1
|
Martínez-Gutiérrez A, Bertran A, Noya T, Pena-Rodríguez E, Gómez-Escalante S, Pascual S, Luis LS, González MC. New Chalcone-Derived Molecule for the Topical Regulation of Hyperpigmentation and Skin Aging. Pharmaceutics 2024; 16:1405. [PMID: 39598529 PMCID: PMC11597169 DOI: 10.3390/pharmaceutics16111405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Skin hyperpigmentation is a biological process that results in an excessive production of melanin and is highly regulated by several mechanisms, tyrosinase being one of the key enzymes involved. Current reported inhibitors lack clinical efficacy, show toxic side effects, have poor bioavailability, or low formulation compatibility. The aim of this study was to design a new effective tyrosinase inhibitor for topical hyperpigmentation and anti-aging treatments. Methods: Homology modeling was used to build the tridimensional structure of human tyrosinase, and virtual docking was used to predict molecule-enzyme binding modes. The tyrosinase activity of the designed and synthesized compounds was assessed and water solubility was determined by HPLC. Cell assays were performed to determine melanin content, cytotoxicity, wound healing, anti-glycation, antioxidation, and autophagy efficacy. Gene expression and miRNA levels were quantified by qPCR and chromatin accessibility by ATAC-Seq. Human reconstructed epidermis was used to test the depigmenting efficacy as well as the skin irritation potential. Results: The 3D structure of human tyrosinase was designed and validated. The new molecule could effectively inhibit human tyrosinase and melanin synthesis in 2D monocultures and a 3D epidermis model. Two melanogenesis-related miRNAs were increased in treated cells. Anti-glycation, antioxidant, mitochondria protection, autophagy activation, and wound healing properties were also observed, with special emphasis on epigenetics. Conclusions: The designed molecule is a potential candidate to be used as a depigmenting and anti-aging agent, with suitable properties to be introduced in final product formulations for dermatology or cosmetics treatments.
Collapse
Affiliation(s)
| | - Alexandra Bertran
- Biotechnology Unit, Mesoestetic Pharma Group, 08840 Barcelona, Spain
| | - Teresa Noya
- Biotechnology Unit, Mesoestetic Pharma Group, 08840 Barcelona, Spain
| | - Eloy Pena-Rodríguez
- Biomedical Engineering Unit, Mesoestetic Pharma Group, 08840 Barcelona, Spain
| | | | - Sergio Pascual
- R+D Department, Mesoestetic Pharma Group, 08840 Barcelona, Spain
| | - Luis Shotze Luis
- Medical Affairs, Mesoestetic Pharma Group, 08840 Barcelona, Spain
| | | |
Collapse
|
2
|
Riabinin A, Pankratova M, Rogovaya O, Vorotelyak E, Terskikh V, Vasiliev A. Ideal Living Skin Equivalents, From Old Technologies and Models to Advanced Ones: The Prospects for an Integrated Approach. BIOMED RESEARCH INTERNATIONAL 2024; 2024:9947692. [PMID: 39184355 PMCID: PMC11343635 DOI: 10.1155/2024/9947692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/18/2024] [Accepted: 07/20/2024] [Indexed: 08/27/2024]
Abstract
The development of technologies for the generation and transplantation of living skin equivalents (LSEs) is a significant area of translational medicine. Such functional equivalents can be used to model and study the morphogenesis of the skin and its derivatives, to test drugs, and to improve the healing of chronic wounds, burns, and other skin injuries. The evolution of LSEs over the past 50 years has demonstrated the leap in technology and quality and the shift from classical full-thickness LSEs to principled new models, including modification of classical models and skin organoids with skin derived from human-induced pluripotent stem cells (iPSCs) (hiPSCs). Modern methods and approaches make it possible to create LSEs that successfully mimic native skin, including derivatives such as hair follicles (HFs), sebaceous and sweat glands, blood vessels, melanocytes, and nerve cells. New technologies such as 3D and 4D bioprinting, microfluidic systems, and genetic modification enable achievement of new goals, cost reductions, and the scaled-up production of LSEs.
