1
|
Reeves B. Blood cell JAKtivation aggravates cerebral venous thrombosis. Blood Adv 2024; 8:3327-3329. [PMID: 38916898 PMCID: PMC11258618 DOI: 10.1182/bloodadvances.2024012977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024] Open
Affiliation(s)
- Brandi Reeves
- Department of Medicine, Division of Hematology, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
2
|
Chen CC, Chen JL, Lin AJH, Yu LHL, Hou HA. Association of JAK2V617F allele burden and clinical correlates in polycythemia vera: a systematic review and meta-analysis. Ann Hematol 2024; 103:1947-1965. [PMID: 38652240 PMCID: PMC11090937 DOI: 10.1007/s00277-024-05754-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Janus kinase 2 (JAK2) V617F mutation is present in most patients with polycythemia vera (PV). One persistently puzzling aspect unresolved is the association between JAK2V617F allele burden (also known as variant allele frequency) and the relevant clinical characteristics. Numerous studies have reported associations between allele burden and both hematologic and clinical features. While there are strong indications linking high allele burden in PV patients with symptoms and clinical characteristics, not all associations are definitive, and disparate and contradictory findings have been reported. Hence, this study aimed to synthesize existing data from the literature to better understand the association between JAK2V617F allele burden and relevant clinical correlates. Out of the 1,851 studies identified, 39 studies provided evidence related to the association between JAK2V617F allele burden and clinical correlates, and 21 studies were included in meta-analyses. Meta-analyses of correlation demonstrated that leucocyte and erythrocyte counts were significantly and positively correlated with JAK2V617F allele burden, whereas platelet count was not. Meta-analyses of standardized mean difference demonstrated that leucocyte and hematocrit were significantly higher in patients with higher JAK2V617F allele burden, whereas platelet count was significantly lower. Meta-analyses of odds ratio demonstrated that patients who had higher JAK2V617F allele burden had a significantly greater odds ratio for developing pruritus, splenomegaly, thrombosis, myelofibrosis, and acute myeloid leukemia. Our study integrates data from approximately 5,462 patients, contributing insights into the association between JAK2V617F allele burden and various hematological parameters, symptomatic manifestations, and complications. However, varied methods of data presentation and statistical analyses prevented the execution of high-quality meta-analyses.
Collapse
Affiliation(s)
- Chih-Cheng Chen
- Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Chiayi, 613, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Justin L Chen
- Medical Affairs Department, Panco Healthcare Co., Ltd., A Pharmaessentia Company, Taipei, 115, Taiwan
| | - Alex Jia-Hong Lin
- Medical Affairs Department, Panco Healthcare Co., Ltd., A Pharmaessentia Company, Taipei, 115, Taiwan
| | - Lennex Hsueh-Lin Yu
- Medical Affairs Department, Panco Healthcare Co., Ltd., A Pharmaessentia Company, Taipei, 115, Taiwan
| | - Hsin-An Hou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100, Taiwan.
- Division of General Medicine, Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100, Taiwan.
| |
Collapse
|
3
|
Wildschut MHE, Mena J, Dördelmann C, van Oostrum M, Hale BD, Settelmeier J, Festl Y, Lysenko V, Schürch PM, Ring A, Severin Y, Bader MS, Pedrioli PGA, Goetze S, van Drogen A, Balabanov S, Skoda RC, Lopes M, Wollscheid B, Theocharides APA, Snijder B. Proteogenetic drug response profiling elucidates targetable vulnerabilities of myelofibrosis. Nat Commun 2023; 14:6414. [PMID: 37828014 PMCID: PMC10570306 DOI: 10.1038/s41467-023-42101-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
Myelofibrosis is a hematopoietic stem cell disorder belonging to the myeloproliferative neoplasms. Myelofibrosis patients frequently carry driver mutations in either JAK2 or Calreticulin (CALR) and have limited therapeutic options. Here, we integrate ex vivo drug response and proteotype analyses across myelofibrosis patient cohorts to discover targetable vulnerabilities and associated therapeutic strategies. Drug sensitivities of mutated and progenitor cells were measured in patient blood using high-content imaging and single-cell deep learning-based analyses. Integration with matched molecular profiling revealed three targetable vulnerabilities. First, CALR mutations drive BET and HDAC inhibitor sensitivity, particularly in the absence of high Ras pathway protein levels. Second, an MCM complex-high proliferative signature corresponds to advanced disease and sensitivity to drugs targeting pro-survival signaling and DNA replication. Third, homozygous CALR mutations result in high endoplasmic reticulum (ER) stress, responding to ER stressors and unfolded protein response inhibition. Overall, our integrated analyses provide a molecularly motivated roadmap for individualized myelofibrosis patient treatment.
Collapse
Affiliation(s)
- Mattheus H E Wildschut
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Department of Medical Oncology and Hematology, Division of Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Julien Mena
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Cyril Dördelmann
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Marc van Oostrum
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Benjamin D Hale
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Jens Settelmeier
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Yasmin Festl
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Veronika Lysenko
- Department of Medical Oncology and Hematology, Division of Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Patrick M Schürch
- Department of Medical Oncology and Hematology, Division of Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Alexander Ring
- Department of Medical Oncology and Hematology, Division of Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Yannik Severin
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Michael S Bader
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Patrick G A Pedrioli
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- ETH PHRT Swiss Multi-Omics Center (SMOC), Zurich, Switzerland
| | - Sandra Goetze
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- ETH PHRT Swiss Multi-Omics Center (SMOC), Zurich, Switzerland
| | - Audrey van Drogen
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- ETH PHRT Swiss Multi-Omics Center (SMOC), Zurich, Switzerland
| | - Stefan Balabanov
- Department of Medical Oncology and Hematology, Division of Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Radek C Skoda
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Bernd Wollscheid
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Alexandre P A Theocharides
- Department of Medical Oncology and Hematology, Division of Hematology, University Hospital Zurich, Zurich, Switzerland.
| | - Berend Snijder
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
4
|
Ross DM, Liang HPH, Iqra Z, Whittaker S, Tan CW, Dale BJ, Chen VM. Platelets from patients with myeloproliferative neoplasms have increased numbers of mitochondria that are hypersensitive to depolarization by thrombin. Sci Rep 2023; 13:9172. [PMID: 37280424 DOI: 10.1038/s41598-023-36266-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/31/2023] [Indexed: 06/08/2023] Open
Abstract
Thrombosis is one of the cardinal manifestations of myeloproliferative neoplasms (MPN). The mechanisms leading to a prothrombotic state in MPN are complex and remain poorly understood. Platelet mitochondria play a role in platelet activation, but their number and function have not been extensively explored in MPN to date. We observed an increased number of mitochondria in platelets from MPN patients compared with healthy donors. MPN patients had an increased proportion of dysfunctional platelet mitochondria. The fraction of platelets with depolarized mitochondria at rest was increased in essential thrombocythemia (ET) patients and the mitochondria were hypersensitive to depolarization following thrombin agonist stimulation. Live microscopy showed a stochastic process in which a higher proportion of individual ET platelets underwent mitochondrial depolarization and after a shorter agonist exposure compared to healthy donors. Depolarization was immediately followed by ballooning of the platelet membrane, which is a feature of procoagulant platelets. We also noted that the mitochondria of MPN patients were on average located nearer the platelet surface and we observed extrusion of mitochondria from the platelet surface as microparticles. These data implicate platelet mitochondria in a number of prothrombotic phenomena. Further studies are warranted to assess whether these findings correlate with clinical thrombotic events.
Collapse
Affiliation(s)
- David M Ross
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia.
- Department of Haematology, Royal Adelaide Hospital, 6E359, Port Rd, Adelaide, SA, 5000, Australia.
- Department of Haematology, Flinders University and Medical Centre, Adelaide, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.
| | - Hai Po Helena Liang
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, NSW, Australia
| | - Zeenet Iqra
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Shane Whittaker
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, NSW, Australia
| | - Chuen Wen Tan
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, NSW, Australia
| | - Brian J Dale
- Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Vivien M Chen
- ANZAC Research Institute, Concord Repatriation General Hospital, Sydney, NSW, Australia
- Department of Haematology, Concord Repatriation General Hospital, Sydney, NSW, Australia
- Faculty of Medicine and Health, Concord Clinical School, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
5
|
Moliterno AR, Kaizer H, Reeves BN. JAK2 V617F allele burden in polycythemia vera: burden of proof. Blood 2023; 141:1934-1942. [PMID: 36745865 PMCID: PMC10163319 DOI: 10.1182/blood.2022017697] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/09/2023] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
Polycythemia vera (PV) is a hematopoietic stem cell neoplasm defined by activating somatic mutations in the JAK2 gene and characterized clinically by overproduction of red blood cells, platelets, and neutrophils; a significant burden of disease-specific symptoms; high rates of vascular events; and evolution to a myelofibrosis phase or acute leukemia. The JAK2V617F variant allele frequency (VAF) is a key determinant of outcomes in PV, including thrombosis and myelofibrotic progression. Here, we critically review the dynamic role of JAK2V617F mutation burden in the pathogenesis and natural history of PV, the suitability of JAK2V617F VAF as a diagnostic and prognostic biomarker, and the utility of JAK2V617F VAF reduction in PV treatment.
Collapse
Affiliation(s)
- Alison R. Moliterno
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Hannah Kaizer
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Brandi N. Reeves
- Division of Hematology, Department of Medicine, Blood Research Center, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
6
|
Moliterno AR, Braunstein EM. The roles of sex and genetics in the MPN. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 366:1-24. [PMID: 35153002 DOI: 10.1016/bs.ircmb.2021.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Philadelphia chromosome negative myeloproliferative neoplasms(MPNs), polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF) are acquired hematopoietic stem cell disorders driven by activating mutations of intracellular signal transduction pathways that control the production of circulating blood cells. The MPN are characterized clinically by marked variation in degrees of vascular risk, familial clustering, and evolution to myelofibrosis and acute leukemia. MPN disease presentations and outcomes are highly variable, and are markedly influenced by both sex and germline genetic variation. This chapter will focus on the evidence of sex and germline genetic background as modifiers of MPN development and outcomes. Large population genome wide association studies in both clonal hematopoiesis and MPN have revealed novel mechanisms, including inflammatory pathways and genomic instability, which further our understanding of how sex and genetic background mediate MPN risk. Recent advances in our understanding of clonal hematopoiesis and MPN development in various contexts informs the mechanisms by which sex, inflammation, exposures and genetics influence MPN incidence and outcomes, and provide opportunities to develop new strategies for prognostics and therapeutics in the MPN.
