 7-glucoside by high-performance liquid chromatography and ultraperformance liquid chromatography to quadrupole time-of-flight mass spectrometry. Further, their antioxidation and antiaging activities were determined in vitro and in vivo. In vitro, chemical assays revealed that the purified FFC had strong antioxidative activity as demonstrated by its strong DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS [2,2-azinobis (3-ethyl-benzothiazoline-6-sulphonic acid) diammonium salt] radical scavenging activities and ORAC (oxygen radical absorbance capacity). In vivo, the purified FFC significantly increased the mean and maximum lifespan of Caenorhabditis elegans by 31.26 and 26.59%, respectively, and showed no side effects on their physiological functions. Under normal and oxidative stress conditions, purified FFC reduced the accumulation of reactive oxygen species (ROS) and malondialdehyde, while increased superoxide dismutase (SOD) and catalase (CAT) enzyme activities in C. elegans. Together, we successfully identified three major substances in purified FFC of finger citron and determined the excellent antiaging activity of FFC, which is attributed to its strong antioxidative activity and effect on homeostasis of ROS.
Collapse
Affiliation(s)
- Xuguang Luo
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Zhancui Food Co., Ltd, Chaozhou, China
| | - Jin Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Zhancui Food Co., Ltd, Chaozhou, China
| | - Haiqiang Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Zhancui Food Co., Ltd, Chaozhou, China
| | - Aimei Zhou
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Zhancui Food Co., Ltd, Chaozhou, China
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qingping Zhong
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Zhancui Food Co., Ltd, Chaozhou, China
| | - Hanmin Chen
- Guangdong Zhancui Food Co., Ltd, Chaozhou, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
27
|
Ye Y, Gu Q, Sun X. Potential of Caenorhabditis elegans as an antiaging evaluation model for dietary phytochemicals: A review. Compr Rev Food Sci Food Saf 2020; 19:3084-3105. [PMID: 33337057 DOI: 10.1111/1541-4337.12654] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/02/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022]
Abstract
Aging is an inevitable process characterized by the accumulation of degenerative damage, leading to serious diseases that affect human health. Studies on aging aim to develop pre-protection or therapies to delay aging and age-related diseases. A preventive approach is preferable to clinical treatment not only to reduce investment but also to alleviate pain in patients. Adjusting daily diet habits to improve the aging condition is a potentially attractive strategy. Fruits and vegetables containing active compounds that can effectively delay the aging process and reduce or inhibit age-related degenerative diseases have been identified. The signaling pathways related to aging in Caenorhabditis elegans are evolutionarily conserved; thus, studying antiaging components by intervening senescence process may contribute to the prevention and treatment of age-related diseases in humans. This review focuses on the effects of food-derived extracts or purified substance on antiaging in nematodes, as well as the underlying mechanisms, on the basis of several major signaling pathways and key regulatory factors in aging. The aim is to provide references for a healthy diet guidance and the development of antiaging nutritional supplements. Finally, challenges in the use of C. elegans as the antiaging evaluation model are discussed, together with the development that potentially inspire novel strategies and research tools.
Collapse
Affiliation(s)
- Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science, National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Qingyin Gu
- State Key Laboratory of Food Science and Technology, School of Food Science, National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science, National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, P. R. China
| |
Collapse
|
28
|
Zhu M, Meng P, Ling X, Zhou L. Advancements in therapeutic drugs targeting of senescence. Ther Adv Chronic Dis 2020; 11:2040622320964125. [PMID: 33133476 PMCID: PMC7576933 DOI: 10.1177/2040622320964125] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022] Open
Abstract
Aging leads to a high burden on society, both medically and economically. Cellular senescence plays an essential role in the initiation of aging and age-related diseases. Recent studies have highlighted the therapeutic value of senescent cell deletion in natural aging and many age-related disorders. However, the therapeutic strategies for manipulating cellular senescence are still at an early stage of development. Among these strategies, therapeutic drugs that target cellular senescence are arguably the most highly anticipated. Many recent studies have demonstrated that a variety of drugs exhibit healthy aging effects. In this review, we summarize different types of drugs promoting healthy aging – such as senolytics, senescence-associated secretory phenotype (SASP) inhibitors, and nutrient signaling regulators – and provide an update on their potential therapeutic merits. Taken together, our review synthesizes recent advancements in the therapeutic potentialities of drugs promoting healthy aging with regard to their clinical implications.
