1
|
Sun L, Li X, Liang X, Duan C, Li F, Yu Y, Wang D. Expression profiles and potential roles of microRNAs in erythrocytes during the aging process. BLOOD SCIENCE 2025; 7:e00209. [PMID: 40104513 PMCID: PMC11918798 DOI: 10.1097/bs9.0000000000000209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 10/15/2024] [Indexed: 03/20/2025] Open
Abstract
Studies have shown that microRNAs (miRNAs) in red blood cells (RBCs) contribute most of the miRNAs in whole blood, and miRNAs in RBCs are closely related to storage lesions in vitro. However, the role of miRNAs in the process of RBC senescence in vivo remains unclear. We conducted a comprehensive miRNA expression analysis of RBCs collected from enriched mature RBCs in five density layers. The results showed that the type and number of RBC miRNAs changed with the aging of RBCs, the expression levels of 10 RBC miRNAs decreased markedly at the early stage of RBC aging and the levels of 5 RBC miRNAs increased significantly at the terminal stage of RBC senescence. The analysis identified 32 miRNAs whose changes in expression levels were correlated with the two selected aging indexes-pyruvate kinase (PK) activity and RBC indices. The differential expression amounts of the two selected miRNAs (miR-22-3p and miR-144-3p) were confirmed by real-time polymerase chain reaction (PCR) analysis. A bioinformatics analysis identified the potential targets and biological functions of these miRNAs. The experiment of miR-22-3p in the human erythroblast cell line K562 confirmed its negative effects on PK levels. Overall, our research demonstrates, for the first time, that changes in the expression levels of miRNAs during the RBC aging process, and RBC miRNAs thus have the potential to serve as markers of RBC aging in vivo. In addition, the expression of miR-22-3p may regulate RBC senescence by inhibiting PK levels.
Collapse
Affiliation(s)
- Liping Sun
- Department of Transfusion Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaofei Li
- Department of Transfusion Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
- Department of Blood Transfusion, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Xiaoxing Liang
- Department of Transfusion Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Cuimi Duan
- Department of Transfusion Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Fengxian Li
- Department of Transfusion Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yang Yu
- Department of Transfusion Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Deqing Wang
- Department of Transfusion Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
2
|
Joshi U, Jani D, George LB, Highland H. Human erythrocytes' perplexing behaviour: erythrocytic microRNAs. Mol Cell Biochem 2025; 480:923-935. [PMID: 39037663 DOI: 10.1007/s11010-024-05075-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Erythrocytes have the potential role in erythropoiesis and disease diagnosis. Thought to have lacked nucleic acid content, mammalian erythrocytes are nevertheless able to function for 120-140 days, metabolize heme, maintain oxidative stress, and so on. Mysteriously, erythrocytes proved as largest repositories of microRNAs (miRNAs) some of which are selectively retained and function in mature erythrocytes. They have unique expression patterns and have been found to be linked to specific conditions such as sickle cell anaemia, high-altitude hypoxia, chronic mountain sickness, cardiovascular and metabolic conditions as well as host-parasite interactions. They also have been implicated in cell storage-related damage and the regulation of its survival. However, the mechanism by which miRNAs function in the cell remains unclear. Investigations into the molecular mechanism of miRNAs in erythrocytes via extracellular vesicles have provided important clues in research studies on Plasmodium infection. Erythrocytes are also the primary source of circulating miRNAs but, how they affect the plasma/serum miRNAs profiles are still poorly understood. Erythrocyte-derived exosomal miRNAs, can interact with various body cell types, and have easy access to all regions, making them potentially crucial in various pathophysiological conditions. Which can also improve our understanding to identify potential treatment options and discovery related to non-invasive diagnostic markers. This article emphasizes the importance of erythrocytic miRNAs while focusing on the enigmatic behaviour of erythrocytes. It also sheds light on how this knowledge may be applied in the future to enhance the state of erythrocyte translational research from the standpoint of erythrocytic miRNAs.
Collapse
Affiliation(s)
- Urja Joshi
- Department of Biochemistry, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
| | - Dhara Jani
- Department of Zoology, Biomedical Technology, Human Genetics and WLC, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Linz-Buoy George
- Department of Zoology, Biomedical Technology, Human Genetics and WLC, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Hyacinth Highland
- Department of Zoology, Biomedical Technology, Human Genetics and WLC, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| |
Collapse
|
3
|
Wang J, Liang Y, Xu C, Gao J, Tong J, Shi L. The heterogeneity of erythroid cells: insight at the single-cell transcriptome level. Cell Tissue Res 2024; 397:179-192. [PMID: 38953986 DOI: 10.1007/s00441-024-03903-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
Erythroid cells, the most prevalent cell type in blood, are one of the earliest products and permeate through the entire process of hematopoietic development in the human body, the oxygen-transporting function of which is crucial for maintaining overall health and life support. Previous investigations into erythrocyte differentiation and development have primarily focused on population-level analyses, lacking the single-cell perspective essential for comprehending the intricate pathways of erythroid maturation, differentiation, and the encompassing cellular heterogeneity. The continuous optimization of single-cell transcriptome sequencing technology, or single-cell RNA sequencing (scRNA-seq), provides a powerful tool for life sciences research, which has a particular superiority in the identification of unprecedented cell subgroups, the analyzing of cellular heterogeneity, and the transcriptomic characteristics of individual cells. Over the past decade, remarkable strides have been taken in the realm of single-cell RNA sequencing technology, profoundly enhancing our understanding of erythroid cells. In this review, we systematically summarize the recent developments in single-cell transcriptome sequencing technology and emphasize their substantial impact on the study of erythroid cells, highlighting their contributions, including the exploration of functional heterogeneity within erythroid populations, the identification of novel erythrocyte subgroups, the tracking of different erythroid lineages, and the unveiling of mechanisms governing erythroid fate decisions. These findings not only invigorate erythroid cell research but also offer new perspectives on the management of diseases related to erythroid cells.
Collapse
Affiliation(s)
- Jingwei Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yipeng Liang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Changlu Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Jie Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Jingyuan Tong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, 300020, China.
| |
Collapse
|
4
|
Boonpeng K, Shibuta T, Hirooka Y, Kulkeaw K, Palasuwan D, Umemura T. Serum microRNAs as new biomarkers for detecting subclinical hemolysis in the nonacute phase of G6PD deficiency. Sci Rep 2024; 14:16029. [PMID: 38992151 PMCID: PMC11239928 DOI: 10.1038/s41598-024-67108-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is one of the most common enzymopathies worldwide. Patients with G6PD deficiency are usually asymptomatic throughout their life but can develop acute hemolysis after exposure to free radicals or certain medications. Several studies have shown that serum miRNAs can be used as prognostic biomarkers in various types of hemolytic anemias. However, the impact of G6PD deficiency on circulating miRNA profiles is largely unknown. The present study aimed to assess the use of serum miRNAs as biomarkers for detecting hemolysis in the nonacute phase of G6PD deficiency. Patients with severe or moderate G6PD Viangchan (871G > A) deficiency and normal G6PD patients were enrolled in the present study. The biochemical hemolysis indices were normal in the three groups, while the levels of serum miR-451a, miR-16, and miR-155 were significantly increased in patients with severe G6PD deficiency. In addition, 3D analysis of a set of three miRNAs (miR-451a, miR-16, and miR-155) was able to differentiate G6PD-deficient individuals from healthy individuals, suggesting that these three miRNAs may serve as potential biomarkers for patients in the nonhemolytic phase of G6PD deficiency. In conclusion, miRNAs can be utilized as additional biomarkers to detect hemolysis in the nonacute phase of G6PD deficiency.
