1
|
Majidpour M, Azizi SG, Davodabadi F, Sabeti Akbar-Abad M, Abdollahi Z, Sargazi S, Shahriari H. Recent advances in TGF-β signaling pathway in COVID-19 pathogenesis: A review. Microb Pathog 2025; 199:107236. [PMID: 39701478 DOI: 10.1016/j.micpath.2024.107236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/21/2024]
Abstract
The coronavirus disease 2019 (COVID-19) has resulted in approximately 7.0 million fatalities between 2019 and 2022, underscoring a pressing need for comprehensive research into its underlying mechanisms and therapeutic avenues. A distinctive feature of severe COVID-19 is the dysregulated immune response characterized by excessive activation of immune cells and the consequent cytokine storms. Recent advancements in our understanding of cellular signaling pathways have illuminated the role of Transforming Growth Factor Beta (TGF-β) as a pivotal signaling molecule with significant implications for the pathogenesis of infectious diseases, including COVID-19. Emerging evidence reveals that TGF-β signaling, when activated by viral components or secondary pathways, adversely affects diverse cell types, particularly immune cells, and lung tissue, leading to complications such as pulmonary fibrosis. In our review article, we critically evaluate recent literature on the involvement of TGF-β signaling in the progression of COVID-19. We discuss a range of pharmacological interventions, including nintedanib, pirfenidone, corticosteroids, proton pump inhibitors, and histone deacetylase inhibitors, and their potential to modulate the TGF-β pathway in the context of COVID-19 treatment. Additionally, we explore ongoing clinical trials involving mesenchymal stem cells, low-dose radiation therapy, and artemisinin derivatives to assess their impact on TGF-β levels and subsequent clinical outcomes in COVID-19 patients. This review is particularly relevant at this juncture as the global health community continues to grapple with the ramifications of the COVID-19 pandemic, highlighting the urgent need for targeted therapeutic strategies aimed at TGF-β modulation to mitigate disease severity and improve patient outcomes.
Collapse
Affiliation(s)
- Mahdi Majidpour
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Seyed Ghader Azizi
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Fatemeh Davodabadi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahboobeh Sabeti Akbar-Abad
- Department of Clinical Biochemistry, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Zahra Abdollahi
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Hossein Shahriari
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
2
|
Esteban-Medina M, de la Oliva Roque VM, Herráiz-Gil S, Peña-Chilet M, Dopazo J, Loucera C. drexml: A command line tool and Python package for drug repurposing. Comput Struct Biotechnol J 2024; 23:1129-1143. [PMID: 38510973 PMCID: PMC10950807 DOI: 10.1016/j.csbj.2024.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/22/2024] Open
Abstract
We introduce drexml, a command line tool and Python package for rational data-driven drug repurposing. The package employs machine learning and mechanistic signal transduction modeling to identify drug targets capable of regulating a particular disease. In addition, it employs explainability tools to contextualize potential drug targets within the functional landscape of the disease. The methodology is validated in Fanconi Anemia and Familial Melanoma, two distinct rare diseases where there is a pressing need for solutions. In the Fanconi Anemia case, the model successfully predicts previously validated repurposed drugs, while in the Familial Melanoma case, it identifies a promising set of drugs for further investigation.
