1
|
Demianchuk O, Bayliak M, Vatashchuk M, Gospodaryov D, Hurza V, Derkachov V, Berezovskyi V, Lushchak VI. Alpha-ketoglutarate promotes anxiety, activates autophagy, and suppresses antioxidant enzymes in the cerebral cortex of female mice on cafeteria diet. Brain Res Bull 2025; 222:111255. [PMID: 39952443 DOI: 10.1016/j.brainresbull.2025.111255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/03/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
Alpha-ketoglutarate (AKG), an intermediate of the tricarboxylic acid cycle, has been found to mitigate oxidative stress and inflammation. In turn, a cafeteria diet (CD), an obesogenic diet, is often associated with oxidative stress and inflammation. This study aimed to determine whether AKG can level the effects of CD on animal behavior, oxidative stress markers, glycolytic flow, and autophagy in the mouse cerebral cortex. Female C57BL/6 J mice were divided into two groups and fed either a standard diet or a CD for eight weeks. For the next four weeks, each group continued to be fed the previous diet; however, half of the individuals within each group received drinking water with 1 % AKG. Using an open field test, we found that the combination of CD and AKG promoted the development of anxiety signs. Both CD and AKG decreased the exploratory behavior of mice, with a significant additive effect in the combined diet. On diets supplemented with AKG, animals produced fewer fecal boli, a measure of emotionality. On all experimental diets, mice had lower activities of antioxidant and related enzymes, with no significant differences in the activities of glycolytic enzymes. The AKG-supplemented diet induced the transcription of autophagy-related genes and targets of the forkhead box O factor, involved in the regulation of carbohydrate metabolism. Transcriptional changes induced by AKG were partly abrogated by the CD. These findings suggest that AKG, particularly when combined with CD, may modulate behavioral responses and oxidative stress intensity in the brain by altering key metabolic and autophagic pathways.
Collapse
Affiliation(s)
- Oleh Demianchuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Maria Bayliak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine.
| | - Myroslava Vatashchuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Dmytro Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine.
| | - Viktoriia Hurza
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Vitalii Derkachov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Vladyslav Berezovskyi
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine; Research and Development University, 13a Shota Rustaveli Str., Ivano-Frankivsk 76018, Ukraine.
| |
Collapse
|
2
|
Matta L, Weber P, Erener S, Walth-Hummel A, Hass D, Bühler LK, Klepac K, Szendroedi J, Guerra J, Rohm M, Sterr M, Lickert H, Bartelt A, Herzig S. Chronic intermittent fasting impairs β cell maturation and function in adolescent mice. Cell Rep 2025; 44:115225. [PMID: 39827461 DOI: 10.1016/j.celrep.2024.115225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/01/2024] [Accepted: 12/29/2024] [Indexed: 01/22/2025] Open
Abstract
Intermittent fasting (IF) is a nutritional lifestyle intervention with broad metabolic benefits, but whether the impact of IF depends on the individual's age is unclear. Here, we investigated the effects of IF on systemic metabolism and β cell function in old, middle-aged, and young mice. Short-term IF improves glucose homeostasis across all age groups without altering islet function and morphology. In contrast, while chronic IF is beneficial for adult mice, it results in impaired β cell function in the young. Using single-cell RNA sequencing (scRNA-seq), we delineate that the β cell maturation and function scores are reduced in young mice. In human islets, a similar pattern is observed in type 1 (T1D), but not type 2 (T2D), diabetes, suggesting that the impact of chronic IF in adolescence is linked to the development of β cell dysfunction. Our study suggests considering the duration of IF in younger persons, as it may worsen rather than reduce diabetes outcomes.
Collapse
Affiliation(s)
- Leonardo Matta
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany; Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Peter Weber
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Suheda Erener
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Alina Walth-Hummel
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg 69120, Germany; German Center for Diabetes Research, 85764 Neuherberg, Germany
| | - Daniela Hass
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Lea K Bühler
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg 69120, Germany; German Center for Diabetes Research, 85764 Neuherberg, Germany
| | - Katarina Klepac
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Julia Szendroedi
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg 69120, Germany; German Center for Diabetes Research, 85764 Neuherberg, Germany
| | - Joel Guerra
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany; Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Maria Rohm
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg 69120, Germany; German Center for Diabetes Research, 85764 Neuherberg, Germany
| | - Michael Sterr
- German Center for Diabetes Research, 85764 Neuherberg, Germany; Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany
| | - Heiko Lickert
- German Center for Diabetes Research, 85764 Neuherberg, Germany; Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany; School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Alexander Bartelt
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany; Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany; German Center for Diabetes Research, 85764 Neuherberg, Germany; German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Technische Universität München, Munich, Germany; Chair of Translational Nutritional Medicine, TUM School of Life Sciences, Research Department of Molecular Life Sciences, Technical University of Munich, Freising, Germany; Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Munich, Germany.
| | - Stephan Herzig
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany; Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg 69120, Germany; German Center for Diabetes Research, 85764 Neuherberg, Germany; German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Technische Universität München, Munich, Germany; Chair Molecular Metabolic Control, Technical University Munich, Munich 80333, Germany.
| |
Collapse
|
3
|
Zhang A, Wang J, Zhao Y, He Y, Sun N. Intermittent fasting, fatty acid metabolism reprogramming, and neuroimmuno microenvironment: mechanisms and application prospects. Front Nutr 2024; 11:1485632. [PMID: 39512520 PMCID: PMC11541237 DOI: 10.3389/fnut.2024.1485632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Intermittent fasting (IF) has demonstrated extensive health benefits through the regulation of fatty acid metabolism and modulation of the neuroimmune microenvironment, primarily via the activation of key signaling pathways such as AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1). IF not only facilitates fatty acid oxidation and improves metabolic health, but also enhances mitochondrial function, mitigates oxidative stress, promotes autophagy, and inhibits apoptosis and ferroptosis. These mechanisms contribute to its substantial preventive and therapeutic potential in various conditions, including neurodegenerative disorders such as Alzheimer's and Parkinson's diseases, autoimmune diseases, and neurotraumatic conditions. While supportive evidence has been obtained from animal models and preliminary clinical studies, further large-scale, long-term randomized controlled trials are imperative to establish its safety and evaluate its clinical efficacy comprehensively.
