1
|
Structural and Dynamic Differences between Calreticulin Mutants Associated with Essential Thrombocythemia. Biomolecules 2023; 13:biom13030509. [PMID: 36979444 PMCID: PMC10046389 DOI: 10.3390/biom13030509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
Essential thrombocythemia (ET) is a blood cancer. ET is characterized by an overproduction of platelets that can lead to thrombosis formation. Platelet overproduction occurs in megakaryocytes through a signaling pathway that could involve JAK2, MPL, or CALR proteins. CALR mutations are associated with 25–30% of ET patients; CALR variants must be dimerized to induce ET. We classified these variants into five classes named A to E; classes A and B are the most frequent classes in patients with ET. The dynamic properties of these five classes using structural models of CALR’s C-domain were analyzed using molecular dynamics simulations. Classes A, B, and C are associated with frameshifts in the C-domain. Their dimers can be stable only if a disulfide bond is formed; otherwise, the two monomers repulse each other. Classes D and E cannot be stable as dimers due to the absence of disulfide bonds. Class E and wild-type CALR have similar dynamic properties. These results suggest that the disulfide bond newly formed in classes A, B, and C may be essential for the pathogenicity of these variants. They also underline that class E cannot be directly related to ET but corresponds to human polymorphisms.
Collapse
|
2
|
Immanuel T, Li J, Green TN, Bogdanova A, Kalev-Zylinska ML. Deregulated calcium signaling in blood cancer: Underlying mechanisms and therapeutic potential. Front Oncol 2022; 12:1010506. [PMID: 36330491 PMCID: PMC9623116 DOI: 10.3389/fonc.2022.1010506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/21/2022] [Indexed: 02/05/2023] Open
Abstract
Intracellular calcium signaling regulates diverse physiological and pathological processes. In solid tumors, changes to calcium channels and effectors via mutations or changes in expression affect all cancer hallmarks. Such changes often disrupt transport of calcium ions (Ca2+) in the endoplasmic reticulum (ER) or mitochondria, impacting apoptosis. Evidence rapidly accumulates that this is similar in blood cancer. Principles of intracellular Ca2+ signaling are outlined in the introduction. We describe different Ca2+-toolkit components and summarize the unique relationship between extracellular Ca2+ in the endosteal niche and hematopoietic stem cells. The foundational data on Ca2+ homeostasis in red blood cells is discussed, with the demonstration of changes in red blood cell disorders. This leads to the role of Ca2+ in neoplastic erythropoiesis. Then we expand onto the neoplastic impact of deregulated plasma membrane Ca2+ channels, ER Ca2+ channels, Ca2+ pumps and exchangers, as well as Ca2+ sensor and effector proteins across all types of hematologic neoplasms. This includes an overview of genetic variants in the Ca2+-toolkit encoding genes in lymphoid and myeloid cancers as recorded in publically available cancer databases. The data we compiled demonstrate that multiple Ca2+ homeostatic mechanisms and Ca2+ responsive pathways are altered in hematologic cancers. Some of these alterations may have genetic basis but this requires further investigation. Most changes in the Ca2+-toolkit do not appear to define/associate with specific disease entities but may influence disease grade, prognosis, treatment response, and certain complications. Further elucidation of the underlying mechanisms may lead to novel treatments, with the aim to tailor drugs to different patterns of deregulation. To our knowledge this is the first review of its type in the published literature. We hope that the evidence we compiled increases awareness of the calcium signaling deregulation in hematologic neoplasms and triggers more clinical studies to help advance this field.