Collapse
Affiliation(s)
- Kanyarat Boonpeng
- Program in Clinical Hematology Sciences, Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Graduate School, Department of Medical Technology and Sciences, International University of Health and Welfare, 137-1 Enokizu, Okawa, 831-8501, Japan
| | - Tatsuki Shibuta
- Graduate School, Department of Medical Technology and Sciences, International University of Health and Welfare, 137-1 Enokizu, Okawa, 831-8501, Japan
| | - Yoshitaka Hirooka
- Graduate School, Department of Medical Technology and Sciences, International University of Health and Welfare, 137-1 Enokizu, Okawa, 831-8501, Japan
| | - Kasem Kulkeaw
- Siriraj Integrative Center for Neglected Parasitic Diseases, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2, Wanglang Road, Bangkok Noi, Bangkok, 10700, Thailand
| | - Duangdao Palasuwan
- Oxidation in Red Cell Disorders Research Unit, Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Tsukuru Umemura
- Graduate School, Department of Medical Technology and Sciences, International University of Health and Welfare, 137-1 Enokizu, Okawa, 831-8501, Japan.
- Clinical Laboratory, Kouhoukai Takagi Hospital, 141-11 Sakemi, Okawa, 831-0016, Japan.
| |
Collapse
|
5
|
Moradimotlagh A, Brar HK, Chen S, Moon KM, Foster LJ, Reiner N, Nandan D. Characterization of Argonaute-containing protein complexes in Leishmania-infected human macrophages. PLoS One 2024; 19:e0303686. [PMID: 38781128 PMCID: PMC11115314 DOI: 10.1371/journal.pone.0303686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
The intracellular protozoan parasite Leishmania causes leishmaniasis in humans, leading to serious illness and death in tropical and subtropical areas worldwide. Unfortunately, due to the unavailability of approved vaccines for humans and the limited efficacy of available drugs, leishmaniasis is on the rise. A comprehensive understanding of host-pathogen interactions at the molecular level could pave the way to counter leishmaniasis. There is growing evidence that several intracellular pathogens target RNA interference (RNAi) pathways in host cells to facilitate their persistence. The core elements of the RNAi system are complexes of Argonaute (Ago) proteins with small non-coding RNAs, also known as RNA-induced silencing complexes (RISCs). Recently, we have shown that Leishmania modulates Ago1 protein of host macrophages for its survival. In this study, we biochemically characterize the Ago proteins' interactome in Leishmania-infected macrophages compared to non-infected cells. For this, a quantitative proteomic approach using stable isotope labelling by amino acids in cell culture (SILAC) was employed, followed by purification of host Ago-complexes using a short TNRC6 protein-derived peptide fused to glutathione S-transferase beads as an affinity matrix. Proteomic-based detailed biochemical analysis revealed Leishmania modulated host macrophage RISC composition during infection. This analysis identified 51 Ago-interacting proteins with a broad range of biological activities. Strikingly, Leishmania proteins were detected as part of host Ago-containing complexes in infected cells. Our results present the first report of comprehensive quantitative proteomics of Ago-containing complexes isolated from Leishmania-infected macrophages and suggest targeting the effector complex of host RNAi machinery. Additionally, these results expand knowledge of RISC in the context of host-pathogen interactions in parasitology in general.
Collapse
Affiliation(s)
- Atieh Moradimotlagh
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, B.C, Canada
| | - Harsimran Kaur Brar
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, B.C, Canada
| | - Stella Chen
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, B.C, Canada
| | - Kyung-Mee Moon
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, B.C, Canada
| | - Leonard J. Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, B.C, Canada
| | - Neil Reiner
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, B.C, Canada
| | - Devki Nandan
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, B.C, Canada
| |
Collapse
|
6
|
Lin H, Zhang M, Hu M, Zhang Y, Jiang W, Tang W, Ouyang Y, Jiang L, Mi Y, Chen Z, He P, Zhao G, Ouyang X. Emerging applications of single-cell profiling in precision medicine of atherosclerosis. J Transl Med 2024; 22:97. [PMID: 38263066 PMCID: PMC10804726 DOI: 10.1186/s12967-023-04629-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/14/2023] [Indexed: 01/25/2024] Open
Abstract
Atherosclerosis is a chronic, progressive, inflammatory disease that occurs in the arterial wall. Despite recent advancements in treatment aimed at improving efficacy and prolonging survival, atherosclerosis remains largely incurable. In this review, we discuss emerging single-cell sequencing techniques and their novel insights into atherosclerosis. We provide examples of single-cell profiling studies that reveal phenotypic characteristics of atherosclerosis plaques, blood, liver, and the intestinal tract. Additionally, we highlight the potential clinical applications of single-cell analysis and propose that combining this approach with other techniques can facilitate early diagnosis and treatment, leading to more accurate medical interventions.
Collapse
Affiliation(s)
- Huiling Lin
- Department of Physiology, Medical College, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, 421001, Hunan, China
- Department of Physiology, School of Medicine, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Ming Zhang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, 511518, Guangdong, China
| | - Mi Hu
- Department of Physiology, Medical College, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, 421001, Hunan, China
| | - Yangkai Zhang
- Department of Physiology, Medical College, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, 421001, Hunan, China
| | - WeiWei Jiang
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wanying Tang
- Department of Physiology, Medical College, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, 421001, Hunan, China
| | - Yuxin Ouyang
- Department of Physiology, Medical College, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, 421001, Hunan, China
| | - Liping Jiang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yali Mi
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, 511518, Guangdong, China
| | - Zhi Chen
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Pingping He
- Department of Nursing, School of Medicine, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Guojun Zhao
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, 511518, Guangdong, China.
| | - Xinping Ouyang
- Department of Physiology, Medical College, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, 421001, Hunan, China.
- Department of Physiology, School of Medicine, Hunan Normal University, Changsha, 410081, Hunan, China.
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, 410081, Hunan, Changsha, China.
- The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, School of Medicine, Hunan Normal University, 410081, Hunan, Changsha, China.
| |
Collapse
|
7
|
Wu Y, Leyk S, Torabi H, Höhn K, Honecker B, Tauler MDPM, Cadar D, Jacobs T, Bruchhaus I, Metwally NG. Plasmodium falciparum infection reshapes the human microRNA profiles of red blood cells and their extracellular vesicles. iScience 2023; 26:107119. [PMID: 37534175 PMCID: PMC10391920 DOI: 10.1016/j.isci.2023.107119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/08/2023] [Accepted: 06/09/2023] [Indexed: 08/04/2023] Open
Abstract
Plasmodium falciparum, a human malaria parasite, develops in red blood cells (RBCs), which represent approximately 70% of all human blood cells. Additionally, RBC-derived extracellular vesicles (RBC-EVs) represent 7.3% of the total EV population. The roles of microRNAs (miRNAs) in the consequences of P. falciparum infection are unclear. Here, we analyzed the miRNA profiles of non-infected human RBCs (niRBCs), ring-infected RBCs (riRBCs), and trophozoite-infected RBCs (trRBCs), as well as those of EVs secreted from these cells. Hsa-miR-451a was the most abundant miRNA in all RBC and RBC-EV populations, but its expression level was not affected by P. falciparum infection. Overall, the miRNA profiles of RBCs and their EVs were altered significantly after infection. Most of the differentially expressed miRNAs were shared between RBCs and their EVs. A target prediction analysis of the miRNAs revealed the possible identity of the genes targeted by these miRNAs (CXCL10, OAS1, IL7, and CCL5) involved in immunomodulation.
