1
|
Hosseini N, Kazeminejad E, Oladnabi M, Khosravi A. Isolation and characterization of a new SHED cell line as a standard source for stem cell research and clinical translation. Tissue Cell 2025; 93:102649. [PMID: 39637488 DOI: 10.1016/j.tice.2024.102649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND AND AIMS Stem cells from human exfoliated deciduous teeth (SHED) are multi-potent mesenchymal stem/stromal cells (MSCs) and are inspected a favorable, non-invasive source beneficial to stem cell-mediated regeneration of damaged tissues. Our aim was to establish and characterize a non-immortalized SHED cell line as an accessible resource and novel platform for stem cell research and tissue regeneration studies. METHODS A Healthy exfoliated deciduous molar was extracted from a 12-year-old girl and shipped to an animal cell culture laboratory. Outgrowing primary cells from explanted small pulp tissues were monitored daily and characterized after passage 3 both morphologically and functionally. The SHED cell line was characterized by calculation of doubling time, cytogenetic analyses, STR analysis, adherence to cell culture flasks under standard cell culture media, and immunophenotypic analysis of specific MSC markers (CD90+, CD73+, CD34- and CD45-) using flow cytometry method. Differentiation potential to osteoblast, adipocyte, and chondrocyte was evaluated under standard differentiation media Expression of OCT-4 and NANOG genes was also assessed using RT-PCR method. RESULTS After the third day, SHED cells were visible. SHED cells were subcultured when they reached 90 % confluence after approximately 17 days. The doubling time of SHED cells was forty seven hours. SHED immunophenotyping showed the high expression level of CD90 (99.2 %) and CD73 (45.9 %), and approximately no expression of CD34 (0.079 %) and CD45 (0.19 %). The human origin, female gender and chromosomal normality of SHED cells was confirmed by cytogenetic analysis. The STR matching analysis showed that SHED cells are well-identified and authentic. No genetic instability and cross-contamination were observed in SHED cells. CONCLUSIONS This study provides a new SHED cell line with a normal karyotype and all the characteristics of MSCs, which can be used as a favorable model cell line in biomedical research and a promising source for clinical translation.
Collapse
Affiliation(s)
- Niloufar Hosseini
- Department of Medical Biotechnology, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ezatolah Kazeminejad
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Dental Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Morteza Oladnabi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Gorgan Congenital Malformations Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ayyoob Khosravi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Molecular Medicine, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
2
|
Jafari S, Jalali R, Jalili C, Jamshidpoor T. Comparison Among Bone Marrow and Wheat Flour's Mixture and Standard Treatment on Healing Second-Degree Burn Wound in Rats. J Burn Care Res 2021; 42:288-293. [PMID: 32845004 DOI: 10.1093/jbcr/iraa144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The treatment of extensive skin burns remains as a challenge for health care personnel. This study aimed to compare the combination of bone marrow and wheat flour with standard treatment on animal models. In this experimental study, 45 male rats were randomly assigned into three groups as follows: The first group was control (no treatment), the second group received bone marrow and wheat flour combination topically, and the third group received standard treatment (1% silver sulfadiazine). The treatment lasted for up to 21 days. On the 22nd day, the rats were killed. The number of blood vessels and hair follicles was measured in the burn wound bed. The area and depth of the wound were also measured. Data were analyzed using SPSS software version 16. The results showed that, complete closure of the wound was better in the bone marrow treated group compared with the group receiving the silver sulfadiazine and the control group. Furthermore, the wound healing was better in the silver sulfadiazine group compared with the control group. Microscopic examination revealed a significant increase in the number of hair follicles and blood vessels in the bone marrow and silver groups compared with the control group. The results showed that, the group treated with bone marrow, because of the presence of mesenchymal and stem cells can cause stimulating angiogenesis and producing vegetative tissue, hence it improved maturation, shrinkage, and contraction of the wound in comparison with the silver sulfadiazine and control groups.
