1
|
Kongkiatkamon S, Niparuck P, Rattanathammethee T, Kobbuaklee S, Suksusut A, Wudhikarn K, Ittiwut C, Chetruengchai W, Chuncharunee S, Bunworasate U, Suphapeetiporn K, Rojnuckarin P, Polprasert C. Prevalence and clinical outcomes of germline variants among patients with myeloid neoplasms. J Clin Pathol 2025; 78:259-265. [PMID: 38777570 DOI: 10.1136/jcp-2023-209264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
AIMS Myeloid neoplasms (MNs) with germline predisposition have been recognised as a distinct entity. Emerging evidence suggests that sporadic myelodysplastic syndromes may also harbour undetected germline predispositions. We investigated germline alterations in a cohort of 122 adult Thai MNs. METHODS MN patients were recruited and tested for germline variants using deep targeted next-generation sequencing. The germline variant was filtered using American College of Medical Genetics classifications and then evaluated for the association with clinical characteristics and outcomes. RESULTS Our findings revealed pathogenic/likely pathogenic germline alterations in 12 (10%) of the patients. These germline lesions were commonly found in the DNA damage response pathway (n=6, 50%). We also identified novel deleterious FANCA A1219GfsTer59 variants in two patients diagnosed with secondary acute myeloid leukaemia (sAML) from aplastic anaemia and AML with myelodysplasia related. Among sAML, individuals with germline mutations had inferior overall survival compared with those with wild-type alleles (2 months vs 12 months) with HR 4.7 (95% CI 1.0 to 20), p=0.037. Therefore, the presence of pathogenic or likely pathogenic mutations may be linked to inferior survival outcomes. CONCLUSIONS Our study highlighted that the prevalence of germline predisposition in Southeast Asian populations is comparable to that in Caucasians. This underscores the importance of germline genetic testing within the Asian population.
Collapse
Affiliation(s)
- Sunisa Kongkiatkamon
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Translational Hematology, Chulalongkorn University, Bangkok, Thailand
| | - Pimjai Niparuck
- Department of Medicine, Faculty of Medicine, Mahidol University Ramathibodi Hospital, Bangkok, Thailand
| | | | - Sirorat Kobbuaklee
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Translational Hematology, Chulalongkorn University, Bangkok, Thailand
| | - Amornchai Suksusut
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Translational Hematology, Chulalongkorn University, Bangkok, Thailand
| | - Kitsada Wudhikarn
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Translational Hematology, Chulalongkorn University, Bangkok, Thailand
| | - Chupong Ittiwut
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics,Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| | - Wanna Chetruengchai
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics,Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| | - Suporn Chuncharunee
- Department of Medicine, Faculty of Medicine, Mahidol University Ramathibodi Hospital, Bangkok, Thailand
| | - Udomsak Bunworasate
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Translational Hematology, Chulalongkorn University, Bangkok, Thailand
| | - Kanya Suphapeetiporn
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics,Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| | - Ponlapat Rojnuckarin
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Translational Hematology, Chulalongkorn University, Bangkok, Thailand
| | - Chantana Polprasert
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Translational Hematology, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Than H, Fan X, Cheung AMS, Hwang WYK, Poon Z. Rapid disease progression of myelodysplastic syndrome is reflected in transcriptomic and functional abnormalities of bone marrow mesenchymal stromal cells. Stem Cells 2025; 43:sxae073. [PMID: 39541184 DOI: 10.1093/stmcls/sxae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Bone marrow (BM) mesenchymal stromal cells (MSCs) are important regulators of hematopoietic stem and progenitor cells (HSPCs). When transformed into a dysplastic phenotype, MSCs contribute to hematopoietic diseases such as myelodysplastic syndromes (MDS), but it remains unclear if there are specific properties in MDS-MSCs that contribute to the disease course. To understand this, we investigated MDS-MSCs from fast (MDSfast) vs slow (MDSslow) progressing disease groups and discovered differences between these groups. MDSfast-MSCs secrete more inflammatory factors, support myeloid-skewed differentiation of HSPCs, and importantly, show poorer response to hypomethylation as a key differentiator in GSEA analysis. When exposed to long-term in vivo stimulation with primary MDSfast-MSCs-based scaffolds, healthy donor (HD) HSPCs show elevated NF-κB expression, similar to leukemic HSPCs in MDS. Those "MDSfast-MSCs-primed" HD-HSPCs continue to show enhanced engraftment rates in secondary MDS-MSC-based scaffolds, providing evidence for the microenvironmental selection pressures in MDS toward leukemic HSPCs. Together, our data point toward a degree of co-development between MSCs and HSPCs during the progression of MDS, where changes in MDS-MSCs take place mainly at the transcriptomic and functional levels. These unique differences in MDS-MSCs can be utilized to improve disease prognostication and implement targeted therapy for unmet clinical needs.
Collapse
Affiliation(s)
- Hein Than
- Department of Hematology, Singapore General Hospital, Singapore 169608
- Duke-NUS Medical School, National University of Singapore, Singapore 169857
- Department of Hematology, National Cancer Center, Singapore 168583
| | - Xiubo Fan
- Duke-NUS Medical School, National University of Singapore, Singapore 169857
- Department of Clinical Translational Research, Singapore General Hospital, Singapore 169608
| | - Alice M S Cheung
- Department of Hematology, Singapore General Hospital, Singapore 169608
- Duke-NUS Medical School, National University of Singapore, Singapore 169857
| | - William Y K Hwang
- Department of Hematology, Singapore General Hospital, Singapore 169608
- Duke-NUS Medical School, National University of Singapore, Singapore 169857
- Department of Hematology, National Cancer Center, Singapore 168583
| | - Zhiyong Poon
- Duke-NUS Medical School, National University of Singapore, Singapore 169857
- Department of Clinical Translational Research, Singapore General Hospital, Singapore 169608
| |
Collapse
|
3
|
Arai H, Matsui H, Chi S, Utsu Y, Masuda S, Aotsuka N, Minami Y. Germline Variants and Characteristic Features of Hereditary Hematological Malignancy Syndrome. Int J Mol Sci 2024; 25:652. [PMID: 38203823 PMCID: PMC10779750 DOI: 10.3390/ijms25010652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Due to the proliferation of genetic testing, pathogenic germline variants predisposing to hereditary hematological malignancy syndrome (HHMS) have been identified in an increasing number of genes. Consequently, the field of HHMS is gaining recognition among clinicians and scientists worldwide. Patients with germline genetic abnormalities often have poor outcomes and are candidates for allogeneic hematopoietic stem cell transplantation (HSCT). However, HSCT using blood from a related donor should be carefully considered because of the risk that the patient may inherit a pathogenic variant. At present, we now face the challenge of incorporating these advances into clinical practice for patients with myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) and optimizing the management and surveillance of patients and asymptomatic carriers, with the limitation that evidence-based guidelines are often inadequate. The 2016 revision of the WHO classification added a new section on myeloid malignant neoplasms, including MDS and AML with germline predisposition. The main syndromes can be classified into three groups. Those without pre-existing disease or organ dysfunction; DDX41, TP53, CEBPA, those with pre-existing platelet disorders; ANKRD26, ETV6, RUNX1, and those with other organ dysfunctions; SAMD9/SAMD9L, GATA2, and inherited bone marrow failure syndromes. In this review, we will outline the role of the genes involved in HHMS in order to clarify our understanding of HHMS.
Collapse
Affiliation(s)
- Hironori Arai
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (H.A.); (S.C.)