Collapse
Affiliation(s)
- Andrei Riabinin
- Department of Cell BiologyKoltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Maria Pankratova
- Department of Cell BiologyKoltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Olga Rogovaya
- Department of Cell BiologyKoltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina Vorotelyak
- Department of Cell BiologyKoltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Vasiliy Terskikh
- Department of Cell BiologyKoltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Andrey Vasiliev
- Department of Cell BiologyKoltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Li Y, Sun L, Chen R, Ni W, Liang Y, Zhang H, He C, Shi B, Petropoulos S, Zhao C, Shi L. Single-Cell Analysis Reveals Cxcl14 + Fibroblast Accumulation in Regenerating Diabetic Wounds Treated by Hydrogel-Delivering Carbon Monoxide. ACS CENTRAL SCIENCE 2024; 10:184-198. [PMID: 38292600 PMCID: PMC10823591 DOI: 10.1021/acscentsci.3c01169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 02/01/2024]
Abstract
Nonhealing skin wounds are a problematic complication associated with diabetes. Therapeutic gases delivered by biomaterials have demonstrated powerful wound healing capabilities. However, the cellular responses and heterogeneity in the skin regeneration process after gas therapy remain elusive. Here, we display the benefit of the carbon monoxide (CO)-releasing hyaluronan hydrogel (CO@HAG) in promoting diabetic wound healing and investigate the cellular responses through single-cell transcriptomic analysis. The presented CO@HAG demonstrates wound microenvironment responsive gas releasing properties and accelerates the diabetic wound healing process in vivo. It is found that a new cluster of Cxcl14+ fibroblasts with progenitor property is accumulated in the CO@HAG-treated wound. This cluster of Cxcl14+ fibroblasts is yet unreported in the skin regeneration process. CO@HAG-treated wound macrophages feature a decrease in pro-inflammatory property, while their anti-inflammatory property increases. Moreover, the TGF-β signal between the pro-inflammatory (M1) macrophage and the Cxcl14+ fibroblast in the CO@HAG-treated wound is attenuated based on cell-cell interaction analysis. Our study provides a useful hydrogel-mediated gas therapy method for diabetic wounds and new insights into cellular events in the skin regeneration process after gas-releasing biomaterials therapy.
Collapse
Affiliation(s)
- Ya Li
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, China
| | - Lu Sun
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, China
| | - Ranxi Chen
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, China
| | - Wenpeng Ni
- College of
Materials Science and Engineering, Hunan
University, Changsha 410082, China
| | - Yuyun Liang
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, China
| | - Hexu Zhang
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, China
| | - Chaoyong He
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, China
| | - Bi Shi
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, China
| | - Sophie Petropoulos
- Department
of Clinical Science, Intervention and Technology, Division of Obstetrics
and Gynecology, Karolinska Institutet, 14186 Stockholm, Sweden
- Département
de Médecine, Université de
Montréal, Montreal Canada, Centre de Recherche du Centre Hospitalier
de l’Université de Montréal, Axe Immunopathologie, H2X 19A 708 Montreal Canada
| | - Cheng Zhao
- Department
of Clinical Science, Intervention and Technology, Division of Obstetrics
and Gynecology, Karolinska Institutet, 14186 Stockholm, Sweden
| | - Liyang Shi
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, China
| |
Collapse
|
4
|
Cengiz Winter N, Karakaya M, Mosen P, Brusius I, Anlar B, Haliloglu G, Winter D, Wirth B. Proteomic Investigation of Differential Interactomes of Glypican 1 and a Putative Disease-Modifying Variant of Ataxia. J Proteome Res 2023; 22:3081-3095. [PMID: 37585105 PMCID: PMC10476613 DOI: 10.1021/acs.jproteome.3c00402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Indexed: 08/17/2023]
Abstract
In a currently 13-year-old girl of consanguineous Turkish parents, who developed unsteady gait and polyneuropathy at the ages of 3 and 6 years, respectively, we performed whole genome sequencing and identified a biallelic missense variant c.424C>T, p.R142W in glypican 1 (GPC1) as a putative disease-associated variant. Up to date, GPC1 has not been associated with a neuromuscular disorder, and we hypothesized that this variant, predicted as deleterious, may be causative for the disease. Using mass spectrometry-based proteomics, we investigated the interactome of GPC1 WT and the missense variant. We identified 198 proteins interacting with GPC1, of which 16 were altered for the missense variant. This included CANX as well as vacuolar ATPase (V-ATPase) and the mammalian target of rapamycin complex 1 (mTORC1) complex members, whose dysregulation could have a potential impact on disease severity in the patient. Importantly, these proteins are novel interaction partners of GPC1. At 10.5 years, the patient developed dilated cardiomyopathy and kyphoscoliosis, and Friedreich's ataxia (FRDA) was suspected. Given the unusually severe phenotype in a patient with FRDA carrying only 104 biallelic GAA repeat expansions in FXN, we currently speculate that disturbed GPC1 function may have exacerbated the disease phenotype. LC-MS/MS data are accessible in the ProteomeXchange Consortium (PXD040023).