Collapse
Affiliation(s)
- Yifan Wu
- Research Group Host Parasite Interaction, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Stephanie Leyk
- Research Group Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Hanifeh Torabi
- Research Group Host Parasite Interaction, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Katharina Höhn
- Cellular Parasitology Department, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Barbara Honecker
- Research Group Host Parasite Interaction, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Dániel Cadar
- Arbovirology Department, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Thomas Jacobs
- Research Group Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Iris Bruchhaus
- Research Group Host Parasite Interaction, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department University of Hamburg, Hamburg, Germany
| | - Nahla Galal Metwally
- Research Group Host Parasite Interaction, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
8
|
Mulatie Z, Aynalem M, Getawa S. MicroRNAs as Quality Assessment Tool in Stored Packed Red Blood Cell in Blood Banks. J Blood Med 2023; 14:99-106. [PMID: 36789373 PMCID: PMC9922504 DOI: 10.2147/jbm.s397139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Micro-ribonucleic acids are control gene expression in cells. They represent the changed cellular states that occur can be employed as biomarkers. Red blood cells alter biochemically and morphologically while they are being stored, which could be detrimental to transfusion. The effect of storage on the erythrocyte transcriptome is not mostly investigated. Because adult erythrocytes lack a nucleus, it has long been assumed that they lack deoxyribonucleic acid and ribonucleic acid. On the other hand, erythrocytes contain a diverse range of ribonucleic acids, of which micro-ribonucleic acids are key component. Changes in this micro-ribonucleic acid protect cells from death and adenine triphosphate depletion, and they are linked to specific storage lesions. As a result, changes in micro-ribonucleic acid in stored erythrocytes may be used as a marker to assess the quality and safety of stored erythrocytes. Therefore, this review ams to review the role of microRNA in stored packed red blood cells as quality indicator. Google Scholar, PubMed, Scopus, and Z-libraries are used for searching articles and books. The article included in this paper was written in the English language and had the full article. During long storage of RBCs, miR-16-2-3p, miR-1260a, miR-1260b, miR-4443, miR-4695-3p, miR-5100, let-7b, miR-16, miRNA-1246, MiR-31-5p, miR-203a, miR-654-3p, miR-769-3p, miR-4454, miR-451a and miR-125b- 5p are up regulated. However, miR-96, miR-150, miR-196a, miR-197, miR-381 and miR-1245a are down regulated after long storage of RBCs. The changes of this microRNAs are linked to red blood cell lesions. Therefore, micro-ribonucleic acids are the potential quality indicator in stored packed red blood cells in the blood bank. Particularly, micro-ribonucleic acid-96 is the most suitable biomarker for monitoring red blood cell quality in stored packed red blood units.
Collapse
Affiliation(s)
- Zewudu Mulatie
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Wollo University, Desie, Ethiopia
| | - Melak Aynalem
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Solomon Getawa
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
9
|
Systematic analysis of different degrees of haemolysis on miRNA levels in serum and serum-derived extracellular vesicles from dogs. BMC Vet Res 2022; 18:355. [PMID: 36138476 PMCID: PMC9494854 DOI: 10.1186/s12917-022-03445-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
Background Circulating microRNAs (miRNAs) are described as promising non-invasive biomarkers for diagnostics and therapeutics. Human studies have shown that haemolysis occurring during blood collection or due to improper sample processing/storage significantly alters the miRNA content in plasma and serum. Nevertheless, no similar research has been performed in dogs so far. We therefore investigated the effects of different degrees of haemolysis on the levels of selected miRNAs in serum and serum-derived extracellular vesicles (EVs) from dogs, by inducing a controlled in vitro haemolysis experiment. Results The abundance of miR-16, miR-92a, miR-191, miR-451 and miR-486 was significantly sensitive to haemolysis in serum and serum-derived EVs, while other selected miRNAs were not influenced by haemolysis. Furthermore, we found that the abundance of some canine miRNAs differs from data reported in the human system. Conclusions Our results describe for the first time the impact of haemolysis on circulating miRNAs not only in whole serum, but also in serum-derived EVs from dogs. Hence, we provide novel data for further analyses in the discovery of canine circulating biomarkers. Our findings suggest that haemolysis should be carefully assessed to assure accuracy when investigating circulating miRNA in serum or plasma-based tests. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03445-8.
Collapse
|
10
|
Jian F, Peng Y, Bian M. Expression and Bioinformatics Analysis of Key miRNAs in Stored Red Blood Cells. Transfus Med Hemother 2022; 49:298-305. [PMID: 37969864 PMCID: PMC10642532 DOI: 10.1159/000522102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 01/20/2022] [Indexed: 11/17/2023] Open
Abstract
Introduction Erythrocyte transfusion is the most common therapeutic procedure in hospitalized patients. Adding standard preservatives to red blood cells allows them to be stored for up to 42 days. However, whether storage has an effect on the erythrocyte transcriptome has not been well-studied. Objective This study was designed to explore the change of key risk microRNA (miRNAs) in stored erythrocytes. Methods We reanalyzed differentially expressed genes in the gene expression dataset GSE114990 and predicted their target genes, followed by experimental Gene Ontology (GO) analysis and (Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Furthermore, the PPI network of target genes was constructed by the STRING database, and the module analysis was carried out. Results We found two differential miRNAs, which were hsa-miR-1245a and hsa-miR-381. Enrichment analysis of GO and KEGG pathways confirmed that these target genes were significantly enriched in organ and system development, anchoring junction, transcription factor binding, and pathways of cancer. Conclusion The results suggest that the miRNAs hsa-miR-381 and hsa-miR-1245a may serve as biomarkers for storage products of erythrocytes.
Collapse
Affiliation(s)
| | | | - Maohong Bian
- Department of Blood Transfusion, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
11
|
Jain V, Yang WH, Wu J, Roback JD, Gregory SG, Chi JT. Single Cell RNA-Seq Analysis of Human Red Cells. Front Physiol 2022; 13:828700. [PMID: 35514346 PMCID: PMC9065680 DOI: 10.3389/fphys.2022.828700] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/21/2022] [Indexed: 02/02/2023] Open
Abstract
Human red blood cells (RBCs), or erythrocytes, are the most abundant blood cells responsible for gas exchange. RBC diseases affect hundreds of millions of people and impose enormous financial and personal burdens. One well-recognized, but poorly understood feature of RBC populations within the same individual are their phenotypic heterogeneity. The granular characterization of phenotypic RBC variation in normative and disease states may allow us to identify the genetic determinants of red cell diseases and reveal novel therapeutic approaches for their treatment. Previously, we discovered diverse RNA transcripts in RBCs that has allowed us to dissect the phenotypic heterogeneity and malaria resistance of sickle red cells. However, these analyses failed to capture the heterogeneity found in RBC sub-populations. To overcome this limitation, we have performed single cell RNA-Seq to analyze the transcriptional heterogeneity of RBCs from three adult healthy donors which have been stored in the blood bank conditions and assayed at day 1 and day 15. The expression pattern clearly separated RBCs into seven distinct clusters that include one RBC cluster that expresses HBG2 and a small population of RBCs that express fetal hemoglobin (HbF) that we annotated as F cells. Almost all HBG2-expessing cells also express HBB, suggesting bi-allelic expression in single RBC from the HBG2/HBB loci, and we annotated another cluster as reticulocytes based on canonical gene expression. Additional RBC clusters were also annotated based on the enriched expression of NIX, ACVR2B and HEMGN, previously shown to be involved in erythropoiesis. Finally, we found the storage of RBC was associated with an increase in the ACVR2B and F-cell clusters. Collectively, these data indicate the power of single RBC RNA-Seq to capture and discover known and unexpected heterogeneity of RBC population.