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Hirotaka Matsui
- Department of Laboratory Medicine, National Cancer Center Hospital, Tsukiji, Chuoku 104-0045, Japan;
- Department of Medical Oncology and Translational Research, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8665, Japan
| | - SungGi Chi
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (H.A.); (S.C.)
| | - Yoshikazu Utsu
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Shinichi Masuda
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Nobuyuki Aotsuka
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (H.A.); (S.C.)
| |
Collapse
|
4
|
Babcock S, Calvo KR, Hasserjian RP. Pediatric myelodysplastic syndrome. Semin Diagn Pathol 2023; 40:152-171. [PMID: 37173164 DOI: 10.1053/j.semdp.2023.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Affiliation(s)
| | - Katherine R Calvo
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
5
|
Liu Z, Xu X, Zheng L, Ding K, Yang C, Huang J, Fu R. The value of serum IL-4 to predict the survival of MDS patients. Eur J Med Res 2023; 28:7. [PMID: 36600245 PMCID: PMC9811803 DOI: 10.1186/s40001-022-00948-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Immune indicators are routinely used for the detection of myelodysplastic syndrome (MDS), but these are not utilized as a reference indicator to assess prognosis in MDS-related prognostic evaluation systems, such as the World Health Organizational prognostic scoring system, the international prostate symptom score, and the revised international prostate symptom score. METHODS We examined immune indicators, including cluster of differentiation (CD)3, CD4, CD8, CD56, CD19, interleukin (IL)-2, IL-4, IL-6, IL-10, tumor necrosis factor-a, and interferon-γ in 155 newly diagnosed MDS patients. We also conducted a correlation analysis with clinical indices. RESULTS IL-4 was found to be a predictor of survival in these 155 patients using the receiver operating characteristic curve, with 5.155 as the cut-off point. Patients with serum IL-4 levels ≥ 5.155 had a lower overall survival (OS) than those with IL-45.155 at diagnosis. Furthermore, multivariate analysis revealed that IL-4 levels > 5.155 were an independent predictor of OS (hazard ratio: 0.237; 95% confidence interval, 0.114-0.779; P = 0.013). In addition, serum IL-4 expression in the three different scoring systems showed significant differences in the survival of medium- to high-risk MDS patients (P = 0.014, P < 0.001, P < 0.001). CONCLUSIONS According to our study, IL-4 levels at the time of diagnosis can predict MDS prognosis in patients as a simple index reflecting host systemic immunity.
Collapse
Affiliation(s)
- Zhaoyun Liu
- grid.412645.00000 0004 1757 9434Department of Hematology, Tianjin Medical University General Hospital, Tianjin, 300052 China
| | - Xintong Xu
- grid.412645.00000 0004 1757 9434Department of Hematology, Tianjin Medical University General Hospital, Tianjin, 300052 China
| | - Likun Zheng
- grid.412645.00000 0004 1757 9434Department of Hematology, Tianjin Medical University General Hospital, Tianjin, 300052 China
| | - Kai Ding
- grid.412645.00000 0004 1757 9434Department of Hematology, Tianjin Medical University General Hospital, Tianjin, 300052 China
| | - Chun Yang
- grid.412645.00000 0004 1757 9434Department of Hematology, Tianjin Medical University General Hospital, Tianjin, 300052 China
| | - Jincheng Huang
- grid.412645.00000 0004 1757 9434Department of Hematology, Tianjin Medical University General Hospital, Tianjin, 300052 China
| | - Rong Fu
- grid.412645.00000 0004 1757 9434Department of Hematology, Tianjin Medical University General Hospital, Tianjin, 300052 China
| |
Collapse
|
6
|
Huang YJ, Chen JY, Yan M, Davis AG, Miyauchi S, Chen L, Hao Y, Katz S, Bejar R, Abdel-Wahab O, Fu XD, Zhang DE. RUNX1 deficiency cooperates with SRSF2 mutation to induce multilineage hematopoietic defects characteristic of MDS. Blood Adv 2022; 6:6078-6092. [PMID: 36206200 PMCID: PMC9772487 DOI: 10.1182/bloodadvances.2022007804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/15/2022] [Accepted: 09/13/2022] [Indexed: 12/15/2022] Open
Abstract
Myelodysplastic syndromes (MDSs) are a heterogeneous group of hematologic malignancies with a propensity to progress to acute myeloid leukemia. Causal mutations in multiple classes of genes have been identified in patients with MDS with some patients harboring more than 1 mutation. Interestingly, double mutations tend to occur in different classes rather than the same class of genes, as exemplified by frequent cooccurring mutations in the transcription factor RUNX1 and the splicing factor SRSF2. This prototypic double mutant provides an opportunity to understand how their divergent functions in transcription and posttranscriptional regulation may be altered to jointly promote MDS. Here, we report a mouse model in which Runx1 knockout was combined with the Srsf2 P95H mutation to cause multilineage hematopoietic defects. Besides their additive and synergistic effects, we also unexpectedly noted a degree of antagonizing activity of single mutations in specific hematopoietic progenitors. To uncover the mechanism, we further developed a cellular model using human K562 cells and performed parallel gene expression and splicing analyses in both human and murine contexts. Strikingly, although RUNX1 deficiency was responsible for altered transcription in both single and double mutants, it also induced dramatic changes in global splicing, as seen with mutant SRSF2, and only their combination induced missplicing of genes selectively enriched in the DNA damage response and cell cycle checkpoint pathways. Collectively, these data reveal the convergent impact of a prototypic MDS-associated double mutant on RNA processing and suggest that aberrant DNA damage repair and cell cycle regulation critically contribute to MDS development.
Collapse
Affiliation(s)
- Yi-Jou Huang
- Moores Cancer Center, UC San Diego (UCSD), La Jolla, CA
- Department of Molecular Biology, UCSD, La Jolla, CA
| | - Jia-Yu Chen
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA
| | - Ming Yan
- Moores Cancer Center, UC San Diego (UCSD), La Jolla, CA
| | - Amanda G. Davis
- Moores Cancer Center, UC San Diego (UCSD), La Jolla, CA
- Department of Molecular Biology, UCSD, La Jolla, CA
| | | | - Liang Chen
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA
| | - Yajing Hao
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA
| | - Sigrid Katz
- Moores Cancer Center, UC San Diego (UCSD), La Jolla, CA
| | - Rafael Bejar
- Moores Cancer Center, UC San Diego (UCSD), La Jolla, CA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Xiang-Dong Fu
- Moores Cancer Center, UC San Diego (UCSD), La Jolla, CA
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA
| | - Dong-Er Zhang
- Moores Cancer Center, UC San Diego (UCSD), La Jolla, CA
- Department of Molecular Biology, UCSD, La Jolla, CA
- Department of Pathology, UC San Diego, La Jolla, CA
| |
Collapse
|
7
|
Rafat A, Dizaji Asl K, Mazloumi Z, Movassaghpour AA, Farahzadi R, Nejati B, Nozad Charoudeh H. Telomerase-based therapies in haematological malignancies. Cell Biochem Funct 2022; 40:199-212. [PMID: 35103334 DOI: 10.1002/cbf.3687] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/10/2022] [Indexed: 02/02/2023]
Abstract
Telomeres are specialized genetic structures present at the end of all eukaryotic linear chromosomes. They progressively get shortened after each cell division due to end replication problems. Telomere shortening (TS) and chromosomal instability cause apoptosis and massive cell death. Following oncogene activation and inactivation of tumour suppressor genes, cells acquire mechanisms such as telomerase expression and alternative lengthening of telomeres to maintain telomere length (TL) and prevent initiation of cellular senescence or apoptosis. Significant TS, telomerase activation and alteration in expression of telomere-associated proteins are frequent features of different haematological malignancies that reflect on the progression, response to therapy and recurrence of these diseases. Telomerase is a ribonucleoprotein enzyme that has a pivotal role in maintaining the TL. However, telomerase activity in most somatic cells is insufficient to prevent TS. In 85-90% of tumour cells, the critically short telomeric length is maintained by telomerase activation. Thus, overexpression of telomerase in most tumour cells is a potential target for cancer therapy. In this review, alteration of telomeres, telomerase and telomere-associated proteins in different haematological malignancies and related telomerase-based therapies are discussed.