Collapse
Affiliation(s)
- Anren Zhang
- Department of Rehabilitation, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Junyu Wang
- Department of Rehabilitation, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yinuo Zhao
- Department of Rehabilitation, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yu He
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, China
| | - Nianyi Sun
- Department of Rehabilitation, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
4
|
Jiang C, Zhuge X, Li D, Chen M, Hu W, Xie L. Epicatechin-mediated modulation of the Nrf2/HO-1 pathway alleviates senile cerebral ischemic/reperfusion injury. Food Sci Nutr 2024; 12:6521-6533. [PMID: 39554346 PMCID: PMC11561855 DOI: 10.1002/fsn3.4253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 11/19/2024] Open
Abstract
Excessive reactive oxygen species (ROS) generated during cerebral ischemic reperfusion (CIRI) are crucial for subsequent tissue damage. However, despite the potential benefits of antioxidants reported in clinical applications, few have proven effective in treating CIRI, particularly in the elderly. Epicatechin (EC) is a catechol flavonoid monomer derived from natural tea plants. Multiple phenolic hydroxyl groups give it strong antioxidant properties, which can not only degrade ROS through chemical reactions between hydroxyl and ROS but also enhance the activity of antioxidant enzymes in cells, and it is easy to penetrate the blood-brain barrier. But its antagonistic effect on age-related CIRI and potential medicinal value are still unknown. Nuclear factor erythroid 2-related factor 2 (Nrf2) is the most important transcription factor regulating the expression of antioxidant proteins in the body. This study first compared the pathological differences of the Nrf2 system in CIRI between 2-month-old and 12-month-old Sprague-Dawley (SD) rats. Subsequently, EC was administered to 12-month-old rat models of middle cerebral artery occlusion and reperfusion (MCAO/R) and senescent SH-SY5Y cell models subjected to oxygen glucose deprivation/reoxygenation (OGD/R). EC treatment improved cerebral morphology and function; increased p-Nrf2, heme oxygenase-1 (HO-1), superoxide dismutase (SOD), and glutathione (GSH) expression; reduced infarct volume; and neuronal apoptosis in senescent rats. Moreover, EC enhanced cellular activity and the expression of p-Nrf2, HO-1, and quinone oxidoreductase-1 (NQO-1) while decreasing ROS and malondialdehyde (MDA) levels and mitigating apoptosis in senescent SH-SY5Y cells. These effects were reversed upon si-Nrf2. In sum, we confirm that EC exerts neuroprotective effects by upregulating Nrf2/ARE and reducing oxidative stress, suggesting that EC may be a promising drug for the treatment of senile cerebral apoplexy. This study also provides a scientific basis for the development and selection of new drugs for ischemic stroke in elderly patients.
Collapse
Affiliation(s)
- Changyue Jiang
- Department of PhysiologyGuangxi Medical UniversityNanningChina
- HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth Hospital of NanningNanningChina
| | - Xiangzhen Zhuge
- Department of PhysiologyGuangxi Medical UniversityNanningChina
| | - Deli Li
- Department of PhysiologyGuangxi Medical UniversityNanningChina
| | - Menghua Chen
- Department of CardiologyForesea Life Insurance Nanning HospitalNanningChina
| | - Wanxiang Hu
- Department of PhysiologyGuangxi Medical UniversityNanningChina
| | - Lu Xie
- Department of PhysiologyGuangxi Medical UniversityNanningChina
| |
Collapse
|
5
|
Han B, Zhang Y, Liu C, Ji P, Xing Z, Geng X, Chi K, Gong M, Li Y, Zhang Y, Fu Z, Hong Q, Cai G, Chen X, Sun X. Renal inflammation combined with renal function reserve reduction accelerate kidney aging via pentose phosphate pathway. iScience 2024; 27:110045. [PMID: 38947529 PMCID: PMC11214290 DOI: 10.1016/j.isci.2024.110045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/20/2024] [Accepted: 05/17/2024] [Indexed: 07/02/2024] Open
Abstract
Aging is closely associated with inflammation, which affects renal function reserve (RFR) in the kidneys. This study aims to investigate the impact of reduced RFR reduction on kidney aging and the influence of renal inflammation and RFR reduction on this process. Natural aging rats and those subjected to unilateral nephrectomy (UNX), 1/6 nephrectomy (1/6NX), and unilateral ureteral obstruction (UUO) were observed at 6, 12, 18, and 21 months. Our findings suggest that RFR reduction and renal inflammation can accelerate kidney aging, and inflammation contributes more. Metabolomics analysis revealed alterations in amino acid metabolism contribute to RFR decline. Furthermore, experiments in vitro confirmed the involvement of pentose phosphate pathway (PPP) in promoting aging though inflammation. Our research provides novel insights into for the mechanism of kidney aging and provides indirect support for clinical treatment decisions, such as addressing kidney inflammation, stones, or tumors that may necessitate partial or complete nephrectomy.