Collapse
Affiliation(s)
- Vaibhav Jain
- Department of Neurology, Durham, NC, United States.,Duke Molecular Physiology Institute, Durham, NC, United States
| | - Wen-Hsuan Yang
- Department of Molecular Genetics and Microbiology, Durham, NC, United States.,Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC, United States
| | - Jianli Wu
- Department of Molecular Genetics and Microbiology, Durham, NC, United States.,Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC, United States
| | - John D Roback
- Center for Transfusion and Cellular Therapies, Durham, NC, United States.,Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Simon G Gregory
- Department of Neurology, Durham, NC, United States.,Duke Molecular Physiology Institute, Durham, NC, United States
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Durham, NC, United States.,Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
12
|
Francuzik W, Pažur K, Dalke M, Dölle-Bierke S, Babina M, Worm M. Serological profiling reveals hsa-miR-451a as a possible biomarker of anaphylaxis. JCI Insight 2022; 7:156669. [PMID: 35202004 PMCID: PMC9057591 DOI: 10.1172/jci.insight.156669] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
Abstract
Background There is a need to support the diagnosis of anaphylaxis by objective markers. miRNAs are promising noncoding RNA species that may serve as serological biomarkers, but their use in diagnosing anaphylaxis has not been systematically studied to our knowledge. We aimed to comprehensively investigate serum biomarker profiles (proteins, lipids, and miRNAs) to support the diagnosis of anaphylaxis. Methods Adult patients admitted to the emergency room with a diagnosis of anaphylaxis (<3 hours) were included. Blood samples were taken upon emergency room arrival and 1 month later. Results Next-generation sequencing of 18 samples (6 patients with anaphylaxis in both acute and nonacute condition, for 12 total samples, and 6 healthy controls) identified hsa-miR-451a to be elevated during anaphylaxis, which was verified by quantitative real-time PCR in the remaining cohort. The random forest classifier enabled us to classify anaphylaxis with high accuracy using a composite model. We identified tryptase, 9α,11β-PGF2, apolipoprotein A1, and hsa-miR-451a as serological biomarkers of anaphylaxis. These predictors qualified as serological biomarkers individually but performed better in combination. Conclusion Unexpectedly, hsa-miR-451a was identified as the most relevant biomarker in our data set. We were also able to distinguish between patients with a history of anaphylaxis and healthy individuals with higher accuracy than any other available model. Future studies will need to verify miRNA biomarker utility in real-life clinical settings. Funding This work is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) as part of the clinical research unit (CRU339): Food Allergy and Tolerance (FOOD@) (project number 409525714) and a grant to MW (Wo541-16-2, project number 264921598), as well as by FOOD@ project numbers 428094283 and 428447634.
Collapse
Affiliation(s)
- Wojciech Francuzik
- Division of Allergy and Immunology, Department of Dermatology, Venereology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin,, Berlin, Germany
| | - Kristijan Pažur
- Division of Allergy and Immunology, Department of Dermatology, Venereology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin,, Berlin, Germany
| | - Magdalena Dalke
- Division of Allergy and Immunology, Department of Dermatology, Venereology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sabine Dölle-Bierke
- Division of Allergy and Immunology, Department of Dermatology, Venereology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Magda Babina
- Division of Allergy and Immunology, Department of Dermatology, Venereology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Margitta Worm
- Division of Allergy and Immunology, Department of Dermatology, Venereology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
13
|
Koopaei NN, Chowdhury EA, Jiang J, Noorani B, da Silva L, Bulut G, Hakimjavadi H, Chamala S, Bickel U, Schmittgen TD. Enrichment of the erythrocyte miR-451a in brain extracellular vesicles following impairment of the blood-brain barrier. Neurosci Lett 2021; 751:135829. [PMID: 33727125 DOI: 10.1016/j.neulet.2021.135829] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 02/11/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022]
Abstract
Extracellular RNAs (exRNAs) are present in all biofluids and incorporate many types of RNAs including miRNA. To enhance their stability outside of the cell, exRNAs are bound within ribonucleoprotein complexes or packaged into extracellular vesicles (EVs). The blood-brain barrier (BBB) is a dynamic interface between the systemic circulation and the CNS and is responsible for maintaining a stable extracellular environment for CNS cells. The intent of this study was to determine if EVs and their contents are transferred from the peripheral circulation to the CNS under conditions of an impaired BBB. The BBB of mice was disrupted by unilateral intracarotid artery infusion with hyperosmolar mannitol solution. To validate barrier opening, the uptake clearance of [13C12]-sucrose in the left forebrain (i.e. the ipsilateral, mannitol injected hemisphere) was quantified and revealed a 14-fold increase in the mannitol perfused hemisphere compared to sham treated mice. EVs were isolated from the extracellular spaces of the left forebrain following gentle tissue lysis and differential ultracentrifugation. EVs were confirmed using nanotracking analysis, electron microscopy and western blotting. qRT-PCR showed that the erythrocyte-enriched miR-451a in brain tissue EVs increased with mannitol treatment by 24-fold. Small RNA sequencing performed on the EVs isolated from the sham and mannitol treated mice showed that miR-9-5p was the most abundant miRNA contained within the brain EVs. qRT-PCR analysis of plasma EVs did not produce a statistically significant difference in the expression of the CNS-enriched miR-9-5p or miR-9-3p, suggesting that transfer of CNS EVs to the peripheral circulation did not occur under the conditions of our experiment. We demonstrate that EVs containing miR-451a, a highly abundant miRNA present within erythrocytes and erythrocyte EVs, are enhanced in the CNS upon BBB disruption.
Collapse
Affiliation(s)
- Nasser Nassiri Koopaei
- Department of Pharmaceutics, College of Pharmacy, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ekram Ahmed Chowdhury
- Department of Pharmaceutical Sciences and Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Jinmai Jiang
- Department of Pharmaceutics, College of Pharmacy, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Behnam Noorani
- Department of Pharmaceutical Sciences and Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Lais da Silva
- Department of Pharmaceutics, College of Pharmacy, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Gamze Bulut
- Department of Pharmaceutics, College of Pharmacy, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Hesamedin Hakimjavadi
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Srikar Chamala
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ulrich Bickel
- Department of Pharmaceutical Sciences and Center for Blood-Brain Barrier Research, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Thomas D Schmittgen
- Department of Pharmaceutics, College of Pharmacy, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
14
|
Ohkawa R, Low H, Mukhamedova N, Fu Y, Lai SJ, Sasaoka M, Hara A, Yamazaki A, Kameda T, Horiuchi Y, Meikle PJ, Pernes G, Lancaster G, Ditiatkovski M, Nestel P, Vaisman B, Sviridov D, Murphy A, Remaley AT, Sviridov D, Tozuka M. Cholesterol transport between red blood cells and lipoproteins contributes to cholesterol metabolism in blood. J Lipid Res 2020; 61:1577-1588. [PMID: 32907987 PMCID: PMC7707172 DOI: 10.1194/jlr.ra120000635] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lipoproteins play a key role in transport of cholesterol to and from tissues. Recent studies have also demonstrated that red blood cells (RBCs), which carry large quantities of free cholesterol in their membrane, play an important role in reverse cholesterol transport. However, the exact role of RBCs in systemic cholesterol metabolism is poorly understood. RBCs were incubated with autologous plasma or isolated lipoproteins resulting in a significant net amount of cholesterol moved from RBCs to HDL, while cholesterol from LDL moved in the opposite direction. Furthermore, the bi-directional cholesterol transport between RBCs and plasma lipoproteins was saturable and temperature-, energy-, and time-dependent, consistent with an active process. We did not find LDLR, ABCG1, or scavenger receptor class B type 1 in RBCs but found a substantial amount of ABCA1 mRNA and protein. However, specific cholesterol efflux from RBCs to isolated apoA-I was negligible, and ABCA1 silencing with siRNA or inhibition with vanadate and Probucol did not inhibit the efflux to apoA-I, HDL, or plasma. Cholesterol efflux from and cholesterol uptake by RBCs from Abca1+/+ and Abca1-/- mice were similar, arguing against the role of ABCA1 in cholesterol flux between RBCs and lipoproteins. Bioinformatics analysis identified ABCA7, ABCG5, lipoprotein lipase, and mitochondrial translocator protein as possible candidates that may mediate the cholesterol flux. Together, these results suggest that RBCs actively participate in cholesterol transport in the blood, but the role of cholesterol transporters in RBCs remains uncertain.