Collapse
Affiliation(s)
- Nur Cengiz Winter
- Institute
of Human Genetics, University Hospital Cologne, 50931 Cologne, Germany
- Center
for Molecular Medicine Cologne, University
of Cologne, 50931 Cologne, Germany
| | - Mert Karakaya
- Institute
of Human Genetics, University Hospital Cologne, 50931 Cologne, Germany
- Center
for Molecular Medicine Cologne, University
of Cologne, 50931 Cologne, Germany
- Center
for Rare Diseases Cologne, University Hospital
of Cologne, 50931 Cologne, Germany
| | - Peter Mosen
- Institute
for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | - Isabell Brusius
- Institute
of Human Genetics, University Hospital Cologne, 50931 Cologne, Germany
| | - Banu Anlar
- Department
of Pediatrics, Division of Pediatric Neurology, Hacettepe University Faculty of Medicine, 06230 Ankara, Turkey
| | - Goknur Haliloglu
- Department
of Pediatrics, Division of Pediatric Neurology, Hacettepe University Faculty of Medicine, 06230 Ankara, Turkey
| | - Dominic Winter
- Institute
for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | - Brunhilde Wirth
- Institute
of Human Genetics, University Hospital Cologne, 50931 Cologne, Germany
- Center
for Molecular Medicine Cologne, University
of Cologne, 50931 Cologne, Germany
- Center
for Rare Diseases Cologne, University Hospital
of Cologne, 50931 Cologne, Germany
| |
Collapse
|
5
|
Colin-Pierre C, Untereiner V, Sockalingum GD, Ramont L, Brézillon S. Investigation of Glypican-4 and -6 by Infrared Spectral Imaging during the Hair Growth Cycle. Int J Mol Sci 2023; 24:ijms24054291. [PMID: 36901723 PMCID: PMC10002317 DOI: 10.3390/ijms24054291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/13/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
The expression of glypicans in different hair follicle (HF) compartments is still poorly understood. Heparan sulfate proteoglycans (HSPGs) distribution in HF is classically investigated by conventional histology, biochemical analysis, and immunohistochemistry. Our previous study proposed a novel approach to assess hair histology and glypican-1 (GPC1) distribution changes in the HF at different phases of the hair growth cycle using infrared spectral imaging (IRSI). We show in the present manuscript for the first time complementary data on the distribution of glypican-4 (GPC4) and glypican-6 (GPC6) in HF at different phases of the hair growth cycle using IR imaging. Findings were supported by Western blot assays focusing on the GPC4 and GPC6 expression in HFs. Like all proteoglycan features, the glypicans are characterized by a core protein to which sulfated and/or unsulfated glycosaminoglycan (GAG) chains are covalently linked. Our study demonstrates the capacity of IRSI to identify the different HF tissue structures and to highlight protein, proteoglycan (PG), GAG, and sulfated GAG distribution in these structures. The comparison between anagen, catagen, and telogen phases shows the qualitative and/or quantitative evolution of GAGs, as supported by Western blot. Thus, in one analysis, IRSI can simultaneously reveal the location of proteins, PGs, GAGs and sulfated GAGs in HFs in a chemical and label-free manner. From a dermatological point of view, IRSI may constitute a promising technique to study alopecia.