Collapse
Affiliation(s)
- Bing Han
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - YiXuan Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Chao Liu
- Department of Critical Care Medicine, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Pengcheng Ji
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Zenghui Xing
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Xiaodong Geng
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Kun Chi
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Ming Gong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Yingying Li
- Department of Ultrasound, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Ying Zhang
- Department of Ultrasound, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Zhangning Fu
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Quan Hong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Xuefeng Sun
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| |
Collapse
|
6
|
Vatashchuk MV, Hurza VV, Stefanyshyn N, Bayliak MM, Gospodaryov DV, Garaschuk O, Lushchak VI. Impact of caloric restriction on oxidative stress and key glycolytic enzymes in the cerebral cortex, liver and kidney of old and middle-aged mice. Neuropharmacology 2024; 247:109859. [PMID: 38340956 DOI: 10.1016/j.neuropharm.2024.109859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/28/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Caloric restriction (CR) is proposed as a strategy to prevent age-related alterations like impaired glucose metabolism and intensification of oxidative stress. In this study, we examined effects of aging and CR on the activities of glycolytic enzymes and parameters of oxidative stress in the cerebral cortex, liver, and kidney of middle-aged (9 months old) and old (18 months old) C57BL6/N mice. Control middle-aged and old mice were fed ad libitum (AL groups), whereas age-matched CR groups were subjected to CR (70% of individual ad libitum food intake) for 6 and 12 months, respectively. There were no significant differences in the activities of key glycolytic and antioxidant enzymes and oxidative stress indices between the cortices of middle-aged and old AL mice. The livers and kidneys of old AL mice showed higher activity of glucose-6-phosphate dehydrogenase, an enzyme that produces NADPH in the pentose phosphate pathway, compared to those of middle-aged mice. CR regimen modulated some biochemical parameters in middle-aged but not in old mice. In particular, CR decreased oxidative stress intensity in the liver and kidney but had no effects on those parameters in the cerebral cortex. In the liver, CR led to lower activities of glycolytic enzymes, whereas its effect was the opposite in the kidney. The results suggest that during physiological aging there is no significant intensification of oxidative stress and glycolysis decline in mouse tissues during the transition from middle to old age. The CR regimen has tissue-specific effects and improves the metabolic state of middle-aged mice. This article is part of the Special Issue on "Ukrainian Neuroscience".
Collapse
Affiliation(s)
- Myroslava V Vatashchuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Viktoriia V Hurza
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Nadiia Stefanyshyn
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Maria M Bayliak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Olga Garaschuk
- Department of Neurophysiology, University of Tübingen, Tübingen, 72074, Germany.
| | - Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine; Research and Development University, 13a Shota Rustaveli Str., Ivano-Frankivsk, 76018, Ukraine.
| |
Collapse
|
7
|
Benfato ID, Quintanilha ACS, Henrique JS, Souza MA, Dos Anjos Rosário B, Beserra-Filho JIA, Ribeiro AM, Le Sueur Maluf L, de Oliveira CAM. Long-term calorie restriction prevented memory impairment in middle-aged male mice and increased a marker of DNA oxidative stress in hippocampal dentate gyrus. Neurobiol Learn Mem 2024; 209:107902. [PMID: 38336097 DOI: 10.1016/j.nlm.2024.107902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Calorie restriction (CR) is a non-invasive and economic approachknown to increase healthspan and life expectancy, through a decrease in oxidative stress, an increase in neurotrophins, among other benefits. However, it is not clear whether its benefit could be noted earlier, as at the beginning of middle-age. Hence, weaimed to determine whether six months of long-term CR, from early adulthood to the beginning of middle age (10 months of age) could positively affect cognitive, neurochemical, and behavioral parameters. Male C57BL6/J mice were randomly distributed into Young Control (YC, ad libitum food), Old Control (OC, ad libitum food), and Old Restricted (OR, 30 % of caloric restriction) groups. To analyze the cognitive and behavioral aspects, the novel object recognition task (NOR), open field, and elevated plus maze tests were performed. In addition, immunohistochemistry targetingΔFosB (neuronal activity), brain-derived neurotrophic factor (BDNF) and the DNA oxidative damage (8OHdG) in hippocampal subfields CA1, CA2, CA3, and dentate gyrus (DG), and in basolateral amygdala and striatum were performed. Our results showed that long-term CR prevented short-term memory impairment related to aging and increased 8OHdG in hippocampal DG. BDNF was not involved in the effects of either age or CR on memory at middle-age, as it increased in CA3 of the OC group but was not altered in OR. Regarding anxiety-type behavior, no parameter showed differences between the groups. In conclusion, while the effects of long-term CR on anxiety-type behavior were inconclusive, it mitigated the memory deficit related to aging, which was accompanied by an increase in hippocampal 8OHdG in DG. Future studies should investigate whether the benefits of CR would remain if the restriction were interrupted after this long-term protocol.