Collapse
Affiliation(s)
- Marina Esteban-Medina
- Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocío, Seville, Spain
| | - Víctor Manuel de la Oliva Roque
- Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocío, Seville, Spain
| | - Sara Herráiz-Gil
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), U714, Madrid, Spain
- Departamento de Bioingeniería, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
- Regenerative Medicine and Tissue Engineering Group, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital (IIS-FJD), Madrid, Spain
- Epithelial Biomedicine Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - María Peña-Chilet
- Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Platform of Big Data, AI and Biostatistics, Health Research Institute La Fe (IISLAFE), Valencia, Spain
| | - Joaquín Dopazo
- Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocío, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), U715, Seville, Spain
- FPS/ELIXIR-es, Hospital Virgen del Rocío, Seville, Spain
| | - Carlos Loucera
- Platform for Computational Medicine, Andalusian Public Foundation Progress and Health-FPS, Seville, Spain
- Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocío, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), U715, Seville, Spain
| |
Collapse
|
3
|
Chen SY, Kung HC, Espinoza B, Washington I, Chen K, Wang J, Zlomke H, Loycano M, Wang R, Pickup M, Burns WR, Fu J, Hwang WL, Zheng L. Targeting heterogeneous tumor microenvironments in pancreatic cancer mouse models of metastasis by TGF-β depletion. JCI Insight 2024; 9:e182766. [PMID: 39298276 DOI: 10.1172/jci.insight.182766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/13/2024] [Indexed: 09/21/2024] Open
Abstract
The dual tumor-suppressive and -promoting functions of TGF-β signaling has made its targeting challenging. We examined the effects of TGF-β depletion by AVID200/BMS-986416 (TGF-β-TRAP), a TGF-β ligand trap, on the tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC) murine models with different organ-specific metastasis. Our study demonstrated that TGF-β-TRAP potentiates the efficacy of anti-programmed cell death 1 (anti-PD-1) in a PDAC orthotopic murine model with liver metastasis tropism, significantly reducing liver metastases. We further demonstrated the heterogeneous response of cytotoxic effector T cells to combination TGF-β-TRAP and anti-PD-1 treatment across several tumor models. Single-nuclear RNA sequencing suggested that TGF-β-TRAP modulates cancer-associated fibroblast (CAF) heterogeneity and suppresses neutrophil degranulation and CD4+ T cell response to neutrophil degranulation. Ligand-receptor analysis indicated that TGF-β-TRAP may modulate the CCL5/CCR5 axis as well as costimulatory and checkpoint signaling from CAFs and myeloid cells. Notably, the most highly expressed ligands of CCR5 shifted from the immunosuppressive CCL5 to CCL7 and CCL8, which may mediate the immune agonist activity of CCR5 following TGF-β-TRAP and anti-PD-1 combination treatment. This study suggested that TGF-β depletion modulates CAF heterogeneity and potentially reprograms CAFs and myeloid cells into antitumor immune agonists in PDAC, supporting the validation of such effects in human specimens.
Collapse
Affiliation(s)
- Sophia Y Chen
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center
- Pancreatic Cancer Precision Medicine Center of Excellence Program, and
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Heng-Chung Kung
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center
- Pancreatic Cancer Precision Medicine Center of Excellence Program, and
| | - Birginia Espinoza
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center
- Pancreatic Cancer Precision Medicine Center of Excellence Program, and
| | - India Washington
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center
- Pancreatic Cancer Precision Medicine Center of Excellence Program, and
| | - Kai Chen
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center
- Pancreatic Cancer Precision Medicine Center of Excellence Program, and
| | - Jianxin Wang
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center
- Pancreatic Cancer Precision Medicine Center of Excellence Program, and
| | - Haley Zlomke
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center
- Pancreatic Cancer Precision Medicine Center of Excellence Program, and
| | - Michael Loycano
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center
- Pancreatic Cancer Precision Medicine Center of Excellence Program, and
| | - Rulin Wang
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center
| | | | - William R Burns
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center
- Pancreatic Cancer Precision Medicine Center of Excellence Program, and
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Juan Fu
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center
- Pancreatic Cancer Precision Medicine Center of Excellence Program, and
| | - William L Hwang
- Center for Systems Biology, Department of Radiation Oncology, Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Lei Zheng
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center
- Pancreatic Cancer Precision Medicine Center of Excellence Program, and
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Fisher R, Epperly MW, Rigatti LH, Shields D, Greenberger JS, Green A, Mukherjee A. Chemical Carcinogen (3-Methylcholanthrene)-induced Pleomorphic Rhabdomyosarcomas in Fanconi Anemia Fancd2-/-, Fancg-/- (C57BL/6), Fancd2-/- (129/Sv) Mice. In Vivo 2024; 38:2582-2590. [PMID: 39477388 PMCID: PMC11535948 DOI: 10.21873/invivo.13734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 11/07/2024]
Abstract
BACKGROUND/AIM Radiation oncologists are reluctant to treat cancer in Fanconi Anemia (FA) patients due to their lack of homologous recombination repair of DNA strand breaks in normal tissues. To determine the therapeutic effects of irradiation and combination chemotherapy on cancer in syngeneic, radiosensitive FA mice, we derived transplantable cancers of the same genotype in three FA mouse strains. MATERIALS AND METHODS Fancd2-/- mice on a C57BL/6 or Sv/129 background and Fancg-/- mice (C57BL/6 background) that received 3-methylcholanthrene (3-MCA), were monitored for the development of subcutaneous tumors. RESULTS Tumors were induced at the site of 3-MCA injection, and tumor cell lines were established and found to be transplantable. Explanted tumors were identified as pleomorphic/rhabdomyosarcomas using immunohistochemical biomarkers. CONCLUSION These transplantable FA mouse tumor cell lines should be valuable for testing effects of new radiation therapy protocols including FLASH high dose rate radiation delivery, immunotherapies, and combined radiation and chemotherapy treatments for radiosensitive FA patients.