Collapse
Affiliation(s)
- Alison R Moliterno
- Hematology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.
| | - Evan M Braunstein
- Hematology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
7
|
Marković D, Maslovarić I, Djikić D, Čokić VP. Neutrophil Death in Myeloproliferative Neoplasms: Shedding More Light on Neutrophils as a Pathogenic Link to Chronic Inflammation. Int J Mol Sci 2022; 23:1490. [PMID: 35163413 PMCID: PMC8836089 DOI: 10.3390/ijms23031490] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 12/15/2022] Open
Abstract
Neutrophils are an essential component of the innate immune response, but their prolonged activation can lead to chronic inflammation. Consequently, neutrophil homeostasis is tightly regulated through balance between granulopoiesis and clearance of dying cells. The bone marrow is both a site of neutrophil production and the place they return to and die. Myeloproliferative neoplasms (MPN) are clonal hematopoietic disorders characterized by the mutations in three types of molecular markers, with emphasis on Janus kinase 2 gene mutation (JAK2V617F). The MPN bone marrow stem cell niche is a site of chronic inflammation, with commonly increased cells of myeloid lineage, including neutrophils. The MPN neutrophils are characterized by the upregulation of JAK target genes. Additionally, MPN neutrophils display malignant nature, they are in a state of activation, and with deregulated apoptotic machinery. In other words, neutrophils deserve to be placed in the midst of major events in MPN. Our crucial interest in this review is better understanding of how neutrophils die in MPN mirrored by defects in apoptosis and to what possible extent they can contribute to MPN pathophysiology. We tend to expect that reduced neutrophil apoptosis will establish a pathogenic link to chronic inflammation in MPN.
Collapse
Affiliation(s)
- Dragana Marković
- Group for Immunology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr Subotića 4, POB 39, 11129 Belgrade, Serbia;
| | - Irina Maslovarić
- Group for Immunology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr Subotića 4, POB 39, 11129 Belgrade, Serbia;
| | - Dragoslava Djikić
- Group for Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr Subotića 4, POB 39, 11129 Belgrade, Serbia; (D.D.); (V.P.Č.)
| | - Vladan P. Čokić
- Group for Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr Subotića 4, POB 39, 11129 Belgrade, Serbia; (D.D.); (V.P.Č.)
| |
Collapse
|
8
|
Spivak JL. Advances in polycythemia vera and lessons for acute leukemia. Best Pract Res Clin Haematol 2021; 34:101330. [PMID: 34865702 DOI: 10.1016/j.beha.2021.101330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The myeloproliferative neoplasms (MPN), polycythemia vera (PV), essential thrombocytosis and primary myelofibrosis, are an unusual group of myeloid neoplasms, which arise in a pluripotent hematopoietic stem cell (HSC) due to gain of function driver mutations in the JAK2, CALR and MPL genes that constitutively activate JAK2, the cognate tyrosine kinase of the type 1 hematopoietic growth factor (HGF) receptors. PV is the ultimate phenotypic expression of constitutive JAK2 activation since it alone of the three MPN is characterized by overproduction of normal red cells, white cells and platelets. Paradoxically, however, although PV is a panmyelopathy involving myeloid, erythroid and megakaryocytic progenitor cells, pluripotent HSC only express a single type of HGF receptor, the thrombopoietin receptor, MPL. In this review, the basis for how a pluripotent HSC with one type of HGF can give rise to three separate types of myeloid cells will be explained and it will be demonstrated that PV is actually a hormone-sensitive disorder, characterized by elevated thrombopoietin levels. Finally, it will be shown that the most common form of acute leukemia in PV is due to the inappropriate use of chemotherapy, including hydroxyurea, which facilitates expansion of DNA-damaged, mutated HSC at the expense of their normal counterparts.
Collapse
Affiliation(s)
- Jerry L Spivak
- Division of Hematology, Johns Hopkins University School of Medicine, Traylor 924, 720 Rutland Avenue, Baltimore, MD, 20037, USA.
| |
Collapse
|
9
|
Abstract
Myeloproliferative neoplasms (MPNs) are clonal hematopoietic stem cell (HSC) disorders with overproduction of mature myeloid blood cells, including essential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (PMF). In 2005, several groups identified a single gain-of-function point mutation JAK2V617F in the majority of MPN patients. The JAK2V617F mutation confers cytokine independent proliferation to hematopoietic progenitor cells by constitutively activating canonical and non-canonical downstream pathways. In this chapter, we focus on (1) the regulation of JAK2, (2) the molecular mechanisms used by JAK2V617F to induce MPNs, (3) the factors that are involved in the phenotypic diversity in MPNs, and (4) the effects of JAK2V617F on hematopoietic stem cells (HSCs). The discovery of the JAK2V617F mutation led to a comprehensive understanding of MPN; however, the question still remains about how one mutation can give rise to three distinct disease entities. Various mechanisms have been proposed, including JAK2V617F allele burden, differential STAT signaling, and host genetic modifiers. In vivo modeling of JAK2V617F has dramatically enhanced the understanding of the pathophysiology of the disease and provided the pre-clinical platform. Interestingly, most of these models do not show an increased hematopoietic stem cell self-renewal and function compared to wildtype controls, raising the question of whether JAK2V617F alone is sufficient to give a clonal advantage in MPN patients. In addition, the advent of modern sequencing technologies has led to a broader understanding of the mutational landscape and detailed JAK2V617F clonal architecture in MPN patients.
Collapse
|
10
|
Ross DM, Babon JJ, Tvorogov D, Thomas D. Persistence of myelofibrosis treated with ruxolitinib: biology and clinical implications. Haematologica 2021; 106:1244-1253. [PMID: 33472356 PMCID: PMC8094080 DOI: 10.3324/haematol.2020.262691] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
Activation of JAK-STAT signaling is one of the hallmarks of myelofibrosis, a myeloproliferative neoplasm that leads to inflammation, progressive bone marrow failure, and a risk of leukemic transformation. Around 90% of patients with myelofibrosis have a mutation in JAK2, MPL, or CALR: so-called 'driver' mutations that lead to activation of JAK2. Ruxolitinib, and other JAK2 inhibitors in clinical use, provide clinical benefit but do not have a major impact on the abnormal hematopoietic clone. This phenomenon is termed 'persistence', in contrast to usual patterns of resistance. Multiple groups have shown that type 1 inhibitors of JAK2, which bind the active conformation of the enzyme, lead to JAK2 becoming resistant to degradation with consequent accumulation of phospho-JAK2. In turn, this can lead to exacerbation of inflammatory manifestations when the JAK inhibitor is discontinued, and it may also contribute to disease persistence. The ways in which JAK2 V617F and CALR mutations lead to activation of JAK-STAT signaling are incompletely understood. We summarize what is known about pathological JAK-STAT activation in myelofibrosis and how this might lead to future novel therapies for myelofibrosis with greater disease-modifying potential.
Collapse
Affiliation(s)
- David M Ross
- Department of Hematology and Bone Marrow Transplantation, Royal Adelaide Hospital, Adelaide; Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide; Precision Medicine Theme, South Australian Health and Medical Research Institute, and Adelaide Medical School, University of Adelaide.
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, University of Melbourne, Parkville
| | - Denis Tvorogov
- Centre for Cancer Biology, University of South Australia and SA Pathology
| | - Daniel Thomas
- Precision Medicine Theme, South Australian Health and Medical Research Institute, and Adelaide Medical School, University of Adelaide
| |
Collapse
|
11
|
Are polycythemia vera, essential thrombocytosis, and primary myelofibrosis 1, 2, or 3 diseases? Leukemia 2021; 35:1890-1893. [PMID: 33911177 DOI: 10.1038/s41375-021-01254-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/18/2021] [Accepted: 04/06/2021] [Indexed: 11/08/2022]
|
12
|
Spivak JL, Moliterno AR. The Thrombopoietin Receptor, MPL, Is a Therapeutic Target of Opportunity in the MPN. Front Oncol 2021; 11:641613. [PMID: 33777803 PMCID: PMC7987816 DOI: 10.3389/fonc.2021.641613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/28/2021] [Indexed: 12/12/2022] Open
Abstract
The myeloproliferative neoplasms, polycythemia vera, essential thrombocytosis and primary myelofibrosis share driver mutations that either activate the thrombopoietin receptor, MPL, or indirectly activate it through mutations in the gene for JAK2, its cognate tyrosine kinase. Paradoxically, although the myeloproliferative neoplasms are classified as neoplasms because they are clonal hematopoietic stem cell disorders, the mutations affecting MPL or JAK2 are gain-of-function, resulting in increased production of normal erythrocytes, myeloid cells and platelets. Constitutive JAK2 activation provides the basis for the shared clinical features of the myeloproliferative neoplasms. A second molecular abnormality, impaired posttranslational processing of MPL is also shared by these disorders but has not received the recognition it deserves. This abnormality is important because MPL is the only hematopoietic growth factor receptor expressed in hematopoietic stem cells; because MPL is a proto-oncogene; because impaired MPL processing results in chronic elevation of plasma thrombopoietin, and since these diseases involve normal hematopoietic stem cells, they have proven resistant to therapies used in other myeloid neoplasms. We hypothesize that MPL offers a selective therapeutic target in the myeloproliferative neoplasms since impaired MPL processing is unique to the involved stem cells, while MPL is required for hematopoietic stem cell survival and quiescent in their bone marrow niches. In this review, we will discuss myeloproliferative neoplasm hematopoietic stem cell pathophysiology in the context of the behavior of MPL and its ligand thrombopoietin and the ability of thrombopoietin gene deletion to abrogate the disease phenotype in vivo in a JAK2 V617 transgenic mouse model of PV.
Collapse
Affiliation(s)
- Jerry L Spivak
- Hematology Division, Department of Medicine, Johns Hopkins University School of Medicine Baltimore, Baltimore, MD, United States
| | - Alison R Moliterno
- Hematology Division, Department of Medicine, Johns Hopkins University School of Medicine Baltimore, Baltimore, MD, United States
| |
Collapse
|
13
|
Moliterno AR, Kaizer H. Applied genomics in MPN presentation. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2020; 2020:434-439. [PMID: 33275725 PMCID: PMC7727573 DOI: 10.1182/hematology.2020000128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Polycythemia vera, essential thrombocytosis (ET), and primary myelofibrosis (PMF) are grouped together as myeloproliferative neoplasms (MPNs) because of shared clinical, pathologic, and molecular features. The 2005 discovery of the driver mutation JAK2V617F, found in more than 70% of individuals with MPNs and 98% of those with PV, has transformed the diagnosis and management of MPNs. Although PV is the most common phenotype associated with JAK2V617F, roughly 60% of individuals with ET or PMF also have the mutation, and JAK2V617F is now recognized as a common lesion in clonal hematopoiesis (CH). JAK2V617F+ CH and MPN are indolent disorders that evolve over time, with transitions to different disease phases, transformation to bone marrow failure or leukemia, and high thrombosis rates. Genomic assessment has taken center stage as an important tool to define disease phenotype, disease burden, prognosis, and even thrombosis risk of MPNs. Genomics has also unveiled the causes and factors that modify the risk of acquiring and expanding CH and MPNs and points to new pathways for targeted therapies to treat and ultimately prevent them. Genomic assessment of patients with MPNs, like other cancers, enables the clinician to capitalize on large population data sets to inform the individual patient of risk, identify treatment, and improve outcomes.