Collapse
Affiliation(s)
- Tracey Immanuel
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Jixia Li
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan City, China
| | - Taryn N. Green
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland
| | - Maggie L. Kalev-Zylinska
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Haematology Laboratory, Department of Pathology and Laboratory Medicine, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
3
|
Buks R, Dagher T, Rotordam MG, Monedero Alonso D, Cochet S, Gautier EF, Chafey P, Cassinat B, Kiladjian JJ, Becker N, Plo I, Egée S, El Nemer W. Altered Ca 2+ Homeostasis in Red Blood Cells of Polycythemia Vera Patients Following Disturbed Organelle Sorting during Terminal Erythropoiesis. Cells 2021; 11:49. [PMID: 35011611 PMCID: PMC8750512 DOI: 10.3390/cells11010049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023] Open
Abstract
Over 95% of Polycythemia Vera (PV) patients carry the V617F mutation in the tyrosine kinase Janus kinase 2 (JAK2), resulting in uncontrolled erythroid proliferation and a high risk of thrombosis. Using mass spectrometry, we analyzed the RBC membrane proteome and showed elevated levels of multiple Ca2+ binding proteins as well as endoplasmic-reticulum-residing proteins in PV RBC membranes compared with RBC membranes from healthy individuals. In this study, we investigated the impact of JAK2V617F on (1) calcium homeostasis and RBC ion channel activity and (2) protein expression and sorting during terminal erythroid differentiation. Our data from automated patch-clamp show modified calcium homeostasis in PV RBCs and cell lines expressing JAK2V617F, with a functional impact on the activity of the Gárdos channel that could contribute to cellular dehydration. We show that JAK2V617F could play a role in organelle retention during the enucleation step of erythroid differentiation, resulting in modified whole cell proteome in reticulocytes and RBCs in PV patients. Given the central role that calcium plays in the regulation of signaling pathways, our study opens new perspectives to exploring the relationship between JAK2V617F, calcium homeostasis, and cellular abnormalities in myeloproliferative neoplasms, including cellular interactions in the bloodstream in relation to thrombotic events.
Collapse
Affiliation(s)
- Ralfs Buks
- BIGR, UMR_S1134, Inserm, Université de Paris, F-75015 Paris, France; (R.B.); (S.C.)
- Institut National de la Transfusion Sanguine, F-75015 Paris, France
- Laboratoire d’Excellence GR-Ex, F-75015 Paris, France; (T.D.); (D.M.A.); (E.-F.G.); (B.C.); (J.-J.K.); (I.P.); (S.E.)
| | - Tracy Dagher
- Laboratoire d’Excellence GR-Ex, F-75015 Paris, France; (T.D.); (D.M.A.); (E.-F.G.); (B.C.); (J.-J.K.); (I.P.); (S.E.)
- U1287, Inserm, Université Paris-Saclay, Gustave Roussy, F-94800 Villejuif, France
| | - Maria Giustina Rotordam
- Nanion Technologies GmbH, 80339 Munich, Germany; (M.G.R.); (N.B.)
- Theoretical Medicine and Biosciences, Medical Faculty, Saarland University, Kirrbergerstr. 100, DE-66424 Homburg, Germany
| | - David Monedero Alonso
- Laboratoire d’Excellence GR-Ex, F-75015 Paris, France; (T.D.); (D.M.A.); (E.-F.G.); (B.C.); (J.-J.K.); (I.P.); (S.E.)
- Sorbonne Université, CNRS, UMR LBI2M, Station Biologique de Roscoff SBR, F-29680 Roscoff, France
| | - Sylvie Cochet
- BIGR, UMR_S1134, Inserm, Université de Paris, F-75015 Paris, France; (R.B.); (S.C.)
- Institut National de la Transfusion Sanguine, F-75015 Paris, France
- Laboratoire d’Excellence GR-Ex, F-75015 Paris, France; (T.D.); (D.M.A.); (E.-F.G.); (B.C.); (J.-J.K.); (I.P.); (S.E.)
| | - Emilie-Fleur Gautier
- Laboratoire d’Excellence GR-Ex, F-75015 Paris, France; (T.D.); (D.M.A.); (E.-F.G.); (B.C.); (J.-J.K.); (I.P.); (S.E.)