Collapse
Affiliation(s)
- Ali Rafat
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Dizaji Asl
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Mazloumi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Babak Nejati
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
8
|
Rossiello F, Jurk D, Passos JF, d'Adda di Fagagna F. Telomere dysfunction in ageing and age-related diseases. Nat Cell Biol 2022; 24:135-147. [PMID: 35165420 PMCID: PMC8985209 DOI: 10.1038/s41556-022-00842-x] [Citation(s) in RCA: 327] [Impact Index Per Article: 109.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 01/06/2022] [Indexed: 12/11/2022]
Abstract
Ageing organisms accumulate senescent cells that are thought to contribute to body dysfunction. Telomere shortening and damage are recognized causes of cellular senescence and ageing. Several human conditions associated with normal ageing are precipitated by accelerated telomere dysfunction. Here, we systematize a large body of evidence and propose a coherent perspective to recognize the broad contribution of telomeric dysfunction to human pathologies.
Collapse
Affiliation(s)
- Francesca Rossiello
- IFOM Foundation-FIRC Institute of Molecular Oncology Foundation, Milan, Italy
| | - Diana Jurk
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - João F Passos
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
| | - Fabrizio d'Adda di Fagagna
- IFOM Foundation-FIRC Institute of Molecular Oncology Foundation, Milan, Italy.
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Pavia, Italy.
| |
Collapse
|
9
|
Thomas ME, Abdelhamed S, Hiltenbrand R, Schwartz JR, Sakurada SM, Walsh M, Song G, Ma J, Pruett-Miller SM, Klco JM. Pediatric MDS and bone marrow failure-associated germline mutations in SAMD9 and SAMD9L impair multiple pathways in primary hematopoietic cells. Leukemia 2021; 35:3232-3244. [PMID: 33731850 PMCID: PMC8446103 DOI: 10.1038/s41375-021-01212-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 02/08/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022]
Abstract
Pediatric myelodysplastic syndromes (MDS) are a heterogeneous disease group associated with impaired hematopoiesis, bone marrow hypocellularity, and frequently have deletions involving chromosome 7 (monosomy 7). We and others recently identified heterozygous germline mutations in SAMD9 and SAMD9L in children with monosomy 7 and MDS. We previously demonstrated an antiproliferative effect of these gene products in non-hematopoietic cells, which was exacerbated by their patient-associated mutations. Here, we used a lentiviral overexpression approach to assess the functional impact and underlying cellular processes of wild-type and mutant SAMD9 or SAMD9L in primary mouse or human hematopoietic stem and progenitor cells (HSPC). Using a combination of protein interactome analyses, transcriptional profiling, and functional validation, we show that SAMD9 and SAMD9L are multifunctional proteins that cause profound alterations in cell cycle, cell proliferation, and protein translation in HSPCs. Importantly, our molecular and functional studies also demonstrated that expression of these genes and their mutations leads to a cellular environment that promotes DNA damage repair defects and ultimately apoptosis in hematopoietic cells. This study provides novel functional insights into SAMD9 and SAMD9L and how their mutations can potentially alter hematopoietic function and lead to bone marrow hypocellularity, a hallmark of pediatric MDS.
Collapse
Affiliation(s)
- Melvin E Thomas
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sherif Abdelhamed
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ryan Hiltenbrand
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jason R Schwartz
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sadie Miki Sakurada
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael Walsh
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Guangchun Song
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
10
|
Lutzmann M, Bernex F, da Costa de Jesus C, Hodroj D, Marty C, Plo I, Vainchenker W, Tosolini M, Forichon L, Bret C, Queille S, Marchive C, Hoffmann JS, Méchali M. MCM8- and MCM9 Deficiencies Cause Lifelong Increased Hematopoietic DNA Damage Driving p53-Dependent Myeloid Tumors. Cell Rep 2020; 28:2851-2865.e4. [PMID: 31509747 DOI: 10.1016/j.celrep.2019.07.095] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 06/26/2019] [Accepted: 07/24/2019] [Indexed: 01/04/2023] Open
Abstract
Hematopoiesis is particularly sensitive to DNA damage. Myeloid tumor incidence increases in patients with DNA repair defects and after chemotherapy. It is not known why hematopoietic cells are highly vulnerable to DNA damage. Addressing this question is complicated by the paucity of mouse models of hematopoietic malignancies due to defective DNA repair. We show that DNA repair-deficient Mcm8- and Mcm9-knockout mice develop myeloid tumors, phenocopying prevalent myelodysplastic syndromes. We demonstrate that these tumors are preceded by a lifelong DNA damage burden in bone marrow and that they acquire proliferative capacity by suppressing signaling of the tumor suppressor and cell cycle controller RB, as often seen in patients. Finally, we found that absence of MCM9 and the tumor suppressor Tp53 switches tumorigenesis to lymphoid tumors without precedent myeloid malignancy. Our results demonstrate that MCM8/9 deficiency drives myeloid tumor development and establishes a DNA damage burdened mouse model for hematopoietic malignancies.
Collapse
Affiliation(s)
- Malik Lutzmann
- Cancer Research Center of Toulouse, CRCT, 2, Avenue Hubert Curien, 31100 Toulouse, France; Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, 141, Rue de la Cardonille, 34396 Montpellier, France.
| | - Florence Bernex
- Histological Facility RHEM, IRCM, 208 Rue des Apothicaires, 34396 Montpellier, France
| | | | - Dana Hodroj
- Cancer Research Center of Toulouse, CRCT, 2, Avenue Hubert Curien, 31100 Toulouse, France
| | - Caroline Marty
- Histological Facility RHEM, IRCM, 208 Rue des Apothicaires, 34396 Montpellier, France
| | - Isabelle Plo
- Institut Gustave Roussy, INSERM, UMR 1170, Institut Gustave Roussy, Villejuif, France
| | - William Vainchenker
- Institut Gustave Roussy, INSERM, UMR 1170, Institut Gustave Roussy, Villejuif, France
| | - Marie Tosolini
- Cancer Research Center of Toulouse, CRCT, 2, Avenue Hubert Curien, 31100 Toulouse, France
| | - Luc Forichon
- Animal House Facility, BioCampus Montpellier, UMS3426 CNRS-US009 INSERM-UM, 141 Rue de la Cardonille, 34396 Montpellier, France
| | - Caroline Bret
- Department of Hematology, University Hospital St Eloi, 80 Ave Augustin Fliche, Montpellier, France
| | - Sophie Queille
- Cancer Research Center of Toulouse, CRCT, 2, Avenue Hubert Curien, 31100 Toulouse, France
| | - Candice Marchive
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, 141, Rue de la Cardonille, 34396 Montpellier, France
| | | | - Marcel Méchali
- Institute of Human Genetics, CNRS, DNA Replication and Genome Dynamics, 141, Rue de la Cardonille, 34396 Montpellier, France; Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, 141, Rue de la Cardonille, 34396 Montpellier, France.
| |
Collapse
|
11
|
Cytotoxicity and Differentiating Effect of the Poly(ADP-Ribose) Polymerase Inhibitor Olaparib in Myelodysplastic Syndromes. Cancers (Basel) 2019; 11:cancers11091373. [PMID: 31527467 PMCID: PMC6769925 DOI: 10.3390/cancers11091373] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/04/2019] [Accepted: 09/10/2019] [Indexed: 12/28/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are highly heterogeneous myeloid diseases, characterized by frequent genetic/chromosomal aberrations. Olaparib is a potent, orally bioavailable poly(ADP-ribose) polymerase 1 (PARP1) inhibitor with acceptable toxicity profile, designed as targeted therapy for DNA repair defective tumors. Here, we investigated olaparib activity in primary cultures of bone marrow mononuclear cells collected from patients with MDS (n = 28). A single treatment with olaparib induced cytotoxic effects in most samples, with median IC50 of 5.4 µM (2.0–24.8 µM), lower than plasma peak concentration reached in vivo. In addition, olaparib induced DNA damage as shown by a high proportion of γH2AX positive cells in samples with low IC50s. Olaparib preferentially killed myeloid cells causing a significant reduction of blasts and promyelocytes, paralleled by an increase in metamyelocytes and mature granulocytes while sparing lymphocytes that are not part of the MDS clone. Consistently, flow cytometry analysis revealed a decrease of CD117+/CD123+ immature progenitors (p < 0.001) and induction of CD11b+/CD16+ (p < 0.001) and CD10+/CD15+ (p < 0.01) neutrophils. Morphological and immunophenotypic changes were associated with a dose-dependent increase of PU.1 and CEBPA transcription factors, which are drivers of granulocytic and monocytic differentiation. Moreover, the combination of olaparib with decitabine resulted in augmented cytotoxic and differentiating effects. Our data suggest that olaparib may have therapeutic potential in MDS patients.