Collapse
Affiliation(s)
| | - Hannah Kaizer
- Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
14
|
Lee J, Godfrey AL, Nangalia J. Genomic heterogeneity in myeloproliferative neoplasms and applications to clinical practice. Blood Rev 2020; 42:100708. [PMID: 32571583 DOI: 10.1016/j.blre.2020.100708] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/22/2020] [Accepted: 04/18/2020] [Indexed: 12/14/2022]
Abstract
The myeloproliferative neoplasms (MPN) polycythaemia vera, essential thrombocythaemia and primary myelofibrosis are chronic myeloid disorders associated most often with mutations in JAK2, MPL and CALR, and in some patients with additional acquired genomic lesions. Whilst the molecular mechanisms downstream of these mutations are now clearer, it is apparent that clinical phenotype in MPN is a product of complex interactions, acting between individual mutations, between disease subclones, and between the tumour and background host factors. In this review we first discuss MPN phenotypic driver mutations and the factors that interact with them to influence phenotype. We consider the importance of ongoing studies of clonal haematopoiesis, which may inform a better understanding of why MPN develop in specific individuals. We then consider how best to deploy genomic testing in a clinical environment and the challenges as well as opportunities that may arise from more routine, comprehensive genomic analysis of patients with MPN.
Collapse
Affiliation(s)
- Joe Lee
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK; Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge, UK; Department of Haematology, University of Cambridge, Cambridge, UK
| | - Anna L Godfrey
- Haematopathology and Oncology Diagnostics Service/ Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Hills Rd, Cambridge CB2 0QQ, UK
| | - Jyoti Nangalia
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK; Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge, UK; Department of Haematology, University of Cambridge, Cambridge, UK; Haematopathology and Oncology Diagnostics Service/ Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Hills Rd, Cambridge CB2 0QQ, UK.
| |
Collapse
|
15
|
Spivak JL. Polycythaemia vera, ruxolitinib, and hydroxyurea: where do we go now? LANCET HAEMATOLOGY 2020; 7:e184-e185. [PMID: 31982040 DOI: 10.1016/s2352-3026(19)30262-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Jerry L Spivak
- Hematology Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
16
|
Abstract
Since its discovery, polycythemia vera (PV) has challenged clinicians responsible for its diagnosis and management and scientists investigating its pathogenesis. As a clonal hematopoietic stem cell (HSC) disorder, PV is a neoplasm but its driver mutations result in overproduction of morphologically and functionally normal blood cells. PV arises in an HSC but it can present initially as isolated erythrocytosis, leukocytosis, thrombocytosis, or any combination of these together with splenomegaly or myelofibrosis, and it can take years for a true panmyelopathy to appear. PV shares the same JAK2 mutation as essential thrombocytosis and primary myelofibrosis, but erythrocytosis only occurs in PV. However, unlike secondary causes of erythrocytosis, in PV, the plasma volume is frequently expanded, masking the erythrocytosis and making diagnosis difficult if this essential fact is ignored. PV is not a monolithic disorder: female patients deregulate fewer genes and clinically behave differently than their male counterparts, while some PV patients are genetically predisposed to an aggressive clinical course. Nevertheless, based on what we have learned over the past century, most PV patients can lead long and productive lives. In this review, using clinical examples, I describe how I diagnose and manage PV in an evidence-based manner without relying on chemotherapy.
Collapse
|
17
|
|
18
|
Tashi T, Swierczek S, Kim SJ, Salama ME, Song J, Heikal N, King KY, Hickman K, Litton S, Prchal JT. Pegylated interferon Alfa-2a and hydroxyurea in polycythemia vera and essential thrombocythemia: differential cellular and molecular responses. Leukemia 2018; 32:1830-1833. [PMID: 29556018 DOI: 10.1038/s41375-018-0080-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 01/22/2018] [Accepted: 01/25/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Tsewang Tashi
- Division of Hematology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Sabina Swierczek
- Division of Hematology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Soo Jin Kim
- Division of Hematology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Mohamed E Salama
- Department of Pathology, ARUP Institute of Research and Development, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jihyun Song
- Division of Hematology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Nahla Heikal
- Department of Pathology, ARUP Institute of Research and Development, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Katherine Y King
- Department of Pediatric Infectious Diseases and Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Kim Hickman
- Division of Hematology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Scott Litton
- Division of Hematology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Josef T Prchal
- Division of Hematology, University of Utah School of Medicine, Salt Lake City, UT, USA. .,Department of Pathology, ARUP Institute of Research and Development, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
19
|
Patterson-Fortin J, Moliterno AR. Molecular Pathogenesis of Myeloproliferative Neoplasms: Influence of Age and Gender. Curr Hematol Malig Rep 2018; 12:424-431. [PMID: 28948454 DOI: 10.1007/s11899-017-0411-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The myeloproliferative neoplasms polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF) display distinct clinical and pathologic features but are characterized by mutations in JAK2, MPL, and CALR leading to activation of the JAK-STAT pathway. This review addresses the pathogenesis and mechanisms of these mutant alleles and the unique interactions of both of age and gender.
Collapse
Affiliation(s)
- Jeffrey Patterson-Fortin
- Department of Medicine, The Johns Hopkins University School of Medicine, 600 North Wolfe Street, Nelson-Harvey 808, Baltimore, MD, 21287, USA
| | - Alison R Moliterno
- Division of Hematology, Department of Medicine, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Building, #1025, Baltimore, MD, 21205, USA.
| |
Collapse
|
20
|
Senín A, Fernández-Rodríguez C, Bellosillo B, Camacho L, Longarón R, Angona A, Besses C, Álvarez-Larrán A. Non-driver mutations in patients with JAK2V617F-mutated polycythemia vera or essential thrombocythemia with long-term molecular follow-up. Ann Hematol 2017; 97:443-451. [PMID: 29181548 DOI: 10.1007/s00277-017-3193-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/20/2017] [Indexed: 12/30/2022]
Abstract
JAK2V617F monitoring and NGS of non-driver genes was performed in 100 patients with polycythemia vera (PV) or essential thrombocythemia (ET) with long molecular follow-up. Patients who did not progress to myelofibrosis (MF) or acute myeloid leukemia (AML) after more than 10 years (n = 50) showed a low frequency of mutations at first sample (18%) and an incidence rate of 1.7 new mutations × 100 person-years. Mutations were detected at first sample in 83% of PV/ET patients who later progressed to AML (n = 12) with these patients having a rate of 25.6 mutations × 100 person-years. Presence of mutations at diagnosis was the unique risk factor for acquiring a new genetic event (HR 2.7, 95% CI 1.1-6.8, p = 0.03) after correction for age, PV diagnosis, and total duration of hydroxyurea (HU) exposure. Patients with additional mutation at first sample showed a higher probability of developing cytopenia under HU therapy and a higher risk of AML (HR 12.2, 95% CI 2.6-57.1, p = 0.001) with mutations in ASXL1 (p < 0.0001), TP53 (p = 0.01), SRSF2 (p < 0.0001), IDH1/2 (p < 0.0001), and RUNX1 (p < 0.0001) being associated with a higher probability of AML. Myelofibrotic transformation was more frequent in patients with additional mutations, especially in SF3B1 (p = 0.02) and IDH1/2 (p < 0.0001) although a persistently high or a progressive increase of the JAK2V617F allele burden while receiving cytoreduction was the strongest predictor of MF transformation (HR 10.8, 95% CI 2.4-49.1, p = 0.002). In conclusion, NGS may be useful to identify a minority of PV and ET patients with high genetic instability and increased risk of AML transformation.
Collapse
Affiliation(s)
- Alicia Senín
- Hematology Department, Hospital del Mar-IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Universidad Autónoma de Barcelona, Passeig Marítim 25-29, 08003, Barcelona, Spain
| | | | - Beatriz Bellosillo
- Pathology Department-IMIM, Hospital del Mar, Universidad Pompeu Fabra, Barcelona, Spain
| | - Laura Camacho
- Pathology Department-IMIM, Hospital del Mar, Universidad Pompeu Fabra, Barcelona, Spain
| | - Raquel Longarón
- Pathology Department-IMIM, Hospital del Mar, Universidad Pompeu Fabra, Barcelona, Spain
| | - Anna Angona
- Hematology Department, Hospital del Mar-IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Universidad Autónoma de Barcelona, Passeig Marítim 25-29, 08003, Barcelona, Spain
| | - Carles Besses
- Hematology Department, Hospital del Mar-IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Universidad Autónoma de Barcelona, Passeig Marítim 25-29, 08003, Barcelona, Spain
| | - Alberto Álvarez-Larrán
- Hematology Department, Hospital del Mar-IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Universidad Autónoma de Barcelona, Passeig Marítim 25-29, 08003, Barcelona, Spain.
| |
Collapse
|
21
|
Bose P, Verstovsek S. Prognosis of Primary Myelofibrosis in the Genomic Era. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2017; 16 Suppl:S105-13. [PMID: 27521306 DOI: 10.1016/j.clml.2016.02.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 02/09/2016] [Indexed: 02/07/2023]
Abstract
Currently, prognostication in primary myelofibrosis (PMF) relies on the International Prognostic Scoring System (IPSS), dynamic IPSS (DIPSS), and DIPSS-plus, which incorporate age, blood counts, constitutional symptoms, circulating blasts, red cell transfusion need, and karyotype. Although the JAK2 V617F mutation was discovered a decade ago and MPL mutations shortly thereafter, it was the recent discovery of CALR mutations in the vast majority of JAK2/MPL-unmutated patients and recognition of the powerful impact of CALR mutations and triple-negative (JAK2/MPL/CALR-negative) status on outcome that set the stage for revision of traditional prognostic models to include molecular information. Additionally, the advent of next-generation sequencing has identified a host of previously unrecognized somatic mutations across hematologic malignancies. As in the myelodysplastic syndromes, the majority of common and prognostically informative mutations in PMF affect epigenetic regulation and mRNA splicing. Thus, a need has arisen to incorporate mutational information on genes such as ASXL1 and SRSF2 into risk stratification systems. Mutations in yet other genes appear to be important players in leukemic transformation, and new insights into disease pathogenesis are emerging. Finally, the number of prognostically detrimental mutations may affect both survival and response to ruxolitinib, which has significant implications for clinical decision making. In this review, we briefly summarize the prognostic models in use today and discuss in detail the somatic mutations commonly encountered in patients with PMF, along with their prognostic implications and role in leukemic transformation. Emerging prognostic models that incorporate new molecular information into existing systems or exclude clinical variables are also presented.
Collapse
Affiliation(s)
- Prithviraj Bose
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX.
| | - Srdan Verstovsek
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
22
|
Michiels JJ, De Raeve H, Valster F, Potters V, Kim Y, Kim M. Extension of 2016 World Health Organization (WHO) Classification into a New Set of Clinical, Laboratory, Molecular, and Pathological Criteria for the Diagnosis of Myeloproliferative Neoplasms: From Dameshek to Vainchenker, Green, and Kralovics. EUROPEAN MEDICAL JOURNAL 2017. [DOI: 10.33590/emj/10314481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Improved Clinical, Laboratory, Molecular, and Pathological (CLMP) 2017 criteria for myeloproliferative neoplasms (MPN) define the JAK2V617F trilinear MPNs as a broad continuum of essential thrombocythaemia (ET), polycythaemia vera (PV), masked PV, and post-ET or post-PV myelofibrosis (MF). Normal versus increased erythrocyte counts (5.8×1012/L) on top of bone marrow histology separate JAK2V617F ET and prodromal PV from early and classical PV. Bone marrow histology of the JAK2V617F trilinear MPNs show variable degrees of normocellular megakaryocytic, erythrocytic megakaryocytic and erythrocytic megakaryocytic granulocytic (EMG) myeloproliferation, peripheral cytoses, and splenomegaly related to JAK2V617F allele burden. MPL515 thrombocythaemia displays predominantly normocellular megakaryocytic proliferation. CALR thrombocythaemia intially presents with megakaryocytic followed by dual granulocytic and megakaryocytic myeloproliferation without features of PV. The megakaryocytes are large, mature, and pleomorphic with hyperlobulated nuclei in JAK2V617F ET and prodromal, classical, and masked PV. The megakaryocytes are large to giant with hyperlobulated staghorn-like nuclei in MPL515 thrombocythaemia. The megakaryocytes are densely clustered, large, and immature dysmorphic with bulky (bulbous) hyperchromatic nuclei in CALR thrombocythaemia and MF.