Collapse
Affiliation(s)
- Ryunosuke Ohkawa
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Baker Heart and Diabetes Institute, Melbourne, Australia.
| | - Hann Low
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | | | - Ying Fu
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Shao-Jui Lai
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mai Sasaoka
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ayuko Hara
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Azusa Yamazaki
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takahiro Kameda
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuna Horiuchi
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Gerard Pernes
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | | | | | - Paul Nestel
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Boris Vaisman
- Lipoprotein Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Denis Sviridov
- Lipoprotein Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrew Murphy
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Alan T Remaley
- Lipoprotein Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia.
| | - Minoru Tozuka
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Life Science Research Center, Nagano Children's Hospital, Azumino, Japan
| |
Collapse
|
15
|
Hentzschel F, Obrova K, Marti M. No evidence for Ago2 translocation from the host erythrocyte into the Plasmodium parasite. Wellcome Open Res 2020; 5:92. [PMID: 33501380 PMCID: PMC7808052 DOI: 10.12688/wellcomeopenres.15852.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Plasmodium parasites rely on various host factors to grow and replicate within red blood cells (RBC). While many host proteins are known that mediate parasite adhesion and invasion, few examples of host enzymes co-opted by the parasite during intracellular development have been described. Recent studies suggested that the host protein Argonaute 2 (Ago2), which is involved in RNA interference, can translocate into the parasite and affect its development. Here, we investigated this hypothesis. Methods: We used several different monoclonal antibodies to test for Ago2 localisation in the human malaria parasite, P. falciparum and rodent P. berghei parasites. In addition, we biochemically fractionated infected red blood cells to localize Ago2. We also quantified parasite growth and sexual commitment in the presence of the Ago2 inhibitor BCI-137. Results: Ago2 localization by fluorescence microscopy produced inconclusive results across the three different antibodies, suggesting cross-reactivity with parasite targets. Biochemical separation of parasite and RBC cytoplasm detected Ago2 only in the RBC cytoplasm and not in the parasite. Inhibition of Ago2 using BCl-137 did not result in altered parasite development. Conclusion: Ago2 localization in infected RBCs by microscopy is confounded by non-specific binding of antibodies. Complementary results using biochemical fractionation and Ago2 detection by western blot did not detect the protein in the parasite cytosol, and growth assays using a specific inhibitor demonstrated that its catalytical activity is not required for parasite development. We therefore conclude that previous data localising Ago2 to parasite ring stages are due to antibody cross reactivity, and that Ago2 is not required for intracellular Plasmodium development.
Collapse
Affiliation(s)
- Franziska Hentzschel
- Wellcome Center for Integrative Parasitology; Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
- Center for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, 69120, Germany
| | - Klara Obrova
- Center for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, 69120, Germany
| | - Matthias Marti
- Wellcome Center for Integrative Parasitology; Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| |
Collapse
|
16
|
Sun L, Yu Y, Niu B, Wang D. Red Blood Cells as Potential Repositories of MicroRNAs in the Circulatory System. Front Genet 2020; 11:442. [PMID: 32582273 PMCID: PMC7286224 DOI: 10.3389/fgene.2020.00442] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 04/09/2020] [Indexed: 02/06/2023] Open
Abstract
The amount of erythrocyte-derived microRNAs (miRNAs) represents the majority of miRNAs expressed in whole blood. miR-451, miR-144, and miR-486, which are abundant in red blood cells (RBCs), are involved in the process of erythropoiesis and disease occurrence. Moreover, erythrocyte-derived miRNAs have been reported to be potential biomarkers of specific diseases. However, the function and underlying mechanisms of miRNAs derived from erythrocytes remain unclear. Based on a review of previously published literature, we discuss several possible pathways by which RBC miRNAs may function and propose that RBCs may serve as repositories of miRNAs in the circulatory system and participate in the regulation of gene expression mainly via the transfer of miRNAs from erythrocyte extracellular vesicles (EVs). In the whole blood, there are still other important cell types such as leukocytes and platelets harboring functional miRNAs, and hemolysis also exists, which limit the abundance of miRNAs as disease biomarkers, and thus, miRNA studies on RBCs may be impacted. In the future, the role of RBCs in the regulation of normal physiological functions of the body and the entire circulatory system under pathological states, if any, remains to be determined.
Collapse
Affiliation(s)
- Liping Sun
- Department of Blood Transfusion, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yang Yu
- Department of Blood Transfusion, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Beifang Niu
- Computer Network Information Center, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Deqing Wang
- Department of Blood Transfusion, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
17
|
Hentzschel F, Obrova K, Marti M. No evidence for Ago2 translocation from the host erythrocyte into the Plasmodium parasite. Wellcome Open Res 2020; 5:92. [PMID: 33501380 PMCID: PMC7808052 DOI: 10.12688/wellcomeopenres.15852.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2020] [Indexed: 02/15/2024] Open
Abstract
Background: Plasmodium parasites rely on various host factors to grow and replicate within red blood cells (RBC). While many host proteins are known that mediate parasite adhesion and invasion, few examples of host enzymes co-opted by the parasite during intracellular development have been described. Recent studies suggested that the host protein Argonaute 2 (Ago2), which is involved in RNA interference, can translocate into the parasite and affect its development. Here, we investigated this hypothesis. Methods: We used several different monoclonal antibodies to test for Ago2 localisation in the human malaria parasite, P. falciparum and rodent P. berghei parasites. In addition, we biochemically fractionated infected red blood cells to localize Ago2. We also quantified parasite growth and sexual commitment in the presence of the Ago2 inhibitor BCI-137. Results: Ago2 localization by fluorescence microscopy produced inconclusive results across the three different antibodies, suggesting cross-reactivity with parasite targets. Biochemical separation of parasite and RBC cytoplasm detected Ago2 only in the RBC cytoplasm and not in the parasite. Inhibition of Ago2 using BCl-137 did not result in altered parasite development. Conclusion: Ago2 localization in infected RBCs by microscopy is confounded by non-specific binding of antibodies. Complementary results using biochemical fractionation and Ago2 detection by western blot did not detect the protein in the parasite cytosol, and growth assays using a specific inhibitor demonstrated that its catalytical activity is not required for parasite development. We therefore conclude that previous data localising Ago2 to parasite ring stages are due to antibody cross reactivity, and that Ago2 is not required for intracellular Plasmodium development.
Collapse
Affiliation(s)
- Franziska Hentzschel
- Wellcome Center for Integrative Parasitology; Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
- Center for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, 69120, Germany
| | - Klara Obrova
- Center for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, 69120, Germany
| | - Matthias Marti
- Wellcome Center for Integrative Parasitology; Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G12 8TA, UK
| |
Collapse
|
18
|
Groen K, Maltby VE, Scott RJ, Tajouri L, Lechner‐Scott J. Erythrocyte microRNAs show biomarker potential and implicate multiple sclerosis susceptibility genes. Clin Transl Med 2020; 10:74-90. [PMID: 32508012 PMCID: PMC7240864 DOI: 10.1002/ctm2.22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Multiple sclerosis is a demyelinating autoimmune disease, for which there is no blood-borne biomarker. Erythrocytes may provide a source of such biomarkers as they contain microRNAs. MicroRNAs regulate protein translation through complementary binding to messenger RNA. As erythrocytes are transcriptionally inactive, their microRNA profiles may be less susceptible to variation. The aim of this study was to assess the biomarker potential of erythrocyte microRNAs for multiple sclerosis and assess the potential contribution of erythrocyte-derived extracellular vesicle microRNAs to pathology. METHODS Erythrocytes were isolated from whole blood by density gradient centrifugation. Erythrocyte microRNAs of a discovery cohort (23 multiple sclerosis patients and 22 healthy controls) were sequenced. Increased expression of miR-183 cluster microRNAs (hsa-miR-96-5p, hsa-miR-182-5p and hsa-miR-183-5p) was validated in an independent cohort of 42 patients and 45 healthy and pathological (migraine) controls. Erythrocyte-derived extracellular vesicles were created ex vivo and their microRNAs were sequenced. Targets of microRNAs were predicted using miRDIP. RESULTS Hsa-miR-182-5p and hsa-miR-183-5p were able to discriminate relapsing multiple sclerosis patients from migraine patients and/or healthy controls with 89-94% accuracy and around 90% specificity. Hsa-miR-182-5p and hsa-miR-183-5p expression correlated with measures of physical disability and hsa-miR-96-5p expression correlated with measures of cognitive disability in multiple sclerosis. Erythrocytes were found to selectively package microRNAs into extracellular vesicles and 34 microRNAs were found to be differentially packaged between healthy controls and multiple sclerosis patients. Several gene targets of differentially expressed and packaged erythrocyte microRNAs overlapped with multiple sclerosis susceptibility genes. Gene enrichment analysis indicated involvement in nervous system development and histone H3-K27 demethylation. CONCLUSIONS Erythrocyte miR-183 cluster members may be developed into specific multiple sclerosis biomarkers that could assist with diagnosis and disability monitoring. Erythrocyte and their extracellular microRNAs were shown to target multiple sclerosis susceptibility genes and may be contributing to the pathophysiology via previously identified routes.