Collapse
Affiliation(s)
- Charlie Colin-Pierre
- Laboratoire de Biochimie Médicale et Biologie Moléculaire, Université de Reims Champagne-Ardenne, 51097 Reims, France
- Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, CNRS UMR 7369, 51097 Reims, France
- BASF Beauty Care Solutions France SAS, 54425 Pulnoy, France
| | | | - Ganesh D. Sockalingum
- Université de Reims Champagne-Ardenne, BioSpecT EA7506, UFR de Pharmacie, 51097 Reims, France
- Correspondence: (G.D.S.); (S.B.)
| | - Laurent Ramont
- Laboratoire de Biochimie Médicale et Biologie Moléculaire, Université de Reims Champagne-Ardenne, 51097 Reims, France
- Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, CNRS UMR 7369, 51097 Reims, France
- Service Biochimie-Pharmacologie-Toxicologie, CHU de Reims, 51097 Reims, France
| | - Stéphane Brézillon
- Laboratoire de Biochimie Médicale et Biologie Moléculaire, Université de Reims Champagne-Ardenne, 51097 Reims, France
- Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, CNRS UMR 7369, 51097 Reims, France
- Correspondence: (G.D.S.); (S.B.)
| |
Collapse
|
6
|
Colin-Pierre C, El Baraka O, Danoux L, Bardey V, André V, Ramont L, Brézillon S. Regulation of stem cell fate by HSPGs: implication in hair follicle cycling. NPJ Regen Med 2022; 7:77. [PMID: 36577752 PMCID: PMC9797564 DOI: 10.1038/s41536-022-00267-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/30/2022] [Indexed: 12/29/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are part of proteoglycan family. They are composed of heparan sulfate (HS)-type glycosaminoglycan (GAG) chains covalently linked to a core protein. By interacting with growth factors and/or receptors, they regulate numerous pathways including Wnt, hedgehog (Hh), bone morphogenic protein (BMP) and fibroblast growth factor (FGF) pathways. They act as inhibitor or activator of these pathways to modulate embryonic and adult stem cell fate during organ morphogenesis, regeneration and homeostasis. This review summarizes the knowledge on HSPG structure and classification and explores several signaling pathways regulated by HSPGs in stem cell fate. A specific focus on hair follicle stem cell fate and the possibility to target HSPGs in order to tackle hair loss are discussed in more dermatological and cosmeceutical perspectives.
Collapse
Affiliation(s)
- Charlie Colin-Pierre
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France.
- BASF Beauty Care Solutions France SAS, Pulnoy, France.
| | | | - Louis Danoux
- BASF Beauty Care Solutions France SAS, Pulnoy, France
| | | | - Valérie André
- BASF Beauty Care Solutions France SAS, Pulnoy, France
| | - Laurent Ramont
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France
- CHU de Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - Stéphane Brézillon
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France
| |
Collapse
|
7
|
Ota Y, Yoshida H, Endo Y, Sayo T, Takahashi Y. A Connecting Link between Hyaluronan Synthase 3-Mediated Hyaluronan Production and Epidermal Function. Int J Mol Sci 2022; 23:ijms23052424. [PMID: 35269567 PMCID: PMC8910372 DOI: 10.3390/ijms23052424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 01/31/2023] Open
Abstract
Hyaluronan (HA), an essential component of the extracellular matrix of the skin, is synthesized by HA synthases (HAS1-3). To date, epidermal HA has been considered a major player in regulating cell proliferation and differentiation. However, a previous study reported that depletion of epidermal HA by Streptomyces hyaluronidase (St-HAase) has no influence on epidermal structure and function. In the present study, to further explore roles of epidermal HA, we examined effects of siRNA-mediated knockdown of HAS3, as well as conventional HA-depletion methods using St-HAase and 4-methylumbelliferone (4MU), on epidermal turnover and architecture in reconstructed skin or epidermal equivalents. Consistent with previous findings, HA depletion by St-HAase did not have a substantial influence on the epidermal architecture and turnover in skin equivalents. 4MU treatment resulted in reduced keratinocyte proliferation and epidermal thinning but did not seem to substantially decrease the abundance of extracellular HA. In contrast, siRNA-mediated knockdown of HAS3 in epidermal equivalents resulted in a significant reduction in epidermal HA content and thickness, accompanied by decreased keratinocyte proliferation and differentiation. These results suggest that HAS3-mediated HA production, rather than extracellularly deposited HA, may play a role in keratinocyte proliferation and differentiation, at least in the developing epidermis in reconstructed epidermal equivalents.