Collapse
Affiliation(s)
- Jan Jacques Michiels
- International Hematology, Blood and Coagulation Research Center, Goodheart Institute and Foundation in Nature Medicine, Freedom in Science and Education Erasmus Tower, Rotterdam, Netherlands; International Collaboration and Academic Research on Myeloproliferative Neoplasms: ICAR.MPN, Rotterdam, Netherlands; Department of Hematology and Pathology, BRAVIS Hospital, Bergen op Zoom, Netherlands
| | - Hendrik De Raeve
- Department of Pathology, OLV Hospital Aalst and University Hospital Brussels, Brussels, Belgium
| | - Francisca Valster
- Department of Hematology and Pathology, BRAVIS Hospital, Bergen op Zoom, Netherlands
| | - Vincent Potters
- Department of Hematology and Pathology, BRAVIS Hospital, Bergen op Zoom, Netherlands
| | - Yonggoo Kim
- Department of Laboratory Medicine, College of Medicine, the Catholic University of Korea, Seoul, Korea; Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, Seoul, Korea
| | - Myungshin Kim
- Department of Laboratory Medicine, College of Medicine, the Catholic University of Korea, Seoul, Korea; Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, Seoul, Korea
| |
Collapse
|
23
|
Affiliation(s)
- Jerry L Spivak
- From the Hematology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore
| |
Collapse
|
24
|
Grinfeld J, Godfrey AL. After 10 years of JAK2V617F: Disease biology and current management strategies in polycythaemia vera. Blood Rev 2017; 31:101-118. [DOI: 10.1016/j.blre.2016.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 11/08/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022]
|
25
|
Angona A, Alvarez-Larrán A, Bellosillo B, Longarón R, Camacho L, Fernández-Rodríguez MC, Pairet S, Besses C. Characterization of CD34+ hematopoietic progenitor cells in JAK2V617F and CALR-mutated myeloproliferative neoplasms. Leuk Res 2016; 48:11-5. [PMID: 27427771 DOI: 10.1016/j.leukres.2016.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/19/2016] [Accepted: 06/28/2016] [Indexed: 01/03/2023]
Abstract
Mutations in JAK2 or CALR are observed in patients with myeloproliferative neoplasms (MPN). To get further insight in the dynamics of the mutant clone, we assessed the mutant allele burden in hematopoietic stem cells (HSCs), hematopoietic progenitor cells (HPCs) and granulocytes from 138 patients [51 polycythemia vera (PV), 58 essential thrombocythemia (ET) and 29 myelofibrosis (MF)]. CALR-mutated ET patients harbored a higher mutant load at progenitor level than JAK2V617F-positive ET (HSCs: 39.9% vs 7.5% p<0.001, HPCs: 32.7% vs 7.7% p<0.001). Moreover, HSCs of CALR-mutated ET patients showed a similar mutational load than patients with CALR-mutated MF (39.9% vs 48.2%, p=0.17). Regarding JAK2V617F MPN, PV and ET patients showed a low mutational burden at progenitor level whereas in the myelofibrotic phase the dominance of the mutated clone was a constant finding. In conclusion, the size of the mutated clone in chronic phase MPN is different according to genotype with CALR-mutated ET showing a pattern similar to that observed in MF.
Collapse
Affiliation(s)
- Anna Angona
- Hematology Department, Hospital del Mar, Barcelona, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain; Grup de Recerca Clínica Aplicada en Neoplàsies Hematològiques-Hospital del Mar-IMIM, Barcelona, Spain
| | - Alberto Alvarez-Larrán
- Hematology Department, Hospital del Mar, Barcelona, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain; Grup de Recerca Clínica Aplicada en Neoplàsies Hematològiques-Hospital del Mar-IMIM, Barcelona, Spain.
| | - Beatriz Bellosillo
- Pathology Department, Hospital del Mar, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Grup de Recerca Clínica Aplicada en Neoplàsies Hematològiques-Hospital del Mar-IMIM, Barcelona, Spain
| | - Raquel Longarón
- Pathology Department, Hospital del Mar, Barcelona, Spain; Grup de Recerca Clínica Aplicada en Neoplàsies Hematològiques-Hospital del Mar-IMIM, Barcelona, Spain
| | - Laura Camacho
- Pathology Department, Hospital del Mar, Barcelona, Spain; Grup de Recerca Clínica Aplicada en Neoplàsies Hematològiques-Hospital del Mar-IMIM, Barcelona, Spain
| | - M Concepción Fernández-Rodríguez
- Pathology Department, Hospital del Mar, Barcelona, Spain; Grup de Recerca Clínica Aplicada en Neoplàsies Hematològiques-Hospital del Mar-IMIM, Barcelona, Spain
| | - Silvia Pairet
- Pathology Department, Hospital del Mar, Barcelona, Spain; Grup de Recerca Clínica Aplicada en Neoplàsies Hematològiques-Hospital del Mar-IMIM, Barcelona, Spain
| | - Carles Besses
- Hematology Department, Hospital del Mar, Barcelona, Spain; Grup de Recerca Clínica Aplicada en Neoplàsies Hematològiques-Hospital del Mar-IMIM, Barcelona, Spain
| |
Collapse
|
26
|
Michiels JJ, Tevet M, Trifa A, Niculescu-Mizil E, Lupu A, Vladareanu AM, Bumbea H, Ilea A, Dobrea C, Georgescu D, Patrinoiu O, Popescu M, Murat M, Dragan C, Mihai F, Zurac S, Angelescu S, Iova A, Popa A, Gogulescu R, Popov V. 2016 WHO Clinical Molecular and Pathological Criteria for Classification and Staging of Myeloproliferative Neoplasms (MPN) Caused by MPN Driver Mutations in the JAK2, MPL and CALR Genes in the Context of New 2016 WHO Classification: Prognostic and Therapeutic Implications. MAEDICA 2016; 11:5-25. [PMID: 28465746 PMCID: PMC5394501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The 2016 WHO-CMP classification proposal defines a broad spectrum of JAK2 V617F mutated MPN phenotypes: normocellular ET, hypercellular ET due to increased erythropoiesis (prodromal PV), hypercellular ET with megakaryocytic-granulocytic myeloproliferation and splenomegaly (EMGM or masked PV), erythrocythemic PV, early and overt classical PV, advanced PV with MF and post-PV MF. ET heterozygous for the JAK2 V617F mutation is associated with low JAK2 mutation load and normal life expectance. PV patients are hetero-homozygous versus homozygous for the JAK2 V617F mutation in their early versus advanced stages with increasing JAK2 mutation load from less than 50% to 100% and increase of MPN disease burden during life long follow-up in terms of symptomatic splenomegaly, constitutional symptoms, bone marrow hypercellularity and secondary MF. Pretreatment bone marrow biopsy in prefibrotic MPNs is of diagnostic and prognostic importance. JAK2 exon 12 mutated MPN is a distinct benign early stage PV. CALR mutated hypercellular thrombocythemia show distinct PMGM bone marrow characteristics of clustered larged immature dysmorphic megakaryocytes with bulky (bulbous) hyperchromatic nuclei, which are not seen in JAK2 mutated ET and PV. MPL mutated normocellular thrombocythemia is featured by clustered giant megakaryocytes with hyperlobulated stag-horn-like nuclei without features of PV in blood and bone marrow. Myeloproliferative disease burden in each of the JAK2, CALR and MPL MPNs is best reflected by the degree of anemia, splenomegaly, mutation allele burden, bone marrow cellularity and myelofibrosis.
Collapse
Affiliation(s)
- Jan Jacques Michiels
- International Hematology and Bloodcoagulation Research Center, Goodheart Institute and Foundation in Nature Medicine, and International Collaboration and Research on Myeloproliferative Neoplasms: ICAR.MPN, Rotterdam, The Netherlands
| | - Mihaela Tevet
- Department of Hematology, Colentina Clinical Hospital, Bucharest, Romania
| | - Adrian Trifa
- Department of Medical Genetics, "Iuliu Hatieganu", University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Anca Lupu
- Department of Hematology, "Carol Davila" University of Medicine, Coltea Clinical Hospital, Bucharest, Romania
| | - Ana Maria Vladareanu
- Department of Hematology, "Carol Davila" University of Medicine, Emergency Hospital, Bucharest, Romania
| | - Horia Bumbea
- Department of Hematology, "Carol Davila" University of Medicine, Emergency Hospital, Bucharest, Romania
| | - Anca Ilea
- Ritus Biotec Laboratory, Codlea, Brasov, Romania
| | - Camelia Dobrea
- Department of Hematology, "Carol Davila" University of Medicine, Fundeni
| | - Daniela Georgescu
- Department of Hematology, Colentina Clinical Hospital, Bucharest, Romania
| | - Oana Patrinoiu
- Department of Hematology, Colentina Clinical Hospital, Bucharest, Romania
| | - Mihaela Popescu
- Department of Hematology, Colentina Clinical Hospital, Bucharest, Romania
| | - Meilin Murat
- Department of Hematology, Colentina Clinical Hospital, Bucharest, Romania
| | - Cornel Dragan
- Department of Hematology, Colentina Clinical Hospital, Bucharest, Romania
| | - Felicia Mihai
- Department of Hematology, Colentina Clinical Hospital, Bucharest, Romania
| | - Sabina Zurac
- Department of Pathology, "Carol Davila" University of Medicine, Colentina Hospital, Bucharest, Romania
| | - Silvana Angelescu
- Department of Hematology, "Carol Davila" University of Medicine, Coltea Clinical Hospital, Bucharest, Romania
| | - Anamaria Iova
- Morphology Laboratory, Gral Laboratory, Bucharest, Romania
| | - Alina Popa
- Morphology Laboratory, Gral Laboratory, Bucharest, Romania
| | | | - Violeta Popov
- Department of Hematology, Colentina Clinical Hospital, Bucharest, Romania
| |
Collapse
|
27
|
Michiels JJ, Valster F, Wielenga J, Schelfout K, Raeve HD. European vs 2015-World Health Organization clinical molecular and pathological classification of myeloproliferative neoplasms. World J Hematol 2015; 4:16-53. [DOI: 10.5315/wjh.v4.i3.16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 11/15/2014] [Accepted: 04/30/2015] [Indexed: 02/05/2023] Open
Abstract
The BCR/ABL fusion gene or the Ph1-chromosome in the t(9;22)(q34;q11) exerts a high tyrokinase acticity, which is the cause of chronic myeloid leukemia (CML). The 1990 Hannover Bone Marrow Classification separated CML from the myeloproliferative disorders essential thrombocythemia (ET), polycythemia vera (PV) and chronic megakaryocytic granulocytic myeloproliferation (CMGM). The 2006-2008 European Clinical Molecular and Pathological (ECMP) criteria discovered 3 variants of thrombocythemia: ET with features of PV (prodromal PV), “true” ET and ET associated with CMGM. The 2008 World Health Organization (WHO)-ECMP and 2014 WHO-CMP classifications defined three phenotypes of JAK2V617F mutated ET: normocellular ET (WHO-ET), hypercelluar ET due to increased erythropoiesis (prodromal PV) and ET with hypercellular megakaryocytic-granulocytic myeloproliferation. The JAK2V617F mutation load in heterozygous WHO-ET is low and associated with normal life expectance. The hetero/homozygous JAK2V617F mutation load in PV and myelofibrosis is related to myeloproliferative neoplasm (MPN) disease burden in terms of symptomatic splenomegaly, constitutional symptoms, bone marrow hypercellularity and myelofibrosis. JAK2 exon 12 mutated MPN presents as idiopathic eryhrocythemia and early stage PV. According to 2014 WHO-CMP criteria JAK2 wild type MPL515 mutated ET is the second distinct thrombocythemia featured by clustered giant megakaryocytes with hyperlobulated stag-horn-like nuclei, in a normocellular bone marrow consistent with the diagnosis of “true” ET. JAK2/MPL wild type, calreticulin mutated hypercellular ET appears to be the third distinct thrombocythemia characterized by clustered larged immature dysmorphic megakaryocytes and bulky (bulbous) hyperchromatic nuclei consistent with CMGM or primary megakaryocytic granulocytic myeloproliferation.
