1
|
Gibson JS, Rees DC. Emerging drug targets for sickle cell disease: shedding light on new knowledge and advances at the molecular level. Expert Opin Ther Targets 2023; 27:133-149. [PMID: 36803179 DOI: 10.1080/14728222.2023.2179484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
INTRODUCTION In sickle cell disease (SCD), a single amino acid substitution at β6 of the hemoglobin (Hb) chain replaces glutamate with valine, forming HbS instead of the normal adult HbA. Loss of a negative charge, and the conformational change in deoxygenated HbS molecules, enables formation of HbS polymers. These not only distort red cell morphology but also have other profound effects so that this simple etiology belies a complex pathogenesis with multiple complications. Although SCD represents a common severe inherited disorder with life-long consequences, approved treatments remain inadequate. Hydroxyurea is currently the most effective, with a handful of newer treatments, but there remains a real need for novel, efficacious therapies. AREAS COVERED This review summarizes important early events in pathogenesis to highlight key targets for novel treatments. EXPERT OPINION A thorough understanding of early events in pathogenesis closely associated with the presence of HbS is the logical starting point for identification of new targets rather than concentrating on more downstream effects. We discuss ways of reducing HbS levels, reducing the impact of HbS polymers, and of membrane events perturbing cell function, and suggest using the unique permeability of sickle cells to target drugs specifically into those more severely compromised.
Collapse
Affiliation(s)
- John S Gibson
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - David C Rees
- Department of Paediatric Haematology, King's College Hospital, London, UK
| |
Collapse
|
2
|
Ji B, Wojtaś B, Skup M. Molecular Identification of Pro-Excitogenic Receptor and Channel Phenotypes of the Deafferented Lumbar Motoneurons in the Early Phase after SCT in Rats. Int J Mol Sci 2022; 23:ijms231911133. [PMID: 36232433 PMCID: PMC9569670 DOI: 10.3390/ijms231911133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 02/07/2023] Open
Abstract
Spasticity impacts the quality of life of patients suffering spinal cord injury and impedes the recovery of locomotion. At the cellular level, spasticity is considered to be primarily caused by the hyperexcitability of spinal α-motoneurons (MNs) within the spinal stretch reflex circuit. Here, we hypothesized that after a complete spinal cord transection in rats, fast adaptive molecular responses of lumbar MNs develop in return for the loss of inputs. We assumed that early loss of glutamatergic afferents changes the expression of glutamatergic AMPA and NMDA receptor subunits, which may be the forerunners of the developing spasticity of hindlimb muscles. To better understand its molecular underpinnings, concomitant expression of GABA and Glycinergic receptors and serotoninergic and noradrenergic receptors, which regulate the persistent inward currents crucial for sustained discharges in MNs, were examined together with voltage-gated ion channels and cation-chloride cotransporters. Using quantitative real-time PCR, we showed in the tracer-identified MNs innervating extensor and flexor muscles of the ankle joint multiple increases in transcripts coding for AMPAR and 5-HTR subunits, along with a profound decrease in GABAAR, GlyR subunits, and KCC2. Our study demonstrated that both MNs groups similarly adapt to a more excitable state, which may increase the occurrence of extensor and flexor muscle spasms.
Collapse
Affiliation(s)
- Benjun Ji
- Group of Restorative Neurobiology, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Bartosz Wojtaś
- Laboratory of Sequencing, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Małgorzata Skup
- Group of Restorative Neurobiology, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
- Correspondence:
| |
Collapse
|
3
|
Lu DCY, Hannemann A, Wadud R, Rees DC, Brewin JN, Low PS, Gibson JS. The role of WNK in modulation of KCl cotransport activity in red cells from normal individuals and patients with sickle cell anaemia. Pflugers Arch 2019; 471:1539-1549. [PMID: 31729557 PMCID: PMC6892352 DOI: 10.1007/s00424-019-02327-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/09/2019] [Accepted: 10/30/2019] [Indexed: 12/26/2022]
Abstract
Abnormal activity of red cell KCl cotransport (KCC) is involved in pathogenesis of sickle cell anaemia (SCA). KCC-mediated solute loss causes shrinkage, concentrates HbS, and promotes HbS polymerisation. Red cell KCC also responds to various stimuli including pH, volume, urea, and oxygen tension, and regulation involves protein phosphorylation. The main aim of this study was to investigate the role of the WNK/SPAK/OSR1 pathway in sickle cells. The pan WNK inhibitor WNK463 stimulated KCC with an EC50 of 10.9 ± 1.1 nM and 7.9 ± 1.2 nM in sickle and normal red cells, respectively. SPAK/OSR1 inhibitors had little effect. The action of WNK463 was not additive with other kinase inhibitors (staurosporine and N-ethylmaleimide). Its effects were largely abrogated by pre-treatment with the phosphatase inhibitor calyculin A. WNK463 also reduced the effects of physiological KCC stimuli (pH, volume, urea) and abolished any response of KCC to changes in oxygen tension. Finally, although protein kinases have been implicated in regulation of phosphatidylserine exposure, WNK463 had no effect. Findings indicate a predominant role for WNKs in control of KCC in sickle cells but an apparent absence of downstream involvement of SPAK/OSR1. A more complete understanding of the mechanisms will inform pathogenesis whilst manipulation of WNK activity represents a potential therapeutic approach.
Collapse
Affiliation(s)
- David C-Y Lu
- Department of Veterinary Medicine, Madingley Road, Cambridge, CB3 0ES, UK
| | - Anke Hannemann
- Department of Veterinary Medicine, Madingley Road, Cambridge, CB3 0ES, UK
| | - Rasiqh Wadud
- Department of Veterinary Medicine, Madingley Road, Cambridge, CB3 0ES, UK
| | - David C Rees
- Department of Paediatric Haematology, King's College Hospital, London, SE5 9RS, UK
| | - John N Brewin
- Department of Paediatric Haematology, King's College Hospital, London, SE5 9RS, UK
| | - Philip S Low
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - John S Gibson
- Department of Veterinary Medicine, Madingley Road, Cambridge, CB3 0ES, UK.
| |
Collapse
|
4
|
Garneau AP, Slimani S, Tremblay LE, Fiola MJ, Marcoux AA, Isenring P. K +-Cl - cotransporter 1 (KCC1): a housekeeping membrane protein that plays key supplemental roles in hematopoietic and cancer cells. J Hematol Oncol 2019; 12:74. [PMID: 31296230 PMCID: PMC6624878 DOI: 10.1186/s13045-019-0766-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/30/2019] [Indexed: 01/04/2023] Open
Abstract
During the 1970s, a Na+-independent, ouabain-insensitive, N-ethylmaleimide-stimulated K+-Cl- cotransport mechanism was identified in red blood cells for the first time and in a variety of cell types afterward. During and just after the mid-1990s, three closely related isoforms were shown to account for this mechanism. They were termed K+-Cl- cotransporter 1 (KCC1), KCC3, and KCC4 according to the nomenclature of Gillen et al. (1996) who had been the first research group to uncover the molecular identity of a KCC, that is, of KCC1 in rabbit kidney. Since then, KCC1 has been found to be the most widely distributed KCC isoform and considered to act as a housekeeping membrane protein. It has perhaps received less attention than the other isoforms for this reason, but as will be discussed in the following review, there is probably more to KCC1 than meets the eye. In particular, the so-called housekeeping gene also appears to play crucial and specific roles in normal as well as pathological hematopoietic and in cancer cells.