Collapse
|
12
|
DNA damage in aging, the stem cell perspective. Hum Genet 2019; 139:309-331. [PMID: 31324975 DOI: 10.1007/s00439-019-02047-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/05/2019] [Indexed: 02/07/2023]
Abstract
DNA damage is one of the most consistent cellular process proposed to contribute to aging. The maintenance of genomic and epigenomic integrity is critical for proper function of cells and tissues throughout life, and this homeostasis is under constant strain from both extrinsic and intrinsic insults. Considering the relationship between lifespan and genotoxic burden, it is plausible that the longest-lived cellular populations would face an accumulation of DNA damage over time. Tissue-specific stem cells are multipotent populations residing in localized niches and are responsible for maintaining all lineages of their resident tissue/system throughout life. However, many of these stem cells are impacted by genotoxic stress. Several factors may dictate the specific stem cell population response to DNA damage, including the niche location, life history, and fate decisions after damage accrual. This leads to differential handling of DNA damage in different stem cell compartments. Given the importance of adult stem cells in preserving normal tissue function during an individual's lifetime, DNA damage sensitivity and accumulation in these compartments could have crucial implications for aging. Despite this, more support for direct functional effects driven by accumulated DNA damage in adult stem cell compartments is needed. This review will present current evidence for the accumulation and potential influence of DNA damage in adult tissue-specific stem cells and propose inquiry directions that could benefit individual healthspan.
Collapse
|
13
|
Jiang M, Chen Y, Deng L, Luo X, Wang L, Liu L. Upregulation of SPAG6 in Myelodysplastic Syndrome: Knockdown Inhibits Cell Proliferation via AKT/FOXO Signaling Pathway. DNA Cell Biol 2019; 38:476-484. [PMID: 30835546 DOI: 10.1089/dna.2018.4521] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recently, sperm-associated antigen 6 (SPAG6), a member of the cancer-testis antigen family, has been shown to be involved in tumorigenesis. An increasing number of studies have shown that SPAG6 expression is associated with the pathogenesis of myelodysplastic syndrome (MDS). However, the mechanism has not been clearly elucidated. Our previous results indicated that SPAG6 affected cell apoptosis in MDS. In this study, we used reverse transcription-quantitative polymerase chain reaction (RT-qPCR) to demonstrate that the mRNA expression of SPAG6 in bone marrow cells of patients with MDS or MDS-derived acute myeloid leukemia (MDS-AML) was higher than that of cancer-free patients. Kaplan-Meier survival curve analysis of published AML found that patients with high expression of SPAG6 had poor survival. The results of the cell counting kit-8, FACS, RT-qPCR, and Western blotting assays indicated that SPAG6 knockdown in the SKM-1 cell line inhibited cell proliferation, and affected cell cycle and differentiation. Furthermore, we found that SPAG6 knockdown affected the proliferation of SKM-1 cells by mediating the G1-to-S transition of the cell cycle. Moreover, we demonstrated that the antiproliferative effect of SPAG6 knockdown was associated with the upregulation of the cyclin-dependent kinase inhibitor p27Kip1, and regulation of the AKT/FOXO pathway. These findings indicated that SPAG6 might be a potential therapeutic target.
Collapse
Affiliation(s)
- Mei Jiang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Ya Chen
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Linli Deng
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Xiaohua Luo
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Lin Liu
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
14
|
Pericole FV, Lazarini M, de Paiva LB, Duarte ADSS, Vieira Ferro KP, Niemann FS, Roversi FM, Olalla Saad ST. BRD4 Inhibition Enhances Azacitidine Efficacy in Acute Myeloid Leukemia and Myelodysplastic Syndromes. Front Oncol 2019; 9:16. [PMID: 30761268 PMCID: PMC6361844 DOI: 10.3389/fonc.2019.00016] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/04/2019] [Indexed: 12/15/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are clonal hematopoietic stem cell-based disorders characterized by ineffective hematopoiesis, increased genomic instability and a tendency to progress toward acute myeloid leukemia (AML). MDS and AML cells present genetic and epigenetic abnormalities and, due to the heterogeneity of these molecular alterations, the current treatment options remain unsatisfactory. Hypomethylating agents (HMA), especially azacitidine, are the mainstay of treatment for high-risk MDS patients and HMA are used in treating elderly AML. The aim of this study was to investigate the potential role of the epigenetic reader bromodomain-containing protein-4 (BRD4) in MDS and AML patients. We identified the upregulation of the short variant BRD4 in MDS and AML patients, which was associated with a worse outcome of MDS. Furthermore, the inhibition of BRD4 in vitro with JQ1 or shRNA induced leukemia cell apoptosis, especially when combined to azacitidine, and triggered the activation of the DNA damage response pathway. JQ1 and AZD6738 (a specific ATR inhibitor) also synergized to induce apoptosis in leukemia cells. Our results indicate that the BRD4-dependent transcriptional program is a defective pathway in MDS and AML pathogenesis and its inhibition induces apoptosis of leukemia cells, which is enhanced in combination with HMA or an ATR inhibitor.
Collapse
Affiliation(s)
- Fernando Vieira Pericole
- Hematology and Transfusion Medicine Center, Instituto Nacional de Ciência e Tecnologia do Sangue, University of Campinas, Hemocentro-Unicamp, São Paulo, Brazil
| | - Mariana Lazarini
- Hematology and Transfusion Medicine Center, Instituto Nacional de Ciência e Tecnologia do Sangue, University of Campinas, Hemocentro-Unicamp, São Paulo, Brazil.,Department of Pharmaceutical Sciences, Federal University of São Paulo, São Paulo, Brazil
| | - Luciana Bueno de Paiva
- Hematology and Transfusion Medicine Center, Instituto Nacional de Ciência e Tecnologia do Sangue, University of Campinas, Hemocentro-Unicamp, São Paulo, Brazil
| | - Adriana da Silva Santos Duarte
- Hematology and Transfusion Medicine Center, Instituto Nacional de Ciência e Tecnologia do Sangue, University of Campinas, Hemocentro-Unicamp, São Paulo, Brazil
| | - Karla Priscila Vieira Ferro
- Hematology and Transfusion Medicine Center, Instituto Nacional de Ciência e Tecnologia do Sangue, University of Campinas, Hemocentro-Unicamp, São Paulo, Brazil
| | - Fernanda Soares Niemann
- Hematology and Transfusion Medicine Center, Instituto Nacional de Ciência e Tecnologia do Sangue, University of Campinas, Hemocentro-Unicamp, São Paulo, Brazil
| | - Fernanda Marconi Roversi
- Hematology and Transfusion Medicine Center, Instituto Nacional de Ciência e Tecnologia do Sangue, University of Campinas, Hemocentro-Unicamp, São Paulo, Brazil.,Universidade São Francisco (USF), Bragança Paulista, São Paulo, Brazil
| | - Sara Teresinha Olalla Saad
- Hematology and Transfusion Medicine Center, Instituto Nacional de Ciência e Tecnologia do Sangue, University of Campinas, Hemocentro-Unicamp, São Paulo, Brazil
| |
Collapse
|
15
|
Effect of TP53 contact and conformational mutations on cell survival and erythropoiesis of human hematopoietic stem cells in a long term culture model. Oncotarget 2018; 9:29869-29876. [PMID: 30042819 PMCID: PMC6057451 DOI: 10.18632/oncotarget.25581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 05/19/2018] [Indexed: 02/02/2023] Open
Abstract
TP53 deficiencies characterize myeloid malignancies with a dismal prognosis. To unravel the pathomechanism of TP53 mutations in the development of myeloid malignancies, we analyzed the functional properties of TP53 conformational and contact mutations and TP53 loss in human CD34+ cells. We show for the first time that the analyzed conformational mutations lead to higher cell viability in human hematopoietic stem progenitor cells. In contrast to these conformational mutations, contact mutations interfered with efficient erythropoiesis. These findings show that not only the detection of a TP53 mutation is important, but also the specific mutation may play a role in malignant transformation and progression.