Collapse
Affiliation(s)
- Saboreh Jafari
- Department of Nursing, School of Nursing and Midwifery, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Rostam Jalali
- Department of Nursing, School of Nursing and Midwifery, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Cyrus Jalili
- Department of Nursing, School of Nursing and Midwifery, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Tahereh Jamshidpoor
- Department of Nursing, School of Nursing and Midwifery, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
3
|
Hénon P, Lahlil R. CD34+ Stem Cells and Regenerative Medicine. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Suman S, Domingues A, Ratajczak J, Ratajczak MZ. Potential Clinical Applications of Stem Cells in Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1201:1-22. [PMID: 31898779 DOI: 10.1007/978-3-030-31206-0_1] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The field of regenerative medicine is looking for a pluripotent/multipotent stem cell able to differentiate across germ layers and be safely employed in therapy. Unfortunately, with the exception of hematopoietic stem/progenitor cells (HSPCs) for hematological applications, the current clinical results with stem cells are somewhat disappointing. The potential clinical applications of the more primitive embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have so far been discouraging, as both have exhibited several problems, including genomic instability, a risk of teratoma formation, and the possibility of rejection. Therefore, the only safe stem cells that have so far been employed in regenerative medicine are monopotent stem cells, such as the abovementioned HSPCs or mesenchymal stem cells (MSCs) isolated from postnatal tissues. However, their monopotency, and therefore limited differentiation potential, is a barrier to their broader application in the clinic. Interestingly, results have accumulated indicating that adult tissues contain rare, early-development stem cells known as very small embryonic-like stem cells (VSELs), which can differentiate into cells from more than one germ layer. This chapter addresses different sources of stem cells for potential clinical application and their advantages and problems to be solved.
Collapse
Affiliation(s)
- Suman Suman
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Alison Domingues
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Janina Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Warsaw Medical University, Warsaw, Poland.
| |
Collapse
|
5
|
Kräter M, Jacobi A, Otto O, Tietze S, Müller K, Poitz DM, Palm S, Zinna VM, Biehain U, Wobus M, Chavakis T, Werner C, Guck J, Bornhauser M. Bone marrow niche-mimetics modulate HSPC function via integrin signaling. Sci Rep 2017; 7:2549. [PMID: 28566689 PMCID: PMC5451425 DOI: 10.1038/s41598-017-02352-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/10/2017] [Indexed: 12/25/2022] Open
Abstract
The bone marrow (BM) microenvironment provides critical physical cues for hematopoietic stem and progenitor cell (HSPC) maintenance and fate decision mediated by cell-matrix interactions. However, the mechanisms underlying matrix communication and signal transduction are less well understood. Contrary, stem cell culture is mainly facilitated in suspension cultures. Here, we used bone marrow-mimetic decellularized extracellular matrix (ECM) scaffolds derived from mesenchymal stromal cells (MSCs) to study HSPC-ECM interaction. Seeding freshly isolated HSPCs adherent (AT) and non-adherent (SN) cells were found. We detected enhanced expansion and active migration of AT-cells mediated by ECM incorporated stromal derived factor one. Probing cell mechanics, AT-cells displayed naïve cell deformation compared to SN-cells indicating physical recognition of ECM material properties by focal adhesion. Integrin αIIb (CD41), αV (CD51) and β3 (CD61) were found to be induced. Signaling focal contacts via ITGβ3 were identified to facilitate cell adhesion, migration and mediate ECM-physical cues to modulate HSPC function.
Collapse
Affiliation(s)
- Martin Kräter
- Medical Clinic I, University Hospital Carl Gustav Carus, Dresden, Saxony, 01307, Germany
| | - Angela Jacobi
- Biotechnology Center, Technische Universität Dresden, Dresden, Saxony, 01307, Germany
| | - Oliver Otto
- Centre for Innovation Competence - Humoral Immune Reactions in Cardiovascular Diseases, University of Greifswald, Greifswald, Mecklenburg-Western Pomerania, 17489, Germany
| | - Stefanie Tietze
- Medical Clinic I, University Hospital Carl Gustav Carus, Dresden, Saxony, 01307, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Saxony, 01307, Germany
| | - Katrin Müller
- Medical Clinic I, University Hospital Carl Gustav Carus, Dresden, Saxony, 01307, Germany
| | - David M Poitz
- Department of Internal Medicine and Cardiology, Technische Universität Dresden, Dresden, Saxony, 01307, Germany
| | - Sandra Palm
- Medical Clinic I, University Hospital Carl Gustav Carus, Dresden, Saxony, 01307, Germany
| | - Valentina M Zinna
- Medical Clinic I, University Hospital Carl Gustav Carus, Dresden, Saxony, 01307, Germany
| | - Ulrike Biehain
- Medical Clinic I, University Hospital Carl Gustav Carus, Dresden, Saxony, 01307, Germany
| | - Manja Wobus
- Medical Clinic I, University Hospital Carl Gustav Carus, Dresden, Saxony, 01307, Germany
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry, Technische Universität Dresden, Dresden, Saxony, 01307, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Saxony, 01307, Germany
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Saxony, 01307, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, Dresden, Saxony, 01307, Germany
| | - Jochen Guck
- Biotechnology Center, Technische Universität Dresden, Dresden, Saxony, 01307, Germany
| | - Martin Bornhauser
- Medical Clinic I, University Hospital Carl Gustav Carus, Dresden, Saxony, 01307, Germany.