Collapse
Affiliation(s)
- Mingsheng Zhu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ping Meng
- Department of Nephrology, Huadu District People's Hospital, Southern Medical University, Guangzhou, China
| | - Xian Ling
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lili Zhou
- Division of Nephrology, Nanfang Hospital, 1838 North Guangzhou Ave, Guangzhou 510515, China
| |
Collapse
|
29
|
Ganoderma lucidum Ethanol Extracts Enhance Re-Epithelialization and Prevent Keratinocytes from Free-Radical Injury. Pharmaceuticals (Basel) 2020; 13:ph13090224. [PMID: 32872510 PMCID: PMC7557611 DOI: 10.3390/ph13090224] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/22/2022] Open
Abstract
Ganoderma lucidum or Reishi is recognized as the most potent adaptogen present in nature, and its anti-inflammatory, antioxidant, immunomodulatory and anticancer activities are well known. Moreover, lately, there has been an increasing interest from pharmaceutical companies in antiaging G. lucidum-extract-based formulations. Nevertheless, the pharmacological mechanisms of such adaptogenic and regenerative actions remain unclear. The present investigation aimed to explore its molecular and cellular effects in vitro in epidermal keratinocyte cultures by applying liquid chromatography coupled to ion trap time-of-flight mass spectrometry (LCMS-IT-TOF) for analysis of ethanol extracts using ganoderic acid-A as a reference compound. The G. lucidum extract showed a keratinocyte proliferation induction accompanied by an increase of cyclic kinase protein expressions, such as CDK2 and CDK6. Furthermore, a noteworthy migration rate increase and activation of tissue remodelling factors, such as matrix metalloproteinases 2 and 9 (MMP-2 and MMP-9), were observed. Finally, the extract showed an antioxidant effect, protecting from H2O2-induced cytotoxicity; preventing activation of AKT (protein kinase B), ERK (extracellular signal-regulated kinase), p53 and p21; and reducing the number of apoptotic cells. Our study paves the path for elucidating pharmacological properties of G. lucidum and its potential development as cosmeceutical skin products, providing the first evidence of its capability to accelerate the healing processes enhancing re-epithelialization and to protect cells from free-radical action.
Collapse
|
30
|
Abstract
Invertebrates are becoming more popular and, as collections age, clients may seek veterinary intervention where the welfare of the animal must be considered. This article covers aging in many invertebrate species but with a focus on species likely to be seen in general practice. Supportive care may be an option to prolong life, but euthanasia must be considered for invertebrates with age-related unmanageable conditions.
Collapse
Affiliation(s)
- Sarah Pellett
- Animates Veterinary Clinic, 2 The Green, Thurlby, Lincolnshire PE10 0EB, UK.
| | - Michelle O'Brien
- Wildfowl & Wetlands Trust, Newgrounds Lane, Slimbridge, Gloucestershire GL2 7BT, UK
| | - Benjamin Kennedy
- Anton Vets, Anton Trading Estate, Anton Mill Road, Andover SP10 2NJ, UK
| |
Collapse
|
31
|
Martel J, Wu CY, Peng HH, Ko YF, Yang HC, Young JD, Ojcius DM. Plant and fungal products that extend lifespan in Caenorhabditis elegans. MICROBIAL CELL (GRAZ, AUSTRIA) 2020; 7:255-269. [PMID: 33015140 PMCID: PMC7517010 DOI: 10.15698/mic2020.10.731] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/16/2022]
Abstract
The nematode Caenorhabditis elegans is a useful model to study aging due to its short lifespan, ease of manipulation, and available genetic tools. Several molecules and extracts derived from plants and fungi extend the lifespan of C. elegans by modulating aging-related pathways that are conserved in more complex organisms. Modulation of aging pathways leads to activation of autophagy, mitochondrial biogenesis and expression of antioxidant and detoxifying enzymes in a manner similar to caloric restriction. Low and moderate concentrations of plant and fungal molecules usually extend lifespan, while high concentrations are detrimental, consistent with a lifespan-modulating mechanism involving hormesis. We review here molecules and extracts derived from plants and fungi that extend the lifespan of C. elegans, and explore the possibility that these natural substances may produce health benefits in humans.