- Institut Imagine-INSERM U1163, Necker Hospital, Université de Paris, F-75015 Paris, France
- Proteomics Platform 3P5, Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104 Paris, France;
| | - Philippe Chafey
- Proteomics Platform 3P5, Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104 Paris, France;
| | - Bruno Cassinat
- Laboratoire d’Excellence GR-Ex, F-75015 Paris, France; (T.D.); (D.M.A.); (E.-F.G.); (B.C.); (J.-J.K.); (I.P.); (S.E.)
- IRSL, U1131, INSERM, Université de Paris, F-75010 Paris, France
- Hôpital Saint-Louis, Laboratoire de Biologie Cellulaire, AP-HP, F-75010 Paris, France
| | - Jean-Jacques Kiladjian
- Laboratoire d’Excellence GR-Ex, F-75015 Paris, France; (T.D.); (D.M.A.); (E.-F.G.); (B.C.); (J.-J.K.); (I.P.); (S.E.)
- IRSL, U1131, INSERM, Université de Paris, F-75010 Paris, France
- Centre d’Investigations Cliniques, Hôpital Saint-Louis, Université de Paris, F-75010 Paris, France
| | - Nadine Becker
- Nanion Technologies GmbH, 80339 Munich, Germany; (M.G.R.); (N.B.)
| | - Isabelle Plo
- Laboratoire d’Excellence GR-Ex, F-75015 Paris, France; (T.D.); (D.M.A.); (E.-F.G.); (B.C.); (J.-J.K.); (I.P.); (S.E.)
- U1287, Inserm, Université Paris-Saclay, Gustave Roussy, F-94800 Villejuif, France
| | - Stéphane Egée
- Laboratoire d’Excellence GR-Ex, F-75015 Paris, France; (T.D.); (D.M.A.); (E.-F.G.); (B.C.); (J.-J.K.); (I.P.); (S.E.)
- Sorbonne Université, CNRS, UMR LBI2M, Station Biologique de Roscoff SBR, F-29680 Roscoff, France
| | - Wassim El Nemer
- BIGR, UMR_S1134, Inserm, Université de Paris, F-75015 Paris, France; (R.B.); (S.C.)
- Institut National de la Transfusion Sanguine, F-75015 Paris, France
- Laboratoire d’Excellence GR-Ex, F-75015 Paris, France; (T.D.); (D.M.A.); (E.-F.G.); (B.C.); (J.-J.K.); (I.P.); (S.E.)
- Etablissement Français du Sang PACA-Corse, F-13005Marseille, France
- Aix Marseille Univ, EFS, CNRS, ADES, “Biologie des Groupes Sanguins”, F-13005 Marseille, France
| |
Collapse
|
4
|
Zhang Y, Xu Y, Zhang S, Lu Z, Li Y, Zhao B. The regulation roles of Ca 2+ in erythropoiesis: What have we learned? Exp Hematol 2021; 106:19-30. [PMID: 34879257 DOI: 10.1016/j.exphem.2021.12.192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/15/2021] [Accepted: 12/03/2021] [Indexed: 01/09/2023]
Abstract
Calcium (Ca2+) is an important second messenger molecule in the body, regulating cell cycle and fate. There is growing evidence that intracellular Ca2+ levels play functional roles in the total physiological process of erythroid differentiation, including the proliferation and differentiation of erythroid progenitor cells, terminal enucleation, and mature red blood cell aging and clearance. Moreover, recent research on the pathology of erythroid disorders has made great progress in the past decades, indicating that calcium ion hemostasis is closely related to ineffective erythropoiesis and increased sensitivity to stress factors. In this review, we summarized what is known about the functional roles of intracellular Ca2+ in erythropoiesis and erythrocyte-related diseases, with an emphasis on the regulation of the intracellular Ca2+ homeostasis during erythroid differentiation. An understanding of the regulation roles of Ca2+ homeostasis in erythroid differentiation will facilitate further studies and eventually molecular identification of the pathways involved in the pathological process of erythroid disorders, providing new therapeutic opportunities in erythrocyte-related disease.