Collapse
Affiliation(s)
- A P Garneau
- From the Nephrology Research Group, Department of Medicine, Laval University, 11, côte du Palais, Québec (Qc), G1R 2J6, Canada
- Cardiometabolic Axis, School of Kinesiology and Physical Activity Sciences, University of Montréal, 900, rue Saint-Denis, Montréal (Qc), H2X 0A9, Canada
| | - S Slimani
- From the Nephrology Research Group, Department of Medicine, Laval University, 11, côte du Palais, Québec (Qc), G1R 2J6, Canada
| | - L E Tremblay
- From the Nephrology Research Group, Department of Medicine, Laval University, 11, côte du Palais, Québec (Qc), G1R 2J6, Canada
| | - M J Fiola
- From the Nephrology Research Group, Department of Medicine, Laval University, 11, côte du Palais, Québec (Qc), G1R 2J6, Canada
| | - A A Marcoux
- From the Nephrology Research Group, Department of Medicine, Laval University, 11, côte du Palais, Québec (Qc), G1R 2J6, Canada
| | - P Isenring
- From the Nephrology Research Group, Department of Medicine, Laval University, 11, côte du Palais, Québec (Qc), G1R 2J6, Canada.
- L'Hôtel-Dieu de Québec Institution, 10, rue McMahon, Québec (Qc), G1R 2J6, Canada.
| |
Collapse
|
5
|
Garneau AP, Marcoux AA, Slimani S, Tremblay LE, Frenette-Cotton R, Mac-Way F, Isenring P. Physiological roles and molecular mechanisms of K + -Cl - cotransport in the mammalian kidney and cardiovascular system: where are we? J Physiol 2019; 597:1451-1465. [PMID: 30659612 DOI: 10.1113/jp276807] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/07/2018] [Indexed: 11/08/2022] Open
Abstract
In the early 80s, renal microperfusion studies led to the identification of a basolateral K+ -Cl- cotransport mechanism in the proximal tubule, thick ascending limb of Henle and collecting duct. More than ten years later, this mechanism was found to be accounted for by three different K+ -Cl- cotransporters (KCC1, KCC3 and KCC4) that are differentially distributed along the renal epithelium. Two of these isoforms (KCC1 and KCC3) were also found to be expressed in arterial walls, the myocardium and a variety of neurons. Subsequently, valuable insights have been gained into the molecular and physiological properties of the KCCs in both the mammalian kidney and cardiovascular system. There is now robust evidence indicating that KCC4 sustains distal renal acidification and that KCC3 regulates myogenic tone in resistance vessels. However, progress in understanding the functional significance of these transporters has been slow, probably because each of the KCC isoforms is not identically distributed among species and some of them share common subcellular localizations with other KCC isoforms or sizeable conductive Cl- pathways. In addition, the mechanisms underlying the process of K+ -Cl- cotransport are still ill defined. The present review focuses on the knowledge gained regarding the roles and properties of KCCs in renal and cardiovascular tissues.
Collapse
Affiliation(s)
- A P Garneau
- Nephrology Research Group, Department of Medicine, Laval University, 11, côte du Palais, Québec (Qc), Canada, G1R 2J6.,Cardiometabolic Axis, School of Kinesiology and Physical Activity Sciences, Montreal University, 900, rue Saint-Denis, Montréal, (Qc) H2X 0A9
| | - A A Marcoux
- Nephrology Research Group, Department of Medicine, Laval University, 11, côte du Palais, Québec (Qc), Canada, G1R 2J6
| | - S Slimani
- Nephrology Research Group, Department of Medicine, Laval University, 11, côte du Palais, Québec (Qc), Canada, G1R 2J6
| | - L E Tremblay
- Nephrology Research Group, Department of Medicine, Laval University, 11, côte du Palais, Québec (Qc), Canada, G1R 2J6
| | - R Frenette-Cotton
- Nephrology Research Group, Department of Medicine, Laval University, 11, côte du Palais, Québec (Qc), Canada, G1R 2J6
| | - F Mac-Way
- Nephrology Research Group, Department of Medicine, Laval University, 11, côte du Palais, Québec (Qc), Canada, G1R 2J6
| | - P Isenring
- Nephrology Research Group, Department of Medicine, Laval University, 11, côte du Palais, Québec (Qc), Canada, G1R 2J6
| |
Collapse
|
6
|
Huisjes R, Bogdanova A, van Solinge WW, Schiffelers RM, Kaestner L, van Wijk R. Squeezing for Life - Properties of Red Blood Cell Deformability. Front Physiol 2018; 9:656. [PMID: 29910743 PMCID: PMC5992676 DOI: 10.3389/fphys.2018.00656] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/14/2018] [Indexed: 12/25/2022] Open
Abstract
Deformability is an essential feature of blood cells (RBCs) that enables them to travel through even the smallest capillaries of the human body. Deformability is a function of (i) structural elements of cytoskeletal proteins, (ii) processes controlling intracellular ion and water handling and (iii) membrane surface-to-volume ratio. All these factors may be altered in various forms of hereditary hemolytic anemia, such as sickle cell disease, thalassemia, hereditary spherocytosis and hereditary xerocytosis. Although mutations are known as the primary causes of these congenital anemias, little is known about the resulting secondary processes that affect RBC deformability (such as secondary changes in RBC hydration, membrane protein phosphorylation, and RBC vesiculation). These secondary processes could, however, play an important role in the premature removal of the aberrant RBCs by the spleen. Altered RBC deformability could contribute to disease pathophysiology in various disorders of the RBC. Here we review the current knowledge on RBC deformability in different forms of hereditary hemolytic anemia and describe secondary mechanisms involved in RBC deformability.
Collapse
Affiliation(s)
- Rick Huisjes
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zürich, Switzerland
| | - Wouter W van Solinge
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Raymond M Schiffelers
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, Saarbrücken, Germany.,Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Richard van Wijk
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
7
|
Abstract
Cell dehydration is a distinguishing characteristic of sickle cell disease and an important contributor to disease pathophysiology. Due to the unique dependence of Hb S polymerization on cellular Hb S concentration, cell dehydration promotes polymerization and sickling. In double heterozygosis for Hb S and C (SC disease) dehydration is the determining factor in disease pathophysiology. Three major ion transport pathways are involved in sickle cell dehydration: the K-Cl cotransport (KCC), the Gardos channel (KCNN4) and Psickle, the polymerization induced membrane permeability, most likely mediated by the mechano-sensitive ion channel PIEZO1. Each of these pathways exhibit unique characteristics in regulation by oxygen tension, intracellular and extracellular environment, and functional expression in reticulocytes and mature red cells. The unique dependence of K-Cl cotransport on intracellular Mg and the abnormal reduction of erythrocyte Mg content in SS and SC cells had led to clinical studies assessing the effect of oral Mg supplementation. Inhibition of Gardos channel by clotrimazole and senicapoc has led to Phase 1,2,3 trials in patients with sickle cell disease. While none of these studies has resulted in the approval of a novel therapy for SS disease, they have highlighted the key role played by these pathways in disease pathophysiology.
Collapse
Affiliation(s)
- Carlo Brugnara
- Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Garneau AP, Marcoux AA, Frenette-Cotton R, Mac-Way F, Lavoie JL, Isenring P. Molecular insights into the normal operation, regulation, and multisystemic roles of K +-Cl - cotransporter 3 (KCC3). Am J Physiol Cell Physiol 2017; 313:C516-C532. [PMID: 28814402 DOI: 10.1152/ajpcell.00106.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/26/2017] [Accepted: 08/14/2017] [Indexed: 12/12/2022]
Abstract
Long before the molecular identity of the Na+-dependent K+-Cl- cotransporters was uncovered in the mid-nineties, a Na+-independent K+-Cl- cotransport system was also known to exist. It was initially observed in sheep and goat red blood cells where it was shown to be ouabain-insensitive and to increase in the presence of N-ethylmaleimide (NEM). After it was established between the early and mid-nineties, the expressed sequence tag (EST) databank was found to include a sequence that was highly homologous to those of the Na+-dependent K+-Cl- cotransporters. This sequence was eventually found to code for the Na+-independent K+-Cl- cotransport function that was described in red blood cells several years before. It was termed KCC1 and led to the discovery of three isoforms called KCC2, KCC3, and KCC4. Since then, it has become obvious that each one of these isoforms exhibits unique patterns of distribution and fulfills distinct physiological roles. Among them, KCC3 has been the subject of great attention in view of its important role in the nervous system and its association with a rare hereditary sensorimotor neuropathy (called Andermann syndrome) that affects many individuals in Quebec province (Canada). It was also found to play important roles in the cardiovascular system, the organ of Corti, and circulating blood cells. As will be seen in this review, however, there are still a number of uncertainties regarding the transport properties, structural organization, and regulation of KCC3. The same is true regarding the mechanisms by which KCC3 accomplishes its numerous functions in animal cells.