Collapse
Affiliation(s)
- Jan Martel
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Cheng-Yeu Wu
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Research Center of Bacterial Pathogenesis, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Hsin Peng
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Laboratory Animal Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yun-Fei Ko
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Chang Gung Biotechnology Corporation, Taipei, Taiwan
- Biochemical Engineering Research Center, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Hung-Chi Yang
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - John D. Young
- Chang Gung Biotechnology Corporation, Taipei, Taiwan
| | - David M. Ojcius
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA, USA
| |
Collapse
|
32
|
Shen SF, Zhu LF, Wu Z, Wang G, Ahmad Z, Chang MW. Extraction of triterpenoid compounds from Ganoderma Lucidum spore powder through a dual-mode sonication process. Drug Dev Ind Pharm 2020; 46:963-974. [PMID: 32363953 DOI: 10.1080/03639045.2020.1764022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Development of drug products from natural sources enable advantageous treatment and therapy options. Bioactive compounds in Ganoderma lucidum spore powder (GLSP) are known for vast antibacterial, antioxidant and anti-cancer properties. Herein, we studied the use of dual-probe ultrasound to extract triterpenoids from GLSP and further investigated the bioactivity of resulting products. FTIR results confirm the presence of key peaks although dual-probe ultrasound varied extraction efficacy. Response surface methodology (RSM) was used to optimize extraction conditions (55:28 for solvent to solid ratio, 10.38 s of ultrasound time and 94% v/v of ethanol concentration). HPLC-Q-TOF-MS confirmed the presence of nine different compounds and in vitro tests confirm good biocompatibility. Extracts are shown to inhibit DPPH radicals, reaching a maximum (61.09 ± 1.38%) at triterpenoid concentrations of 600 µg/mL. Dual-mode assisted extraction provides an enhanced approach for active embedded fiber production on a scale favorable to industry when using optimized process parameters. Furthermore, triterpenoid extracts show antibacterial properties on Staphylococcus aureus and Escherichia coli with potential in antibacterial and anticancer applications.
Collapse
Affiliation(s)
- Shuang-Fei Shen
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou, PR China.,Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, PR China
| | - Li-Fang Zhu
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou, PR China.,Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, PR China
| | - Zijing Wu
- Tianhe Agricultural Group, Longquan City, Zhejiang, PR China
| | - Guangkun Wang
- Tianhe Agricultural Group, Longquan City, Zhejiang, PR China
| | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Ming-Wei Chang
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou, PR China.,Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Newtownabbey, UK
| |
Collapse
|
33
|
Shaito A, Thuan DTB, Phu HT, Nguyen THD, Hasan H, Halabi S, Abdelhady S, Nasrallah GK, Eid AH, Pintus G. Herbal Medicine for Cardiovascular Diseases: Efficacy, Mechanisms, and Safety. Front Pharmacol 2020; 11:422. [PMID: 32317975 PMCID: PMC7155419 DOI: 10.3389/fphar.2020.00422] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/19/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases (CVDs) are a significant health burden with an ever-increasing prevalence. They remain the leading causes of morbidity and mortality worldwide. The use of medicinal herbs continues to be an alternative treatment approach for several diseases including CVDs. Currently, there is an unprecedented drive for the use of herbal preparations in modern medicinal systems. This drive is powered by several aspects, prime among which are their cost-effective therapeutic promise compared to standard modern therapies and the general belief that they are safe. Nonetheless, the claimed safety of herbal preparations yet remains to be properly tested. Consequently, public awareness should be raised regarding medicinal herbs safety, toxicity, potentially life-threatening adverse effects, and possible herb–drug interactions. Over the years, laboratory data have shown that medicinal herbs may have therapeutic value in CVDs as they can interfere