Collapse
Affiliation(s)
- Izabelle Dias Benfato
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Federal de São Paulo (UNIFESP), Brasil
| | | | - Jessica Salles Henrique
- Programa de Pós-Graduação em Neurologia e Neurociências, Universidade Federal de São Paulo (UNIFESP), Brasil
| | - Melyssa Alves Souza
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Federal de São Paulo (UNIFESP), Brasil
| | | | | | - Alessandra Mussi Ribeiro
- Departamento de Biociências, Instituto de Saúde e Sociedade, Universidade Federal de São Paulo (UNIFESP), Brasil
| | - Luciana Le Sueur Maluf
- Departamento de Biociências, Instituto de Saúde e Sociedade, Universidade Federal de São Paulo (UNIFESP), Brasil
| | | |
Collapse
|
8
|
Demianchuk O, Vatashchuk M, Gospodaryov D, Hurza V, Ivanochko M, Derkachov V, Berezovskyi V, Lushchak O, Storey KB, Bayliak M, Lushchak VI. High-fat high-fructose diet and alpha-ketoglutarate affect mouse behavior that is accompanied by changes in oxidative stress response and energy metabolism in the cerebral cortex. Biochim Biophys Acta Gen Subj 2024; 1868:130521. [PMID: 37967727 DOI: 10.1016/j.bbagen.2023.130521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/19/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023]
Abstract
BACKGROUND High caloric diets with high amounts of fats and sweeteners such as fructose may predispose organisms to neurodegenerative diseases. METHODS This study aimed to examine the effects of a high-fat high-fructose diet (HFFD) on the behavior of mice, energy metabolism, and markers of oxidative stress in murine cerebral cortex. Dietary α-ketoglutarate (AKG) was chosen as a treatment which could modulate the putative effects of HFFD. RESULTS We found that HFFD stimulated locomotion and defecation in mice, whereas an AKG-supplemented diet had a proclivity to promote anxiety-like behavior. HFFD stimulated lipid peroxidation, and in turn, the AKG-supplemented diet led to a higher ratio of reduced to oxidized glutathione, higher activity of NAD(P)H:quinone oxidoreductase 1, and higher mRNA levels of UDP-glucose 6-dehydrogenase and transcription factor EB. Both diets separately, but not in combination, led to a decrease in the activities of glutathione peroxidase, glutathione S-transferase, and phosphofructokinase. All experimental diets resulted in lower levels of transcripts of genes encoding pyruvate dehydrogenase kinase 4 (PDK4), glycine N-methyl transferase, and peroxisome proliferator receptor γ co-activator 1. CONCLUSIONS Our results show that diet supplemented with AKG resulted in effects similar to those of HFFD on the cerebral cortex, but elicited substantial differences between these two diets with respect to behavior, glutathione-dependent detoxification, and processes related to autophagy. GENERAL SIGNIFICANCE Our study provides insight into the metabolic effects of HFFD alone and in combination with alpha-ketoglutarate in the mouse brain.
Collapse
Affiliation(s)
- Oleh Demianchuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Myroslava Vatashchuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Dmytro Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine.
| | - Viktoria Hurza
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Marian Ivanochko
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Vitalii Derkachov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Vladyslav Berezovskyi
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine
| | - Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine; Research and Development University, 13a Shota Rustaveli Str., Ivano-Frankivsk, 76018, Ukraine
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Maria Bayliak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine.
| | - Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk, 76018, Ukraine; Research and Development University, 13a Shota Rustaveli Str., Ivano-Frankivsk, 76018, Ukraine.
| |
Collapse
|
9
|
Khalil SM, Eltaramsy A, Hegazi MM, Mohamed TM, Alwasel S, Salem ML. Time-dependent changes in the glycolytic pathway in activated T cells are independent of tumor burden or anti-cancer chemotherapy. Int Immunopharmacol 2023; 122:110622. [PMID: 37451014 DOI: 10.1016/j.intimp.2023.110622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Although activated adoptive T cells therapy (ATC) is an effective approach for cancer treatment, it is not clear how modulation of T cell activation impacts their biochemical signature which significantly impacts the cell function. This study is aimed to investigate the impact of polyclonal activation on the metabolic signature of T cells from tumor-bearing mice under different settings of treatment with chemotherapy. Thirty female Swiss albino mice were divided into 5 groups (n = 6/each), Gp1(PBS), groups Gp2 were inoculated intraperitoneal (i.p) with 1 × 106 cells/mouse Ehrlich ascites carcinoma (EAC), Gp3-Gp5 were treated with cisplatin (20 mg/mice) which were represented as EAC/CIS/1wk Or EAC/CIS/2wk 3 times every other day. Splenocytes were cultured in or presence of concanavalin-A (Con-A) and IL-2 for 24 h or 72 h, then cells were harvested, and processed to determine the enzyme activities of hexokinase (HK), phosphofructokinase (PFK), lactate dehydrogenase (LDH) and glucose 6 phosphate dehydrogenase(G6PD) enzymes. The results showed that before culture, T cells harvested from EAC/PBS/1wk of mice or inoculated with EAC/CIS/1wk showed higher activity in HK, PFK, LDH, and G6PH as compared to naive T cells. After 24, and 72 h of culture and activation, the enzyme activities in T cells harvested from EAC/CIS/2wk mice or EAC/CIS/3wk mice decreased compared with their control. The late stage of the tumor without chemotherapy gives a low glycolic rate. In late activation, naive and early stages of the tumor with chemotherapy can give high glycolic metabolism. These results show great significance as an application of adoptive T-cell therapy.
Collapse
Affiliation(s)
- Sohaila M Khalil
- Immunology and Biotechnology Division, Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt; Center of Excellence in Cancer Research, New Tanta University Teaching Hospital, Tanta University, Egypt.
| | - Asmaa Eltaramsy
- Physiology Division, Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mona M Hegazi
- Physiology Division, Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Tarek M Mohamed
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Egypt
| | - Saleh Alwasel
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed L Salem
- Immunology and Biotechnology Division, Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt; Center of Excellence in Cancer Research, New Tanta University Teaching Hospital, Tanta University, Egypt.
| |
Collapse
|
10
|
Preservation of mitochondrial membrane potential is necessary for lifespan extension from dietary restriction. GeroScience 2023:10.1007/s11357-023-00766-w. [PMID: 36877298 PMCID: PMC10400507 DOI: 10.1007/s11357-023-00766-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023] Open
Abstract
Dietary restriction (DR) increases lifespan in many organisms, but its underlying mechanisms are not fully understood. Mitochondria play a central role in metabolic regulation and are known to undergo changes in structure and function in response to DR. Mitochondrial membrane potential (Δψm) is the driving force for ATP production and mitochondrial outputs that integrate many cellular signals. One such signal regulated by Δψm is nutrient-status sensing. Here, we tested the hypothesis that DR promotes longevity through preserved Δψm during adulthood. Using the nematode Caenorhabditis elegans, we find that Δψm declines with age relatively early in the lifespan, and this decline is attenuated by DR. Pharmacologic depletion of Δψm blocked the longevity and health benefits of DR. Genetic perturbation of Δψm and mitochondrial ATP availability similarly prevented lifespan extension from DR. Taken together, this study provides further evidence that appropriate regulation of Δψm is a critical factor for health and longevity in response to DR.