Collapse
Affiliation(s)
- Renee Fisher
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Michael W Epperly
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Lora H Rigatti
- Department of DLAR-Veterinary Services, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Donna Shields
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Joel S Greenberger
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A.
| | - Anthony Green
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Amitava Mukherjee
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| |
Collapse
|
5
|
Epperly MW, Mukherjee A, Fisher R, Shields D, Hou W, Wang H, Rigatti LH, Green A, Huq MS, Greenberger JS. Chemical Carcinogen (Dimethyl-benzanthracene) Induced Transplantable Cancer in Fanconi Anemia (Fanca-/-) Mice. In Vivo 2023; 37:2421-2432. [PMID: 37905617 PMCID: PMC10621406 DOI: 10.21873/invivo.13347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND/AIM Patients with radiation sensitive Fanconi anemia (FA) are presenting with cancers of the oral cavity, oropharynx, and other anatomic locations. MATERIALS AND METHODS Animal models for cancer in FA mice used orthotopic tumors from wild type mice. We derived a cancer cell line from Fanca-/- mice by topical application of the chemical carcinogen dimethyl benzanthracene (DMBA). RESULTS A Fanca-/- mouse rhabdomyosarcoma was derived from a Fanca-/- (129/Sv) mouse. The in vitro clonogenic survival of the Fanca-/- clone 6 cancer cell line was consistent with the FA genotype. Transplanted tumors demonstrated hypoxic centers surrounded by senescent cells. CONCLUSION This Fanca-/- mouse syngeneic cancer should provide a valuable resource for discovery and development of new normal tissue radioprotectors for patients with FA and cancer.
Collapse
Affiliation(s)
- Michael W Epperly
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Amitava Mukherjee
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Renee Fisher
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Donna Shields
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Wen Hou
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Hong Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Lora H Rigatti
- D.L.A.R. - Veterinary Services, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Anthony Green
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - M Saiful Huq
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Joel S Greenberger
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A.;
| |
Collapse
|
6
|
Fleischauer J, Bastone AL, Selich A, John-Neek P, Weisskoeppel L, Schaudien D, Schambach A, Rothe M. TGF β Inhibitor A83-01 Enhances Murine HSPC Expansion for Gene Therapy. Cells 2023; 12:1978. [PMID: 37566057 PMCID: PMC10416825 DOI: 10.3390/cells12151978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023] Open
Abstract
Murine hematopoietic stem and progenitor cells (HSPCs) are commonly used as model systems during gene therapeutic retroviral vector development and preclinical biosafety assessment. Here, we developed cell culture conditions to maintain stemness and prevent differentiation during HSPC culture. We used the small compounds A83-01, pomalidomide, and UM171 (APU). Highly purified LSK SLAM cells expanded in medium containing SCF, IL-3, FLT3-L, and IL-11 but rapidly differentiated to myeloid progenitors and mast cells. The supplementation of APU attenuated the differentiation and preserved the stemness of HSPCs. The TGFβ inhibitor A83-01 was identified as the major effector. It significantly inhibited the mast-cell-associated expression of FcεR1α and the transcription of genes regulating the formation of granules and promoted a 3800-fold expansion of LSK cells. As a functional readout, we used expanded HSPCs in state-of-the-art genotoxicity assays. Like fresh cells, APU-expanded HSPCs transduced with a mutagenic retroviral vector developed a myeloid differentiation block with clonal restriction and dysregulated oncogenic transcriptomic signatures due to vector integration near the high-risk locus Mecom. Thus, expanded HSPCs might serve as a novel cell source for retroviral vector testing and genotoxicity studies.