Collapse
Affiliation(s)
- Yuanzhen Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yan Xu
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shujing Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhiyuan Lu
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuan Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Baobing Zhao
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China; Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
5
|
Kanduła Z, Lewandowski K. Calreticulin – a multifaced protein. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.8892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Calreticulin (CALR) is a highly conserved multi-function protein that primarily localizes within
the lumen of the endoplasmic reticulum (ER). It participates in various processes in the cells,
including glycoprotein chaperoning, regulation of Ca2+ homeostasis, antigen processing and
presentation for adaptive immune response, cell adhesion/migration, cell proliferation, immunogenic
cell death, gene expression and RNA stability. The role of CALR in the assembly,
retrieval and cell surface expression of MHC class I molecules is well known. A fraction of
the total cellular CALR is localized in the cytosol, following its retro-translocation from the
ER. In the cell stress conditions, CALR is also expressed on the cell surface via an interaction
with phosphatidylserine localized on the inner leaflet of the plasma membrane. The abovementioned
mechanism is relevant for the recognition of the cells, as well as immunogenicity
and phagocytic uptake of proapoptotic and apoptotic cells.
Lastly, the presence of CALR exon 9 gene mutations was confirmed in patients with myeloproliferative
neoplasms. Their presence results in an abnormal CALR structure due to the
loss of its ER-retention sequence, CALR extra-ER localisation, the formation of a complex
with thrombopoietin receptor, and oncogenic transformation of hematopoietic stem cells. It
is also known that CALR exon 9 mutants are highly immunogenic and induce T cell response.
Despite this fact, CALR mutant positive hematopoietic cells emerge. The last phenomenon is
probably the result of the inhibition of phagocytosis of the cancer cells exposing CALR mutant
protein by dendritic cells.
Collapse
Affiliation(s)
- Zuzanna Kanduła
- Department of Hematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poland
| | - Krzysztof Lewandowski
- Department of Hematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poland
| |
Collapse
|
6
|
El Jahrani N, Cretin G, de Brevern AG. CALR-ETdb, the database of calreticulin variants diversity in essential thrombocythemia. Platelets 2021; 33:157-167. [PMID: 33444113 DOI: 10.1080/09537104.2020.1869712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Essential thrombocythemia (ET) is a blood cancer defined by a strong increase of platelet numbers. A quarter of patients suffering from ET show mutations in the last exon of calreticulin (CALR) gene. Two variants named type 1 and type 2 represent 85% of these patients. However, a large number of other variants have been determined. In this study, we have compiled variants taken from COSMIC database and literature leading to 155 different variants. This large number of variants allowed redefining 5 new classes extending the classification of type 1-like and type 2-like to a finer description. These analyses showed that last class, named E, corresponding to more than 10% of CALR variants seemed not attached to ET. Structural properties analyzed showed that CALR variants associated to ET have common features. All the compiled and refined information had been included into a freely dedicated database CALR-ETdb (https://www.dsimb.inserm.fr/CALR-ET).
Collapse
Affiliation(s)
- Nora El Jahrani
- Université de Paris, UMR_S 1134, Université De La Réunion, Université Des Antilles, Paris, France.,INSERM, U 1134, DSIMB, Paris, France.,Institut National De La Transfusion Sanguine (INTS), Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Gabriel Cretin
- Université de Paris, UMR_S 1134, Université De La Réunion, Université Des Antilles, Paris, France.,INSERM, U 1134, DSIMB, Paris, France.,Institut National De La Transfusion Sanguine (INTS), Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Alexandre G de Brevern
- Université de Paris, UMR_S 1134, Université De La Réunion, Université Des Antilles, Paris, France.,INSERM, U 1134, DSIMB, Paris, France.,Institut National De La Transfusion Sanguine (INTS), Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| |
Collapse
|
7
|
Mazzarini M, Falchi M, Bani D, Migliaccio AR. Evolution and new frontiers of histology in bio-medical research. Microsc Res Tech 2020; 84:217-237. [PMID: 32915487 DOI: 10.1002/jemt.23579] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/15/2020] [Accepted: 08/11/2020] [Indexed: 12/21/2022]
Abstract
Histology refers to the study of the morphology of cells within their natural tissue environment. As a bio-medical discipline, it dates back to the development of first microscopes which allowed to override the physical visual limitation of the human eye. Since the first observations, it was understood that cell shape predicts function and, therefore, shape alterations can identify and explain dysfunction and diseases. The advancements in morphological investigation techniques have allowed to extend our understanding of the shape-function relationships close to the molecular level of organization of tissues, as well as to derive reliable data not only from fixed, and hence static, biological samples but also living cells and tissues and even for extended time periods. These modern approaches, which encompass quantitative microscopy, precision microscopy, and dynamic microscopy, represent the new frontier of morphology. This article summarizes how the microscopy techniques have evolved to properly face the challenges of biomedical sciences, thus transforming histology from a merely qualitative discipline, which played an ancillary role to traditional "major" sciences such as anatomy, to a modern experimental science capable of driving knowledge progress in biology and medicine.