Collapse
|
16
|
Chen L, Chen JY, Huang YJ, Gu Y, Qiu J, Qian H, Shao C, Zhang X, Hu J, Li H, He S, Zhou Y, Abdel-Wahab O, Zhang DE, Fu XD. The Augmented R-Loop Is a Unifying Mechanism for Myelodysplastic Syndromes Induced by High-Risk Splicing Factor Mutations. Mol Cell 2018; 69:412-425.e6. [PMID: 29395063 PMCID: PMC5957072 DOI: 10.1016/j.molcel.2017.12.029] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/29/2017] [Accepted: 12/28/2017] [Indexed: 11/24/2022]
Abstract
Mutations in several general pre-mRNA splicing factors have been linked to myelodysplastic syndromes (MDSs) and solid tumors. These mutations have generally been assumed to cause disease by the resultant splicing defects, but different mutations appear to induce distinct splicing defects, raising the possibility that an alternative common mechanism is involved. Here we report a chain of events triggered by multiple splicing factor mutations, especially high-risk alleles in SRSF2 and U2AF1, including elevated R-loops, replication stress, and activation of the ataxia telangiectasia and Rad3-related protein (ATR)-Chk1 pathway. We further demonstrate that enhanced R-loops, opposite to the expectation from gained RNA binding with mutant SRSF2, result from impaired transcription pause release because the mutant protein loses its ability to extract the RNA polymerase II (Pol II) C-terminal domain (CTD) kinase-the positive transcription elongation factor complex (P-TEFb)-from the 7SK complex. Enhanced R-loops are linked to compromised proliferation of bone-marrow-derived blood progenitors, which can be partially rescued by RNase H overexpression, suggesting a direct contribution of augmented R-loops to the MDS phenotype.
Collapse
Affiliation(s)
- Liang Chen
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Jia-Yu Chen
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Yi-Jou Huang
- Department of Pathology, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Ying Gu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Jinsong Qiu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Hao Qian
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Changwei Shao
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Xuan Zhang
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Jing Hu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Hairi Li
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Shunmin He
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Zhou
- College of Life Sciences and Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 40072, China
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center and Weill Cornel Medical College, New York, NY 10065, USA
| | - Dong-Er Zhang
- Department of Pathology, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0651, USA.
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA; Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA.
| |
Collapse
|
17
|
MTHFR, TS and XRCC1 genetic variants may affect survival in patients with myelodysplastic syndromes treated with supportive care or azacitidine. THE PHARMACOGENOMICS JOURNAL 2017; 18:444-449. [PMID: 29205204 DOI: 10.1038/tpj.2017.48] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 06/30/2017] [Accepted: 09/18/2017] [Indexed: 01/03/2023]
Abstract
We evaluated the impact of genomic polymorphisms in folate-metabolizing, DNA synthesis and DNA repair enzymes on the clinical outcome of 108 patients with myelodysplastic syndromes (MDS) receiving best supportive care (BSC) or azacitidine. A statistically significant association between methylenetetrahydrofolate reductase (MTHFR) 677T/T, thymidylate synthase (TS) 5'-untranslated region (UTR) 3RG, TS 3'-UTR -6 bp/-6 bp, XRCC1 399G/G genotypes and short survival was found in patients receiving BSC by multivariate analysis (P<0.001; P=0.026; P=0.058; P=0.024). MTHFR 677T/T, TS 3'-UTR -6 bp/-6 bp and XRCC1 399G/G genotypes were associated with short survival in patients receiving azacitidine by multivariate analysis (P<0.001; P=0.004; P=0.002). We then performed an exploratory analysis to evaluate the effect of the simultaneous presence of multiple adverse variant genotypes. Interestingly, patients with ⩾1 adverse genetic variants had a short survival, independently from their International Prognostic Scoring System (IPSS) and therapy received. To our knowledge, this is the first study showing that polymorphisms in folate-metabolizing pathway, DNA synthesis and DNA repair genes could influence survival of MDS patients.
Collapse
|
18
|
Telomeres and Telomerase in Hematopoietic Dysfunction: Prognostic Implications and Pharmacological Interventions. Int J Mol Sci 2017; 18:ijms18112267. [PMID: 29143804 PMCID: PMC5713237 DOI: 10.3390/ijms18112267] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/15/2017] [Accepted: 10/24/2017] [Indexed: 12/31/2022] Open
Abstract
Leukocyte telomere length (TL) has been suggested as a marker of biological age in healthy individuals, but can also reflect inherited and acquired hematopoietic dysfunctions or indicate an increased turnover of the hematopoietic stem and progenitor cell compartment. In addition, TL is able to predict the response rate of tyrosine kinase inhibitor therapy in chronic myeloid leukemia (CML), indicates clinical outcomes in chronic lymphocytic leukemia (CLL), and can be used as screening tool for genetic sequencing of selected genes in patients with inherited bone marrow failure syndromes (BMFS). In tumor cells and clonal hematopoietic disorders, telomeres are continuously stabilized by reactivation of telomerase, which can selectively be targeted by telomerase-specific therapy. The use of the telomerase inhibitor Imetelstat in patients with essential thrombocythmia or myelofibrosis as well as the use of dendritic cell-based telomerase vaccination in AML patients with complete remissions are promising examples for anti-telomerase targeted strategies in hematologic malignancies. In contrast, the elevation in telomerase levels through treatment with androgens has become an exciting clinical intervention for patients with BMFS. Here, we review recent developments, which highlight the impact of telomeres and telomerase targeted therapies in hematologic dysfunctions.
Collapse
|
19
|
Zhou WD, Wang X, Sun XZ, Hu J, Zhang RR, Hong Z. Actein induces apoptosis in leukemia cells through suppressing RhoA/ROCK1 signaling pathway. Int J Oncol 2017; 51:1831-1841. [DOI: 10.3892/ijo.2017.4150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/23/2017] [Indexed: 11/06/2022] Open
|
20
|
Valka J, Vesela J, Votavova H, Dostalova-Merkerova M, Horakova Z, Campr V, Brezinova J, Zemanova Z, Jonasova A, Cermak J, Belickova M. Differential expression of homologous recombination DNA repair genes in the early and advanced stages of myelodysplastic syndrome. Eur J Haematol 2017; 99:323-331. [PMID: 28681469 DOI: 10.1111/ejh.12920] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND The high incidence of mutations and cytogenetic abnormalities in patients with myelodysplastic syndrome (MDS) suggests that defects in DNA repair mechanisms. We monitored DNA repair pathways in MDS and their alterations during disease progression. METHODS Expression profiling of DNA repair genes was performed on CD34+ cells, and paired samples were used for monitoring of RAD51 and XRCC2 gene expression during disease progression. Immunohistochemical staining for RAD51 was done on histology samples. RESULTS RAD51 and XRCC2 showed differential expression between low-risk and high-risk MDS (P<.0001), whereas RPA3 was generally decreased among the entire cohort (FC=-2.65, P<.0001). We demonstrated that RAD51 and XRCC2 expression gradually decreased during the progression of MDS. Down-regulation of XRCC2 and RAD51 expression was connected with abnormalities on chromosome 7 (P=.0858, P=.0457). Immunohistochemical staining revealed the presence of RAD51 only in the cytoplasm in low-risk MDS, while in both the cytoplasm and nucleus in high-risk MDS. The multivariate analysis identified RAD51 expression level (HR 0.49; P=.01) as significant prognostic factor for overall survival of patients with MDS. CONCLUSIONS Our study demonstrates that the expression of DNA repair factors, primarily RAD51 and XRCC2, is deregulated in patients with MDS and presents a specific pattern with respect to prognostic categories.