Collapse
Affiliation(s)
- A P Garneau
- Nephrology Research Group, Department of Medicine, Laval University, Quebec City, Quebec, Canada; and
- Cardiometabolic Axis, Kinesiology Department, University of Montréal, Montreal, Quebec, Canada
| | - A A Marcoux
- Nephrology Research Group, Department of Medicine, Laval University, Quebec City, Quebec, Canada; and
| | - R Frenette-Cotton
- Nephrology Research Group, Department of Medicine, Laval University, Quebec City, Quebec, Canada; and
| | - F Mac-Way
- Nephrology Research Group, Department of Medicine, Laval University, Quebec City, Quebec, Canada; and
| | - J L Lavoie
- Cardiometabolic Axis, Kinesiology Department, University of Montréal, Montreal, Quebec, Canada
| | - P Isenring
- Nephrology Research Group, Department of Medicine, Laval University, Quebec City, Quebec, Canada; and
| |
Collapse
|
9
|
Molecular features and physiological roles of K +-Cl - cotransporter 4 (KCC4). Biochim Biophys Acta Gen Subj 2017; 1861:3154-3166. [PMID: 28935604 DOI: 10.1016/j.bbagen.2017.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/15/2017] [Indexed: 12/27/2022]
Abstract
A K+-Cl- cotransport system was documented for the first time during the mid-seventies in sheep and goat red blood cells. It was then described as a Na+-independent and ouabain-insensitive ion carrier that could be stimulated by cell swelling and N-ethylmaleimide (NEM), a thiol-reacting agent. Twenty years later, this system was found to be dispensed by four different isoforms in animal cells. The first one was identified in the expressed sequence tag (EST) database by Gillen et al. based on the assumption that it would be homologous to the Na+-dependent K+-Cl- cotransport system for which the molecular identity had already been uncovered. Not long after, the three other isoforms were once again identified in the EST databank. Among those, KCC4 has generated much interest a few years ago when it was shown to sustain distal renal acidification and hearing development in mouse. As will be seen in this review, many additional roles were ascribed to this isoform, in keeping with its wide distribution in animal species. However, some of them have still not been confirmed through animal models of gene inactivation or overexpression. Along the same line, considerable knowledge has been acquired on the mechanisms by which KCC4 is regulated and the environmental cues to which it is sensitive. Yet, it is inferred to some extent from historical views and extrapolations.
Collapse
|
10
|
Hannemann A, Rees D, Tewari S, Gibson J. Cation Homeostasis in Red Cells From Patients With Sickle Cell Disease Heterologous for HbS and HbC (HbSC Genotype). EBioMedicine 2015; 2:1669-76. [PMID: 26870793 PMCID: PMC4740305 DOI: 10.1016/j.ebiom.2015.09.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/07/2015] [Accepted: 09/15/2015] [Indexed: 11/24/2022] Open
Abstract
Sickle cell disease (SCD) in patients of HbSC genotype is considered similar, albeit milder, to that in homozygous HbSS individuals--but with little justification. In SCD, elevated red cell cation permeability is critical as increased solute loss causes dehydration and encourages sickling. Recently, we showed that the KCl cotransporter (KCC) activity in red cells from HbSC patients correlated significantly with disease severity, but that in HbSS patients did not. Two transporters involved in red cell dehydration, the conductive channels Psickle and the Gardos channel, behaved similarly in red cells from the two genotypes, but were significantly less active in HbSC patients. By contrast, KCC activity was quantitatively greater in HbSC red cells. Results suggest that KCC is likely to have greater involvement in red cell dehydration in HbSC patients, which could explain its association with disease severity in this genotype. This work supports the hypothesis that SCD in HbSC patients is a distinct disease entity to that in HbSS patients. Results suggest the possibility of designing specific treatments of particular benefit to HbSC patients and a rationale for the development of prognostic markers, to inform early treatment of children likely to develop more severe complications of the disease.
Collapse
Affiliation(s)
- A. Hannemann
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - D.C. Rees
- Department of Paediatric Haematology, King's College London School of Medicine, King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - S. Tewari
- Department of Paediatric Haematology, King's College London School of Medicine, King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - J.S. Gibson
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| |
Collapse
|
11
|
Archer N, Galacteros F, Brugnara C. 2015 Clinical trials update in sickle cell anemia. Am J Hematol 2015; 90:934-50. [PMID: 26178236 PMCID: PMC5752136 DOI: 10.1002/ajh.24116] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 07/08/2015] [Indexed: 02/02/2023]
Abstract
Polymerization of HbS and cell sickling are the prime pathophysiological events in sickle cell disease (SCD). Over the last 30 years, a substantial understanding at the molecular level has been acquired on how a single amino acid change in the structure of the beta chain of hemoglobin leads to the explosive growth of the HbS polymer and the associated changes in red cell morphology. O2 tension and intracellular HbS concentration are the primary molecular drivers of this process, and are obvious targets for developing new therapies. However, polymerization and sickling are driving a complex network of associated cellular changes inside and outside of the erythrocyte, which become essential components of the inflammatory vasculopathy and result in a large range of potential acute and chronic organ damages. In these areas, a multitude of new targets for therapeutic developments have emerged, with several ongoing or planned new therapeutic interventions. This review outlines the key points of SCD pathophysiology as they relate to the development of new therapies, both at the pre-clinical and clinical levels.
Collapse
Affiliation(s)
- Natasha Archer
- Pediatric Hematology/Oncology Dana-Farber/Children’s Hospital Blood Disorders and Cancer Center, Boston, Massachusetts
| | - Frédéric Galacteros
- Centre De Référence Des Syndromes Drépanocytaires Majeurs, Hôpital Henri-Mondor, APHP, UPEC, Creteil, France
| | - Carlo Brugnara
- Department of Laboratory Medicine, Boston Children’s Hospital, Harvard Medical School Boston, Massachusetts
| |
Collapse
|
12
|
Rees DC, Thein SL, Osei A, Drasar E, Tewari S, Hannemann A, Gibson JS. The clinical significance of K-Cl cotransport activity in red cells of patients with HbSC disease. Haematologica 2015; 100:595-600. [PMID: 25749827 PMCID: PMC4420208 DOI: 10.3324/haematol.2014.120402] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 03/04/2015] [Indexed: 01/01/2023] Open
Abstract
HbSC disease is the second commonest form of sickle cell disease, with poorly understood pathophysiology and few treatments. We studied the role of K-Cl cotransport activity in determining clinical and laboratory features, and investigated its potential role as a biomarker. Samples were collected from 110 patients with HbSC disease and 41 with sickle cell anemia (HbSS). K-Cl cotransport activity was measured in the oxygenated (K-Cl cotransport(100)) and deoxygenated (K-Cl cotransport(0)) states, using radioactive tracer studies. K-Cl cotransport activity was high in HbSC and decreased significantly on deoxygenation. K-Cl cotransport activity correlated significantly and positively with the formation of sickle cells. On multiple regression analysis, K-Cl cotransport increased significantly and independently with increasing reticulocyte count and age. K-Cl cotransport activity was increased in patients who attended hospital with acute pain in 2011 compared to those who did not (K-Cl cotransport(100): mean 3.87 versus 3.20, P=0.009, independent samples T-test; K-Cl cotransport(0): mean 0.96 versus 0.68, P=0.037). On logistic regression only K-Cl cotransport was associated with hospital attendance. Increased K-Cl cotransport activity was associated with the presence of retinopathy, but this effect was confounded by age. This study links variability in a fundamental aspect of cellular pathology with a clinical outcome, suggesting that K-Cl cotransport is central to the pathology of HbSC disease. Increased K-Cl cotransport activity is associated with increasing age, which may be of pathophysiological significance. Effective inhibition of K-Cl cotransport activity is likely to be of therapeutic benefit.