Collapse
Affiliation(s)
- Maria Mazzarini
- Biomedical and Neuromotor Sciences, Alma Mater University Bologna, Bologna, Italy
| | - Mario Falchi
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Daniele Bani
- Research Unit of Histology & Embryology, Department of Experimental & Clinical Medicine, University of Florence, Florence, Italy
| | - Anna Rita Migliaccio
- Biomedical and Neuromotor Sciences, Alma Mater University Bologna, Bologna, Italy.,Myeloproliferative Neoplasm-Research Consortium, New York City, New York, USA
| |
Collapse
|
8
|
Sacco M, Ranalli P, Lancellotti S, Petrucci G, Dragani A, Rocca B, De Cristofaro R. Increased von Willebrand factor levels in polycythemia vera and phenotypic differences with essential thrombocythemia. Res Pract Thromb Haemost 2020; 4:413-421. [PMID: 32211575 PMCID: PMC7086469 DOI: 10.1002/rth2.12315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/13/2020] [Accepted: 01/17/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Acquired von Willebrand factor (VWF) deficiency was described in Philadelphia-negative myeloproliferative neoplasms, especially in essential thrombocythemia (ET). VWF phenotype in contemporary patients with polycythemia vera (PV) remains less explored. OBJECTIVES To characterize the VWF phenotype in PV and to compare VWF phenotype in PV with matched healthy subjects and ET patients. PATIENTS/METHODS We studied 48 PV patients, treated according to current recommendations (hematocrit ≤ 45%, on low-dose aspirin prophylaxis); 48 healthy and 41 subjects with ET, all sex, age, and blood group matched. We measured VWF antigen, activity, multimeric pattern, ADAMTS-13, and factor VIII (FVIII) antigen. RESULTS In patients with PV, VWF antigen and activity were significantly higher than in healthy subjects (antigen: 119[96-137] vs 93[79-107] IU/dL; activity: 114[95-128] vs 90[79-107] IU/dL, respectively, medians and interquartile, P < 0.01), with normal multimeric distribution. ADAMTS-13 levels were similar between patients with PV and healthy subjects. FVIII levels were higher in PV than in healthy subjects (141[119-169] versus 98[88-123] IU/dL, respectively, P < 0.01). By multivariable analysis, JAK2-p.V617F allelic burden, erythrocyte count, and male sex significantly predicted VWF antigen and activity levels. As compared to patients with ET, patients with PV showed similar VWF antigen levels but approximately 40% higher activity (79[49-104] vs 112[93-125] IU/dL, respectively, P < 0.01). CONCLUSIONS Patients with PV show increased VWF and FVIII levels, predicted by JAK2-p.V617F burden and erythrocyte count. At variance with ET, acquired VWF defect was not observed in PV. High VWF/FVIII levels may sustain the thrombotic diathesis of PV and may be investigated as biomarkers for risk stratification.