Collapse
|
11
|
Homeostasis of carbohydrates and reactive oxygen species is critically changed in the brain of middle-aged mice: molecular mechanisms and functional reasons. BBA ADVANCES 2023; 3:100077. [PMID: 37082254 PMCID: PMC10074963 DOI: 10.1016/j.bbadva.2023.100077] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/23/2023] Open
Abstract
The brain is an organ that consumes a lot of energy. In the brain, energy is required for synaptic transmission, numerous biosynthetic processes and axonal transport in neurons, and for many supportive functions of glial cells. The main source of energy in the brain is glucose and to a lesser extent lactate and ketone bodies. ATP is formed at glucose catabolism via glycolysis and oxidative phosphorylation in mitochondrial electron transport chain (ETC) within mitochondria being the main source of ATP. With age, brain's energy metabolism is disturbed, involving a decrease in glycolysis and mitochondrial dysfunction. The latter is accompanied by intensified generation of reactive oxygen species (ROS) in ETC leading to oxidative stress. Recently, we have found that crucial changes in energy metabolism and intensity of oxidative stress in the mouse brain occur in middle age with minor progression in old age. In this review, we analyze the metabolic changes and functional causes that lead to these changes in the aging brain.
Collapse
|
12
|
Alternate day fasting and time-restricted feeding may confer similar neuroprotective effects during aging in male rats. Biogerontology 2022; 23:757-770. [PMID: 36138254 DOI: 10.1007/s10522-022-09991-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/12/2022] [Indexed: 12/13/2022]
Abstract
Age associated neurodegenerative changes are acknowledged to play a causative role in a majority of neurological diseases that accompany aging in organisms. To alleviate the deteriorative effects of aging in the brain, we investigated the effects oftwo types of intermittent fasting (IF) methods: alternate day fasting (ADF) and time- restricted feeding (TRF) in young (3 months) and old (24 months) in male Wistar rats comparing the results with age matched controls. The evaluation of biomarkers of oxidative stress showed significant decline in the old (ADF and TRF) groups in addition to up regulation in antioxidant levels. It was observed that ADF and TRF methods helped reduce ROS accumulation in the mitochondria and increased the activity of the electron transport chain complexes especially C-I and III. Gene expression analysis of autophagy genes like beclin and LC3B showed upregulated expression in ADF and TRF group. Sirtuin1 expression too significantly increased during fasting in both young and old groups showing fasting induced protection from aging. Histological analysis of sections of cerebral cortex and CA1 area provide evidence that fasting protected neurons against degeneration with age. Our results prompt us to conclude that the efficacy of these fasting methods ADF and TRF are reliable anti- aging strategies with respect to dietary restriction interventions. Moreover, both these methods compete closely in conferring protection from oxidative stress and inducing neuroprotective changes in brain of aged rats when compared to their young counterparts.
Collapse
|
13
|
Mesquita PHC, Osburn SC, Godwin JS, Roberts MD, Kavazis AN. Effects of aging and long-term physical activity on mitochondrial physiology and redox state of the cortex and cerebellum of female rats. Physiol Rep 2022; 10:e15542. [PMID: 36543327 PMCID: PMC9771693 DOI: 10.14814/phy2.15542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023] Open
Abstract
We investigated the effects of aging and long-term physical activity on markers of mitochondrial function and dynamics in the cortex and cerebellum of female rats. Additionally, we interrogated markers of oxidative damage and antioxidants. Thirty-four female Lewis rats were separated into three groups. A young group (YNG, n = 10) was euthanized at 6 months of age. Two other groups were aged to 15 months and included a physical activity group (MA-PA, n = 12) and a sedentary group (MA-SED, n = 12). There were no age effects for any of the variables investigated, except for SOD2 protein levels in the cortex (+6.5%, p = 0.012). Long-term physical activity increased mitochondrial complex IV activity in the cortex compared to YNG (+85%, p = 0.016) and MA-SED (+82%, p = 0.023) and decreased carbonyl levels in the cortex compared to YNG (-12.49%, p = 0.034). Our results suggest that the mitochondrial network and redox state of the brain of females may be more resilient to the aging process than initially thought. Further, voluntary wheel running had minimal beneficial effects on brain markers of oxidative damage and mitochondrial physiology.