Collapse
|
28
|
Michiels JJ. Myeloproliferative and thrombotic burden and treatment outcome of thrombocythemia and polycythemia patients. World J Crit Care Med 2015; 4:230-9. [PMID: 26261774 PMCID: PMC4524819 DOI: 10.5492/wjccm.v4.i3.230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/10/2015] [Accepted: 07/11/2015] [Indexed: 02/07/2023] Open
Abstract
Prospective studies indicate that the risk of microvascular and major thrombosis in untreated thrombocythemia in various myeloproliferative neoplasms (MPN-T) is not age dependent and causally related to platelet-mediated thrombosis in early, intermediate and advanced stages of thrombocythemia in MPN-T. If left untreated both microvascular and major thrombosis frequently do occur in MPN-T, but can easily be cured and prevented by low dose aspirin as platelet counts are above 350 × 10(9)/L. The thrombotic risk stratification in the retrospective Bergamo study has been performed in 100 essential thrombocythemia (ET) patients not treated with aspirin thereby overlooking the discovery in 1985 of aspirin responsive platelet-mediated arteriolar and arterial thrombotic tendency in MPN-T disease of ET and polycythemia vera (PV) patients. The Bergamo definition of high thrombotic risk and its persistence in the 2012 International Prognostic Score for ET is based on statistic mystification and not applicable for low and intermediate MPN-T disease burden in ET and PV patients on aspirin. With the advent of molecular screening of MPN patients, MPN-T disease associated with significant leukocytosis, thrombocytosis, constitutional symptoms and/or moderate splenomegaly are candidates for low dose peglyated interferon (Pegasys(R), 45 μg/mL once per week or every two weeks) as the first line myeloreductive treatment option in JAK2(V617F) mutated MPN-T disease in ET and PV patients. If non-responsive to or side effects induced by IFN, hydroxyurea is the second line myelosuppressive treatment option in JAK2(V617F) mutated ET and PV patients with increased MPN-T disease burden.
Collapse
|
29
|
Affiliation(s)
- J L Spivak
- Johns Hopkins University School of Medicine , Baltimore, MD, USA
| |
Collapse
|
30
|
Ye Z, Liu CF, Lanikova L, Dowey SN, He C, Huang X, Brodsky RA, Spivak JL, Prchal JT, Cheng L. Differential sensitivity to JAK inhibitory drugs by isogenic human erythroblasts and hematopoietic progenitors generated from patient-specific induced pluripotent stem cells. Stem Cells 2014; 32:269-78. [PMID: 24105986 DOI: 10.1002/stem.1545] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/25/2013] [Accepted: 08/02/2013] [Indexed: 01/31/2023]
Abstract
Disease-specific induced pluripotent stem cells (iPSCs) provide an unprecedented opportunity to establish novel disease models and accelerate drug development using distinct tissue target cells generated from isogenic iPSC lines with and without disease-causing mutations. To realize the potential of iPSCs in modeling acquired diseases which are usually heterogeneous, we have generated multiple iPSC lines including two lines that are JAK2-wild-type and four lines homozygous for JAK2-V617F somatic mutation from a single polycythemia vera (PV) patient blood. In vitro differentiation of the same patient-derived iPSC lines have demonstrated the differential contributions of their parental hematopoietic clones to the abnormal erythropoiesis including the formation of endogenous erythroid colonies. This iPSC approach thus may provide unique and valuable insights into the genetic events responsible for disease development. To examine the potential of iPSCs in drug testing, we generated isogenic hematopoietic progenitors and erythroblasts from the same iPSC lines derived from PV patients and normal donors. Their response to three clinical JAK inhibitors, INCB018424 (Ruxolitinib), TG101348 (SAR302503), and the more recent CYT387 was evaluated. All three drugs similarly inhibited erythropoiesis from normal and PV iPSC lines containing the wild-type JAK2 genotype, as well as those containing a homozygous or heterozygous JAK2-V617F activating mutation that showed increased erythropoiesis without a JAK inhibitor. However, the JAK inhibitors had less inhibitory effect on the self-renewal of CD34+ hematopoietic progenitors. The iPSC-mediated disease modeling thus underlies the ineffectiveness of the current JAK inhibitors and provides a modeling system to develop better targeted therapies for the JAK2 mutated hematopoiesis.
Collapse
Affiliation(s)
- Zhaohui Ye
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Stem Cell Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Angona A, Alvarez-Larrán A, Bellosillo B, Martínez-Avilés L, Camacho L, Fernández-Rodríguez C, Pairet S, Longarón R, Ancochea Á, Senín A, Florensa L, Besses C. Hematopoietic clonal dominance, stem cell mutations, and evolutionary pattern ofJAK2V617F allele burden in polycythemia vera. Eur J Haematol 2014; 94:251-7. [DOI: 10.1111/ejh.12425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2014] [Indexed: 12/26/2022]
Affiliation(s)
- Anna Angona
- Hematology Department; Hospital del Mar; Barcelona Spain
- Universitat Autònoma de Barcelona; Barcelona Spain
- Grup de Recerca Clínica Aplicada en Neoplàsies Hematològiques-Hospital del Mar-IMIM; Barcelona Spain
| | - Alberto Alvarez-Larrán
- Hematology Department; Hospital del Mar; Barcelona Spain
- Universitat Autònoma de Barcelona; Barcelona Spain
- Grup de Recerca Clínica Aplicada en Neoplàsies Hematològiques-Hospital del Mar-IMIM; Barcelona Spain
| | - Beatriz Bellosillo
- Grup de Recerca Clínica Aplicada en Neoplàsies Hematològiques-Hospital del Mar-IMIM; Barcelona Spain
- Pathology Department; Hospital del Mar; Barcelona Spain
- Universitat Pompeu Fabra; Barcelona Spain
| | - Luz Martínez-Avilés
- Universitat Autònoma de Barcelona; Barcelona Spain
- Grup de Recerca Clínica Aplicada en Neoplàsies Hematològiques-Hospital del Mar-IMIM; Barcelona Spain
- Pathology Department; Hospital del Mar; Barcelona Spain
| | - Laura Camacho
- Grup de Recerca Clínica Aplicada en Neoplàsies Hematològiques-Hospital del Mar-IMIM; Barcelona Spain
- Pathology Department; Hospital del Mar; Barcelona Spain
| | - Concepción Fernández-Rodríguez
- Grup de Recerca Clínica Aplicada en Neoplàsies Hematològiques-Hospital del Mar-IMIM; Barcelona Spain
- Pathology Department; Hospital del Mar; Barcelona Spain
| | - Silvia Pairet
- Grup de Recerca Clínica Aplicada en Neoplàsies Hematològiques-Hospital del Mar-IMIM; Barcelona Spain
- Pathology Department; Hospital del Mar; Barcelona Spain
| | - Raquel Longarón
- Grup de Recerca Clínica Aplicada en Neoplàsies Hematològiques-Hospital del Mar-IMIM; Barcelona Spain
- Pathology Department; Hospital del Mar; Barcelona Spain
| | - Águeda Ancochea
- Hematology Department; Hospital del Mar; Barcelona Spain
- Universitat Autònoma de Barcelona; Barcelona Spain
- Grup de Recerca Clínica Aplicada en Neoplàsies Hematològiques-Hospital del Mar-IMIM; Barcelona Spain
| | - Alicia Senín
- Hematology Department; Hospital del Mar; Barcelona Spain
| | | | - Carles Besses
- Hematology Department; Hospital del Mar; Barcelona Spain
- Grup de Recerca Clínica Aplicada en Neoplàsies Hematològiques-Hospital del Mar-IMIM; Barcelona Spain
| |
Collapse
|
32
|
Prick J, de Haan G, Green AR, Kent DG. Clonal heterogeneity as a driver of disease variability in the evolution of myeloproliferative neoplasms. Exp Hematol 2014; 42:841-51. [PMID: 25201757 DOI: 10.1016/j.exphem.2014.07.268] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 01/01/2023]
Abstract
Myeloproliferative neoplasms (MPNs) are clonal hematological diseases in which cells of the myelo-erythroid lineage are overproduced and patients are predisposed to leukemic transformation. Hematopoietic stem cells are the suspected disease-initiating cells, and these cells must acquire a clonal advantage relative to nonmutant hematopoietic stem cells to perpetuate disease. In 2005, several groups identified a single gain-of-function point mutation in JAK2 that associated with the majority of MPNs, and subsequent studies have led to a comprehensive understanding of the mutational landscape in MPNs. However, confusion still exists as to how a single genetic aberration can be associated with multiple distinct disease entities. Many explanations have been proposed, including JAK2V617F homozygosity, individual patient heterogeneity, and the differential regulation of downstream JAK2 signaling pathways. Several groups have made knock-in mouse models expressing JAK2V617F and have observed divergent phenotypes, each recapitulating some aspects of disease. Intriguingly, most of these models do not observe a strong hematopoietic stem cell self-renewal advantage compared with wild-type littermate controls, raising the question of how a clonal advantage is established in patients with MPNs. This review summarizes the current molecular understanding of MPNs and the diversity of disease phenotypes and proposes that the increased proliferation induced by JAK2V617F applies a selection pressure on the mutant clone that results in highly diverse clonal evolution in individuals.