Collapse
Affiliation(s)
- Monica Sacco
- Servizio Malattie Emorragiche e TromboticheFondazione Policlinico Universitario “A. Gemelli” IRCCSRomaItaly
| | - Paola Ranalli
- Dipartimento di Medicina Interna e Chirurgia TraslazionaleFacoltà di Medicina e Chirurgia “A. Gemelli”Università Cattolica del Sacro CuoreRomaItaly
| | | | - Giovanna Petrucci
- Istituto di FarmacologiaFacoltà di Medicina e Chirurgia “A. Gemelli”Università Cattolica del S. Cuore and Fondazione Policlinico Universitario “A. Gemelli” IRCCSRomeItaly
| | - Alfredo Dragani
- Dipartimento di Medicina Interna e Chirurgia TraslazionaleFacoltà di Medicina e Chirurgia “A. Gemelli”Università Cattolica del Sacro CuoreRomaItaly
| | - Bianca Rocca
- Istituto di FarmacologiaFacoltà di Medicina e Chirurgia “A. Gemelli”Università Cattolica del S. Cuore and Fondazione Policlinico Universitario “A. Gemelli” IRCCSRomeItaly
| | - Raimondo De Cristofaro
- Servizio Malattie Emorragiche e TromboticheFondazione Policlinico Universitario “A. Gemelli” IRCCSRomaItaly
- Dipartimento di EmatologiaOspedale S. SpiritoPescaraItaly
| |
Collapse
|
9
|
Kotian V, Sarmah D, Kaur H, Kesharwani R, Verma G, Mounica L, Veeresh P, Kalia K, Borah A, Wang X, Dave KR, Yavagal DR, Bhattacharya P. Evolving Evidence of Calreticulin as a Pharmacological Target in Neurological Disorders. ACS Chem Neurosci 2019; 10:2629-2646. [PMID: 31017385 DOI: 10.1021/acschemneuro.9b00158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Calreticulin (CALR), a lectin-like ER chaperone, was initially known only for its housekeeping function, but today it is recognized for many versatile roles in different compartments of a cell. Apart from canonical roles in protein folding and calcium homeostasis, it performs a variety of noncanonical roles, mostly in CNS development. In the past, studies have linked Calreticulin with various other biological components which are detrimental in deciding the fate of neurons. Many neurological disorders that differ in their etiology are commonly associated with aberrant levels of Calreticulin, that lead to modulation of apoptosis and phagocytosis, and impact on transcriptional pathways, impairment in proteostatis, and calcium imbalances. Such multifaceted properties of Calreticulin are the reason why it has been implicated in vital roles of the nervous system in recent years. Hence, understanding its role in the physiology of neurons would help to unearth its involvement in the spectrum of neurological disorders. This Review aims toward exploring the interplay of Calreticulin in neurological disorders which would aid in targeting Calreticulin for developing novel neurotherapeutics.
Collapse
Affiliation(s)
- Vignesh Kotian
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Harpreet Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Radhika Kesharwani
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Geetesh Verma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Leela Mounica
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Pabbala Veeresh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam 788011, India
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Kunjan R. Dave
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Dileep R. Yavagal
- Department of Neurology and Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
10
|
Salati S, Prudente Z, Genovese E, Pennucci V, Rontauroli S, Bartalucci N, Mannarelli C, Ruberti S, Zini R, Rossi C, Bianchi E, Guglielmelli P, Tagliafico E, Vannucchi AM, Manfredini R. Calreticulin Affects Hematopoietic Stem/Progenitor Cell Fate by Impacting Erythroid and Megakaryocytic Differentiation. Stem Cells Dev 2018; 27:225-236. [PMID: 29258411 DOI: 10.1089/scd.2017.0137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Calreticulin (CALR) is a chaperone protein that localizes primarily to the endoplasmic reticulum (ER) lumen where it is responsible for the control of proper folding of neo-synthesized glycoproteins and the retention of calcium. Recently, mutations affecting exon 9 of the CALR gene have been described in approximately 40% of patients with myeloproliferative neoplasms (MPNs). Although the role of mutated CALR in the development of MPNs has begun to be clarified, there are still no data available on