Collapse
Affiliation(s)
| | | | | | - Michael D. Roberts
- School of KinesiologyAuburn UniversityAuburnAlabamaUSA
- Edward Via College of Osteopathic MedicineAuburnAlabamaUSA
| | | |
Collapse
|
14
|
Bayliak MM, Vatashchuk MV, Gospodaryov DV, Hurza VV, Demianchuk OI, Ivanochko MV, Burdyliuk NI, Storey KB, Lushchak O, Lushchak VI. High fat high fructose diet induces mild oxidative stress and reorganizes intermediary metabolism in male mouse liver: Alpha-ketoglutarate effects. Biochim Biophys Acta Gen Subj 2022; 1866:130226. [PMID: 35987369 DOI: 10.1016/j.bbagen.2022.130226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Diets rich in fats and/or carbohydrates are used to study obesity and related metabolic complications. We studied the effects of a high fat high fructose diet (HFFD) on intermediary metabolism and the development of oxidative stress in mouse liver and tested the ability of alpha-ketoglutarate to prevent HFFD-induced changes. METHODS Male mice were fed a standard diet (10% kcal fat) or HFFD (45% kcal fat, 15% kcal fructose) with or without addition of 1% alpha-ketoglutarate (AKG) in drinking water for 8 weeks. RESULTS The HFFD had no effect on body mass but activated fructolysis and glycolysis and induced inflammation and oxidative stress with a concomitant increase in activity of antioxidant enzymes in the mouse liver. HFFD-fed mice also showed lower mRNA levels of pyruvate dehydrogenase kinase 4 (PDK4) and slightly increased intensity of mitochondrial respiration in liver compared to mice on the standard diet. No significant effects of HFFD on transcription of PDK2 and PGC1α, a peroxisome proliferator-activated receptor co-activator-1α, or protein levels of p-AMPK, an active form of AMP-activated protein kinase, were found. The addition of AKG to HFFD decreased oxidized glutathione levels, did not affect levels of lipid peroxides and PDK4 transcripts but increased activities of hexokinase and phosphofructokinase in mouse liver. CONCLUSIONS Supplementation with AKG had weak modulating effects on HFFD-induced oxidative stress and changes in energetics in mouse liver. GENERAL SIGNIFICANCE Our research expands the understanding of diet-induced metabolic switching and elucidates further roles of alpha-ketoglutarate as a metabolic regulator.
Collapse
Affiliation(s)
- Maria M Bayliak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine.
| | - Myroslava V Vatashchuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Viktoria V Hurza
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Oleh I Demianchuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Marian V Ivanochko
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Nadia I Burdyliuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine; Research and Development University, 13a Shota Rustaveli Str., Ivano-Frankivsk 76018, Ukraine
| | - Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine; Research and Development University, 13a Shota Rustaveli Str., Ivano-Frankivsk 76018, Ukraine.
| |
Collapse
|
15
|
High stability of blood parameters during mouse lifespan: sex-specific effects of every-other-day fasting. Biogerontology 2022; 23:559-570. [PMID: 35915171 DOI: 10.1007/s10522-022-09982-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/19/2022] [Indexed: 11/02/2022]
Abstract
Every-other-day fasting (EODF) is one type of caloric restriction that is proposed to have significant health benefits, including slowing aging-related processes. The present study evaluated multiple parameters of blood homeostasis comparing mice of different ages and mice on different diet regimes: ad libitum (AL) versus EODF. Hematological and classical biochemical parameters of blood were measured in young (6-month), middle-aged (12-month) and old (18-month) C57BL/6J mice of both sexes subjected either to EODF, or AL feeding. Middle-aged AL males showed a decrease in erythrocyte and total leucocyte counts and an increase in plasma alkaline phosphatase activity, whereas old animals showed a decrease in relative levels of lymphocytes and an increase in relative levels of neutrophils, a decrease in plasma lactate and an increase in total cholesterol levels, compared to young mice. AL-fed females demonstrated higher stability of blood parameters during aging than males did. The EODF regimen did not significantly affect hematological parameters in females but prevented a decline in total leukocyte count with age in males. In both sexes, EODF partially prevented age-associated changes in levels of plasma lactate and cholesterol and activity of alkaline phosphatase. Thus, during normal aging, mice showed a sex-dependent maintenance of blood homeostasis which was not significantly affected by EODF.
Collapse
|
16
|
Metabolic Syndrome: Lessons from Rodent and Drosophila Models. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5850507. [PMID: 35782067 PMCID: PMC9242782 DOI: 10.1155/2022/5850507] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/20/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022]
Abstract
Overweight and obesity are health conditions tightly related to a number of metabolic complications collectively called “metabolic syndrome” (MetS). Clinical diagnosis of MetS includes the presence of the increased waist circumference or so-called abdominal obesity, reduced high density lipoprotein level, elevated blood pressure, and increased blood glucose and triacylglyceride levels. Different approaches, including diet-induced and genetically induced animal models, have been developed to study MetS pathogenesis and underlying mechanisms. Studies of metabolic disturbances in the fruit fly Drosophila and mammalian models along with humans have demonstrated that fruit flies and small mammalian models like rats and mice have many similarities with humans in basic metabolic functions and share many molecular mechanisms which regulate these metabolic processes. In this paper, we describe diet-induced, chemically and genetically induced animal models of the MetS. The advantages and limitations of rodent and Drosophila models of MetS and obesity are also analyzed.
Collapse
|
17
|
Oxidative Stress and 4-hydroxy-2-nonenal (4-HNE): Implications in the Pathogenesis and Treatment of Aging-related Diseases. J Immunol Res 2022; 2022:2233906. [PMID: 35411309 PMCID: PMC8994689 DOI: 10.1155/2022/2233906] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 02/09/2022] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress plays an important role in the development of aging-related diseases by accelerating the lipid peroxidation of polyunsaturated fatty acids in the cell membrane, resulting in the production of aldehydes, such as malondialdehyde and 4-hydroxy-2-nonenal (4-HNE) and other toxic substances. The compound 4-HNE forms adducts with DNA or proteins, disrupting many cell signaling pathways including the regulation of apoptosis signal transduction pathways. The binding of proteins to 4-HNE (4-HNE-protein) acts as an important marker of lipid peroxidation, and its increasing concentration in brain tissues and fluids because of aging, ultimately gives rise to some hallmark disorders, such as neurodegenerative diseases (Alzheimer's and Parkinson's diseases), ophthalmic diseases (dry eye, macular degeneration), hearing loss, and cancer. This review aims to describe the physiological origin of 4-HNE, elucidate its toxicity in aging-related diseases, and discuss the detoxifying effect of aldehyde dehydrogenase and glutathione in 4-HNE-driven aging-related diseases.