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Saxony, 01307, Germany.
| |
Collapse
|
6
|
Sohrabi Akhkand S, Amirizadeh N, Nikougoftar M, Alizadeh J, Zaker F, Sarveazad A, Joghataei MT, Faramarzi M. Evaluation of umbilical cord blood CD34+ hematopoietic stem cells expansion with inhibition of TGF-β receptorII in co-culture with bone marrow mesenchymal stromal cells. Tissue Cell 2016; 48:305-11. [PMID: 27344285 DOI: 10.1016/j.tice.2016.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 06/05/2016] [Accepted: 06/07/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Umbilical cord blood (UCB) is an important source of hematopoietic stem cells (HSCs). However, low number of HSCs in UCB has been an obstacle for adult hematopoietic stem cell transplantation. The expansion of HSCs in culture is one approach to overcome this problem. In this study, we investigated the expansion of UCB-HSCs by using human bone marrow mesenchymal stromal cells (MSCs) as feeder layer as well as inhibiting the TGF-β signaling pathway through reduction of TGF-βRII expression. MATERIALS AND METHODS CD34(+) cells were isolated from UCB and transfected by SiRNA targeting TGF-βRII mRNA. CD34(+) cells were expanded in four culture media with different conditions, including 1) expansion of CD34(+) cells in serum free medium containing growth factors, 2) expansion of cells transfected with SiRNA targeting TGF-βRII in medium containing growth factors, 3) expansion of cells in presence of growth factors and MSCs, 4) expansion of cells transfected with SiRNA targeting TGF-βRII on MSCs feeder layer in medium containing growth factors. These culture conditions were evaluated for the number of total nucleated cells (TNCs), CD34 surface marker as well as using CFU assay on 8th day after culture. RESULTS The fold increase in CD34(+) cells, TNCs, and colony numbers (71.8±6.9, 93.2±10.2 and 128±10, respectively) was observed to be highest in fourth culture medium compared to other culture conditions. The difference between number of cells in four culture media in 8th day compared to unexpanded cells (0day) before expansion was statistically significant (P<0.05). CONCLUSION The results showed that transfection of CD34(+) cells with SiRNA targeting TGF-βRII and their co-culture with MSCs could considerably increase the number of progenitors. Therefore, this method could be useful for UCB-HSCs expansion.
Collapse
Affiliation(s)
- Saman Sohrabi Akhkand
- Department of Hematology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Naser Amirizadeh
- Blood Transfusion Research Center, High Institute for Education and Research in Transfusion Medicine, Tehran, Iran
| | - Mahin Nikougoftar
- Blood Transfusion Research Center, High Institute for Education and Research in Transfusion Medicine, Tehran, Iran
| | - Javad Alizadeh
- Department of Human Anatomy and Cell Science, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Farhad Zaker
- Cellular and Molecular Research Center, Department of Hematology, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Arash Sarveazad
- Colorectal Research center, Rasoul-e-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmood Faramarzi
- Research Center of Pediatric Infectious Diseases, Rasoul-e-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Endothelial Progenitor Cell Fraction Contained in Bone Marrow-Derived Mesenchymal Stem Cell Populations Impairs Osteogenic Differentiation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:659542. [PMID: 26491682 PMCID: PMC4600555 DOI: 10.1155/2015/659542] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/28/2015] [Indexed: 12/11/2022]
Abstract
In bone tissue engineering (TE) endothelial cell-osteoblast cocultures are known to induce synergies of cell differentiation and activity. Bone marrow mononucleated cells (BMCs) are a rich source of mesenchymal stem cells (MSCs) able to develop an osteogenic phenotype. Endothelial progenitor cells (EPCs) are also present within BMC. In this study we investigate the effect of EPCs present in the BMC population on MSCs osteogenic differentiation. Human BMCs were isolated and separated into two populations. The MSC population was selected through plastic adhesion capacity. EPCs (CD34+ and CD133+) were removed from the BMC population and the resulting population was named depleted MSCs. Both populations were cultured over 28 days in osteogenic medium (Dex+) or medium containing platelet lysate (PL). MSC population grew faster than depleted MSCs in both media, and PL containing medium accelerated the proliferation for both populations. Cell differentiation was much higher in Dex+ medium in both cases. Real-time RT-PCR revealed upregulation of osteogenic marker genes in depleted MSCs. Higher values of ALP activity and matrix mineralization analyses confirmed these results. Our study advocates that absence of EPCs in the MSC population enables higher osteogenic gene expression and matrix mineralization and therefore may lead to advanced bone neoformation necessary for TE constructs.