Collapse
|
8
|
Colin-Pierre C, Berthélémy N, Belloy N, Danoux L, Bardey V, Rivet R, Mine S, Jeanmaire C, Maquart FX, Ramont L, Brézillon S. The Glypican-1/HGF/C-Met and Glypican-1/VEGF/VEGFR2 Ternary Complexes Regulate Hair Follicle Angiogenesis. Front Cell Dev Biol 2021; 9:781172. [PMID: 34957110 PMCID: PMC8692797 DOI: 10.3389/fcell.2021.781172] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/16/2021] [Indexed: 12/30/2022] Open
Abstract
The hair renewal involves changes in the morphology of the hair follicle and its micro-vascularization. In alopecia, the hair cycle is accelerated, resulting in the formation of thinner and shorter hair. In addition, alopecia is associated with a decrease in the micro-vascularization of the hair follicles. In this study, the role of glypicans (GPCs) was analyzed in the regulation of the angiogenesis of human dermal microvascular endothelial cells (HDMEC). The analysis of glypican gene expression showed that GPC1 is the major glypican expressed by human keratinocytes of outer root sheath (KORS), human hair follicle dermal papilla cells (HHFDPC) and HDMEC. KORS were demonstrated to secrete VEGF and HGF. The HDMEC pseudotube formation was induced by KORS conditioned media (KORSCM). It was totally abrogated after GPC1 siRNA transfection of HDMEC. Moreover, when cleaved by phospholipase C (PLC), GPC1 promotes the proliferation of HDMEC. Finally, GPC1 was shown to interact directly with VEGFR2 or c-Met to regulate angiogenesis induced by the activation of these receptors. Altogether, these results showed that GPC1 is a key regulator of microvascular endothelial cell angiogenesis induced by VEGF and HGF secreted by KORS. Thus, GPC1 might constitute an interesting target to tackle alopecia in dermatology research.
Collapse
Affiliation(s)
- Charlie Colin-Pierre
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France.,BASF Beauty Care Solutions France SAS, Pulnoy, France
| | | | - Nicolas Belloy
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France.,P3M, Multiscale Molecular Modeling Platform, Université de Reims Champagne-Ardenne, Reims, France
| | - Louis Danoux
- BASF Beauty Care Solutions France SAS, Pulnoy, France
| | | | - Romain Rivet
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France
| | - Solène Mine
- BASF Beauty Care Solutions France SAS, Pulnoy, France
| | | | - François-Xavier Maquart
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
| | - Laurent Ramont
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France.,CHU de Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - Stéphane Brézillon
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France
| |
Collapse
|
9
|
Agrin-Matrix Metalloproteinase-12 axis confers a mechanically competent microenvironment in skin wound healing. Nat Commun 2021; 12:6349. [PMID: 34732729 PMCID: PMC8566503 DOI: 10.1038/s41467-021-26717-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/14/2021] [Indexed: 12/25/2022] Open
Abstract
An orchestrated wound healing program drives skin repair via collective epidermal cell proliferation and migration. However, the molecular determinants of the tissue microenvironment supporting wound healing remain poorly understood. Herein we discover that proteoglycan Agrin is enriched within the early wound-microenvironment and is indispensable for efficient healing. Agrin enhances the mechanoperception of keratinocytes by augmenting their stiffness, traction stress and fluidic velocity fields in retaliation to bulk substrate rigidity. Importantly, Agrin overhauls cytoskeletal architecture via enhancing actomyosin cables upon sensing geometric stress and force following an injury. Moreover, we identify Matrix Metalloproteinase-12 (MMP12) as a downstream effector of Agrin's mechanoperception. We also reveal a promising potential of a recombinant Agrin fragment as a bio-additive material that assimilates optimal mechanobiological and pro-angiogenic parameters by engaging MMP12 in accelerated wound healing. Together, we propose that Agrin-MMP12 pathway integrates a broad range of mechanical stimuli to coordinate a competent skin wound healing niche.