Collapse
|
18
|
Joaquim L, Faria A, Loureiro H, Matafome P. Benefits, mechanisms, and risks of intermittent fasting in metabolic syndrome and type 2 diabetes. J Physiol Biochem 2022; 78:295-305. [PMID: 34985730 DOI: 10.1007/s13105-021-00839-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 08/18/2021] [Indexed: 10/19/2022]
Abstract
One of the emergent nutritional strategies for improving multiple features of cardiometabolic diseases is the practice of intermittent fasting (IF), which consists of alternating periods of eating and fasting. IF can reduce circulating glucose and insulin levels, fat mass, and the risk of developing age-related pathologies. IF appears to upregulate evolution-conserved adaptive cellular responses, such as stress-response pathways, autophagy, and mitochondrial function. IF was also observed to modulate the circadian rhythms of hormones like insulin or leptin, among others, which levels change in conditions of food abundance and deficit. However, some contradictory results regarding the duration of the interventions and the anterior metabolic status of the participants suggest that more and longer studies are needed in order to draw conclusions. This review summarizes the current knowledge regarding the role of IF in the modulation of mechanisms involved in type 2 diabetes, as well as the risks.
Collapse
Affiliation(s)
- Lisandra Joaquim
- Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal
| | - Ana Faria
- Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal
| | - Helena Loureiro
- Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal
| | - Paulo Matafome
- Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal.
- Institute of Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Subunit 1, 1st floor, Azinhaga de Santa Comba, Celas, 3000-354, Coimbra, Portugal.
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.
- Clinical Academic Center, Coimbra, Portugal.
| |
Collapse
|
19
|
Patro N, Kushwaha SS, Patro I. Microglia Aging. THE BIOLOGY OF GLIAL CELLS: RECENT ADVANCES 2022:565-592. [DOI: 10.1007/978-981-16-8313-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
20
|
Lushchak VI, Duszenko M, Gospodaryov DV, Garaschuk O. Oxidative Stress and Energy Metabolism in the Brain: Midlife as a Turning Point. Antioxidants (Basel) 2021; 10:1715. [PMID: 34829586 PMCID: PMC8614699 DOI: 10.3390/antiox10111715] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 01/10/2023] Open
Abstract
Neural tissue is one of the main oxygen consumers in the mammalian body, and a plentitude of metabolic as well as signaling processes within the brain is accompanied by the generation of reactive oxygen (ROS) and nitrogen (RNS) species. Besides the important signaling roles, both ROS and RNS can damage/modify the self-derived cellular components thus promoting neuroinflammation and oxidative stress. While previously, the latter processes were thought to progress linearly with age, newer data point to midlife as a critical turning point. Here, we describe (i) the main pathways leading to ROS/RNS generation within the brain, (ii) the main defense systems for their neutralization and (iii) summarize the recent literature about considerable changes in the energy/ROS homeostasis as well as activation state of the brain's immune system at midlife. Finally, we discuss the role of calorie restriction as a readily available and cost-efficient antiaging and antioxidant lifestyle intervention.
Collapse
Affiliation(s)
- Volodymyr I. Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., 76018 Ivano-Frankivsk, Ukraine; (V.I.L.); (D.V.G.)
- Department of Medical Biochemistry, I. Horbachevsky Ternopil National Medical University, 46002 Ternopil, Ukraine
- Research and Development University, 13a Shota Rustaveli Str., 76018 Ivano-Frankivsk, Ukraine
| | - Michael Duszenko
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, 72074 Tübingen, Germany;
| | - Dmytro V. Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., 76018 Ivano-Frankivsk, Ukraine; (V.I.L.); (D.V.G.)
| | - Olga Garaschuk
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, 72074 Tübingen, Germany;
| |
Collapse
|
21
|
Lourbopoulos A, Mourouzis I, Xinaris C, Zerva N, Filippakis K, Pavlopoulos A, Pantos C. Translational Block in Stroke: A Constructive and "Out-of-the-Box" Reappraisal. Front Neurosci 2021; 15:652403. [PMID: 34054413 PMCID: PMC8160233 DOI: 10.3389/fnins.2021.652403] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Why can we still not translate preclinical research to clinical treatments for acute strokes? Despite > 1000 successful preclinical studies, drugs, and concepts for acute stroke, only two have reached clinical translation. This is the translational block. Yet, we continue to routinely model strokes using almost the same concepts we have used for over 30 years. Methodological improvements and criteria from the last decade have shed some light but have not solved the problem. In this conceptual analysis, we review the current status and reappraise it by thinking "out-of-the-box" and over the edges. As such, we query why other scientific fields have also faced the same translational failures, to find common denominators. In parallel, we query how migraine, multiple sclerosis, and hypothermia in hypoxic encephalopathy have achieved significant translation successes. Should we view ischemic stroke as a "chronic, relapsing, vascular" disease, then secondary prevention strategies are also a successful translation. Finally, based on the lessons learned, we propose how stroke should be modeled, and how preclinical and clinical scientists, editors, grant reviewers, and industry should reconsider their routine way of conducting research. Translational success for stroke treatments may eventually require a bold change with solutions that are outside of the box.