Collapse
Affiliation(s)
- David C Rees
- Department of Paediatric Haematology, King's College Hospital, King's College London School of Medicine, UK.
| | - Swee Lay Thein
- Department of Haematological Medicine, King's College Hospital, King's College London School of Medicine, UK
| | - Anna Osei
- Department of Paediatric Haematology, King's College Hospital, King's College London School of Medicine, UK
| | - Emma Drasar
- Department of Haematological Medicine, King's College Hospital, King's College London School of Medicine, UK
| | - Sanjay Tewari
- Department of Paediatric Haematology, King's College Hospital, King's College London School of Medicine, UK
| | - Anke Hannemann
- Department of Veterinary Medicine, University of Cambridge, UK
| | - John S Gibson
- Department of Veterinary Medicine, University of Cambridge, UK
| |
Collapse
|
13
|
Gonsalves CS, Crable S, Chandra S, Li W, Kalra VK, Joiner CH. Angiogenic growth factors augment K-Cl cotransporter expression in erythroid cells via hypoxia-inducible factor-1α. Am J Hematol 2014; 89:273-81. [PMID: 24227191 PMCID: PMC4223994 DOI: 10.1002/ajh.23631] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/01/2013] [Accepted: 11/11/2013] [Indexed: 01/22/2023]
Abstract
The potassium chloride cotransporters (KCC) family of proteins are widely expressed and are involved in the transepithelial movement of potassium and chloride ions and the regulation of cell volume. KCC activity is high in reticulocytes, and contributes to the dehydration of sickle red blood cells. Because plasma levels of both vascular endothelial growth factor (VEGF) and placental growth factor (PlGF) are elevated in sickle cell individuals, and VEGF has been shown to increase KCC expression in other cells, we hypothesized that VEGF and PlGF influence KCC expression in erythroid cells. Both VEGF and PlGF treatment of human erythroid K562 cells increased both mRNA and protein levels of KCC1, KCC3b, and KCC4. VEGF- and PlGF-mediated cellular signaling involved VEGF-R1 and downstream effectors, specifically, PI-3 kinase, p38 MAP kinase, mTOR, NADPH-oxidase, JNK kinase, and HIF-1α. VEGF and PlGF-mediated transcription of KCC3b and KCC4 involved hypoxia response element (HRE) motifs in their promoters, as demonstrated by promoter analysis, EMSA and ChiP. These results were corroborated in vivo by adenoviral-mediated overexpression of PlGF in normal mice, which led to increased expression of mKCC3 and mKCC4 in erythroid precursors. Our studies show that VEGF and PlGF regulate transcription of KCC3b and KCC4 in erythroid cells via activation of HIF-1α, independent of hypoxia. These studies provide novel therapeutic targets for regulation of cell volume in RBC precursors, and thus, amelioration of dehydration in RBCs in sickle cell disease.
Collapse
Affiliation(s)
- Caryn S Gonsalves
- Division of Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical CenterCincinnati, Ohio
- Department of Biochemistry and Molecular Biology, Keck School of Medicine of the University of Southern CaliforniaLos Angeles, California
| | - Scott Crable
- Division of Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical CenterCincinnati, Ohio
| | - Sharat Chandra
- Division of Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical CenterCincinnati, Ohio
| | - Wei Li
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory UniversityAtlanta, Georgia
| | - Vijay K Kalra
- Department of Biochemistry and Molecular Biology, Keck School of Medicine of the University of Southern CaliforniaLos Angeles, California
| | - Clinton H Joiner
- Division of Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical CenterCincinnati, Ohio
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory UniversityAtlanta, Georgia
| |
Collapse
|
14
|
Ding J, Ponce-Coria J, Delpire E. A trafficking-deficient mutant of KCC3 reveals dominant-negative effects on K-Cl cotransport function. PLoS One 2013; 8:e61112. [PMID: 23593405 PMCID: PMC3617232 DOI: 10.1371/journal.pone.0061112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 03/06/2013] [Indexed: 12/27/2022] Open
Abstract
The K-Cl cotransporter (KCC) functions in maintaining chloride and volume homeostasis in a variety of cells. In the process of cloning the mouse KCC3 cDNA, we came across a cloning mutation (E289G) that rendered the cotransporter inactive in functional assays in Xenopus laevis oocytes. Through biochemical studies, we demonstrate that the mutant E289G cotransporter is glycosylation-deficient, does not move beyond the endoplasmic reticulum or the early Golgi, and thus fails to reach the plasma membrane. We establish through co-immunoprecipitation experiments that both wild-type and mutant KCC3 with KCC2 results in the formation of hetero-dimers. We further demonstrate that formation of these hetero-dimers prevents the proper trafficking of the cotransporter to the plasma membrane, resulting in a significant decrease in cotransporter function. This effect is due to interaction between the K-Cl cotransporter isoforms, as this was not observed when KCC3-E289G was co-expressed with NKCC1. Our studies also reveal that the glutamic acid residue is essential to K-Cl cotransporter function, as the corresponding mutation in KCC2 also leads to an absence of function. Interestingly, mutation of this conserved glutamic acid residue in the Na(+)-dependent cation-chloride cotransporters had no effect on NKCC1 function in isosmotic conditions, but diminished cotransporter activity under hypertonicity. Together, our data show that the glutamic acid residue (E289) is essential for proper trafficking and function of KCCs and that expression of a non-functional but full-length K-Cl cotransporter might results in dominant-negative effects on other K-Cl cotransporters.
Collapse
Affiliation(s)
- Jinlong Ding
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Molecular Physiology and Biophysics Graduate Program Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - José Ponce-Coria
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| |
Collapse
|
15
|
Ma YL, Rees DC, Gibson JS, Ellory JC. The conductance of red blood cells from sickle cell patients: ion selectivity and inhibitors. J Physiol 2012; 590:2095-105. [PMID: 22411011 DOI: 10.1113/jphysiol.2012.229609] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The abnormally high cation permeability in red blood cells (RBCs) from patients with sickle cell disease (SCD) occupies a central role in pathogenesis. Sickle RBC properties are notably heterogeneous, however, thus limiting conventional flux techniques that necessarily average out the behaviour of millions of cells. Here we use the whole-cell patch configuration to characterise the permeability of single RBCs from patients with SCD in more detail. A non-specific cation conductance was reversibly induced upon deoxygenation and was permeable to both univalent (Na+, K+, Rb+) and also divalent (Ca2+, Mg2+) cations. It was sensitive to the tarantula spider toxin GsMTx-4. Mn2+ caused partial, reversible inhibition. The aromatic aldehyde o-vanillin also irreversibly inhibited the deoxygenation-induced conductance, partially at 1mM and almost completely at 5mM. Nifedipine, amiloride and ethylisopropylamiloride were ineffective. In oxygenated RBCs, the current was pH sensitive showing a marked increase as pH fell from 7.4 to 6, with no change apparent when pH was raised from 7.4 to 8. The effects of acidification and deoxygenation together were not additive. Many features of this deoxygenation-induced conductance (non-specificity for cations, permeability toCa2+ andMg2+, pH sensitivity, reversibility, partial inhibition by DIDS and Mn2+) are shared with the flux pathway sometimes referred to as Psickle. Sensitivity to GsMTx-4 indicates its possible identity as a stretch-activated channel. Sensitivity to o-vanillin implies that activation requires HbS polymerisation but since the conductance was observed in whole-cell patches, results suggest that bulk intracellular Hb is not involved; rather a membrane-bound subfraction is responsible for channel activation. The ability to record P(sickle)-like activity in single RBCs will facilitate further studies and eventual molecular identification of the pathway involved.