Collapse
Affiliation(s)
- Jenni Fleischauer
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.F.); (A.L.B.); (A.S.); (P.J.-N.); (L.W.); (A.S.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Antonella Lucia Bastone
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.F.); (A.L.B.); (A.S.); (P.J.-N.); (L.W.); (A.S.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Anton Selich
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.F.); (A.L.B.); (A.S.); (P.J.-N.); (L.W.); (A.S.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Philipp John-Neek
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.F.); (A.L.B.); (A.S.); (P.J.-N.); (L.W.); (A.S.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Luisa Weisskoeppel
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.F.); (A.L.B.); (A.S.); (P.J.-N.); (L.W.); (A.S.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Dirk Schaudien
- Department of Inhalation Toxicology, Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai Fuchs Strasse 1, 30625 Hannover, Germany;
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.F.); (A.L.B.); (A.S.); (P.J.-N.); (L.W.); (A.S.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, 30625 Hannover, Germany
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.F.); (A.L.B.); (A.S.); (P.J.-N.); (L.W.); (A.S.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
7
|
Wang M, Brandt LTL, Wang X, Russell H, Mitchell E, Kamimae-Lanning AN, Brown JM, Dingler FA, Garaycoechea JI, Isobe T, Kinston SJ, Gu M, Vassiliou GS, Wilson NK, Göttgens B, Patel KJ. Genotoxic aldehyde stress prematurely ages hematopoietic stem cells in a p53-driven manner. Mol Cell 2023; 83:2417-2433.e7. [PMID: 37348497 PMCID: PMC7614878 DOI: 10.1016/j.molcel.2023.05.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 04/18/2023] [Accepted: 05/25/2023] [Indexed: 06/24/2023]
Abstract
Aged hematopoietic stem cells (HSCs) display diminished self-renewal and a myeloid differentiation bias. However, the drivers and mechanisms that underpin this fundamental switch are not understood. HSCs produce genotoxic formaldehyde that requires protection by the detoxification enzymes ALDH2 and ADH5 and the Fanconi anemia (FA) DNA repair pathway. We find that the HSCs in young Aldh2-/-Fancd2-/- mice harbor a transcriptomic signature equivalent to aged wild-type HSCs, along with increased epigenetic age, telomere attrition, and myeloid-biased differentiation quantified by single HSC transplantation. In addition, the p53 response is vigorously activated in Aldh2-/-Fancd2-/- HSCs, while p53 deletion rescued this aged HSC phenotype. To further define the origins of the myeloid differentiation bias, we use a GFP genetic reporter to find a striking enrichment of Vwf+ myeloid and megakaryocyte-lineage-biased HSCs. These results indicate that metabolism-derived formaldehyde-DNA damage stimulates the p53 response in HSCs to drive accelerated aging.
Collapse
Affiliation(s)
- Meng Wang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA; Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK.
| | - Laura T L Brandt
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Xiaonan Wang
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK; School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Holly Russell
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Emily Mitchell
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK; Wellcome Sanger Institute, Hinxton, UK
| | - Ashley N Kamimae-Lanning
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Jill M Brown
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Felix A Dingler
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Juan I Garaycoechea
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center, Utrecht, the Netherlands
| | - Tomoya Isobe
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Sarah J Kinston
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Muxin Gu
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - George S Vassiliou
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Nicola K Wilson
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Berthold Göttgens
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Ketan J Patel
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
8
|
Tie Y, Tang F, Peng D, Zhang Y, Shi H. TGF-beta signal transduction: biology, function and therapy for diseases. MOLECULAR BIOMEDICINE 2022; 3:45. [PMID: 36534225 PMCID: PMC9761655 DOI: 10.1186/s43556-022-00109-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
The transforming growth factor beta (TGF-β) is a crucial cytokine that get increasing concern in recent years to treat human diseases. This signal controls multiple cellular responses during embryonic development and tissue homeostasis through canonical and/or noncanonical signaling pathways. Dysregulated TGF-β signal plays an essential role in contributing to fibrosis via promoting the extracellular matrix deposition, and tumor progression via inducing the epithelial-to-mesenchymal transition, immunosuppression, and neovascularization at the advanced stage of cancer. Besides, the dysregulation of TGF-beta signal also involves in other human diseases including anemia, inflammatory disease, wound healing and cardiovascular disease et al. Therefore, this signal is proposed to be a promising therapeutic target in these diseases. Recently, multiple strategies targeting TGF-β signals including neutralizing antibodies, ligand traps, small-molecule receptor kinase inhibitors targeting ligand-receptor signaling pathways, antisense oligonucleotides to disrupt the production of TGF-β at the transcriptional level, and vaccine are under evaluation of safety and efficacy for the forementioned diseases in clinical trials. Here, in this review, we firstly summarized the biology and function of TGF-β in physiological and pathological conditions, elaborated TGF-β associated signal transduction. And then, we analyzed the current advances in preclinical studies and clinical strategies targeting TGF-β signal transduction to treat diseases.