Collapse
Affiliation(s)
- Athanasios Lourbopoulos
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neurointensive Care Unit, Schoen Klinik Bad Aibling, Bad Aibling, Germany
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilian University, Munich, Germany
| | - Iordanis Mourouzis
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christodoulos Xinaris
- IRCCS – Istituto di Ricerche Farmacologiche ‘Mario Negri’, Centro Anna Maria Astori, Bergamo, Italy
- University of Nicosia Medical School, Nicosia, Cyprus
| | - Nefeli Zerva
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Filippakis
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Angelos Pavlopoulos
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantinos Pantos
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
22
|
An energetics perspective on geroscience: mitochondrial protonmotive force and aging. GeroScience 2021; 43:1591-1604. [PMID: 33864592 DOI: 10.1007/s11357-021-00365-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondria are organelles that provide energy to cells through ATP production. Mitochondrial dysfunction has long been postulated to mediate cellular declines that drive biological aging. Many well-characterized hallmarks of aging may involve underlying energetic defects that stem from loss of mitochondrial function with age. Why and how mitochondrial function declines with age is an open question and one that has been difficult to answer. Mitochondria are powered by an electrochemical gradient across the inner mitochondrial membrane known as the protonmotive force (PMF). This gradient decreases with age in several experimental models. However, it is unclear if a diminished PMF is a cause or a consequence of aging. Herein, we briefly review and define mitochondrial function, we summarize how PMF changes with age in several models, and we highlight recent studies that implicate PMF in aging biology. We also identify barriers that must be addressed for the field to progress. Emerging technology permits more precise in vivo study of mitochondria that will allow better understanding of cause and effect in metabolic models of aging. Once cause and effect can be discerned more precisely, energetics approaches to combat aging may be developed to prevent or reverse functional decline.
Collapse
|
23
|
Bayliak MM, Mosiichuk NM, Sorochynska OM, Kuzniak OV, Sishchuk LO, Hrushchenko AO, Semchuk AO, Pryimak TV, Vasylyk YV, Gospodaryov DV, Storey KB, Garaschuk O, Lushchak VI. Middle aged turn point in parameters of oxidative stress and glucose catabolism in mouse cerebellum during lifespan: minor effects of every-other-day fasting. Biogerontology 2021; 22:315-328. [PMID: 33786674 DOI: 10.1007/s10522-021-09918-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/15/2021] [Indexed: 01/06/2023]
Abstract
The cerebellum is considered to develop aging markers more slowly than other parts of the brain. Intensification of free radical processes and compromised bioenergetics, critical hallmarks of normal brain aging, may be slowed down by caloric restriction. This study aimed to evaluate the intensity of oxidative stress and the enzymatic potential to utilize glucose via glycolysis or the pentose phosphate pathway (PPP) in the cerebellum of mice under ad libitum versus every-other-day fasting (EODF) feeding regimens. Levels of lipid peroxides, activities of antioxidant and key glycolytic and PPP enzymes were measured in young (6-month), middle-aged (12-month) and old (18-month) C57BL/6J mice. The cerebellum showed the most dramatic increase in lipid peroxide levels, antioxidant capacity and PPP key enzyme activities and the sharpest decline in the activities of key glycolytic enzymes under transition from young to middle age but these changes slowed when transiting from middle to old age. A decrease in the activity of the key glycolytic enzyme phosphofructokinase was accompanied by a concomitant increase in the activities of hexokinase and glucose-6-phosphate dehydrogenase (G6PDH), which may suggest that during normal cerebellar aging glucose metabolism shifts from glycolysis to the pentose phosphate pathway. The data indicate that intensification of free radical processes in the cerebellum occurred by middle age and that activation of the PPP together with increased antioxidant capacity can help to resist these changes into old age. However, the EODF regime did not significantly modulate or alleviate any of the metabolic processes studied in this analysis of the aging cerebellum.
Collapse
Affiliation(s)
- Maria M Bayliak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Nadia M Mosiichuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Oksana M Sorochynska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Oksana V Kuzniak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Lesia O Sishchuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Anastasiia O Hrushchenko
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Alina O Semchuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Taras V Pryimak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Yulia V Vasylyk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine
| | - Kenneth B Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Olga Garaschuk
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, 72074, Tübingen, Germany
| | - Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko St., Ivano-Frankivsk, 76018, Ukraine.
| |
Collapse
|
24
|
Changing Functional Signatures of Microglia along the Axis of Brain Aging. Int J Mol Sci 2021; 22:ijms22031091. [PMID: 33499206 PMCID: PMC7865559 DOI: 10.3390/ijms22031091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/19/2022] Open
Abstract
Microglia, the innate immune cells of the brain, are commonly perceived as resident macrophages of the central nervous system (CNS). This definition, however, requires further specification, as under healthy homeostatic conditions, neither morphological nor functional properties of microglia mirror those of classical macrophages. Indeed, microglia adapt exceptionally well to their microenvironment, becoming a legitimate member of the cellular brain architecture. The ramified or surveillant microglia in the young adult brain are characterized by specific morphology (small cell body and long, thin motile processes) and physiology (a unique pattern of Ca2+ signaling, responsiveness to various neurotransmitters and hormones, in addition to classic “immune” stimuli). Their numerous physiological functions far exceed and complement their immune capabilities. As the brain ages, the respective changes in the microglial microenvironment impact the functional properties of microglia, triggering further rounds of adaptation. In this review, we discuss the recent data showing how functional properties of microglia adapt to age-related changes in brain parenchyma in a sex-specific manner, with a specific focus on early changes occurring at middle age as well as some strategies counteracting the aging of microglia.
Collapse
|