Collapse
Affiliation(s)
- Y-L Ma
- Department of Physiology, Anatomy & Genetics, Oxford, UK
| | | | | | | |
Collapse
|
16
|
Pan D, Kalfa TA, Wang D, Risinger M, Crable S, Ottlinger A, Chandra S, Mount DB, Hübner CA, Franco RS, Joiner CH. K-Cl cotransporter gene expression during human and murine erythroid differentiation. J Biol Chem 2011; 286:30492-30503. [PMID: 21733850 PMCID: PMC3162409 DOI: 10.1074/jbc.m110.206516] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 06/23/2011] [Indexed: 11/06/2022] Open
Abstract
The K-Cl cotransporter (KCC) regulates red blood cell (RBC) volume, especially in reticulocytes. Western blot analysis of RBC membranes revealed KCC1, KCC3, and KCC4 proteins in mouse and human cells, with higher levels in reticulocytes. KCC content was higher in sickle versus normal RBC, but the correlation with reticulocyte count was poor, with inter-individual variability in KCC isoform ratios. Messenger RNA for each isoform was measured by real time RT-quantitative PCR. In human reticulocytes, KCC3a mRNA levels were consistently the highest, 1-7-fold higher than KCC4, the second most abundant species. Message levels for KCC1 and KCC3b were low. The ratios of KCC RNA levels varied among individuals but were similar in sickle and normal RBC. During in vivo maturation of human erythroblasts, KCC3a RNA was expressed consistently, whereas KCC1 and KCC3b levels declined, and KCC4 message first increased and then decreased. In mouse erythroblasts, a similar pattern for KCC3 and KCC1 expression during in vivo differentiation was observed, with low KCC4 RNA throughout despite the presence of KCC4 protein in mature RBC. During differentiation of mouse erythroleukemia cells, protein levels of KCCs paralleled increasing mRNA levels. Functional properties of KCCs expressed in HEK293 cells were similar to each other and to those in human RBC. However, the anion dependence of KCC in RBC resembled most closely that of KCC3. The results suggest that KCC3 is the dominant isoform in erythrocytes, with variable expression of KCC1 and KCC4 among individuals that could result in modulation of KCC activity.
Collapse
Affiliation(s)
- Dao Pan
- Molecular and Cell Therapy Program, Division of Experimental Hematology, Cincinnati, Ohio 45229; the Departments of Pediatrics, Cincinnati, Ohio 45267.
| | - Theodosia A Kalfa
- the Departments of Pediatrics, Cincinnati, Ohio 45267; Division of Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
| | - Daren Wang
- Molecular and Cell Therapy Program, Division of Experimental Hematology, Cincinnati, Ohio 45229
| | - Mary Risinger
- Division of Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
| | - Scott Crable
- Division of Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
| | - Anna Ottlinger
- Division of Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
| | - Sharat Chandra
- the Departments of Pediatrics, Cincinnati, Ohio 45267; Division of Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
| | - David B Mount
- Renal Division, Brigham and Women's Hospital, Veterans Affairs Boston Healthcare System, Harvard Medical School, Boston, Massachusetts 02115
| | - Christian A Hübner
- Department of Clinical Chemistry, University Hospital of the Friedrich-Schiller-University, D-07747 Jena, Germany
| | - Robert S Franco
- Division of Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229; Internal Medicine, University of Cincinnati School of Medicine, Cincinnati, Ohio 45267
| | - Clinton H Joiner
- the Departments of Pediatrics, Cincinnati, Ohio 45267; Division of Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229.
| |
Collapse
|
17
|
Quarmyne MO, Risinger M, Linkugel A, Frazier A, Joiner C. Volume regulation and KCl cotransport in reticulocyte populations of sickle and normal red blood cells. Blood Cells Mol Dis 2011; 47:95-9. [PMID: 21576026 PMCID: PMC3406737 DOI: 10.1016/j.bcmd.2011.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 04/07/2011] [Indexed: 11/25/2022]
Abstract
The potassium chloride co-transporter (KCC) is a member of the electroneutral cation chloride family of cotransporters found in multiple tissues that are involved in transepithelial ion transport and regulation of intracellular ion content and cell volume. We have shown previously that three of the four KCC genes - KCC1, KCC3, and KCC4 - are expressed in red blood cells (RBC) (Exp. Hem. 33:624, 2005). Functionally, the KCC mediates volume reduction of reticulocytes that establishes the higher cellular hemoglobin concentration (CHC) of mature RBC. KCC activity is higher in reticulocytes and diminishes with age. KCC activity in RBC containing sickle hemoglobin (SS RBC) is elevated compared to normal (AA RBC) in part due to reticulocytosis in SS blood. However, we have demonstrated that SS reticulocytes have abnormal regulation of KCC activity leading to increased CHC upon activation of KCC compared to AA reticulocytes (Blood 104:2954, 2004; Blood 109:1734, 2007). These findings implicate KCC as a factor in the dehydration of SS RBC, which leads to elevated Hb S concentration and enhances Hb S polymerization and hemolysis. Because KCC activity correlates with cell age, standard flux measurements on blood samples with different numbers of reticulocytes or young non-reticulocytes are not comparable. The Advia automated cell counter measures cell volume (MCV) and cellular hemoglobin concentration (CHC) in reticulocytes, an age-defined population of cells, and thus circumvents the problem of variable reticulocyte counts among SS and AA blood samples. In this study, reticulocyte CHC measurements on fresh blood demonstrated a clear difference between AA and SS cells, reflecting in vivo dehydration of SS reticulocytes, although there was significant inter-individual variation, and the CHC distributions of the two groups overlapped. After KCC activation in vitro by cell swelling using the nystatin method, the initial changes in reticulocyte MCV and CHC with time were used to estimate flux rates mediated by KCC, assuming that changes were associated with isotonic KCl movements. After 20-30min a final steady state MCV/CHC (set point) was achieved and maintained, reflecting inactivation of the transporter. CHC set points were 26.5-29g/dl in SS reticulocytes compared to 25-26.5g/dl in AA reticulocytes, reflecting abnormal regulation in SS cells. These results were reproducible in the same individual over time. KCC flux derived from CHC ranged from 5 to 10.3mmolK/kgHb/min in SS reticulocytes, compared to 2.9-7.2mmolK/kgHb/min in AA reticulocytes. Such measures of KCC activity in red cell populations controlled for cell age will facilitate further studies correlating KCC activity with phenotypic or genetic variability in sickle cell disease.