Collapse
|
8
|
A Short-activating RNA Oligonucleotide Targeting the Islet β-cell Transcriptional Factor MafA in CD34(+) Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2013; 2:e97. [PMID: 23736775 PMCID: PMC3696904 DOI: 10.1038/mtna.2013.23] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Upon functional loss of insulin producing islet β-cells, some patients with diabetes become dependent on life-long insulin supplementation therapy. Bioengineering surrogate insulin producing cells is an alternative replacement strategy. We have developed a novel approach using short-activating RNA oligonucleotides to differentiate adult human CD34(+) cells into insulin-secreting cells. By transfecting RNA to increase transcript levels of the master regulator of insulin biosynthesis, v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MafA), several pancreatic endodermal genes were upregulated during the differentiation procedure. These included Pancreatic and duodenal homeobox gene-1 (PDX1), Neurogenin 3, NeuroD, and NK6 homeobox 1 (NKx6-1). Differentiated CD34(+) cells also expressed glucokinase, glucagon-like peptide 1 receptor (GLP1R), sulfonylurea receptor-1 (SUR1) and phogrin-all essential for glucose sensitivity and insulin secretion. The differentiated cells appropriately processed C-peptide and insulin in response to increasing glucose stimulation as shown by enzyme-linked immunosorbent assay (ELISA), fluorescence-activated cell sorting analysis, western blotting, and immunofluorescence staining. We provide a new approach using short-activating RNA in developing insulin producing surrogate cells for treating diabetes.Molecular Therapy - Nucleic Acids (2013) 2, e97; doi:10.1038/mtna.2013.23; advance online publication 4 June 2013.
Collapse
|
9
|
Zaker F, Nasiri N, Oodi A, Amirizadeh N. Evaluation of umbilical cord blood CD34 (+) hematopoietic stem cell expansion in co-culture with bone marrow mesenchymal stem cells in the presence of TEPA. ACTA ACUST UNITED AC 2012; 18:39-45. [PMID: 23321686 DOI: 10.1179/1607845412y.0000000034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND During the last three decades hematopoietic stem cells (HSC) have become a standard protocol for the treatment of many hematologic malignancies and non-malignant disorders. Umbilical cord blood (UCB), as a source of HSCs, has many advantages compared with other sources. One major drawback in using this source in treatment of adult patients is the low HSC dose available. Ex vivo expansion of HSCs is a solution to overcome this limitation. In this study we used TEPA, as a Cu chelator, and human bone marrow (BM) mesenchymal stem cells (MSCs) to investigate expansion rate of UCB-HSCs. MATERIALS AND METHODS CB-HSCs were isolated using miniMACS magnetic separation system. We cultured the enriched CD34(+)cells in various conditions: culture condition A, supplemented only with recombinant cytokines; culture condition B, supplemented with BM-MSCs as a cell feeder layer and recombinant cytokines; culture condition C, supplemented with recombinant cytokines and TEPA; culture condition D, supplemented with recombinant cytokines, BM-MSCs as a cell feeder layer and TEPA. In order to evaluate the HSC expansion, we performed cell count, analysis of CD34(+) expression by flow cytometry, and colony-forming cell assay on Day 10 after culture. RESULTS The most fold increase in CD34(+) cell, total cell, and total colony numbers was observed in culture condition D (110.11 ± 15.3, 118.5 ± 21, and 172.9 ± 44.7, respectively) compared to other conditions. CONCLUSION The results showed that co-culture of HSCs with BM-MSCs in the presence of copper chelating agent (TEPA) could dramatically increase expansion rate of UCB-HSCs. Therefore, this strategy could be useful for HSC expansion.