Collapse
|
10
|
Pan J, Ho M. Role of glypican-1 in regulating multiple cellular signaling pathways. Am J Physiol Cell Physiol 2021; 321:C846-C858. [PMID: 34550795 DOI: 10.1152/ajpcell.00290.2021] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glypican-1 (GPC1) is one of the six glypican family members in humans. It is composed of a core protein with three heparan sulfate chains and attached to the cell membrane by a glycosyl-phosphatidylinositol anchor. GPC1 modulates various signaling pathways including fibroblast growth factors (FGF), vascular endothelial growth factor-A (VEGF-A), transforming growth factor-β (TGF-β), Wnt, Hedgehog (Hh), and bone morphogenic protein (BMP) through specific interactions with pathway ligands and receptors. The impact of these interactions on signaling pathways, activating or inhibitory, is dependent upon specific GPC1 domain interaction with pathway components, as well as cell surface context. In this review, we summarize the current understanding of the structure of GPC1, as well as its role in regulating multiple signaling pathways. We focus on the functions of GPC1 in cancer cells and how new insights into these signaling processes can inform its translational potential as a therapeutic target in cancer.
Collapse
Affiliation(s)
- Jiajia Pan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.,School of Life Sciences, East China Normal University, Shanghai, China
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
11
|
Shi J, Wang X, Song Y, Liu T, Cheng S, Zhang Q. Excavation of Genes Related to the Mining of Growth, Development, and Meat Quality of Two Crossbred Sheep Populations Based on Comparative Transcriptomes. Animals (Basel) 2021; 11:ani11061492. [PMID: 34064178 PMCID: PMC8224371 DOI: 10.3390/ani11061492] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 11/04/2022] Open
Abstract
Simple Summary In this study, we measured the performance parameters of two crossbred sheep breeds, using Masson staining of the muscle tissue, and using the Illumina high-throughput sequencing platform to determine the differentially expressed genes (DEGs) in Dorper (DP) × Small-tailed Han (STH) sheep and Mongolia (MG) × Small-tailed Han sheep (STH). New transcripts of the muscle transcriptome were examined for the first time. DP × STH sheep were superior to MG × STH sheep in terms of meat quality and muscle morphology. In addition, 13 DEGs were found to play important roles in growth, development, and meat quality. The findings of this work may provide valuable resources for future research on muscle development in sheep. Abstract Crossbreeding can improve production performance and meat quality in sheep. The objective of this study was to look for genes related to sheep growth, development, and muscle. In this study, Dorper (DP) × Small Tailed Han (STH) sheep and Mongolia (MG) × Small-tailed Han (STH) sheep were used to estimate the productive performance and meat quality in a crossbreed. Subsequently, transcriptome analysis and bioinformatic analysis were performed on the Longissimus dorsi muscles of DP × STH and MG × STH sheep to identify differentially expressed genes (DEGs) related to growth, development, and meat quality. The presence of DEGs was confirmed by real-time PCR (qPCR). Productive performance and meat quality of the DP × STH sheep were better than the MG × STH sheep. Compared to DP × STH, a total of 1445 DEGs were identified in MG × STH sheep (1026 DEG were up-regulated and 419 DEG were down-regulated). Of these, 38 DEGs were related to growth, 161 to development, and 43 to muscle. In addition, 13 co-expressed genes (FGFRL1, SIX1, PLCB1, CRYAB, MYL2, ADIPOQ, GPX1, PPARD, GPC1, CDC42, LOC101106246, IGF1, and LARGE) were identified. The expression of DEGs was consistent with the comparative transcriptome analysis. This work provides genetics resources for future research on muscle development in sheep.