Collapse
Affiliation(s)
- Janine Prick
- Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom; Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gerald de Haan
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anthony R Green
- Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom; Department of Haematology, University of Cambridge, Cambridge, United Kingdom; Department of Haematology, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - David G Kent
- Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom; Department of Haematology, University of Cambridge, Cambridge, United Kingdom; Department of Haematology, Addenbrooke's Hospital, Cambridge, United Kingdom.
| |
Collapse
|
33
|
Spivak JL, Considine M, Williams DM, Talbot CC, Rogers O, Moliterno AR, Jie C, Ochs MF. Two clinical phenotypes in polycythemia vera. N Engl J Med 2014; 371:808-17. [PMID: 25162887 PMCID: PMC4211877 DOI: 10.1056/nejmoa1403141] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Polycythemia vera is the ultimate phenotypic consequence of the V617F mutation in Janus kinase 2 (encoded by JAK2), but the extent to which this mutation influences the behavior of the involved CD34+ hematopoietic stem cells is unknown. METHODS We analyzed gene expression in CD34+ peripheral-blood cells from 19 patients with polycythemia vera, using oligonucleotide microarray technology after correcting for potential confounding by sex, since the phenotypic features of the disease differ between men and women. RESULTS Men with polycythemia vera had twice as many up-regulated or down-regulated genes as women with polycythemia vera, in a comparison of gene expression in the patients and in healthy persons of the same sex, but there were 102 genes with differential regulation that was concordant in men and women. When these genes were used for class discovery by means of unsupervised hierarchical clustering, the 19 patients could be divided into two groups that did not differ significantly with respect to age, neutrophil JAK2 V617F allele burden, white-cell count, platelet count, or clonal dominance. However, they did differ significantly with respect to disease duration; hemoglobin level; frequency of thromboembolic events, palpable splenomegaly, and splenectomy; chemotherapy exposure; leukemic transformation; and survival. The unsupervised clustering was confirmed by a supervised approach with the use of a top-scoring-pair classifier that segregated the 19 patients into the same two phenotypic groups with 100% accuracy. CONCLUSIONS Removing sex as a potential confounder, we identified an accurate molecular method for classifying patients with polycythemia vera according to disease behavior, independently of their JAK2 V617F allele burden, and identified previously unrecognized molecular pathways in polycythemia vera outside the canonical JAK2 pathway that may be amenable to targeted therapy. (Funded by the Department of Defense and the National Institutes of Health.).
Collapse
Affiliation(s)
- Jerry L Spivak
- From the Division of Hematology, Department of Medicine (J.L.S., D.M.W., O.R., A.R.M.), Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center (M.C.), and the Basic Science Institute (C.C.T.), Johns Hopkins University School of Medicine, Baltimore; the Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago (C.J.); and the Department of Mathematics and Statistics, College of New Jersey, Ewing (M.F.O.)
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Singh N, Traisak P, Martin KA, Kaplan MJ, Cohen PL, Denny MF. Genomic alterations in abnormal neutrophils isolated from adult patients with systemic lupus erythematosus. Arthritis Res Ther 2014; 16:R165. [PMID: 25107306 PMCID: PMC4262380 DOI: 10.1186/ar4681] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 07/18/2014] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Patients with systemic lupus erythematosus (SLE) have an abnormal population of neutrophils, called low-density granulocytes (LDGs), that express the surface markers of mature neutrophils, yet their nuclear morphology resembles an immature cell. Because a similar discrepancy in maturation status is observed in myelodysplasias, and disruption of neutrophil development is frequently associated with genomic alterations, genomic DNA isolated from autologous pairs of LDGs and normal-density neutrophils was compared for genomic changes. METHODS Alterations in copy number and losses of heterozygosity (LOH) were detected by cytogenetic microarray analysis. Microsatellite instability (MSI) was detected by capillary gel electrophoresis of fluorescently labeled PCR products. RESULTS Control neutrophils and normal-density SLE neutrophils had similar levels of copy number variations, while the autologous SLE LDGs had an over twofold greater number of copy number alterations per genome. The additional copy number alterations found in LDGs were prevalent in six of the thirteen SLE patients, and occurred preferentially on chromosome 19, 17, 8, and X. These same SLE patients also displayed an increase in LOH. Several SLE patients had a common LOH on chromosome 5q that includes several cytokine genes and a DNA repair enzyme. In addition, three SLE patients displayed MSI. Two patients displayed MSI in greater than one marker, and one patient had MSI and increased copy number alterations. No correlations between genomic instability and immunosuppressive drugs, disease activity or disease manifestations were apparent. CONCLUSIONS The increased level of copy number alterations and LOH in the LDG samples relative to autologous normal-density SLE neutrophils suggests somatic alterations that are consistent with DNA strand break repair, while MSI suggests a replication error-prone status. Thus, the LDGs isolated have elevated levels of somatic alterations that are consistent with genetic damage or genomic instability. This suggests that the LDGs in adult SLE patients are derived from cell progenitors that are distinct from the autologous normal-density neutrophils, and may reflect a role for genomic instability in the disease.
Collapse
Affiliation(s)
- Namrata Singh
- />Section of Rheumatology, Temple University, 3322 North Broad Street, Philadelphia, PA 19140 USA
| | - Pamela Traisak
- />Section of Rheumatology, Temple University, 3322 North Broad Street, Philadelphia, PA 19140 USA
| | - Kayla A Martin
- />Department of Microbiology and Immunology, Temple University, 3500 North Broad Street, Philadelphia, PA 19140 USA
| | - Mariana J Kaplan
- />Systemic Autoimmunity Branch, Intramural Research Program, NIAMS/NIH, 10 Center Drive, Bethesda, MD 20892 USA
| | - Philip L Cohen
- />Section of Rheumatology, Temple University, 3322 North Broad Street, Philadelphia, PA 19140 USA
- />Department of Microbiology and Immunology, Temple University, 3500 North Broad Street, Philadelphia, PA 19140 USA
- />Temple Autoimmunity Center, Temple University, 3500 North Broad Street, Philadelphia, PA 19140 USA
| | - Michael F Denny
- />Section of Rheumatology, Temple University, 3322 North Broad Street, Philadelphia, PA 19140 USA
- />Department of Microbiology and Immunology, Temple University, 3500 North Broad Street, Philadelphia, PA 19140 USA
- />Temple Autoimmunity Center, Temple University, 3500 North Broad Street, Philadelphia, PA 19140 USA
| |
Collapse
|
35
|
Michiels JJ, Berneman Z, Schroyens W, De Raeve H. Changing concepts of diagnostic criteria of myeloproliferative disorders and the molecular etiology and classification of myeloproliferative neoplasms: from Dameshek 1950 to Vainchenker 2005 and beyond. Acta Haematol 2014; 133:36-51. [PMID: 25116092 DOI: 10.1159/000358580] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 01/10/2014] [Indexed: 12/23/2022]
Abstract
The Polycythemia Vera Study Group (PVSG) and WHO classifications distinguished the Philadelphia (Ph(1)) chromosome-positive chronic myeloid leukemia from the Ph(1)-negative myeloproliferative neoplasms (MPN) essential thrombocythemia (ET), polycythemia vera (PV) and primary myelofibrosis (MF) or primary megakaryocytic granulocytic myeloproliferation (PMGM). Half of PVSG/WHO-defined ET patients show low serum erythropoietin levels and carry the JAK2(V617F) mutation, indicating prodromal PV. The positive predictive value of a JAK2(V617F) PCR test is 95% for the diagnosis of PV, and about 50% for ET and MF. The WHO-defined JAK2(V617F)-positive ET comprises three ET phenotypes at clinical and bone marrow level when the integrated WHO and European Clinical, Molecular and Pathological (ECMP) criteria are applied: normocellular ET (WHO-ET), hypercellular ET due to increased erythropoiesis (prodromal PV) and hypercellular ET associated with megakaryocytic granulocytic myeloproliferation (EMGM). Four main molecular types of clonal MPN can be distinguished: JAK2(V617F)-positive ET and PV; JAK2 wild-type ET carrying the MPL(515); mutations in the calreticulin (CALR) gene in JAK2/MPL wild-type ET and MF, and a small proportion of JAK2/MPL/CALR wild-type ET and MF patients. The JAK2(V617F) mutation load is low in heterozygous normocellular WHO-ET. The JAK2(V617F) mutation load in hetero-/homozygous PV and EMGM is clearly related to MPN disease burden in terms of splenomegaly, constitutional symptoms and fibrosis. The JAK2 wild-type ET carrying the MPL(515) mutation is featured by clustered small and giant megakaryocytes with hyperlobulated stag-horn-like nuclei, in a normocellular bone marrow (WHO-ET), and lacks features of PV. JAK2/MPL wild-type, CALR mutated hypercellular ET associated with PMGM is featured by dense clustered large immature dysmorphic megakaryocytes and bulky (cloud-like) hyperchromatic nuclei, which are never seen in WHO-ECMP-defined JAK2(V617F) mutated ET, EMGM and PV, and neither in JAK2 wild-type ET carrying the MPL(515) mutation. Two thirds of JAK2/MPL wild-type ET and MF patients carry one of the CALR mutations as the cause of the third distinct MPN entity. WHO-ECMP criteria are recommended to diagnose, classify and stage the broad spectrum of MPN of various molecular etiologies.
Collapse
|
36
|
JAK2V617F homozygosity drives a phenotypic switch in myeloproliferative neoplasms, but is insufficient to sustain disease. Blood 2014; 123:3139-51. [DOI: 10.1182/blood-2013-06-510222] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Key Points
JAK2V617F homozygosity drives a phenotypic switch between myeloproliferative neoplasms. JAK2V617F homozygosity is insufficient to sustain clonal expansion.
Collapse
|
37
|
Payzin KB, Savasoglu K, Alacacioglu I, Ozdemirkiran F, Mutlu BB, Bener S, Calli AO, Kucukzeybek BB, Aksun S. JAK2 V617F mutation status of 232 patients diagnosed with chronic myeloproliferative neoplasms. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2014; 14:525-33. [PMID: 24811089 DOI: 10.1016/j.clml.2014.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 02/19/2014] [Accepted: 02/24/2014] [Indexed: 01/30/2023]
Abstract
INTRODUCTION/BACKGROUND The aim of this study was to investigate the presence of Janus kinase 2 (JAK2) V617F mutation in patients with break point cluster region-abelson negative chronic myeloproliferative neoplasms (CMPNs) in our center. PATIENTS AND METHODS We compared patients with and without the mutation, and also patients with the homozygous and heterozygous mutation, in terms of different clinical and laboratory features. RESULTS The JAK2 V617F mutation was detected in 77 (95%), 88 (68%), and 17 (77%) of polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF) patients, respectively. Among JAK2 V617F-positive patients, the homozygous genotype was found in 39 (50.6%) of the 77 PV, 23 (26.1%) of the 88 ET, and 11 (64.7%) of the 17 PMF patients. Bleeding was seen in 14 (6%) of all patients. Upper gastrointestinal bleeds were the most common, seen in 11 patients. Out of 232 CMPN patients, 44 (19%) had thrombosis. The most common thrombotic event was transient ischemic attack (52%). Progression to myelofibrosis was seen in 1 (1.2%) PV and 3 (2.3%) ET patients, and progression to acute leukemia was seen in 2 (2.5%) PV and 3 (2.3%) ET patients. Three patients with PV (3.7%), 3 with ET (2.7%), and 5 with PMF (2.7%) died during follow-up. CONCLUSION JAK2 V617F mutation frequencies in our PV and ET patients were similar to those reported previously. JAK2 V617F mutation frequency in our PMF patients was greater than in previous reports. All of our PV patients with thrombosis and most of our ET patients with thrombosis (76.1%) were JAK2 V617F mutation-positive. This mutation seems to be correlated with thrombosis risk.