Collapse
Affiliation(s)
- Kira Groen
- School of Medicine and Public HealthUniversity of NewcastleCallaghanNew South WalesAustralia
- Centre for Brain and Mental Health ResearchHunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
| | - Vicki E. Maltby
- School of Medicine and Public HealthUniversity of NewcastleCallaghanNew South WalesAustralia
- Centre for Brain and Mental Health ResearchHunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
- Department of NeurologyJohn Hunter HospitalNew Lambton HeightsNew South WalesAustralia
| | - Rodney J. Scott
- CancerHunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
- Division of Molecular MedicinePathology NorthJohn Hunter HospitalNew Lambton HeightsNew South WalesAustralia
- School of Biomedical Sciences and PharmacyUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Lotti Tajouri
- Faculty of Health Sciences and MedicineBond UniversityRobinaQueenslandAustralia
- Dubai Police Scientific CouncilDubaiUnited Arab Emirates
| | - Jeannette Lechner‐Scott
- School of Medicine and Public HealthUniversity of NewcastleCallaghanNew South WalesAustralia
- Centre for Brain and Mental Health ResearchHunter Medical Research InstituteNew Lambton HeightsNew South WalesAustralia
- Department of NeurologyJohn Hunter HospitalNew Lambton HeightsNew South WalesAustralia
| |
Collapse
|
19
|
Dandewad V, Vindu A, Joseph J, Seshadri V. Import of human miRNA-RISC complex into Plasmodium falciparum and regulation of the parasite gene expression. J Biosci 2019. [DOI: 10.1007/s12038-019-9870-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Groen K, Maltby VE, Lea RA, Sanders KA, Fink JL, Scott RJ, Tajouri L, Lechner-Scott J. Erythrocyte microRNA sequencing reveals differential expression in relapsing-remitting multiple sclerosis. BMC Med Genomics 2018; 11:48. [PMID: 29783973 PMCID: PMC5963124 DOI: 10.1186/s12920-018-0365-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/01/2018] [Indexed: 02/06/2023] Open
Abstract
Background There is a paucity of knowledge concerning erythrocytes in the aetiology of Multiple Sclerosis (MS) despite their potential to contribute to disease through impaired antioxidant capacity and altered haemorheological features. Several studies have identified an abundance of erythrocyte miRNAs and variable profiles associated with disease states, such as sickle cell disease and malaria. The aim of this study was to compare the erythrocyte miRNA profile of relapsing-remitting MS (RRMS) patients to healthy sex- and age-matched controls. Methods Erythrocytes were purified by density-gradient centrifugation and RNA was extracted. Following library preparation, samples were run on a HiSeq4000 Illumina instrument (paired-end 100 bp sequencing). Sequenced erythrocyte miRNA profiles (9 patients and 9 controls) were analysed by DESeq2. Differentially expressed miRNAs were validated by RT-qPCR using miR-152-3p as an endogenous control and replicated in a larger cohort (20 patients and 18 controls). After logarithmic transformation, differential expression was determined by two-tailed unpaired t-tests. Logistic regression analysis was carried out and receiver operating characteristic (ROC) curves were generated to determine biomarker potential. Results A total of 236 erythrocyte miRNAs were identified. Of twelve differentially expressed miRNAs in RRMS two showed increased expression (adj. p < 0.05). Only modest fold-changes were evident across differentially expressed miRNAs. RT-qPCR confirmed differential expression of miR-30b-5p (0.61 fold, p < 0.05) and miR-3200-3p (0.36 fold, p < 0.01) in RRMS compared to healthy controls. Relative expression of miR-3200-5p (0.66 fold, NS p = 0.096) also approached significance. MiR-3200-5p was positively correlated with cognition measured by audio-recorded cognitive screen (r = 0.60; p < 0.01). MiR-3200-3p showed greatest biomarker potential as a single miRNA (accuracy = 75.5%, p < 0.01, sensitivity = 72.7%, specificity = 84.0%). Combining miR-3200-3p, miR-3200-5p, and miR-30b-5p into a composite biomarker increased accuracy to 83.0% (p < 0.05), sensitivity to 77.3%, and specificity to 88.0%. Conclusions This is the first study to report differences in erythrocyte miRNAs in RRMS. While the role of miRNAs in erythrocytes remains to be elucidated, differential expression of erythrocyte miRNAs may be exploited as biomarkers and their potential contribution to MS pathology and cognition should be further investigated. Electronic supplementary material The online version of this article (10.1186/s12920-018-0365-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kira Groen
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, 2308, Australia.,Centre for Information Based Medicine, Level 3 West, Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia
| | - Vicki E Maltby
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, 2308, Australia.,Centre for Information Based Medicine, Level 3 West, Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia
| | - Rodney A Lea
- Centre for Information Based Medicine, Level 3 West, Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia.,Institute of Health and Biomedical Innovations, Genomics Research Centre, Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia
| | - Katherine A Sanders
- Centre for Anatomical and Human Sciences, Hull York Medical School, Hull, HU6 7RX, UK
| | - J Lynn Fink
- Diamantina Institute, University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Rodney J Scott
- Centre for Information Based Medicine, Level 3 West, Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia.,Division of Molecular Genetics, Pathology North, John Hunter Hospital, New Lambton Heights, NSW, 2305, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Lotti Tajouri
- Faculty of Health Sciences and Medicine, Bond University, QLD, Robina, 4229, Australia
| | - Jeannette Lechner-Scott
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, 2308, Australia. .,Centre for Information Based Medicine, Level 3 West, Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia. .,Department of Neurology, John Hunter Hospital, New Lambton Heights, NSW, 2305, Australia.
| |
Collapse
|
21
|
Herrera-Carrillo E, Harwig A, Berkhout B. Influence of the loop size and nucleotide composition on AgoshRNA biogenesis and activity. RNA Biol 2017; 14:1559-1569. [PMID: 28569591 PMCID: PMC5785215 DOI: 10.1080/15476286.2017.1328349] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Short hairpin RNAs (shRNAs) are widely used for gene silencing by the RNA interference (RNAi) mechanism. The shRNA precursor is processed by the Dicer enzyme into active small interfering RNAs (siRNAs) that subsequently target a complementary mRNA for cleavage by the Argonaute 2 (Ago2) complex. Recent evidence indicates that shRNAs with a relatively short basepaired stem bypass Dicer and are instead processed by Ago2. We termed these molecules AgoshRNAs as both processing and silencing steps are mediated by Ago2 and proposed rules for the design of effective AgoshRNA molecules. Active and non-cytotoxic AgoshRNAs against HIV-1 RNA were generated, but their silencing activity was generally reduced compared with the matching shRNAs. Thus, further optimization of the AgoshRNA design is needed. In this study, we evaluated the importance of the single-stranded loop, in particular its size and nucleotide sequence, in AgoshRNA-mediated silencing. We document that the pyrimidine/purine content is important for AgoshRNA-mediated silencing activity.