Collapse
Affiliation(s)
- Jinping Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.S.); (Y.S.); (T.L.)
| | - Xueying Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China;
| | - Yali Song
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.S.); (Y.S.); (T.L.)
| | - Ting Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.S.); (Y.S.); (T.L.)
| | - Shuru Cheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.S.); (Y.S.); (T.L.)
- Correspondence: (S.C.); (Q.Z.); Tel.: +86-931-763-2509 (S.C.)
| | - Quanwei Zhang
- College of Life Science and Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence: (S.C.); (Q.Z.); Tel.: +86-931-763-2509 (S.C.)
| |
Collapse
|
12
|
Noninvasive Analysis Using Data-Independent Acquisition Mass Spectrometry: New Epidermal Proteins That Reveal Sex Differences in the Aging Process. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021. [DOI: 10.1155/2021/8849328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The development of mass spectrometry has provided a method with extremely high sensitivity and selectivity that can be used to identify protein biomarkers. Epidermal proteins, lipids, and cornified envelopes are involved in the formation of the skin epidermal barrier. The epidermal protein composition changes with age. Therefore, quantitative proteomic changes may be indicative of skin aging. We sought to utilize data-independent acquisition mass spectrometry for noninvasive analysis of epidermal proteins in healthy Chinese individuals of different age groups and sexes. In our study, we completed high-throughput protein detection, analyzed protein differences with MaxQuant software, and performed statistical analyses of the proteome. We obtained interesting findings regarding ceruloplasmin (CP), which exhibited significant differences and is involved in ferroptosis, a signaling pathway significantly associated with aging. There were also several proteins that differed between sexes in the younger group, but the sex differences disappeared with aging. These proteins, which were associated with both aging processes and sex differences, are involved in signaling pathways such as apoptosis, oxidative stress, and genomic stability and can serve as candidate biomarkers for sex differences during aging. Our approach for noninvasive detection of epidermal proteins and its application to accurately quantify protein expression can provide ideas for future epidermal proteomics studies.
Collapse
|
13
|
Colin-Pierre C, Untereiner V, Sockalingum GD, Berthélémy N, Danoux L, Bardey V, Mine S, Jeanmaire C, Ramont L, Brézillon S. Hair Histology and Glycosaminoglycans Distribution Probed by Infrared Spectral Imaging: Focus on Heparan Sulfate Proteoglycan and Glypican-1 during Hair Growth Cycle. Biomolecules 2021; 11:biom11020192. [PMID: 33573119 PMCID: PMC7912031 DOI: 10.3390/biom11020192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 01/30/2023] Open
Abstract
The expression of glypicans in different hair follicle (HF) compartments and their potential roles during hair shaft growth are still poorly understood. Heparan sulfate proteoglycan (HSPG) distribution in HFs is classically investigated by conventional histology, biochemical analysis, and immunohistochemistry. In this report, a novel approach is proposed to assess hair histology and HSPG distribution changes in HFs at different phases of the hair growth cycle using infrared spectral imaging (IRSI). The distribution of HSPGs in HFs was probed by IRSI using the absorption region relevant to sulfation as a spectral marker. The findings were supported by Western immunoblotting and immunohistochemistry assays focusing on the glypican-1 expression and distribution in HFs. This study demonstrates the capacity of IRSI to identify the different HF tissue structures and to highlight protein, proteoglycan (PG), glycosaminoglycan (GAG), and sulfated GAG distribution in these structures. The comparison between anagen, catagen, and telogen phases shows the qualitative and/or quantitative evolution of GAGs as supported by Western immunoblotting. Thus, IRSI can simultaneously reveal the location of proteins, PGs, GAGs, and sulfated GAGs in HFs in a reagent- and label-free manner. From a dermatological point of view, IRSI shows its potential as a promising technique to study alopecia.