Collapse
Affiliation(s)
- Farhad Zaker
- Department of Hematology, School of Allied Medicine and Molecular and Cellular Research Center, Tehran University of Medical Sciences, 14155-6183 Tehran, Iran.
| | | | | | | |
Collapse
|
10
|
Ratajczak MZ, Zuba-Surma E, Kucia M, Poniewierska A, Suszynska M, Ratajczak J. Pluripotent and multipotent stem cells in adult tissues. Adv Med Sci 2012; 57:1-17. [PMID: 22515973 DOI: 10.2478/v10039-012-0020-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
One of the most intriguing questions in stem cell biology is whether pluripotent stem cells exist in adult tissues. Several groups of investigators employing i) various isolation protocols, ii) detection of surface markers, and iii) experimental in vitro and in vivo models, have reported the presence of cells that possess a pluripotent character in adult tissues. Such cells were assigned various operational abbreviations and names in the literature that added confusion to the field and raised the basic question of whether these are truly distinct or overlapping populations of the same primitive stem cells. Unfortunately, these cells were never characterized side-by-side to address this important issue. Nevertheless, taking into consideration their common features described in the literature, it is very likely that various investigators have described overlapping populations of developmentally early stem cells that are closely related. These different populations of stem cells will be reviewed in this paper.
Collapse
Affiliation(s)
- M Z Ratajczak
- Stem Cell Biology Program, James Graham Brown Cancer Center, University of Louisville, Kentucky, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Mansilla E, Aquino VD, Roque G, Tau JM, Maceira A. Time and regeneration in burns treatment: heading into the first worldwide clinical trial with cadaveric mesenchymal stem cells. Burns 2011; 38:450-2. [PMID: 22040934 DOI: 10.1016/j.burns.2011.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 09/02/2011] [Indexed: 11/29/2022]
|
12
|
Amos PJ, Cagavi Bozkulak E, Qyang Y. Methods of cell purification: a critical juncture for laboratory research and translational science. Cells Tissues Organs 2011; 195:26-40. [PMID: 21996576 PMCID: PMC3257814 DOI: 10.1159/000331390] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Research in cell biology and the development of translational technologies are driven by competition, public expectations, and regulatory oversight, putting these fields at a critical juncture. Success in these fields is quickly becoming dependent on the ability of researchers to identify and isolate specific cell populations from heterogeneous mixtures accurately and efficiently. Many methods for cell purification have been developed, and each has advantages and disadvantages that must be considered in light of the intended application. Current cell separation strategies make use of surface proteins, genetic expression, and physics to isolate specific cells by phenotypic traits. Cell purification is also dependent on the cellular reagents available for use and the intended application, as these factors may preclude certain mechanisms used in the processes of labeling and sorting cells.
Collapse
Affiliation(s)
| | | | - Yibing Qyang
- Section of Cardiology, Department of Internal Medicine, Yale Stem Cell Center, Yale School of Medicine, Yale University, New Haven, Conn., USA
| |
Collapse
|
13
|
Luo G, Cheng W, He W, Wang X, Tan J, Fitzgerald M, Li X, Wu J. Promotion of cutaneous wound healing by local application of mesenchymal stem cells derived from human umbilical cord blood. Wound Repair Regen 2011; 18:506-13. [PMID: 20840520 DOI: 10.1111/j.1524-475x.2010.00616.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This study aimed to determine whether mesenchymal stem cells (MSCs) derived from umbilical cord blood (UCB) would promote cutaneous wound healing. MSCs from human UCB were isolated and identified. The characteristics of the isolated MSCs' growth and proliferation were assayed in vitro. The MSCs labeled with 5-bromodeoxyuridine (BrdU) were applied on fresh cutaneous mice wounds. The healing rates were surveyed. The distribution and the differentiation into keratinocytes of the labeled MSCs in the wound tissue were checked by immunohistochemistry staining. The isolated MSCs could grow and proliferate well in vitro. The isolated MSCs from UCB could be labeled by 5-bromodeoxyuridine successfully. The MSCs derived from UCB could enhance the healing of mice skin defect wounds, and it was found that the implanted MSCs could differentiate into keratinocyte in the wound tissue. It was demonstrated that MSCs from UCB can be isolated and proliferated successfully. The local administration of MSCs derived from UCB improves skin defect wound healing in mice.