with several CVD risk factors. Accordingly, there have been many attempts to move studies on medicinal herbs from the bench to the bedside, in order to effectively employ herbs in CVD treatments. In this review, we introduce CVDs and their risk factors. Then we overview the use of herbs for disease treatment in general and CVDs in particular. Further, data on the ethnopharmacological therapeutic potentials and medicinal properties against CVDs of four widely used plants, namely Ginseng, Ginkgo biloba, Ganoderma lucidum, and Gynostemma pentaphyllum, are gathered and reviewed. In particular, the employment of these four plants in the context of CVDs, such as myocardial infarction, hypertension, peripheral vascular diseases, coronary heart disease, cardiomyopathies, and dyslipidemias has been reviewed, analyzed, and critically discussed. We also endeavor to document the recent studies aimed to dissect the cellular and molecular cardio-protective mechanisms of the four plants, using recently reported in vitro and in vivo studies. Finally, we reviewed and reported the results of the recent clinical trials that have been conducted using these four medicinal herbs with special emphasis on their efficacy, safety, and toxicity.
Collapse
Affiliation(s)
- Abdullah Shaito
- Department of Biological and Chemical Sciences, Lebanese International University, Beirut, Lebanon
| | - Duong Thi Bich Thuan
- Department of Biochemistry, University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Hoa Thi Phu
- Department of Biochemistry, University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Thi Hieu Dung Nguyen
- Department of Physiology, University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Hiba Hasan
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Sarah Halabi
- Biology Department, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Samar Abdelhady
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Gheyath K Nasrallah
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Ali H Eid
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar.,Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
| | - Gianfranco Pintus
- Department of Medical Laboratory Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Department of Biomedical Sciences, Faculty of Medicine, University of Sassari, Sassari, Italy
| |
Collapse
|
34
|
Pan Y, Lin Z. Anti-aging Effect of Ganoderma (Lingzhi) with Health and Fitness. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1182:299-309. [PMID: 31777025 DOI: 10.1007/978-981-32-9421-9_13] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Although Ganoderma (Lingzhi in Chinese) has been used as an elixir for thousands of years, its anti-aging effects still need to be clarified. Aging is related to immunoregulation, oxidation stress, and free radical product. Till now, Ganoderma exert life span elongation activities by inhibiting ROS production, lipid peroxidation, and advanced oxidation protein products; increasing production of mitochondrial electron transport complexes, SOD, CAT, GSH and GSH-Px, DPPH, and ABTS radical scavenger activities; and having immunomodulatory and antioxidant activity by increasing radical scavenging activity and ferric reducing antioxidant power. Ganoderma's anti-aging effect on human remains a mystery, and its potential mechanisms underlying anti-aging effect for its clinical application still need to be elucidated.
Collapse
Affiliation(s)
- Yan Pan
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Zhibin Lin
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
35
|
Guest PC. Of Mice, Whales, Jellyfish and Men: In Pursuit of Increased Longevity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1178:1-24. [PMID: 31493219 DOI: 10.1007/978-3-030-25650-0_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The quest for increased human longevity has been a goal of mankind throughout recorded history. Recent molecular studies are now providing potentially useful insights into the aging process which may help to achieve at least some aspects of this quest. This chapter will summarize the main findings of these studies with a focus on long-lived mutant mice and worms, and the longest living natural species including Galapagos giant tortoises, bowhead whales, Greenland sharks, quahog clams and the immortal jellyfish.
Collapse
Affiliation(s)
- Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil.
| |
Collapse
|