the function of wild-type (WT) CALR during physiological hematopoiesis. To shed light on the role of WT CALR during normal hematopoiesis, we performed gene silencing and overexpression experiments in hematopoietic stem progenitor cells (HSPCs). Our results showed that CALR overexpression is able to affect physiological hematopoiesis by enhancing both erythroid and megakaryocytic (MK) differentiation. In agreement with overexpression data, CALR silencing caused a significant decrease in both erythroid and MK differentiation of human HSPCs. Gene expression profiling (GEP) analysis showed that CALR is able to affect the expression of several genes involved in HSPC differentiation toward both the erythroid and MK lineages. Moreover, GEP data also highlighted the modulation of several genes involved in ER stress response, unfolded protein response (UPR), and DNA repair, and of several genes already described to play a role in MPN development, such as proinflammatory cytokines and hematological neoplasm-related markers. Altogether, our data unraveled a new and unexpected role for CALR in the regulation of normal hematopoietic differentiation. Moreover, by showing the impact of CALR on the expression of genes involved in several biological processes already described in cellular transformation, our data strongly suggest a more complex role for CALR in MPN development that goes beyond the activation of the THPO receptor and involves ER stress response, UPR, and DNA repair.
Collapse
Affiliation(s)
- Simona Salati
- Centre for Regenerative Medicine "Stefano Ferrari," University of Modena and Reggio Emilia, Modena, Italy
| | - Zelia Prudente
- Centre for Regenerative Medicine "Stefano Ferrari," University of Modena and Reggio Emilia, Modena, Italy
| | - Elena Genovese
- Centre for Regenerative Medicine "Stefano Ferrari," University of Modena and Reggio Emilia, Modena, Italy
| | - Valentina Pennucci
- Institute for Cell and Gene Therapy & Center for Chronic Immunodeficiency, University of Freiburg, Freiburg, Germany
| | - Sebastiano Rontauroli
- Centre for Regenerative Medicine "Stefano Ferrari," University of Modena and Reggio Emilia, Modena, Italy
| | - Niccolò Bartalucci
- CRIMM, Center for Research and Innovation for Myeloproliferative Neoplasms, Department of Experimental and Clinical Medicine, AOU Careggi, University of Florence, Florence, Italy
| | - Carmela Mannarelli
- CRIMM, Center for Research and Innovation for Myeloproliferative Neoplasms, Department of Experimental and Clinical Medicine, AOU Careggi, University of Florence, Florence, Italy
| | - Samantha Ruberti
- Centre for Regenerative Medicine "Stefano Ferrari," University of Modena and Reggio Emilia, Modena, Italy
| | - Roberta Zini
- Centre for Regenerative Medicine "Stefano Ferrari," University of Modena and Reggio Emilia, Modena, Italy
| | - Chiara Rossi
- Centre for Regenerative Medicine "Stefano Ferrari," University of Modena and Reggio Emilia, Modena, Italy
| | - Elisa Bianchi
- Centre for Regenerative Medicine "Stefano Ferrari," University of Modena and Reggio Emilia, Modena, Italy
| | - Paola Guglielmelli
- CRIMM, Center for Research and Innovation for Myeloproliferative Neoplasms, Department of Experimental and Clinical Medicine, AOU Careggi, University of Florence, Florence, Italy
| | - Enrico Tagliafico
- Center for Genome Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandro M Vannucchi
- CRIMM, Center for Research and Innovation for Myeloproliferative Neoplasms, Department of Experimental and Clinical Medicine, AOU Careggi, University of Florence, Florence, Italy
| | - Rossella Manfredini
- Centre for Regenerative Medicine "Stefano Ferrari," University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
11
|
Varricchio L, Falchi M, Dall'Ora M, De Benedittis C, Ruggeri A, Uversky VN, Migliaccio AR. Calreticulin: Challenges Posed by the Intrinsically Disordered Nature of Calreticulin to the Study of Its Function. Front Cell Dev Biol 2017; 5:96. [PMID: 29218307 PMCID: PMC5703715 DOI: 10.3389/fcell.2017.00096] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/31/2017] [Indexed: 12/16/2022] Open
Abstract