Collapse
Affiliation(s)
- Gaoxing Luo
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwestern Hospital, Third Military Medical University, Chongqing, China.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Biotechnology-Derived Medicines: What are They? A Pharmacological and a Historical Perspective. ACTA ACUST UNITED AC 2010. [DOI: 10.1057/jgm.2010.10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Biologicals, that is, medicines obtained from living organisms, are not new. History provides many examples of animal or human extracts being used to prevent or treat human diseases. Physicians have thus been aware for centuries of the therapeutic value of our own molecules. The difficulty laid many times in how to obtain these self or self-like compounds. Biotechnology - a technology by which manipulated living organisms are utilized to generate useful products such as drugs - provided a revolutionary answer. We know how to genetically engineer bacteria, yeast, insect or mammalian cells to synthesize human molecules, the so-called human recombinant therapeutic proteins. Murine and humanized monoclonal antibodies against human antigens are also biotechnological products. The number of biotechnological drugs being marketed, and those in clinical trials or awaiting authorization, is growing exponentially. We are now still on the beginnings of a new era in pharmacotherapy of which it is impossible to see the end. Pharmacologists need to keep pace with these changes and develop new skills. They may even have to challenge old assumptions in order to investigate new molecules. Using an easy and comprehensible approach, this review article revisits ‘bio-concepts’, and underlines the real dimension of the challenge.
Collapse
|
15
|
Tsai HA, Wu RR, Lee IC, Chang HY, Shen CN, Chang YC. Selection, Enrichment, and Maintenance of Self-Renewal Liver Stem/Progenitor Cells Utilizing Polypeptide Polyelectrolyte Multilayer Films. Biomacromolecules 2010; 11:994-1001. [DOI: 10.1021/bm901461e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Hsuan-Ang Tsai
- Genomics Research Center, Academia Sinica Taipei 115, Taiwan, R.O.C., Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan, R.O.C., and Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan, R.O.C
| | - Ruei-Ren Wu
- Genomics Research Center, Academia Sinica Taipei 115, Taiwan, R.O.C., Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan, R.O.C., and Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan, R.O.C
| | - I-Chi Lee
- Genomics Research Center, Academia Sinica Taipei 115, Taiwan, R.O.C., Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan, R.O.C., and Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan, R.O.C
| | - Hsiao-Yuan Chang
- Genomics Research Center, Academia Sinica Taipei 115, Taiwan, R.O.C., Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan, R.O.C., and Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan, R.O.C
| | - Chia-Ning Shen
- Genomics Research Center, Academia Sinica Taipei 115, Taiwan, R.O.C., Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan, R.O.C., and Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan, R.O.C
| | - Ying-Chih Chang
- Genomics Research Center, Academia Sinica Taipei 115, Taiwan, R.O.C., Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan, R.O.C., and Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan, R.O.C
| |
Collapse
|
16
|
Jing D, Fonseca AV, Alakel N, Fierro FA, Muller K, Bornhauser M, Ehninger G, Corbeil D, Ordemann R. Hematopoietic stem cells in co-culture with mesenchymal stromal cells--modeling the niche compartments in vitro. Haematologica 2010; 95:542-50. [PMID: 20145267 DOI: 10.3324/haematol.2009.010736] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Hematopoietic stem cells located in the bone marrow interact with a specific microenvironment referred to as the stem cell niche. Data derived from ex vivo co-culture systems using mesenchymal stromal cells as a feeder cell layer suggest that cell-to-cell contact has a significant impact on the expansion, migratory potential and 'stemness' of hematopoietic stem cells. Here we investigated in detail the spatial relationship between hematopoietic stem cells and mesenchymal stromal cells during ex vivo expansion. DESIGN AND METHODS In the co-culture system, we defined three distinct localizations of hematopoietic stem cells relative to the mesenchymal stromal cell layer: (i) those in supernatant (non-adherent cells); (ii) those adhering to the surface of mesenchymal stromal cells (phase-bright cells) and (iii) those beneath the mesenchymal stromal cells (phase-dim cells). Cell cycle, proliferation, cell division and immunophenotype of these three cell fractions were evaluated from day 1 to 7. RESULTS Phase-bright cells contained the highest proportion of cycling progenitors during co-culture. In contrast, phase-dim cells divided much more slowly and retained a more immature phenotype compared to the other cell fractions. The phase-dim compartment was soon enriched for CD34(+)/CD38(-) cells. Migration beneath the mesenchymal stromal cell layer could be hampered by inhibiting integrin beta1 or CXCR4. CONCLUSIONS Our data suggest that the mesenchymal stromal cell surface is the predominant site of proliferation of hematopoietic stem cells, whereas the compartment beneath the mesenchymal stromal cell layer seems to mimic the stem cell niche for more immature cells. The SDF-1/CXCR4 interaction and integrin-mediated cell adhesion play important roles in the distribution of hematopoietic stem cells in the co-culture system.