Collapse
Affiliation(s)
- Yan Tie
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China
| | - Fan Tang
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China ,grid.13291.380000 0001 0807 1581Orthopaedic Research Institute, Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, China
| | - Dandan Peng
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China
| | - Ye Zhang
- grid.506261.60000 0001 0706 7839Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Huashan Shi
- grid.13291.380000 0001 0807 1581Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041 China
| |
Collapse
|
9
|
Rodríguez A, Epperly M, Filiatrault J, Velázquez M, Yang C, McQueen K, Sambel LA, Nguyen H, Iyer DR, Juárez U, Ayala-Zambrano C, Martignetti DB, Frías S, Fisher R, Parmar K, Greenberger JS, D’Andrea AD. TGFβ pathway is required for viable gestation of Fanconi anemia embryos. PLoS Genet 2022; 18:e1010459. [PMID: 36441774 PMCID: PMC9731498 DOI: 10.1371/journal.pgen.1010459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 12/08/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
Overexpression of the TGFβ pathway impairs the proliferation of the hematopoietic stem and progenitor cells (HSPCs) pool in Fanconi anemia (FA). TGFβ promotes the expression of NHEJ genes, known to function in a low-fidelity DNA repair pathway, and pharmacological inhibition of TGFβ signaling rescues FA HSPCs. Here, we demonstrate that genetic disruption of Smad3, a transducer of the canonical TGFβ pathway, modifies the phenotype of FA mouse models deficient for Fancd2. We observed that the TGFβ and NHEJ pathway genes are overexpressed during the embryogenesis of Fancd2-/- mice and that the Fancd2-/-Smad3-/- double knockout (DKO) mice undergo high levels of embryonic lethality due to loss of the TGFβ-NHEJ axis. Fancd2-deficient embryos acquire extensive genomic instability during gestation which is not reversed by Smad3 inactivation. Strikingly, the few DKO survivors have activated the non-canonical TGFβ-ERK pathway, ensuring expression of NHEJ genes during embryogenesis and improved survival. Activation of the TGFβ-NHEJ axis was critical for the survival of the few Fancd2-/-Smad3-/- DKO newborn mice but had detrimental consequences for these surviving mice, such as enhanced genomic instability and ineffective hematopoiesis.
Collapse
Affiliation(s)
- Alfredo Rodríguez
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, México
- Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Michael Epperly
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Jessica Filiatrault
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Martha Velázquez
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Chunyu Yang
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
- Center for DNA Damage and DNA Repair, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Kelsey McQueen
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
- Center for DNA Damage and DNA Repair, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Larissa A. Sambel
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
- Center for DNA Damage and DNA Repair, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Huy Nguyen
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
- Center for DNA Damage and DNA Repair, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Divya Ramalingam Iyer
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Ulises Juárez
- Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Cecilia Ayala-Zambrano
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
- Instituto Nacional de Pediatría, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, UNAM, Ciudad Universitaria, México, México
| | - David B. Martignetti
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Sara Frías
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, México
- Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Renee Fisher
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Kalindi Parmar
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
- Center for DNA Damage and DNA Repair, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Joel S. Greenberger
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Alan D. D’Andrea
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
- Center for DNA Damage and DNA Repair, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
10
|
Rodríguez A, Filiatrault J, Flores-Guzmán P, Mayani H, Parmar K, D’Andrea AD. Isolation of human and murine hematopoietic stem cells for DNA damage and DNA repair assays. STAR Protoc 2021; 2:100846. [PMID: 34622219 PMCID: PMC8482037 DOI: 10.1016/j.xpro.2021.100846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) reside in the bone marrow and supply blood cells. Efficient methods for isolation of HSPCs are required. Here, we present protocols for the isolation of human and murine HSPCs using manual and FACS-assisted techniques. Isolated HSPCs can be used for downstream applications, including colony forming unit assays and DNA damage and repair assays. For complete details on the use and execution of this protocol, please refer to Rodríguez et al. (2021a) and (2021b).