Collapse
Affiliation(s)
- Elena Herrera-Carrillo
- a Laboratory of Experimental Virology, Department of Medical Microbiology , Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam , AZ Amsterdam , the Netherlands
| | - Alex Harwig
- a Laboratory of Experimental Virology, Department of Medical Microbiology , Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam , AZ Amsterdam , the Netherlands
| | - Ben Berkhout
- a Laboratory of Experimental Virology, Department of Medical Microbiology , Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam , AZ Amsterdam , the Netherlands
| |
Collapse
|
22
|
Vu L, Ragupathy V, Kulkarni S, Atreya C. Analysis of Argonaute 2-microRNA complexes in ex vivo stored red blood cells. Transfusion 2017; 57:2995-3000. [PMID: 28940437 DOI: 10.1111/trf.14325] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND Human enucleated mature red blood cells (RBCs) contain both mature microRNAs (miRNAs) and mRNAs, and we have previously correlated RBC storage lesion processes such as eryptosis, adenosine 5'-triphosphate loss, and RBC indices with differentially expressed miRNAs. Here we have characterized Argonaute 2 (AGO2)-miRNA complexes in stored mature RBCs as a first step toward understanding their role, if any. STUDY DESIGN AND METHODS In this report AGO2-bound miRNAs in mature RBCs isolated from RBCs collected from three different healthy donors and stored for 24 hours at 4 to 6°C were identified by anti-AGO2 immunoprecipitation (IP) followed by next-generation sequencing of the RNA isolated from the IP. The data were analyzed by various bioinformatics tools. RESULTS The analysis highlighted 28 mature AGO2-bound miRNAs that are common to all three donors, representing 95.6% of the identified miRNAs. Among these, miR-16-5p (20.6%), miR-451a-5p (16.7%), miR-486-5p (12.6%), and miR-92a-3p (12.6%) are the most abundant miRNAs. Functional enrichment analysis for mRNA targets of the 28 common miRNAs identified molecules related to various diseases, biofunctions, and toxicity functions such as cardio-, hepato-, and nephrotoxicity. CONCLUSION Overall, these results demonstrate the existence of multiple intracellular AGO2-bound miRNAs in 24-hour-stored RBCs and warrant further experiments to determine whether AGO2-miRNAs are functional in RBCs.
Collapse
Affiliation(s)
- Long Vu
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Viswanath Ragupathy
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Sandhya Kulkarni
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Chintamani Atreya
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
23
|
Cerebrospinal fluid microRNAs are potential biomarkers of temporal lobe epilepsy and status epilepticus. Sci Rep 2017; 7:3328. [PMID: 28607431 PMCID: PMC5468228 DOI: 10.1038/s41598-017-02969-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/20/2017] [Indexed: 02/06/2023] Open
Abstract
There is a need for diagnostic biomarkers of epilepsy and status epilepticus to support clinical examination, electroencephalography and neuroimaging. Extracellular microRNAs may be potentially ideal biomarkers since some are expressed uniquely within specific brain regions and cell types. Cerebrospinal fluid offers a source of microRNA biomarkers with the advantage of being in close contact with the target tissue and sites of pathology. Here we profiled microRNA levels in cerebrospinal fluid from patients with temporal lobe epilepsy or status epilepticus, and compared findings to matched controls. Differential expression of 20 microRNAs was detected between patient groups and controls. A validation phase included an expanded cohort and samples from patients with other neurological diseases. This identified lower levels of miR-19b in temporal lobe epilepsy compared to controls, status epilepticus and other neurological diseases. Levels of miR-451a were higher in status epilepticus compared to other groups whereas miR-21-5p differed in status epilepticus compared to temporal lobe epilepsy but not to other neurological diseases. Targets of these microRNAs include proteins regulating neuronal death, tissue remodelling, gliosis and inflammation. The present study indicates cerebrospinal fluid contains microRNAs that can support differential diagnosis of temporal lobe epilepsy and status epilepticus from other neurological and non-neurological diseases.
Collapse
|
24
|
Walzer KA, Chi JT. Trans-kingdom small RNA transfer during host-pathogen interactions: The case of P. falciparum and erythrocytes. RNA Biol 2017; 14:442-449. [PMID: 28277932 DOI: 10.1080/15476286.2017.1294307] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
This review focuses on the role of trans-kingdom movement of small RNA (sRNA) molecules between parasites, particularly Plasmodium falciparum, and their respective host cells. While the intercellular transfer of sRNAs within organisms is well recognized, recent studies illustrate many examples of trans-kingdom sRNA exchange within the context of host-parasite interactions. These interactions are predominantly found in the transfer of host sRNAs between erythrocytes and the invading P. falciparum, as well as other host cell types. In addition, parasite-encoded sRNAs can also be transferred to host cells to evade the immune system. The transport of these parasite sRNAs in the body fluids of the host may also offer means to detect and monitor the parasite infection. These isolated examples may only represent the tip of the iceberg in which the transfer of sRNA between host and parasites is a critical aspect of host-pathogen interactions. In addition, the levels of these sRNAs and their speed of transfer may vary dramatically under different contexts to push the biologic equilibrium toward the benefit of hosts vs. parasites. Therefore, these sRNA transfers may offer potential strategies to detect, prevent or treat parasite infections. Here, we review a brief history of the discovery of host erythrocyte sRNAs, their transfers and interactions in the context of P. falciparum infection. We also provide examples and discuss the functional significance of the reciprocal transfer of parasite-encoded sRNAs into hosts. These understandings of sRNA exchanges are put in the context of their implications for parasite pathogenesis, host defenses and the evolution of host polymorphisms driven by host interactions with these parasites.
Collapse
Affiliation(s)
- Katelyn A Walzer
- a Department of Molecular Genetics and Microbiology , Duke University School of Medicine , Durham , North Carolina , USA.,b Center for Genomic and Computational Biology , Duke University School of Medicine , Durham , North Carolina , USA
| | - Jen-Tsan Chi
- a Department of Molecular Genetics and Microbiology , Duke University School of Medicine , Durham , North Carolina , USA.,b Center for Genomic and Computational Biology , Duke University School of Medicine , Durham , North Carolina , USA
| |
Collapse
|
25
|
Discovery, Genomic Analysis, and Functional Role of the Erythrocyte RNAs. CURRENT PATHOBIOLOGY REPORTS 2017. [DOI: 10.1007/s40139-017-0124-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
26
|
Kuo WP, Tigges JC, Toxavidis V, Ghiran I. Red Blood Cells: A Source of Extracellular Vesicles. Methods Mol Biol 2017; 1660:15-22. [PMID: 28828644 DOI: 10.1007/978-1-4939-7253-1_2] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
During their lifetime, like all other cell types, red blood cells (RBCs) release both exosomes and plasma membrane derived EVs (ectosomes). RBC exosomes are formed only during the development of RBCs in bone marrow, and are released following the fusion of microvesicular bodies (MVB) with the plasma membrane. On the other hand, RBC EVs are generated during normal aging of RBCs in circulation by budding of the plasma membrane due to complement -mediated calcium influx, followed by vesicle shedding. This makes red blood cells and stored red cells a reliable source of EVs for basic and clinical research.