Collapse
Affiliation(s)
- Jan Valka
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Jitka Vesela
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Hana Votavova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | | | - Zuzana Horakova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Vit Campr
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Jana Brezinova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Zuzana Zemanova
- Center of Oncocytogenetics, General University Hospital and First Faculty of Medicine of Charles University, Prague, Czech Republic
| | - Anna Jonasova
- First Internal Clinic-Clinic of Hematology, General University Hospital, Prague, Czech Republic
| | - Jaroslav Cermak
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Monika Belickova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| |
Collapse
|
21
|
Benetatos L, Vartholomatos G. On the potential role of DNMT1 in acute myeloid leukemia and myelodysplastic syndromes: not another mutated epigenetic driver. Ann Hematol 2016; 95:1571-82. [PMID: 26983918 DOI: 10.1007/s00277-016-2636-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/04/2016] [Indexed: 12/19/2022]
Abstract
DNA methylation is the most common epigenetic modification in the mammalian genome. DNA methylation is governed by the DNA methyltransferases mainly DNMT1, DNMT3A, and DNMT3B. DNMT1 methylates hemimethylated DNA ensuring accurate DNA methylation maintenance. DNMT1 is involved in the proper differentiation of hematopoietic stem cells (HSCs) through the interaction with effector molecules. DNMT1 is deregulated in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) as early as the leukemic stem cell stage. Through the interaction with fundamental transcription factors, non-coding RNAs, fusion oncogenes and by modulating core members of signaling pathways, it can affect leukemic cells biology. DNMT1 action might be also catalytic-independent highlighting a methylation-independent mode of action. In this review, we have gathered some current facts of DNMT1 role in AML and MDS and we also propose some perspectives for future studies.
Collapse
|
22
|
Abstract
Examples of associations between human disease and defects in pre-messenger RNA splicing/alternative splicing are accumulating. Although many alterations are caused by mutations in splicing signals or regulatory sequence elements, recent studies have noted the disruptive impact of mutated generic spliceosome components and splicing regulatory proteins. This review highlights recent progress in our understanding of how the altered splicing function of RNA-binding proteins contributes to myelodysplastic syndromes, cancer, and neuropathologies.
Collapse
Affiliation(s)
- Benoit Chabot
- Centre of Excellence in RNA Biology, Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| | - Lulzim Shkreta
- Centre of Excellence in RNA Biology, Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1E 4K8, Canada
| |
Collapse
|
23
|
Tan SY, Smeets MF, Chalk AM, Nandurkar H, Walkley CR, Purton LE, Wall M. Insights into myelodysplastic syndromes from current preclinical models. World J Hematol 2016; 5:1-22. [DOI: 10.5315/wjh.v5.i1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 11/17/2015] [Accepted: 12/14/2015] [Indexed: 02/05/2023] Open
Abstract
In recent years, there has been significant progress made in our understanding of the molecular genetics of myelodysplastic syndromes (MDS). Using massively parallel sequencing techniques, recurring mutations are identified in up to 80% of MDS cases, including many with a normal karyotype. The differential role of some of these mutations in the initiation and progression of MDS is starting to be elucidated. Engineering candidate genes in mice to model MDS has contributed to recent insights into this complex disease. In this review, we examine currently available mouse models, with detailed discussion of selected models. Finally, we highlight some advances made in our understanding of MDS biology, and conclude with discussions of questions that remain unanswered.
Collapse
|
24
|
Komeno Y, Huang YJ, Qiu J, Lin L, Xu Y, Zhou Y, Chen L, Monterroza DD, Li H, DeKelver RC, Yan M, Fu XD, Zhang DE. SRSF2 Is Essential for Hematopoiesis, and Its Myelodysplastic Syndrome-Related Mutations Dysregulate Alternative Pre-mRNA Splicing. Mol Cell Biol 2015; 35:3071-82. [PMID: 26124281 PMCID: PMC4525309 DOI: 10.1128/mcb.00202-15] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/19/2015] [Accepted: 06/19/2015] [Indexed: 01/06/2023] Open
Abstract
Myelodysplastic syndromes (MDS) are a group of neoplasms characterized by ineffective myeloid hematopoiesis and various risks for leukemia. SRSF2, a member of the serine/arginine-rich (SR) family of splicing factors, is one of the mutation targets associated with poor survival in patients suffering from myelodysplastic syndromes. Here we report the biological function of SRSF2 in hematopoiesis by using conditional knockout mouse models. Ablation of SRSF2 in the hematopoietic lineage caused embryonic lethality, and Srsf2-deficient fetal liver cells showed significantly enhanced apoptosis and decreased levels of hematopoietic stem/progenitor cells. Induced ablation of SRSF2 in adult Mx1-Cre Srsf2(flox/flox) mice upon poly(I):poly(C) injection demonstrated a significant decrease in lineage(-) Sca(+) c-Kit(+) cells in bone marrow. To reveal the functional impact of myelodysplastic syndromes-associated mutations in SRSF2, we analyzed splicing responses on the MSD-L cell line and found that the missense mutation of proline 95 to histidine (P95H) and a P95-to-R102 in-frame 8-amino-acid deletion caused significant changes in alternative splicing. The affected genes were enriched in cancer development and apoptosis. These findings suggest that intact SRSF2 is essential for the functional integrity of the hematopoietic system and that its mutations likely contribute to development of myelodysplastic syndromes.
Collapse
Affiliation(s)
- Yukiko Komeno
- Moores UCSD Cancer Center, University of California, San Diego, La Jolla, California, USA
| | - Yi-Jou Huang
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Jinsong Qiu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Leo Lin
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - YiJun Xu
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Yu Zhou
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Liang Chen
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Dora D Monterroza
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Hairi Li
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Russell C DeKelver
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Ming Yan
- Moores UCSD Cancer Center, University of California, San Diego, La Jolla, California, USA
| | - Xiang-Dong Fu
- Moores UCSD Cancer Center, University of California, San Diego, La Jolla, California, USA Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Dong-Er Zhang
- Moores UCSD Cancer Center, University of California, San Diego, La Jolla, California, USA Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA Department of Pathology, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
25
|
Wei C, Xiao Q, Kuang X, Zhang T, Yang Z, Wang L. Fucoidan inhibits proliferation of the SKM-1 acute myeloid leukaemia cell line via the activation of apoptotic pathways and production of reactive oxygen species. Mol Med Rep 2015; 12:6649-55. [PMID: 26324225 PMCID: PMC4626197 DOI: 10.3892/mmr.2015.4252] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 07/23/2015] [Indexed: 12/24/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of myeloid disorders characterized by peripheral blood cytopenias and a high risk of progression to acute myeloid leukaemia (AML). Fucoidan, a complex sulphated polysaccharide isolated from the cell wall of brown seaweeds, has recently attracted attention for its multiple biological activities and its potential as a novel candidate for cancer therapy. In the present study, the anti‑cancer activity of fucoidan was investigated in the MDS/AML cell line SKM‑1. Fucoidan inhibited proliferation, induced apoptosis and caused G1-phase arrest of the cell cycle in SKM‑1 cells as determined by a cell counting kit 8 assay and flow cytometry. Furthermore, reverse transcription quantitative polymerase chain reaction and western blot analyses indicated that treatment with fucoidan (100 µg/ml for 48 h) activated Fas and caspase‑8 in SKM‑1 cells, which are critical for the extrinsic apoptotic pathway; furthermore, caspase‑9 was activated via decreases in phosphoinositide-3 kinase/Akt signaling as indicated by reduced levels of phosphorylated Akt, suggesting the involvement of the intrinsic apoptotic pathway. In addition, fucoidan treatment of SKM‑1 cells resulted in the generation of reactive oxygen species (ROS) as determined by staining with dichloro-dihydro-fluorescein diacetate. These results suggested that the mechanisms of the anti‑cancer effects of fucoidan in SKM‑1 are closely associated with cell cycle arrest and apoptotic cell death, which partly attributed to the activation of apoptotic pathways and accumulation of intracellular ROS. Our results demonstrated that Fucoidan inhibits proliferation and induces the apoptosis of SKM‑1 cells, which provides substantial therapeutic potential for MDS treatment.