Collapse
Affiliation(s)
- Charlie Colin-Pierre
- Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, 51097 Reims, France; (C.C.-P.); (L.R.)
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, 51097 Reims, France
- BASF Beauty Care Solutions France SAS, 54425 Pulnoy, France; (N.B.); (L.D.); (V.B.); (S.M.); (C.J.)
| | | | - Ganesh D. Sockalingum
- Université de Reims Champagne-Ardenne, BioSpecT EA7506, UFR de Pharmacie, 51097 Reims, France;
| | - Nicolas Berthélémy
- BASF Beauty Care Solutions France SAS, 54425 Pulnoy, France; (N.B.); (L.D.); (V.B.); (S.M.); (C.J.)
| | - Louis Danoux
- BASF Beauty Care Solutions France SAS, 54425 Pulnoy, France; (N.B.); (L.D.); (V.B.); (S.M.); (C.J.)
| | - Vincent Bardey
- BASF Beauty Care Solutions France SAS, 54425 Pulnoy, France; (N.B.); (L.D.); (V.B.); (S.M.); (C.J.)
| | - Solène Mine
- BASF Beauty Care Solutions France SAS, 54425 Pulnoy, France; (N.B.); (L.D.); (V.B.); (S.M.); (C.J.)
| | - Christine Jeanmaire
- BASF Beauty Care Solutions France SAS, 54425 Pulnoy, France; (N.B.); (L.D.); (V.B.); (S.M.); (C.J.)
| | - Laurent Ramont
- Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, 51097 Reims, France; (C.C.-P.); (L.R.)
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, 51097 Reims, France
- CHU de Reims, Service Biochimie-Pharmacologie-Toxicologie, 51097 Reims, France
| | - Stéphane Brézillon
- Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, 51097 Reims, France; (C.C.-P.); (L.R.)
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, 51097 Reims, France
- Correspondence:
| |
Collapse
|
14
|
Zwerschke W. Editorial: Special issue cellular aging. Exp Gerontol 2020; 140:111065. [PMID: 32861130 DOI: 10.1016/j.exger.2020.111065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Werner Zwerschke
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria; Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
15
|
Ma J, Liu M, Wang Y, Xin C, Zhang H, Chen S, Zheng X, Zhang X, Xiao F, Yang S. Quantitative proteomics analysis of young and elderly skin with DIA mass spectrometry reveals new skin aging-related proteins. Aging (Albany NY) 2020; 12:13529-13554. [PMID: 32602849 PMCID: PMC7377841 DOI: 10.18632/aging.103461] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/27/2020] [Indexed: 12/16/2022]
Abstract
Skin aging is a specific manifestation of the physiological aging process that occurs in virtually all organisms. In this study, we used data independent acquisition mass spectrometry to perform a comparative analysis of protein expression in volar forearm skin samples from of 20 healthy young and elderly Chinese individuals. Our quantitative proteomic analysis identified a total of 95 differentially expressed proteins (DEPs) in aged skin compared to young skin. Enrichment analyses of these DEPs (57 upregulated and 38 downregulated proteins) based on the GO, KEGG, and KOG databases revealed functional clusters associated with immunity and inflammation, oxidative stress, biosynthesis and metabolism, proteases, cell proliferation, cell differentiation, and apoptosis. We also found that GAPDH, which was downregulated in aged skin samples, was the top hub gene in a protein-protein interaction network analysis. Some of the DEPs identified herein had been previously correlated with aging of the skin and other organs, while others may represent novel age-related entities. Our non-invasive proteomics analysis of human epidermal proteins may guide future research on skin aging to help develop treatments for age-related skin conditions and rejuvenation.
Collapse
Affiliation(s)
- Jing Ma
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Mengting Liu
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Yaochi Wang
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Cong Xin
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Hui Zhang
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Shirui Chen
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Xiaodong Zheng
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Xuejun Zhang
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| | - Fengli Xiao
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China.,The Center for Scientific Research of Anhui Medical University, Hefei, Anhui, China
| | - Sen Yang
- Department of Dermatology of First Affiliated Hospital, and Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China.,Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, China
| |
Collapse
|