Collapse
Affiliation(s)
- Kadriye Bahriye Payzin
- Division of Hematology, Department of Internal Medicine, Ataturk Training Hospital, Izmir, Turkey.
| | - Kaan Savasoglu
- Medical Genetics Laboratory, Ataturk Training Hospital, Izmir, Turkey
| | - Inci Alacacioglu
- Department of Hematology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Fusun Ozdemirkiran
- Division of Hematology, Department of Internal Medicine, Ataturk Training Hospital, Izmir, Turkey
| | | | - Sadi Bener
- Department of Pathology, Ataturk Training Hospital, Izmir, Turkey
| | | | | | - Saliha Aksun
- Department of Biochemistry, Ataturk Training Hospital, Izmir, Turkey
| |
Collapse
|
38
|
Alvarez-Larrán A, Bellosillo B, Pereira A, Kerguelen A, Carlos Hernández-Boluda J, Martínez-Avilés L, Fernández-Rodríguez C, Gómez M, Lombardía L, Angona A, Ancochea Á, Senín A, Longarón R, Navarro B, Collado M, Besses C. JAK2V617F monitoring in polycythemia vera and essential thrombocythemia: clinical usefulness for predicting myelofibrotic transformation and thrombotic events. Am J Hematol 2014; 89:517-23. [PMID: 24458835 DOI: 10.1002/ajh.23676] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 01/20/2014] [Accepted: 01/20/2014] [Indexed: 01/30/2023]
Abstract
The JAK2V617F allele burden has been identified as a risk factor for vascular events and myelofibrotic transformation in polycythemia vera (PV) and essential thrombocythemia (ET). However, all previous studies have evaluated a single time point JAK2V617F measurement. Therefore, the frequency and the clinical significance of changes in the JAK2V617F mutant load occurring during the disease evolution remain unknown. In the present study, JAK2V617F monitoring was performed during the follow-up of 347 patients (PV = 163, ET = 184). According to their JAK2V617F evolutionary patterns, patients were stratified as stable < 50% (n = 261), stable ≥50% (n = 52), progressive increase (n = 24) and unexplained decrease (n = 10). After a 2,453 person-years follow-up, a total of 59 thrombotic events, 16 major hemorrhages, and 27 cases of myelofibrotic transformations were registered. At multivariate analyses, patients with a persistently high (≥50%) or unsteady JAK2V617F load during follow-up had an increased risk of myelofibrotic transformation (Incidence rate ratio [IRR]: 20.7, 95% CI: 6.5-65.4; P < 0.001) and a trend for a higher incidence of thrombosis (IRR: 1.7, 1-3.3; P = 0.05) than patients with a stable allele burden below 50%. In conclusion, JAK2V617F monitoring could be useful in patients with PV and ET for predicting disease's complications, especially myelofibrotic transformation.
Collapse
Affiliation(s)
| | - Beatriz Bellosillo
- Pathology Department; Hospital del Mar, Universitat Autònoma de Barcelona; Barcelona
| | - Arturo Pereira
- Hemotherapy and Hemostasis Department; Hospital Clínic, Universitat de Barcelona; Barcelona
| | | | | | - Luz Martínez-Avilés
- Pathology Department; Hospital del Mar, Universitat Autònoma de Barcelona; Barcelona
| | | | - Montse Gómez
- Hematology and Medical Oncology Department; Hospital Clínico Universitario; Valencia
| | - Luis Lombardía
- Molecular Laboratory; Centro Nacional de Investigaciones Oncológicas; Madrid
| | - Anna Angona
- Hematology Department; Hospital del Mar, Universitat Autònoma de Barcelona; Barcelona
| | - Águeda Ancochea
- Hematology Department; Hospital del Mar, Universitat Autònoma de Barcelona; Barcelona
| | - Alicia Senín
- Hematology Department; Hospital del Mar, Universitat Autònoma de Barcelona; Barcelona
| | - Raquel Longarón
- Pathology Department; Hospital del Mar, Universitat Autònoma de Barcelona; Barcelona
| | - Blanca Navarro
- Hematology and Medical Oncology Department; Hospital Clínico Universitario; Valencia
| | - María Collado
- Hematology and Medical Oncology Department; Hospital Clínico Universitario; Valencia
| | - Carlos Besses
- Hematology Department; Hospital del Mar, Universitat Autònoma de Barcelona; Barcelona
| |
Collapse
|
39
|
Hexner E, Roboz G, Hoffman R, Luger S, Mascarenhas J, Carroll M, Clementi R, Bensen-Kennedy D, Moliterno A. Open-label study of oral CEP-701 (lestaurtinib) in patients with polycythaemia vera or essential thrombocythaemia withJAK2-V617F mutation. Br J Haematol 2013; 164:83-93. [DOI: 10.1111/bjh.12607] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 08/29/2013] [Indexed: 11/30/2022]
Affiliation(s)
| | - Gail Roboz
- Weill Cornell Medical College; New York NY USA
| | - Ron Hoffman
- Mount Sinai School of Medicine; Tisch Cancer Institute; New York NY USA
| | | | - John Mascarenhas
- Mount Sinai School of Medicine; Tisch Cancer Institute; New York NY USA
| | | | - Regina Clementi
- Teva Branded Pharmaceutical Products R&D, Inc.; Frazer PA USA
| | - Debra Bensen-Kennedy
- Cephalon, Inc., now a wholly owned subsidiary of Teva Branded Pharmaceutical Products R&D, Inc.; Frazer PA USA
| | | |
Collapse
|
40
|
Kent DG, Li J, Tanna H, Fink J, Kirschner K, Pask DC, Silber Y, Hamilton TL, Sneade R, Simons BD, Green AR. Self-renewal of single mouse hematopoietic stem cells is reduced by JAK2V617F without compromising progenitor cell expansion. PLoS Biol 2013; 11:e1001576. [PMID: 23750118 PMCID: PMC3672217 DOI: 10.1371/journal.pbio.1001576] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 04/23/2013] [Indexed: 01/23/2023] Open
Abstract
In this study, single cell assays and mathematical modeling demonstrate that a single oncogenic point mutation can negatively affect hematopoietic stem cells while leaving progenitor cell expansion intact. Recent descriptions of significant heterogeneity in normal stem cells and cancers have altered our understanding of tumorigenesis, emphasizing the need to understand how single stem cells are subverted to cause tumors. Human myeloproliferative neoplasms (MPNs) are thought to reflect transformation of a hematopoietic stem cell (HSC) and the majority harbor an acquired V617F mutation in the JAK2 tyrosine kinase, making them a paradigm for studying the early stages of tumor establishment and progression. The consequences of activating tyrosine kinase mutations for stem and progenitor cell behavior are unclear. In this article, we identify a distinct cellular mechanism operative in stem cells. By using conditional knock-in mice, we show that the HSC defect resulting from expression of heterozygous human JAK2V617F is both quantitative (reduced HSC numbers) and qualitative (lineage biases and reduced self-renewal per HSC). The defect is intrinsic to individual HSCs and their progeny are skewed toward proliferation and differentiation as evidenced by single cell and transplantation assays. Aged JAK2V617F show a more pronounced defect as assessed by transplantation, but mice that transform reacquire competitive self-renewal ability. Quantitative analysis of HSC-derived clones was used to model the fate choices of normal and JAK2-mutant HSCs and indicates that JAK2V617F reduces self-renewal of individual HSCs but leaves progenitor expansion intact. This conclusion is supported by paired daughter cell analyses, which indicate that JAK2-mutant HSCs more often give rise to two differentiated daughter cells. Together these data suggest that acquisition of JAK2V617F alone is insufficient for clonal expansion and disease progression and causes eventual HSC exhaustion. Moreover, our results show that clonal expansion of progenitor cells provides a window in which collaborating mutations can accumulate to drive disease progression. Characterizing the mechanism(s) of JAK2V617F subclinical clonal expansions and the transition to overt MPNs will illuminate the earliest stages of tumor establishment and subclone competition, fundamentally shifting the way we treat and manage cancers. Recent descriptions of the existence of significant heterogeneity in normal stem cells and cancers have altered our understanding of tumorigenesis, emphasizing the need to understand how single stem cells are subverted to cause tumours. In this study, we focus on understanding the stem cell defect that results from a mutation in the JAK2 tyrosine kinase gene, which is present in the majority of patients with myeloproliferative neoplasms (MPNs), a group of clonal bone marrow diseases that are characterised by the overproduction of mature blood cells and increased frequency of leukaemia development. By using single-cell assays and mathematical modeling, followed by the individual assessment of daughter cells from single HSCs, we identify a distinct cellular mechanism that differentially affects stem cell and progenitor cell expansion. Specifically, we show that this single point mutation can negatively affect HSCs while leaving progenitor cell expansion intact. Characterising the mechanisms that link JAK2 mutations with clonal expansions that eventually lead to development of MPNs will inform our understanding of the earliest stages of tumour establishment and of the competition between subclones of proliferating progenitor/stem cells. These findings have direct relevance to all cancers of a suspected stem cell origin.
Collapse
Affiliation(s)
- David G. Kent
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Juan Li
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Hinal Tanna
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Juergen Fink
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Kristina Kirschner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Dean C. Pask
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Yvonne Silber
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Tina L. Hamilton
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Rachel Sneade
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Benjamin D. Simons
- Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom
| | - Anthony R. Green
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, Addenbrooke's Hospital, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
41
|
Kaeda J, Bonamino M, Ayres-Silva J, Solza C, Ringel F, Blau O, Daumas A, Oberender C, Dörken B, le Coutre P, Zalcberg I. JAK2 V617F allele burden quantified by real time quantitative polymerase chain reaction and competitive polymerase chain reaction in patients with chronic myeloproliferative neoplasia. Leuk Lymphoma 2013; 55:128-35. [PMID: 23607255 DOI: 10.3109/10428194.2013.797085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Assessing the clinical significance of JAK2 V617F mutant allele burden is complicated by a myriad of techniques reported to detect and quantify the mutation. As a consequence, the level of sensitivity and how the data is reported vary. Harmonization of well-defined molecular studies would permit evaluation of the clinical significance of measuring allele burden and rapid determination of the efficacy of novel agents for the treatment of chronic myeloproliferative neoplasia via multicenter clinical trials, at the subclinical level. Here we report a comparison between the widely available TaqMan quantitative real time polymerase chain reaction (Q-PCR) and competitive PCR (C-PCR) assays. We found that the tumor load was invariably greater when measured by C-PCR compared to that recorded by Q-PCR. Furthermore, none of the samples converted from undetectable to detectable when the enriched granulocyte (GR) fraction was tested. While a difference in the V617F allele levels was detected between GR fraction and whole blood, this was not statistically significant.