Collapse
Affiliation(s)
- Maa-Ohui Quarmyne
- Division of Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center
| | - Mary Risinger
- Division of Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center
| | - Andrew Linkugel
- Division of Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center
| | - Anna Frazier
- Division of Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center
| | - Clinton Joiner
- Division of Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center
| |
Collapse
|
18
|
A key role for KCl cotransport in cell volume regulation in human erythroleukemia cells. Life Sci 2011; 88:1001-8. [DOI: 10.1016/j.lfs.2011.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Revised: 02/11/2011] [Accepted: 03/03/2011] [Indexed: 11/20/2022]
|
19
|
Bergeron MJ, Frenette-Cotton R, Carpentier GA, Simard MG, Caron L, Isenring P. Phosphoregulation of K+-Cl−cotransporter 4 during changes in intracellular Cl−and cell volume. J Cell Physiol 2009; 219:787-96. [DOI: 10.1002/jcp.21725] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Moreira LS, de Andrade TG, Albuquerque DM, Cunha AF, Fattori A, Saad STO, Costa FF. IDENTIFICATION OF DIFFERENTIALLY EXPRESSED GENES INDUCED BY HYDROXYUREA IN RETICULOCYTES FROM SICKLE CELL ANAEMIA PATIENTS. Clin Exp Pharmacol Physiol 2008; 35:651-5. [DOI: 10.1111/j.1440-1681.2007.04861.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Adragna NC, Lauf PK. K-Cl cotransport function and its potential contribution to cardiovascular disease. ACTA ACUST UNITED AC 2007; 14:135-46. [PMID: 17949953 DOI: 10.1016/j.pathophys.2007.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
K-Cl cotransport is the coupled electroneutral movement of K and Cl ions carried out by at least four protein isoforms, KCC1-4. These transporters belong to the SLC12A family of coupled cotransporters and, due to their multiple functions, play an important role in the maintenance of cellular homeostasis. Significant information exists on the overall function of these transporters, but less is known about the role of the specific isoforms. Most functional studies were done on K-Cl cotransport fluxes without knowing the molecular details, and only recently attention has been paid to the isoforms and their individual contribution to the fluxes. This review summarizes briefly and updates the information on the overall functions of this transporter, and offers some ideas on its potential contribution to the pathophysiological basis of cardiovascular disease. By virtue of its properties and the cellular ionic distribution, K-Cl cotransport participates in volume regulation of the nucleated and some enucleated cells studied thus far. One of the hallmarks in cardiovascular disease is the inability of the organism to maintain water and electrolyte balance in effectors and/or target tissues. Oxidative stress is another compounding factor in cardiovascular disease and of great significance in our modern life styles. Several functions of the transporter are modulated by oxidative stress, which in turn may cause the transporter to operate in either "overdrive" with the purpose to counteract homeostatic changes, or not to respond at all, again setting the stage for pathological changes leading to cardiovascular disease. Intracellular Mg, a second messenger, acts as an inhibitor of K-Cl cotransport and plays a crucial role in regulating the activity of protein kinases and phosphatases, which, in turn, regulate a myriad of cellular functions. Although the role of Mg in cardiovascular disease has been dealt with for several decades, this chapter is evolving nowadays at a faster pace and the relationships between Mg, K-Cl cotransport, and cardiovascular disease is an area that awaits further experimentation. We envision that further studies on the role of K-Cl cotransport, and ideally on its specific isoforms, in mammalian cells will add missing links and help to understand the cellular mechanisms involved in the pathophysiology of cardiovascular disease.
Collapse
Affiliation(s)
- Norma C Adragna
- Cell Biophysics Group, Wright State University, Boonshoft School of Medicine, Dayton, OH 45435, United States; Department of Pharmacology and Toxicology, Wright State University, Boonshoft School of Medicine, Dayton, OH 45435, United States
| | | |
Collapse
|
22
|
Simard CF, Bergeron MJ, Frenette-Cotton R, Carpentier GA, Pelchat ME, Caron L, Isenring P. Homooligomeric and heterooligomeric associations between K+-Cl- cotransporter isoforms and between K+-Cl- and Na+-K+-Cl- cotransporters. J Biol Chem 2007; 282:18083-18093. [PMID: 17462999 DOI: 10.1074/jbc.m607811200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Little is known regarding the quaternary structure of cation-Cl- cotransporters (CCCs) except that the Na+-dependent CCCs can exist as homooligomeric units. Given that each of the CCCs exhibits unique functional properties and that several of these carriers coexist in various cell types, it would be of interest to determine whether the four K+-Cl- cotransporter (KCC) isoforms and their splice variants can also assemble into such units and, more importantly, whether they can form heterooligomers by interacting with each other or with the secretory Na+-K+-Cl- cotransporter (NKCC1). In the present work, we have addressed these questions by conducting two groups of analyses: 1) yeast two-hybrid and pull-down assays in which CCC-derived protein segments were used as both bait and prey and 2) coimmunoprecipitation and functional studies of intact CCCs coexpressed in Xenopus laevis oocytes. Through a combination of such analyses, we have found that KCC2 and KCC4 could adopt various oligomeric states (in the form of KCC2-KCC2, KCC4-KCC4, KCC2-KCC4, and even KCC4-NKCC1 complexes), that their carboxyl termini were probably involved in carrier assembly, and that the KCC4-NKCC1 oligomers, more specifically, could deploy unique functional features. Through additional coimmunoprecipitation studies, we have also found that KCC1 and KCC3 had the potential of assembling into various types of CCC-CCC oligomers as well, although the interactions uncovered were not characterized as extensively, and the protein segments involved were not identified in yeast two-hybrid assays. Taken together, these findings could change our views on how CCCs operate or are regulated in animal cells by suggesting, in particular, that cation-Cl- cotransport achieves higher levels of functional diversity than foreseen.
Collapse
Affiliation(s)
- Charles F Simard
- Nephrology Research Group, L'Hôtel-Dieu de Québec Research Institution, Department of Medicine, Faculty of Medicine, Laval University, Québec, Québec G1R 2J6, Canada
| | - Marc J Bergeron
- Nephrology Research Group, L'Hôtel-Dieu de Québec Research Institution, Department of Medicine, Faculty of Medicine, Laval University, Québec, Québec G1R 2J6, Canada
| | - Rachelle Frenette-Cotton
- Nephrology Research Group, L'Hôtel-Dieu de Québec Research Institution, Department of Medicine, Faculty of Medicine, Laval University, Québec, Québec G1R 2J6, Canada
| | - Gabriel A Carpentier
- Nephrology Research Group, L'Hôtel-Dieu de Québec Research Institution, Department of Medicine, Faculty of Medicine, Laval University, Québec, Québec G1R 2J6, Canada
| | - Marie-Eve Pelchat
- Nephrology Research Group, L'Hôtel-Dieu de Québec Research Institution, Department of Medicine, Faculty of Medicine, Laval University, Québec, Québec G1R 2J6, Canada
| | - Luc Caron
- Nephrology Research Group, L'Hôtel-Dieu de Québec Research Institution, Department of Medicine, Faculty of Medicine, Laval University, Québec, Québec G1R 2J6, Canada
| | - Paul Isenring
- Nephrology Research Group, L'Hôtel-Dieu de Québec Research Institution, Department of Medicine, Faculty of Medicine, Laval University, Québec, Québec G1R 2J6, Canada.
| |
Collapse
|
23
|
Rust MB, Alper SL, Rudhard Y, Shmukler BE, Vicente R, Brugnara C, Trudel M, Jentsch TJ, Hübner CA. Disruption of erythroid K-Cl cotransporters alters erythrocyte volume and partially rescues erythrocyte dehydration in SAD mice. J Clin Invest 2007; 117:1708-17. [PMID: 17510708 PMCID: PMC1866252 DOI: 10.1172/jci30630] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 03/20/2007] [Indexed: 11/17/2022] Open
Abstract
K-Cl cotransport activity in rbc is a major determinant of rbc volume and density. Pathologic activation of erythroid K-Cl cotransport activity in sickle cell disease contributes to rbc dehydration and cell sickling. To address the roles of individual K-Cl cotransporter isoforms in rbc volume homeostasis, we disrupted the Kcc1 and Kcc3 genes in mice. As rbc K-Cl cotransport activity was undiminished in Kcc1(-/-) mice, decreased in Kcc3(-/-) mice, and almost completely abolished in mice lacking both isoforms, we conclude that K-Cl cotransport activity of mouse rbc is mediated largely by KCC3. Whereas rbc of either Kcc1(-/-) or Kcc3(-/-) mice were of normal density, rbc of Kcc1(-/-)Kcc3(-/-) mice exhibited defective volume regulation, including increased mean corpuscular volume, decreased density, and increased susceptibility to osmotic lysis. K-Cl cotransport activity was increased in rbc of SAD mice, which are transgenic for a hypersickling human hemoglobin S variant. Kcc1(-/-)Kcc3(-/-) SAD rbc lacked nearly all K-Cl cotransport activity and exhibited normalized values of mean corpuscular volume, corpuscular hemoglobin concentration mean, and K(+) content. Although disruption of K-Cl cotransport rescued the dehydration phenotype of most SAD rbc, the proportion of the densest red blood cell population remained unaffected.