Collapse
Affiliation(s)
- Winston Patrick Kuo
- CloudHealth Genomics, Ltd, Shanghai, China. .,Weschester Biotech Project, Asbury Park, NJ, USA.
| | - John C Tigges
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Vasilis Toxavidis
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ionita Ghiran
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
27
|
Mitchell AJ, Gray WD, Schroeder M, Yi H, Taylor JV, Dillard RS, Ke Z, Wright ER, Stephens D, Roback JD, Searles CD. Pleomorphic Structures in Human Blood Are Red Blood Cell-Derived Microparticles, Not Bacteria. PLoS One 2016; 11:e0163582. [PMID: 27760197 PMCID: PMC5070825 DOI: 10.1371/journal.pone.0163582] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 09/12/2016] [Indexed: 12/01/2022] Open
Abstract
Background Red blood cell (RBC) transfusions are a common, life-saving therapy for many patients, but they have also been associated with poor clinical outcomes. We identified unusual, pleomorphic structures in human RBC transfusion units by negative-stain electron microscopy that appeared identical to those previously reported to be bacteria in healthy human blood samples. The presence of viable, replicating bacteria in stored blood could explain poor outcomes in transfusion recipients and have major implications for transfusion medicine. Here, we investigated the possibility that these structures were bacteria. Results Flow cytometry, miRNA analysis, protein analysis, and additional electron microscopy studies strongly indicated that the pleomorphic structures in the supernatant of stored RBCs were RBC-derived microparticles (RMPs). Bacterial 16S rDNA PCR amplified from these samples were sequenced and was found to be highly similar to species that are known to commonly contaminate laboratory reagents. Conclusions These studies suggest that pleomorphic structures identified in human blood are RMPs and not bacteria, and they provide an example in which laboratory contaminants may can mislead investigators.
Collapse
Affiliation(s)
- Adam J. Mitchell
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Warren D. Gray
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Max Schroeder
- Division of Infectious Disease, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Hong Yi
- Robert P. Apkarian Integrated Electron Microscopy Core, Emory University, Atlanta, Georgia, United States of America
| | - Jeannette V. Taylor
- Robert P. Apkarian Integrated Electron Microscopy Core, Emory University, Atlanta, Georgia, United States of America
| | - Rebecca S. Dillard
- Division of Infectious Disease, Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
| | - Zunlong Ke
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Elizabeth R. Wright
- Robert P. Apkarian Integrated Electron Microscopy Core, Emory University, Atlanta, Georgia, United States of America
- Division of Infectious Disease, Department of Pediatrics, Emory University, Atlanta, Georgia, United States of America
| | - David Stephens
- Division of Infectious Disease, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - John D. Roback
- Center for Transfusion and Cellular Therapy, Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Charles D. Searles
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia, United States of America
- Section of Cardiology, Atlanta VA Medical Center, Decatur, Georgia, United States of America
- * E-mail:
| |
Collapse
|
28
|
miR-150 inhibits terminal erythroid proliferation and differentiation. Oncotarget 2016; 6:43033-47. [PMID: 26543232 PMCID: PMC4767489 DOI: 10.18632/oncotarget.5824] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 10/22/2015] [Indexed: 01/21/2023] Open
Abstract
MicroRNAs (miRNAs), a class of small non-coding linear RNAs, have been shown to play a crucial role in erythropoiesis. To evaluate the indispensable role of constant suppression of miR-150 during terminal erythropoiesis, we performed miR-150 gain- and loss-of-function experiments on hemin-induced K562 cells and EPO-induced human CD34+ cells. We found that forced expression of miR-150 suppresses commitment of hemoglobinization and CD235a labeling in both cell types. Erythroid proliferation is also inhibited via inducing apoptosis and blocking the cell cycle when miR-150 is overexpressed. In contrast, miR-150 inhibition promotes terminal erythropoiesis. 4.1 R gene is a new target of miR-150 during terminal erythropoiesis, and its abundance ensures the mechanical stability and deformability of the membrane. However, knockdown of 4.1 R did not affect terminal erythropoiesis. Transcriptional profiling identified more molecules involved in terminal erythroid dysregulation derived from miR-150 overexpression. These results shed light on the role of miR-150 during human terminal erythropoiesis. This is the first report highlighting the relationship between miRNA and membrane protein and enhancing our understanding of how miRNA works in the hematopoietic system.
Collapse
|
29
|
Seashols-Williams S, Lewis C, Calloway C, Peace N, Harrison A, Hayes-Nash C, Fleming S, Wu Q, Zehner ZE. High-throughput miRNA sequencing and identification of biomarkers for forensically relevant biological fluids. Electrophoresis 2016; 37:2780-2788. [DOI: 10.1002/elps.201600258] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/14/2016] [Accepted: 08/17/2016] [Indexed: 12/18/2022]
Affiliation(s)
| | - Carolyn Lewis
- Department of Forensic Science; Virginia Commonwealth University; Richmond VA USA
| | - Chelsea Calloway
- Department of Forensic Science; Virginia Commonwealth University; Richmond VA USA
| | - Nerissa Peace
- Department of Forensic Science; Virginia Commonwealth University; Richmond VA USA
| | - Ariana Harrison
- Department of Forensic Science; Virginia Commonwealth University; Richmond VA USA
| | - Christina Hayes-Nash
- Department of Forensic Science; Virginia Commonwealth University; Richmond VA USA
| | - Samantha Fleming
- Department of Forensic Science; Virginia Commonwealth University; Richmond VA USA
| | - Qianni Wu
- Department of Biochemistry and Molecular Biology; Virginia Commonwealth University; Richmond VA USA
| | - Zendra E. Zehner
- Department of Biochemistry and Molecular Biology; Virginia Commonwealth University; Richmond VA USA
| |
Collapse
|
30
|
Analysis of Plasma microRNA Associated with Hemolysis. Bull Exp Biol Med 2016; 160:748-50. [DOI: 10.1007/s10517-016-3300-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Indexed: 01/21/2023]
|
31
|
Doss JF, Corcoran DL, Jima DD, Telen MJ, Dave SS, Chi JT. A comprehensive joint analysis of the long and short RNA transcriptomes of human erythrocytes. BMC Genomics 2015; 16:952. [PMID: 26573221 PMCID: PMC4647483 DOI: 10.1186/s12864-015-2156-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/27/2015] [Indexed: 12/30/2022] Open
Abstract
Background Human erythrocytes are terminally differentiated, anucleate cells long thought to lack RNAs. However, previous studies have shown the persistence of many small-sized RNAs in erythrocytes. To comprehensively define the erythrocyte transcriptome, we used high-throughput sequencing to identify both short (18–24 nt) and long (>200 nt) RNAs in mature erythrocytes. Results Analysis of the short RNA transcriptome with miRDeep identified 287 known and 72 putative novel microRNAs. Unexpectedly, we also uncover an extensive repertoire of long erythrocyte RNAs that encode many proteins critical for erythrocyte differentiation and function. Additionally, the erythrocyte long RNA transcriptome is significantly enriched in the erythroid progenitor transcriptome. Joint analysis of both short and long RNAs identified several loci with co-expression of both microRNAs and long RNAs spanning microRNA precursor regions. Within the miR-144/451 locus previously implicated in erythroid development, we observed unique co-expression of several primate-specific noncoding RNAs, including a lncRNA, and miR-4732-5p/-3p. We show that miR-4732-3p targets both SMAD2 and SMAD4, two critical components of the TGF-β pathway implicated in erythropoiesis. Furthermore, miR-4732-3p represses SMAD2/4-dependent TGF-β signaling, thereby promoting cell proliferation during erythroid differentiation. Conclusions Our study presents the most extensive profiling of erythrocyte RNAs to date, and describes primate-specific interactions between the key modulator miR-4732-3p and TGF-β signaling during human erythropoiesis. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2156-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jennifer F Doss
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, 27710, USA. .,Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA.
| | - David L Corcoran
- Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA.
| | - Dereje D Jima
- Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA. .,Department of Medicine, Duke University, Durham, NC, 27710, USA.
| | - Marilyn J Telen
- Division of Hematology, Department of Medicine, and Duke Comprehensive Sickle Cell Center, Duke University, Durham, NC, 27710, USA.
| | - Sandeep S Dave
- Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA. .,Department of Medicine, Duke University, Durham, NC, 27710, USA.
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, 27710, USA. .,Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|