Collapse
Affiliation(s)
- Chunmei Wei
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Qing Xiao
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xingyi Kuang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Tao Zhang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zesong Yang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
26
|
Byrne M, Bennett RL, Cheng X, May WS. Progressive genomic instability in the Nup98-HoxD13 model of MDS correlates with loss of the PIG-A gene product. Neoplasia 2015; 16:627-33. [PMID: 25220590 PMCID: PMC4234872 DOI: 10.1016/j.neo.2014.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/09/2014] [Accepted: 07/16/2014] [Indexed: 12/17/2022] Open
Abstract
The Nup98-HoxD13 (NHD13) fusion gene was identified in a patient with therapy-related myelodysplastic syndrome (MDS). When transgenically expressed in hematopoietic cells, mice faithfully recapitulate human disease with serial progression from peripheral blood (PB) cytopenias and increased bone marrow (BM) blasts to acute leukemia. It is well accepted that genomic instability in dysplastic hematopoietic stem/progenitor cells (HSPC) drives the evolution of MDS to acute leukemia. Findings here demonstrate that reticulocytes, myeloid and lymphoid PB cells of NHD13 mice, display an increase in the age-associated loss of glycosylphosphatidylinositol-linked surface proteins versus wild type controls. These data correlate with a progressive increase in the DNA damage response as measured by γ-H2AX activity, accumulating BM blasts as the disease progresses and finally development of acute leukemia. These findings clearly demonstrate a state of progressive genomic instability that increases the likelihood of a “second hit” or complimentary mutation later in the disease to trigger development of acute leukemia and underscores the mechanistic nature of how the NUP98-HoxD13 transgene induces progression of MDS to acute leukemia. Additionally, these data support the use of the PIG-A assay as an efficient, real-time surrogate marker of the genomic instability that occurs in the MDS HSPCs. Key Point The PIG-A assay is a sensitive, nonlethal method for the serial assessment of genomic instability in mouse models of MDS.
Collapse
Affiliation(s)
- Michael Byrne
- Department of Medicine, Division of Hematology and Oncology and the University of Florida Health Cancer Center, Gainesville, FL 32610
| | - Richard L Bennett
- Department of Medicine, Division of Hematology and Oncology and the University of Florida Health Cancer Center, Gainesville, FL 32610
| | - Xiaodong Cheng
- Department of Medicine, Division of Hematology and Oncology and the University of Florida Health Cancer Center, Gainesville, FL 32610
| | - W Stratford May
- Department of Medicine, Division of Hematology and Oncology and the University of Florida Health Cancer Center, Gainesville, FL 32610.
| |
Collapse
|
27
|
Colla S, Ong DST, Ogoti Y, Marchesini M, Mistry NA, Clise-Dwyer K, Ang SA, Storti P, Viale A, Giuliani N, Ruisaard K, Ganan Gomez I, Bristow CA, Estecio M, Weksberg DC, Ho YW, Hu B, Genovese G, Pettazzoni P, Multani AS, Jiang S, Hua S, Ryan MC, Carugo A, Nezi L, Wei Y, Yang H, D'Anca M, Zhang L, Gaddis S, Gong T, Horner JW, Heffernan TP, Jones P, Cooper LJN, Liang H, Kantarjian H, Wang YA, Chin L, Bueso-Ramos C, Garcia-Manero G, DePinho RA. Telomere dysfunction drives aberrant hematopoietic differentiation and myelodysplastic syndrome. Cancer Cell 2015; 27:644-57. [PMID: 25965571 PMCID: PMC4596059 DOI: 10.1016/j.ccell.2015.04.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 01/31/2015] [Accepted: 04/13/2015] [Indexed: 12/14/2022]
Abstract
Myelodysplastic syndrome (MDS) risk correlates with advancing age, therapy-induced DNA damage, and/or shorter telomeres, but whether telomere erosion directly induces MDS is unknown. Here, we provide the genetic evidence that telomere dysfunction-induced DNA damage drives classical MDS phenotypes and alters common myeloid progenitor (CMP) differentiation by repressing the expression of mRNA splicing/processing genes, including SRSF2. RNA-seq analyses of telomere dysfunctional CMP identified aberrantly spliced transcripts linked to pathways relevant to MDS pathogenesis such as genome stability, DNA repair, chromatin remodeling, and histone modification, which are also enriched in mouse CMP haploinsufficient for SRSF2 and in CD34(+) CMML patient cells harboring SRSF2 mutation. Together, our studies establish an intimate link across telomere biology, aberrant RNA splicing, and myeloid progenitor differentiation.
Collapse
Affiliation(s)
- Simona Colla
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Derrick Sek Tong Ong
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yamini Ogoti
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Matteo Marchesini
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nipun A Mistry
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Karen Clise-Dwyer
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sonny A Ang
- Department of Pediatric Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paola Storti
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Hematology, Department of Clinical and Experimental Medicine, University of Parma, 43126 Parma, Italy
| | - Andrea Viale
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nicola Giuliani
- Hematology, Department of Clinical and Experimental Medicine, University of Parma, 43126 Parma, Italy
| | - Kathryn Ruisaard
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Irene Ganan Gomez
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Christopher A Bristow
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marcos Estecio
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - David C Weksberg
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yan Wing Ho
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Baoli Hu
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Giannicola Genovese
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Piergiorgio Pettazzoni
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Asha S Multani
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shan Jiang
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sujun Hua
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Alessandro Carugo
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Luigi Nezi
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yue Wei
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hui Yang
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marianna D'Anca
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Li Zhang
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sarah Gaddis
- Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Ting Gong
- Department of Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - James W Horner
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Timothy P Heffernan
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Philip Jones
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Laurence J N Cooper
- Department of Pediatric Research, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Han Liang
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hagop Kantarjian
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Y Alan Wang
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lynda Chin
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carlos Bueso-Ramos
- Department of Hematopathology, University of Texas MD Cancer Center, Houston, TX 77030, USA
| | - Guillermo Garcia-Manero
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ronald A DePinho
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
28
|
Yoshioka KI, Atsumi Y, Nakagama H, Teraoka H. Development of cancer-initiating cells and immortalized cells with genomic instability. World J Stem Cells 2015; 7:483-489. [PMID: 25815132 PMCID: PMC4369504 DOI: 10.4252/wjsc.v7.i2.483] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/29/2014] [Accepted: 11/10/2014] [Indexed: 02/06/2023] Open
Abstract
Cancers that develop after middle age usually exhibit genomic instability and multiple mutations. This is in direct contrast to pediatric tumors that usually develop as a result of specific chromosomal translocations and epigenetic aberrations. The development of genomic instability is associated with mutations that contribute to cellular immortalization and transformation. Cancer occurs when cancer-initiating cells (CICs), also called cancer stem cells, develop as a result of these mutations. In this paper, we explore how CICs develop as a result of genomic instability, including looking at which cancer suppression mechanisms are abrogated. A recent in vitro study revealed the existence of a CIC induction pathway in differentiating stem cells. Under aberrant differentiation conditions, cells become senescent and develop genomic instabilities that lead to the development of CICs. The resulting CICs contain a mutation in the alternative reading frame of CDKN2A (ARF)/p53 module, i.e., in either ARF or p53. We summarize recently established knowledge of CIC development and cellular immortality, explore the role of the ARF/p53 module in protecting cells from transformation, and describe a risk factor for genomic destabilization that increases during the process of normal cell growth and differentiation and is associated with the downregulation of histone H2AX to levels representative of growth arrest in normal cells.