Collapse
Affiliation(s)
- Marco B. Rust
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, Hamburg, Germany.
Molecular and Vascular Medicine Unit and Renal Unit, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
Leibniz-Institut für Molekulare Pharmakologie and Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany.
Department of Laboratory Medicine, The Children’s Hospital, and Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Institut de Recherches Cliniques de Montréal, Molecular Genetics and Development, Faculté de Médecine de l’Université de Montréal, Montreal, Quebec, Canada.
Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Seth L. Alper
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, Hamburg, Germany.
Molecular and Vascular Medicine Unit and Renal Unit, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
Leibniz-Institut für Molekulare Pharmakologie and Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany.
Department of Laboratory Medicine, The Children’s Hospital, and Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Institut de Recherches Cliniques de Montréal, Molecular Genetics and Development, Faculté de Médecine de l’Université de Montréal, Montreal, Quebec, Canada.
Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - York Rudhard
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, Hamburg, Germany.
Molecular and Vascular Medicine Unit and Renal Unit, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
Leibniz-Institut für Molekulare Pharmakologie and Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany.
Department of Laboratory Medicine, The Children’s Hospital, and Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Institut de Recherches Cliniques de Montréal, Molecular Genetics and Development, Faculté de Médecine de l’Université de Montréal, Montreal, Quebec, Canada.
Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Boris E. Shmukler
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, Hamburg, Germany.
Molecular and Vascular Medicine Unit and Renal Unit, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
Leibniz-Institut für Molekulare Pharmakologie and Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany.
Department of Laboratory Medicine, The Children’s Hospital, and Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Institut de Recherches Cliniques de Montréal, Molecular Genetics and Development, Faculté de Médecine de l’Université de Montréal, Montreal, Quebec, Canada.
Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Rubén Vicente
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, Hamburg, Germany.
Molecular and Vascular Medicine Unit and Renal Unit, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
Leibniz-Institut für Molekulare Pharmakologie and Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany.
Department of Laboratory Medicine, The Children’s Hospital, and Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Institut de Recherches Cliniques de Montréal, Molecular Genetics and Development, Faculté de Médecine de l’Université de Montréal, Montreal, Quebec, Canada.
Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Carlo Brugnara
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, Hamburg, Germany.
Molecular and Vascular Medicine Unit and Renal Unit, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
Leibniz-Institut für Molekulare Pharmakologie and Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany.
Department of Laboratory Medicine, The Children’s Hospital, and Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Institut de Recherches Cliniques de Montréal, Molecular Genetics and Development, Faculté de Médecine de l’Université de Montréal, Montreal, Quebec, Canada.
Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Marie Trudel
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, Hamburg, Germany.
Molecular and Vascular Medicine Unit and Renal Unit, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
Leibniz-Institut für Molekulare Pharmakologie and Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany.
Department of Laboratory Medicine, The Children’s Hospital, and Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Institut de Recherches Cliniques de Montréal, Molecular Genetics and Development, Faculté de Médecine de l’Université de Montréal, Montreal, Quebec, Canada.
Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas J. Jentsch
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, Hamburg, Germany.
Molecular and Vascular Medicine Unit and Renal Unit, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
Leibniz-Institut für Molekulare Pharmakologie and Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany.
Department of Laboratory Medicine, The Children’s Hospital, and Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Institut de Recherches Cliniques de Montréal, Molecular Genetics and Development, Faculté de Médecine de l’Université de Montréal, Montreal, Quebec, Canada.
Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Christian A. Hübner
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, Hamburg, Germany.
Molecular and Vascular Medicine Unit and Renal Unit, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.
Leibniz-Institut für Molekulare Pharmakologie and Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany.
Department of Laboratory Medicine, The Children’s Hospital, and Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Institut de Recherches Cliniques de Montréal, Molecular Genetics and Development, Faculté de Médecine de l’Université de Montréal, Montreal, Quebec, Canada.
Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
24
|
Lauf PK, Adragna NC, Dupre N, Bouchard JP, Rouleau GA. K–Cl cotransport in red blood cells from patients with KCC3 isoform mutantsThis paper is one of a selection of papers published in this Special Issue, entitled CSBMCB — Membrane Proteins in Health and Disease. Biochem Cell Biol 2006; 84:1034-44. [PMID: 17215889 DOI: 10.1139/o06-203] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Red blood cells (RBCs) possess the K–Cl cotransport (KCC) isoforms 1, 3, and 4. Mutations within a given isoform may affect overall KCC activity. In a double-blind study, we analyzed, with Rb as a K congener, K fluxes (total flux, ouabain-sensitive Na+/K+ pump, and bumetanide-sensitive Na–K–2Cl cotransport, Cl-dependent, and ouabain- and bumetanide-insensitive KCC with or without stimulation by N-ethylmaleimide (NEM) and staurosporine or Mg removal, and basal channel-mediated fluxes, osmotic fragility, and ions and water in the RBCs of 8 controls, and of 8 patients with hereditary motor and sensory neuropathy with agenesis of corpus callosum (HMSN–ACC) with defined KCC3 mutations (813FsX813 and Phe529FsX532) involving the truncations of 338 and 619 C-terminal amino acids, respectively. Water and ion content and, with one exception, mean osmotic fragility, as well as K fluxes without stimulating agents, were similar in controls and HMSN–ACC RBCs. However, the NEM-stimulated KCC was reduced 5-fold (p < 0.0005) in HMSN–ACC vs control RBCs, as a result of a lower Vmax (p < 0.05) rather than a lower Km (p = 0.109), accompanied by corresponding differences in Cl activation. Low intracellular Mg activated KCC in 6 out of 7 controls vs 1 out of 6 HMSN–ACC RBCs, suggesting that regulation is compromised. The lack of differences in staurosporine-activated KCC indicates different action mechanisms. Thus, in HMSN–ACC patients with KCC3 mutants, RBC KCC activity, although indistinguishable from that of the control group, responded differently to biochemical stressors, such as thiol alkylation or Mg removal, thereby indirectly indicating an important contribution of KCC3 to overall KCC function and regulation.
Collapse
Affiliation(s)
- P K Lauf
- Cell Biophysics Group, Department of Pathology, Wright State University, Boonshoft School of Medicine, 3640 Col Glenn Hwy, Dayton, OH 45435, USA.
| | | | | | | | | |
Collapse
|
25
|
Joiner CH, Rettig RK, Jiang M, Risinger M, Franco RS. Urea stimulation of KCl cotransport induces abnormal volume reduction in sickle reticulocytes. Blood 2006; 109:1728-35. [PMID: 17023583 PMCID: PMC1794068 DOI: 10.1182/blood-2006-04-018630] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
KCl cotransport (KCC) activity contributes to pathologic dehydration in sickle (SS) red blood cells (RBCs). KCC activation by urea was measured in SS and normal (AA) RBCs as Cl-dependent Rb influx. KCC-mediated volume reduction was assessed by measuring reticulocyte cellular hemoglobin concentration (CHC) cytometrically. Urea activated KCC fluxes in fresh RBCs to levels seen in swollen cells, although SS RBCs required lower urea concentrations than did normal (AA) RBCs. Little additional KCC stimulation by urea occurred in swollen AA or SS RBCs. The pH dependence of KCC in "euvolemic" SS RBCs treated with urea was similar to that in swollen cells. Urea triggered volume reduction in SS and AA reticulocytes, establishing a higher CHC. Volume reduction was Cl dependent and was limited by the KCC inhibitor, dihydro-indenyl-oxyalkanoic acid. Final CHC depended on urea concentration, but not on initial CHC. Under all activation conditions, volume reduction was exaggerated in SS reticulocytes and produced higher CHCs than in AA reticulocytes. The sulfhydryl-reducing agent, dithiothreitol, normalized the sensitivity of KCC activation to urea in SS RBCs and mitigated the urea-stimulated volume decrease in SS reticulocytes, suggesting that the dysfunctional activity of KCC in SS RBCs was due in part to reversible sulfhydryl oxidation.