Calreticulin is a Ca2+-binding chaperone protein, which resides mainly in the endoplasmic reticulum but also found in other cellular compartments including the plasma membrane. In addition to Ca2+, calreticulin binds and regulates almost all proteins and most of the mRNAs deciding their intracellular fate. The potential functions of calreticulin are so numerous that identification of all of them is becoming a nightmare. Still the recent discovery that patients affected by the Philadelphia-negative myeloproliferative disorders essential thrombocytemia or primary myelofibrosis not harboring JAK2 mutations carry instead calreticulin mutations disrupting its C-terminal domain has highlighted the clinical need to gain a deeper understanding of the biological activity of this protein. However, by contrast with other proteins, such as enzymes or transcription factors, the biological functions of which are strictly defined by a stable spatial structure imprinted by their amino acid sequence, calreticulin contains intrinsically disordered regions, the structure of which represents a highly dynamic conformational ensemble characterized by constant changes between several metastable conformations in response to a variety of environmental cues. This article will illustrate the Theory of calreticulin as an intrinsically disordered protein and discuss the Hypothesis that the dynamic conformational changes to which calreticulin may be subjected by environmental cues, by promoting or restricting the exposure of its active sites, may affect its function under normal and pathological conditions.
Collapse
Affiliation(s)
- Lilian Varricchio
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mario Falchi
- National HIV/AIDS Center, Istituto Superiore Sanità, Rome, Italy
| | - Massimiliano Dall'Ora
- Department of Biomedical and Neuromotorial Sciences, Alma Mater University, Bologna, Italy
| | - Caterina De Benedittis
- Department of Biomedical and Neuromotorial Sciences, Alma Mater University, Bologna, Italy
| | - Alessandra Ruggeri
- Department of Biomedical and Neuromotorial Sciences, Alma Mater University, Bologna, Italy
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Russia
| | - Anna Rita Migliaccio
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Biomedical and Neuromotorial Sciences, Alma Mater University, Bologna, Italy
| |
Collapse
|
12
|
Iborra FJ, Papadopoulos P. Calreticulin in Essential Thrombocythemia: StressINg OUT the Megakaryocyte Nucleus. Front Oncol 2017; 7:103. [PMID: 28589084 PMCID: PMC5438987 DOI: 10.3389/fonc.2017.00103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 05/02/2017] [Indexed: 12/29/2022] Open
Abstract
Calreticulin (CALR) is a multifaceted protein primarily involved in intracellular protein control processes. The identification of CALR mutations in essential thrombocythemia (ET) and primary myelofibrosis that are mutually exclusive with the JAK2 V617F mutation has stirred an intensive research interest about the molecular functions of CALR and its mutants in myeloproliferative neoplasms (MPNs) and its diagnostic/prognostic value. The recently characterized protein–protein interaction of CALR mutants and MPL receptor has advanced our knowledge on the functional role of CALR mutants in thrombocythemia but it has also uncovered limitations of the current established research models. Human cell lines and mouse models provide useful information but they lack the advantages provided by ex vivo primary cultures of physiologically relevant to the disease cell types [i.e., megakaryocytes (MKs), platelets]. The results from gene expression and chromatin occupancy analysis have focused on the JAK-STAT pathway activated in both JAK2 V617F- and CALR-mutated MPN patient groups, although a more complete analysis is needed to be performed in MKs. Stress related processes seem to be affected in CALR mutant ET-MKs, but the precise mechanism is not known yet. Herein, we describe a culture method for human MKs from peripheral blood progenitors, which could help further toward an unbiased characterization of the role of CALR in ET and MK differentiation.
Collapse
Affiliation(s)
- Francisco Jose Iborra
- Department of Molecular Cell Biology, Centro Nacional de Biotecnologia, Madrid, Spain
| | - Petros Papadopoulos
- Department of Hematology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| |
Collapse
|