Collapse
Affiliation(s)
- Alfredo Rodríguez
- Department of Radiation Oncology and Center for DNA Damage and Repair, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70228, México 04510, México
| | - Jessica Filiatrault
- Department of Radiation Oncology and Center for DNA Damage and Repair, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Patricia Flores-Guzmán
- Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Héctor Mayani
- Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Kalindi Parmar
- Department of Radiation Oncology and Center for DNA Damage and Repair, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Alan D. D’Andrea
- Department of Radiation Oncology and Center for DNA Damage and Repair, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
11
|
Gueiderikh A, Maczkowiak-Chartois F, Rosselli F. A new frontier in Fanconi anemia: From DNA repair to ribosome biogenesis. Blood Rev 2021; 52:100904. [PMID: 34750031 DOI: 10.1016/j.blre.2021.100904] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 12/27/2022]
Abstract
Described by Guido Fanconi almost 100 years ago, Fanconi anemia (FA) is a rare genetic disease characterized by developmental abnormalities, bone marrow failure (BMF) and cancer predisposition. The proteins encoded by FA-mutated genes (FANC proteins) and assembled in the so-called FANC/BRCA pathway have key functions in DNA repair and replication safeguarding, which loss leads to chromosome structural aberrancies. Therefore, since the 1980s, FA has been considered a genomic instability and chromosome fragility syndrome. However, recent findings have demonstrated new and unexpected roles of FANC proteins in nucleolar homeostasis and ribosome biogenesis, the alteration of which impacts cellular proteostasis. Here, we review the different cellular, biochemical and molecular anomalies associated with the loss of function of FANC proteins and discuss how these anomalies contribute to BMF by comparing FA to other major inherited BMF syndromes. Our aim is to determine the extent to which alterations in the DNA damage response in FA contribute to BMF compared to the consequences of the loss of function of the FANC/BRCA pathway on the other roles of the pathway.
Collapse
Affiliation(s)
- Anna Gueiderikh
- CNRS - UMR9019, Équipe labellisée "La Ligue contre le Cancer", 94805 Villejuif, France; Gustave Roussy Cancer Center, 94805 Villejuif, France; Université Paris-Saclay - Paris Sud, Orsay, France.
| | - Frédérique Maczkowiak-Chartois
- CNRS - UMR9019, Équipe labellisée "La Ligue contre le Cancer", 94805 Villejuif, France; Gustave Roussy Cancer Center, 94805 Villejuif, France; Université Paris-Saclay - Paris Sud, Orsay, France.
| | - Filippo Rosselli
- CNRS - UMR9019, Équipe labellisée "La Ligue contre le Cancer", 94805 Villejuif, France; Gustave Roussy Cancer Center, 94805 Villejuif, France; Université Paris-Saclay - Paris Sud, Orsay, France.
| |
Collapse
|
12
|
Budi EH, Schaub JR, Decaris M, Turner S, Derynck R. TGF-β as a driver of fibrosis: physiological roles and therapeutic opportunities. J Pathol 2021; 254:358-373. [PMID: 33834494 DOI: 10.1002/path.5680] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023]
Abstract
Many chronic diseases are marked by fibrosis, which is defined by an abundance of activated fibroblasts and excessive deposition of extracellular matrix, resulting in loss of normal function of the affected organs. The initiation and progression of fibrosis are elaborated by pro-fibrotic cytokines, the most critical of which is transforming growth factor-β1 (TGF-β1). This review focuses on the fibrogenic roles of increased TGF-β activities and underlying signaling mechanisms in the activated fibroblast population and other cell types that contribute to progression of fibrosis. Insight into these roles and mechanisms of TGF-β as a universal driver of fibrosis has stimulated the development of therapeutic interventions to attenuate fibrosis progression, based on interference with TGF-β signaling. Their promise in preclinical and clinical settings will be discussed. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Erine H Budi
- Pliant Therapeutics Inc, South San Francisco, CA, USA
| | | | | | - Scott Turner
- Pliant Therapeutics Inc, South San Francisco, CA, USA
| | - Rik Derynck
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, CA, USA
| |
Collapse
|