Collapse
Affiliation(s)
- Duohui Jing
- Medical Clinic and Policlinic I University Hospital, Dresden, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
González B, Denzel S, Mack B, Conrad M, Gires O. EpCAM is involved in maintenance of the murine embryonic stem cell phenotype. Stem Cells 2010; 27:1782-91. [PMID: 19544432 DOI: 10.1002/stem.97] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epithelial cell adhesion molecule EpCAM is a transmembrane glycoprotein that is expressed on subsets of normal epithelia, numerous stem- and progenitor-type cells, and most carcinomas and highly overexpressed on cancer-initiating cells. The role of EpCAM in early development, particularly in stem-like cells, has remained unclear. Here, we show that the maintenance of self-renewal in murine embryonic stem (ES) cells depends on the high-level expression of EpCAM. Cultivation of ES cells under differentiation conditions in the absence of leukemia inhibitory factor (LIF) caused down-regulation of EpCAM along with decreased expression of cellular myelocytomatosis oncogene (c-Myc), Sex-determining region Y-Box 2, Octamer 3/4 (Oct3/4), and Stat3. As a consequence ES cells were morphologically differentiated and ceased to proliferate. RNA interference-mediated inhibition of EpCAM expression under self-renewal conditions resulted in quantitatively decreased proliferation, decreased Oct3/4, SSEA-1, and c-Myc expression, and diminished alkaline phosphatase activity. Conversely, exogenous expression of EpCAM partially compensated for the requirement of ES cells for LIF to retain a stem cell phenotype. Thus, murine EpCAM is a transmembrane protein, which is essential but by itself is not sufficient for maintenance of the ES cell phenotype.
Collapse
Affiliation(s)
- Bárbara González
- Clinical Cooperation Group Molecular Oncology, Helmholtz-Zentrum München, German Research Center for Environmental Health, and Head and Neck Research Department, Ludwig-Maximilians-University of Munich, Munich, Germany
| | | | | | | | | |
Collapse
|
18
|
Genetic control of wayward pluripotent stem cells and their progeny after transplantation. Cell Stem Cell 2009; 4:289-300. [PMID: 19341619 DOI: 10.1016/j.stem.2009.03.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The proliferative capacity of pluripotent stem cells and their progeny brings a unique aspect to therapeutics, in that once a transplant is initiated the therapist no longer has control of the therapy. In the context of the recent FDA approval of a human ESC trial and report of a neuronal-stem-cell-derived tumor in a human trial, strategies need to be developed to control wayward pluripotent stem cells. Here, we focus on one approach: direct genetic modification of the cells prior to transplantation with genes that can prevent the adverse events and/or eliminate the transplanted cells and their progeny.
Collapse
|
19
|
Ratajczak MZ, Kucia M, Ratajczak J, Zuba-Surma EK. A multi-instrumental approach to identify and purify very small embryonic like stem cells (VSELs) from adult tissues. Micron 2009; 40:386-93. [DOI: 10.1016/j.micron.2008.09.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 09/27/2008] [Indexed: 11/17/2022]
|
20
|
Quesenberry PJ. Stem cell plasticity: clinical implications. Exp Hematol 2008; 36:669-71. [PMID: 18410988 DOI: 10.1016/j.exphem.2008.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 01/25/2008] [Accepted: 01/25/2008] [Indexed: 01/24/2023]
|