Collapse
|
29
|
Denoyer D, Lobachevsky P, Jackson P, Thompson M, Martin OA, Hicks RJ. Analysis of 177Lu-DOTA-Octreotate Therapy–Induced DNA Damage in Peripheral Blood Lymphocytes of Patients with Neuroendocrine Tumors. J Nucl Med 2015; 56:505-11. [DOI: 10.2967/jnumed.114.145581] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 12/08/2014] [Indexed: 12/24/2022] Open
|
30
|
Zhou T, Chen P, Gu J, Bishop AJR, Scott LM, Hasty P, Rebel VI. Potential relationship between inadequate response to DNA damage and development of myelodysplastic syndrome. Int J Mol Sci 2015; 16:966-89. [PMID: 25569081 PMCID: PMC4307285 DOI: 10.3390/ijms16010966] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/22/2014] [Indexed: 12/29/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are responsible for the continuous regeneration of all types of blood cells, including themselves. To ensure the functional and genomic integrity of blood tissue, a network of regulatory pathways tightly controls the proliferative status of HSCs. Nevertheless, normal HSC aging is associated with a noticeable decline in regenerative potential and possible changes in other functions. Myelodysplastic syndrome (MDS) is an age-associated hematopoietic malignancy, characterized by abnormal blood cell maturation and a high propensity for leukemic transformation. It is furthermore thought to originate in a HSC and to be associated with the accrual of multiple genetic and epigenetic aberrations. This raises the question whether MDS is, in part, related to an inability to adequately cope with DNA damage. Here we discuss the various components of the cellular response to DNA damage. For each component, we evaluate related studies that may shed light on a potential relationship between MDS development and aberrant DNA damage response/repair.
Collapse
Affiliation(s)
- Ting Zhou
- Greehey Children's Cancer Research Center, University of Texas Health Science Center San Antonio (UTHSCSA), 8403 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | - Peishuai Chen
- Greehey Children's Cancer Research Center, University of Texas Health Science Center San Antonio (UTHSCSA), 8403 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | - Jian Gu
- Department of Hematology, Northern Jiangsu People's Hospital, Yangzhou 225001, China.
| | - Alexander J R Bishop
- Greehey Children's Cancer Research Center, University of Texas Health Science Center San Antonio (UTHSCSA), 8403 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | - Linda M Scott
- The University of Queensland Diamantina Institute, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia.
| | - Paul Hasty
- The Cancer Therapy Research Center, UTHSCSA, 7979 Wurzbach Road, San Antonio, TX 78229, USA.
| | - Vivienne I Rebel
- Greehey Children's Cancer Research Center, University of Texas Health Science Center San Antonio (UTHSCSA), 8403 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
31
|
Esposito MT, So CWE. DNA damage accumulation and repair defects in acute myeloid leukemia: implications for pathogenesis, disease progression, and chemotherapy resistance. Chromosoma 2014; 123:545-61. [PMID: 25112726 DOI: 10.1007/s00412-014-0482-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 12/15/2022]
Abstract
DNA damage repair mechanisms are vital to maintain genomic integrity. Mutations in genes involved in the DNA damage response (DDR) can increase the risk of developing cancer. In recent years, a variety of polymorphisms in DDR genes have been associated with increased risk of developing acute myeloid leukemia (AML) or of disease relapse. Moreover, a growing body of literature has indicated that epigenetic silencing of DDR genes could contribute to the leukemogenic process. In addition, a variety of AML oncogenes have been shown to induce replication and oxidative stress leading to accumulation of DNA damage, which affects the balance between proliferation and differentiation. Conversely, upregulation of DDR genes can provide AML cells with escape mechanisms to the DDR anticancer barrier and induce chemotherapy resistance. The current review summarizes the DDR pathways in the context of AML and describes how aberrant DNA damage response can affect AML pathogenesis, disease progression, and resistance to standard chemotherapy, and how defects in DDR pathways may provide a new avenue for personalized therapeutic strategies in AML.
Collapse
Affiliation(s)
- Maria Teresa Esposito
- Leukemia and Stem Cell Biology Group, Department of Hematological Medicine, King's College London, Denmark Hill campus, SE5 9NU, London, UK
| | | |
Collapse
|
32
|
Boyette LB, Tuan RS. Adult Stem Cells and Diseases of Aging. J Clin Med 2014; 3:88-134. [PMID: 24757526 PMCID: PMC3992297 DOI: 10.3390/jcm3010088] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 12/15/2013] [Accepted: 12/17/2013] [Indexed: 02/06/2023] Open
Abstract
Preservation of adult stem cells pools is critical for maintaining tissue homeostasis into old age. Exhaustion of adult stem cell pools as a result of deranged metabolic signaling, premature senescence as a response to oncogenic insults to the somatic genome, and other causes contribute to tissue degeneration with age. Both progeria, an extreme example of early-onset aging, and heritable longevity have provided avenues to study regulation of the aging program and its impact on adult stem cell compartments. In this review, we discuss recent findings concerning the effects of aging on stem cells, contributions of stem cells to age-related pathologies, examples of signaling pathways at work in these processes, and lessons about cellular aging gleaned from the development and refinement of cellular reprogramming technologies. We highlight emerging therapeutic approaches to manipulation of key signaling pathways corrupting or exhausting adult stem cells, as well as other approaches targeted at maintaining robust stem cell pools to extend not only lifespan but healthspan.
Collapse
Affiliation(s)
- Lisa B Boyette
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA; ; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA; ; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA ; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
33
|
Haploinsufficiency of del(5q) genes, Egr1 and Apc, cooperate with Tp53 loss to induce acute myeloid leukemia in mice. Blood 2013; 123:1069-78. [PMID: 24381225 DOI: 10.1182/blood-2013-07-517953] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
An interstitial deletion of chromosome 5, del(5q), is the most common structural abnormality in primary myelodysplastic syndromes (MDS) and therapy-related myeloid neoplasms (t-MNs) after cytotoxic therapy. Loss of TP53 activity, through mutation or deletion, is highly associated with t-MNs with a del(5q). We previously demonstrated that haploinsufficiency of Egr1 and Apc, 2 genes lost in the 5q deletion, are key players in the progression of MDS with a del(5q). Using genetically engineered mice, we now show that reduction or loss of Tp53 expression, in combination with Egr1 haploinsufficiency, increased the rate of development of hematologic neoplasms and influenced the disease spectrum, but did not lead to overt myeloid leukemia, suggesting that altered function of additional gene(s) on 5q are likely required for myeloid leukemia development. Next, we demonstrated that cell intrinsic loss of Tp53 in hematopoietic stem and progenitor cells haploinsufficient for both Egr1 and Apc led to the development of acute myeloid leukemia (AML) in 17% of mice. The long latency (234-299 days) and clonal chromosomal abnormalities in the AMLs suggest that additional genetic changes may be required for full transformation. Thus, loss of Tp53 activity in cooperation with Egr1 and Apc haploinsufficiency creates an environment that is permissive for malignant transformation and the development of AML.
Collapse
|
34
|
Thrombopoietin promotes NHEJ DNA repair in hematopoietic stem cells through specific activation of Erk and NF-κB pathways and their target, IEX-1. Blood 2013; 123:509-19. [PMID: 24184684 DOI: 10.1182/blood-2013-07-515874] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Loss of hematopoietic stem cell (HSC) function and increased risk of developing hematopoietic malignancies are severe and concerning complications of anticancer radiotherapy and chemotherapy. We have previously shown that thrombopoietin (TPO), a critical HSC regulator, ensures HSC chromosomal integrity and function in response to γ-irradiation by regulating their DNA-damage response. TPO directly affects the double-strand break (DSB) repair machinery through increased DNA-protein kinase (DNA-PK) phosphorylation and nonhomologous end-joining (NHEJ) repair efficiency and fidelity. This effect is not shared by other HSC growth factors, suggesting that TPO triggers a specific signal in HSCs facilitating DNA-PK activation upon DNA damage. The discovery of these unique signaling pathways will provide a means of enhancing TPO-desirable effects on HSCs and improving the safety of anticancer DNA agents. We show here that TPO specifically triggers Erk and nuclear factor κB (NF-κB) pathways in mouse hematopoietic stem and progenitor cells (HSPCs). Both of these pathways are required for a TPO-mediated increase in DSB repair. They cooperate to induce and activate the early stress-response gene, Iex-1 (ier3), upon DNA damage. Iex-1 forms a complex with pERK and the catalytic subunit of DNA-PK, which is necessary and sufficient to promote TPO-increased DNA-PK activation and NHEJ DSB repair in both mouse and human HSPCs.
Collapse
|