Collapse
Affiliation(s)
- Clinton H Joiner
- Cincinnati Comprehensive Sickle Cell Center, Division of Hematology/Oncology, University of Cincinnati College of Medicine, and Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH 45229, USA.
| | | | | | | | | |
Collapse
|
26
|
de Andrade TG, Peterson KR, Cunha AF, Moreira LS, Fattori A, Saad STO, Costa FF. Identification of novel candidate genes for globin regulation in erythroid cells containing large deletions of the human β-globin gene cluster. Blood Cells Mol Dis 2006; 37:82-90. [PMID: 16952470 DOI: 10.1016/j.bcmd.2006.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 07/01/2006] [Accepted: 07/11/2006] [Indexed: 10/24/2022]
Abstract
The genetic mechanisms underlying the continued expression of the gamma-globin genes during the adult stage in deletional hereditary persistence of fetal hemoglobin (HPFH) and deltabeta-thalassemias are not completely understood. Herein, we investigated the possible involvement of transcription factors, using the suppression subtractive hybridization (SSH) method as an initial screen to identify differentially expressed transcripts in reticulocytes from a normal and a HPFH-2 subject. Some of the detectable transcripts may participate in globin gene regulation. Quantitative real-time PCR (qRT-PCR) experiments confirmed the downregulation of ZHX2, a transcriptional repressor, in two HPFH-2 subjects and in a carrier of the Sicilian deltabeta-thalassemia trait. The chromatin remodeling factors ARID1B and TSPYL1 had a very similar pattern of expression with an incremental increase in HPFH and decreased expression in deltabeta-thalassemia. These differences suggest a mechanism to explain the heterocellular and pancellular distribution of fetal hemoglobin in deltabeta-thalassemia and deletional HPFH, respectively. Interestingly, alpha-globin mRNA levels were decreased, similar to beta-globin in all reticulocyte samples analyzed.
Collapse
Affiliation(s)
- Tiago Gomes de Andrade
- Institute of Medical and Biological Sciences, Federal University of Alagoas, Maceió, AL, Brazil.
| | | | | | | | | | | | | |
Collapse
|
27
|
Adragna NC, Ferrell CM, Zhang J, Di Fulvio M, Temprana CF, Sharma A, Fyffe REW, Cool DR, Lauf PK. Signal transduction mechanisms of K+-Cl- cotransport regulation and relationship to disease. Acta Physiol (Oxf) 2006; 187:125-39. [PMID: 16734749 DOI: 10.1111/j.1748-1716.2006.01560.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The K+-Cl- cotransport (COT) regulatory pathways recently uncovered in our laboratory and their implication in disease state are reviewed. Three mechanisms of K+-Cl- COT regulation can be identified in vascular cells: (1) the Li+-sensitive pathway, (2) the platelet-derived growth factor (PDGF)-sensitive pathway and (3) the nitric oxide (NO)-dependent pathway. Ion fluxes, Western blotting, semi-quantitative RT-PCR, immunofluorescence and confocal microscopy were used. Li+, used in the treatment of manic depression, stimulates volume-sensitive K+-Cl- COT of low K+ sheep red blood cells at cellular concentrations <1 mM and inhibits at >3 mM, causes cell swelling, and appears to regulate K+-Cl- COT through a protein kinase C-dependent pathway. PDGF, a potent serum mitogen for vascular smooth muscle cells (VSMCs), regulates membrane transport and is involved in atherosclerosis. PDGF stimulates VSM K+-Cl- COT in a time- and concentration-dependent manner, both acutely and chronically, through the PDGF receptor. The acute effect occurs at the post-translational level whereas the chronic effect may involve regulation through gene expression. Regulation by PDGF involves the signalling molecules phosphoinositides 3-kinase and protein phosphatase-1. Finally, the NO/cGMP/protein kinase G pathway, involved in vasodilation and hence cardiovascular disease, regulates K+-Cl- COT in VSMCs at the mRNA expression and transport levels. A complex and diverse array of mechanisms and effectors regulate K+-Cl- COT and thus cell volume homeostasis, setting the stage for abnormalities at the genetic and/or regulatory level thus effecting or being affected by various pathological conditions.
Collapse
Affiliation(s)
- N C Adragna
- Cell Biophysics Group, Wright State University School of Medicine, Dayton, OH 45435, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Muzyamba MC, Campbell EH, Gibson JS. Effect of intracellular magnesium and oxygen tension on K+-Cl- cotransport in normal and sickle human red cells. Cell Physiol Biochem 2006; 17:121-8. [PMID: 16543728 PMCID: PMC1475928 DOI: 10.1159/000092073] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In red cells from normal individuals (HbA cells), the K+-Cl- cotransporter (KCC) is inactivated by low O2 tension whilst in those from sickle cell patients (HbS cells), it remains fully active. Changes in free intracellular [Mg2+] have been proposed as a mechanism. In HbA cells, KCC activity was stimulated by Mg2+ depletion and inhibited by Mg2+ loading but the effect of O2 was independent of Mg2+. At all [Mg2+]is, the transporter was stimulated in oxygenated cells, minimally active in deoxygenated ones. By contrast, the stimulatory effects of O2 was abolished by inhibitors of protein (de)phosphorylation. HbS cells had elevated KCC activity, which was of similar magnitude in oxygenated and deoxygenated cells, regardless of Mg2+ clamping. In deoxygenated cells, the antisickling agent dimethyl adipimidate inhibited sickling, Psickle and KCC. Results indicate a role for protein phosphorylation in O2 dependence of KCC, with different activities of the relevant enzymes in HbA and HbS cells, probably dependent on Hb.
Collapse
Affiliation(s)
| | | | - John S. Gibson
- Department of Veterinary Medicine, Madingley Road, Cambridge, CB3 0ES
| |
Collapse
|
29
|
Mercado A, Broumand V, Zandi-Nejad K, Enck AH, Mount DB. A C-terminal domain in KCC2 confers constitutive K+-Cl- cotransport. J Biol Chem 2006; 281:1016-26. [PMID: 16291749 DOI: 10.1074/jbc.m509972200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The neuron-specific K(+)-Cl(-) cotransporter KCC2 plays a crucial role in determining intracellular chloride activity and thus the neuronal response to gamma-aminobutyric acid and glycine. Of the four KCCs, KCC2 is unique in mediating constitutive K(+)-Cl(-) cotransport under isotonic conditions; the other three KCCs are exclusively swelling-activated, with no isotonic activity. We have utilized a series of chimeric cDNAs to localize the determinant of isotonic transport in KCC2. Two generations of chimeric KCC4-KCC2 cDNAs initially localized this characteristic to within a KCC2-specific expansion of the cytoplasmic C terminus, between residues 929 and 1043. This region of KCC2 is rich in prolines, serines, and charged residues and encompasses two predicted PEST sequences. Substitution of this region in KCC2 with the equivalent sequence of KCC4 resulted in a chimeric KCC that was devoid of isotonic activity, with intact swelling-activated transport. A third generation of chimeras demonstrated that a domain just distal to the PEST sequences confers isotonic transport on KCC4. Mutagenesis of this region revealed that residues 1021-1035 of KCC2 are sufficient for isotonic transport. Swelling-activated K(+)-Cl(-) cotransport is abrogated by calyculin A, whereas isotonic transport mediated by KCC chimeras and KCC2 is completely resistant to this serine-threonine phosphatase inhibitor. In summary, a 15-residue C-terminal domain in KCC2 is both necessary and sufficient for constitutive K(+)-Cl(-) cotransport under isotonic conditions. Furthermore, unlike swelling-activated transport, constitutive K(+)-Cl(-) cotransport mediated by KCC2 is completely independent of serine-threonine phosphatase activity, suggesting that these two modes of transport are activated by distinct mechanisms.
Collapse
Affiliation(s)
- Adriana Mercado
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|