Collapse
Affiliation(s)
- Jaspal Kaeda
- Medizinische Klinik m.S. Hämatologie und Onkologie, Charité Campus Virchow Klinikum , Berlin , Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The identification of Jak2(V617F) mutations in more than 90% of patients with polycythemia vera (PV) has greatly improved the diagnostic accuracy for this uncommon myeloproliferative disorder. Although previous cases of presumptive PV in patients with hereditary spherocytosis (HS) have been described, these earlier reports either preceded the establishment of widely accepted criteria for the diagnosis of PV or lacked definitive studies to rule out secondary causes of polycythemia. In contrast, the author describes here a novel case of PV confirmed at the molecular level in a patient with hereditary spherocytosis by the finding of a Jak2(V617F) mutation. Based on recent advances in understanding the role of Jak2 signaling in the pathogenesis of PV, the author proposes 2 independent biological mechanisms that could account for more than a chance association of these 2 disorders.
Collapse
|
43
|
|
44
|
Abstract
The chronic myeloproliferative neoplasms (MPN), including polycythaemia vera (PV), essential thrombocythaemia (ET) and primary myelofibrosis (PMF), are clonal stem cell disorders characterized by dysregulated haematopoietic stem cell expansion and production of red cells, white cells and platelets alone or in combination. An acquired mutation JAK2(V617F) can be found in all three disorders and shows many of the phenotypic abnormalities of the diseases in murine models. The disease phenotype is also influenced by other unknown genetic or epigenetic factors. MicroRNAs (miRNA) are 18-24 nucleotide single-stranded non-protein-coding RNAs that function primarily as gene repressors by binding to their target messenger RNAs. There is growing evidence that miRNAs regulate haematopoiesis in both haematopoietic stem cells and committed progenitor cells. Here, we review the field of miRNA biology and its regulatory roles in normal haematopoiesis with an emphasis on miRNA deregulations in MPNs. Continued research into how miRNAs impact JAK2(V617F) clonal expansion, differential haematopoiesis among different MPNs, disease progression and leukaemia transformation will lead to a better understanding of the development of these disorders, their clinical manifestations, and their treatment.
Collapse
Affiliation(s)
- Huichun Zhan
- James J. Peters VA Medical Center, Bronx, NY 10468, USA.
| | | | | |
Collapse
|
45
|
Kalota A, Jeschke GR, Carroll M, Hexner EO. Intrinsic resistance to JAK2 inhibition in myelofibrosis. Clin Cancer Res 2013; 19:1729-39. [PMID: 23386690 DOI: 10.1158/1078-0432.ccr-12-1907] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE Recent results have shown that myeloproliferative neoplasms (MPN) are strongly associated with constitutive activation of the Janus-activated kinase (JAK)2 tyrosine kinase. However, JAK2 inhibitors currently approved or under development for treating myeloproliferative neoplasms do not selectively deplete the malignant clone, and the inhibition of activity of the drug target (JAK2) has not been rigorously evaluated in the clinical studies. Therefore, in this study we developed an in vitro assay to gain insight into how effectively JAK2 activity is inhibited in the samples of patients. EXPERIMENTAL DESIGN We treated primary cells from normal donors and patients with MPN with JAK2 inhibitors and measured phosphorylation of downstream targets STAT5 and STAT3 by flow cytometry. Obtained results were next correlated with JAK2 V617F allele burden and plasma cytokine level. RESULTS We observed a dose-dependent decrease in pSTAT5 and pSTAT3 in ex vivo treated granulocytes. However, phosphorylation of STAT3 and STAT5 in cells from patients with myelofibrosis was significantly less inhibited when compared with cells from patients with polycythemia vera, essential thrombocythemia, and normal donors. Sensitivity to inhibition did not correlate with JAK2 V617F clonal burden. Mixing studies using plasma from patients with myelofibrosis did not transfer resistance to sensitive cells. Likewise, no single cytokine measured seemed to account for the observed pattern of resistance. CONCLUSIONS Taken together, these observations suggest that there are cell intrinsic mechanisms that define a priori resistance to JAK2 inhibition in myelofibrosis, and the lesion is localized upstream of STAT3 and STAT5.
Collapse
Affiliation(s)
- Anna Kalota
- Division of Hematology and Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
46
|
Nischal S, Bhattacharyya S, Christopeit M, Yu Y, Zhou L, Bhagat T, Sohal D, Will B, Mo Y, Suzuki M, Pardanani A, McDevitt M, Maciejewski JP, Melnick AM, Greally J, Steidl U, Moliterno A, Verma A. Methylome profiling reveals distinct alterations in phenotypic and mutational subgroups of myeloproliferative neoplasms. Cancer Res 2013; 73:1076-85. [PMID: 23066032 PMCID: PMC5500294 DOI: 10.1158/0008-5472.can-12-0735] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Even though mutations in epigenetic regulators frequently occur in myeloproliferative neoplasms, their effects on the epigenome have not been well studied. Furthermore, even though primary myelofibrosis (PMF) has a markedly worse prognosis than essential thrombocytosis or polycythemia vera, the molecular distinctions between these subgroups are not well elucidated. We conducted the HELP (HpaII tiny fragment enriched by LM-PCR) assay to study genome-wide methylation in polycythemia vera, essential thrombocytosis, and PMF samples compared with healthy controls. We determined that polycythemia vera and essential thrombocytosis are characterized by aberrant promoter hypermethylation, whereas PMF is an epigenetically distinct subgroup characterized by both aberrant hyper- and hypomethylation. Aberrant hypomethylation in PMF was seen to occur in non-CpG island loci, showing further qualitative differences between the disease subgroups. The differentially methylated genes in polycythemia vera and essential thrombocytosis were involved predominantly in cell signaling pathways and were enriched for binding sites of GATA1 and other transcription factors. In contrast, aberrantly methylated genes in PMF were involved in inflammatory pathways and were enriched for NF1, LEF1, and other transcription factors. Within the PMF subgroup, cases with ASXL1 disruptions formed an epigenetically distinct subgroup with relatively increased methylation. Cases of myeloproliferative neoplasms (MPN) with TET2 mutations showed decreased levels of hydroxymethylation and distinct set of hypermethylated genes. In contrast, the JAK2V617F mutation did not drive epigenetic clustering within MPNs. Finally, the significance of aberrant methylation was shown by sensitivity of MPN-derived cell lines to decitabine. These results show epigenetic differences between PMF and polycythemia vera/essential thrombocytosis and reveal methylomic signatures of ASXL1 and TET2 mutations.
Collapse
Affiliation(s)
| | | | | | - Yiting Yu
- Albert Einstein College of Medicine, Bronx, NY
| | - Li Zhou
- Albert Einstein College of Medicine, Bronx, NY
| | | | | | - Britta Will
- Albert Einstein College of Medicine, Bronx, NY
| | - Yongkai Mo
- Albert Einstein College of Medicine, Bronx, NY
| | | | | | | | | | | | | | | | | | - Amit Verma
- Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
47
|
Zhan H, Cardozo C, Yu W, Wang A, Moliterno AR, Dang CV, Spivak JL. MicroRNA deregulation in polycythemia vera and essential thrombocythemia patients. Blood Cells Mol Dis 2012; 50:190-5. [PMID: 23265742 DOI: 10.1016/j.bcmd.2012.11.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 11/20/2012] [Accepted: 11/20/2012] [Indexed: 11/26/2022]
Abstract
Polycythemia vera (PV) and essential thrombocythemia (ET) are the two most common myeloproliferative neoplasms. The same JAK2(V617F) mutation can be found in both disorders and is able to recapitulate many of the phenotypic abnormalities of these diseases in the murine models. The disease phenotype is also influenced by other unknown genetic or epigenetic factors. MicroRNAs (miRNA) are 18-24 nucleotides single-stranded non-protein-coding RNAs that function primarily as gene repressors by binding to their target messenger RNAs. We performed miRNA expression profiling by oligonucleotide microarray analysis in purified peripheral blood CD34+ cells from eight JAK2(V617F)-positive PV patients and six healthy donors. A quantitative reverse-transcription polymerase chain reaction assay was used to verify differential miRNA expression. Since erythrocytosis is the only feature that distinguishes PV from ET, we also compared specific miRNA expression in the nucleated erythroid cells directly descended from the early erythroid progenitor cells of PV and ET patients. Our data indicate that significant miRNA deregulation occurs in PV CD34+ cells and confirm a genetic basis for the gender-specific differences that characterize PV with respect to miRNA. The results of our study also suggest that deregulated miRNAs may represent an important mechanism by which the PV erythrocytosis and ET thrombocytosis phenotypes are determined.
Collapse
Affiliation(s)
- Huichun Zhan
- James J. Peters VA Medical Center, Bronx, NY 10468, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Abstract
The discovery of the JAK2V617F mutation triggered an unexpected flowering of basic and clinical studies in the field of myeloproliferative neoplasms (MPNs), resulting after just a few years in an exceptional amount of new information. One important consequence of those new findings was the modification of the World Health Organization classification and diagnostic algorithms for these diseases, which is still based on the original concept developed by William Dameshek in 1951 and keeps distinct entities under the umbrella of classical Philadelphia-negative MPNs. These MPNs are essential thrombocythemia, polycythemia vera, and primary myelofibrosis. Could a new molecular classification be a better tool to manage MPN patients? Several studies have shown that essential thrombocythemia and primary myelofibrosis can be divided into distinct subtypes based on the presence of the JAK2V617F mutation. Can we now define JAK2-positive diseases to depict a distinct entity from JAK2-negative MPNs? This chapter reviews the significance of JAK2 mutation positivity in the diagnosis, prognosis, and therapy of MPNs.
Collapse
|
49
|
Abstract
Abstract
The ATP-binding pocket of the kinase domain of JAK2 is the major target of the present treatment of myeloproliferative neoplasms. Several inhibitors of JAK2 that are ATP competitive have been developed, but they do not discriminate between wild-type and mutant JAK2. These inhibitors have been used in myelofibrosis and, for the first time, treatment induced a reduction in spleen size and in constitutional symptoms. However, no dramatic effects on BM fibrosis, allele burden, or peripheral blast numbers were observed. These data indicate that other avenues should be explored that would either target mutant molecules (JAKs or receptors) more specifically and spare wild-type JAK2 or that would address other pathways that contribute to the malignant proliferation. Future success in treating myeloproliferative neoplasms will depend on advances of the understanding of JAK-STAT signaling and also on a better understanding of the disease pathogenesis, especially the role that mutants in spliceosome factors and epigenetic regulators play in the phenotype of the disease and the precise mechanism of fibrosis development.
Collapse
|
50
|
Abstract
The chronic myeloproliferative neoplasms (MPNs) are clonal disorders characterized by overproduction of mature myeloid cells. They share associations with molecular abnormalities such as the JAK2V617F mutation but are distinguished by important phenotypic differences. This review first considers the factors that may influence phenotype in JAK2-mutated MPNs, especially polycythemia vera (PV) and essential thrombocythemia (ET), and then discusses the mutations implicated in JAK2-negative MPNs such as in MPL and epigenetic regulators. Current evidence supports a model where ET and PV are disorders of relatively low genetic complexity, whereas evolution to myelofibrosis or blast-phase disease reflects accumulation of a higher mutation burden.
Collapse
|