1
|
Zeng T, Chen Y, Huang H, Li S, Huang J, Xie H, Lin S, Chen S, Chen G, Yang D. Neuronal Intranuclear Inclusion Disease with NOTCH2NLC GGC Repeat Expansion: A Systematic Review and Challenges of Phenotypic Characterization. Aging Dis 2024; 16:AD.2024.0131-1. [PMID: 38377026 PMCID: PMC11745434 DOI: 10.14336/ad.2024.0131-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
Neuronal intranuclear inclusion disease (NIID) is a highly clinically heterogeneous neurodegenerative disorder primarily attributed to abnormal GGC repeat expansions in the NOTCH2NLC gene. This study aims to comprehensively explore its phenotypic characteristics and genotype-phenotype correlation. A literature search was conducted in PubMed, Embase, and the Cochrane Library from September 1, 2019, to December 31, 2022, encompassing reported NIID cases confirmed by pathogenic NOTCH2NLC mutations. Linear regressions and trend analyses were performed. Analyzing 635 cases from 85 included studies revealed that familial cases exhibited significantly larger GGC repeat expansions than sporadic cases (p < 0.001), and this frequency significantly increased with expanding GGC repeats (p trend < 0.001). Age at onset (AAO) showed a negative correlation with GGC repeat expansions (p < 0.001). The predominant initial symptoms included tremor (31.70%), cognitive impairment (14.12%), and muscle weakness (10.66%). The decreased or absent tendon reflex (DTR/ATR) emerged as a notable clinical indicator of NIID due to its high prevalence. U-fiber was observed in 79.11% of patients, particularly prominent in paroxysmal disease-dominant (87.50%) and dementia-dominant cases (81.08%). Peripheral neuropathy-dominant cases exhibited larger GGC repeat expansions (median = 123.00) and an earlier AAO (median = 33.00) than other phenotypes. Moreover, a significant genetic anticipation of 3.5 years was observed (p = 0.039). This study provides a comprehensive and up-to-date compilation of genotypic and phenotypic information on NIID since the identification of the causative gene NOTCH2NLC. We contribute a novel diagnostic framework for NIID to support clinical practice.
Collapse
Affiliation(s)
- Tian Zeng
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China.
| | - Yiqun Chen
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China.
| | - Honghao Huang
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shengqi Li
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China.
| | - Jiaqi Huang
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China.
| | - Haobo Xie
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China.
| | - Shenyi Lin
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China.
| | - Siyao Chen
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China.
| | - Guangyong Chen
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Dehao Yang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Yoshioka N. Roles of dystonin isoforms in the maintenance of neural, muscle, and cutaneous tissues. Anat Sci Int 2024; 99:7-16. [PMID: 37603210 DOI: 10.1007/s12565-023-00739-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023]
Abstract
Dystonin (DST), also known as bullous pemphigoid antigen 1 (BPAG1), encodes cytoskeletal linker proteins belonging to the plakin family. The DST gene produces several isoforms, including DST-a, DST-b, and DST-e, which are expressed in neural, muscle, and cutaneous tissues, respectively. Pathogenic DST mutations cause hereditary sensory and autonomic neuropathy type 6 (HSAN-VI) and epidermolysis bullosa simplex (EBS); therefore, it is important to elucidate the roles of DST isoforms in multiple organs. Recently, we have used several Dst mutant mouse strains, in which the expression of Dst isoforms is disrupted in distinct patterns, to gain new insight into how DST functions in multiple tissues. This review provides an overview of the roles played by tissue-specific DST isoforms in neural, muscle, and cutaneous tissues.
Collapse
Affiliation(s)
- Nozomu Yoshioka
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8510, Japan.
| |
Collapse
|
3
|
Arora S, Roy DS, Maiti S, Ainavarapu SRK. Phase Separation and Aggregation of a Globular Folded Protein Small Ubiquitin-like Modifier 1 (SUMO1). J Phys Chem Lett 2023; 14:9060-9068. [PMID: 37782899 DOI: 10.1021/acs.jpclett.3c02092] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Liquid-liquid phase separation (LLPS) plays a crucial role in cellular organization, primarily driven by intrinsically disordered proteins (IDPs) leading to the formation of biomolecular condensates. A folded protein SUMO that post-translationally modifies cellular proteins has recently emerged as a regulator of LLPS. Given its compact structure and limited flexibility, the precise role of SUMO in condensate formation remains to be investigated. Here, we show the rapid phase separation of SUMO1 into micrometer-sized liquid-like condensates in inert crowders under physiological conditions. Subsequent time-dependent conformational changes and aggregation are probed by label-free methods (tryptophan fluorescence and Raman spectroscopy). Remarkably, experiments on a SUMO1 variant lacking the N-terminal disordered region further corroborate the role of its structured part in phase transitions. Our findings highlight the potential of folded proteins to engage in LLPS and emphasize further investigation into the influence of the SUMO tag on IDPs associated with membrane-less assemblies in cells.
Collapse
Affiliation(s)
- Simran Arora
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Debsankar Saha Roy
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Sudipta Maiti
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Sri Rama Koti Ainavarapu
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Colaba, Mumbai 400005, India
| |
Collapse
|
4
|
Xu L, Zhang H, Yuan H, Xie L, Zhang J, Liang Z. Not your usual neurodegenerative disease: a case report of neuronal intranuclear inclusion disease with unconventional imaging patterns. Front Neurosci 2023; 17:1247403. [PMID: 37638306 PMCID: PMC10447982 DOI: 10.3389/fnins.2023.1247403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Background Neuronal intranuclear inclusion disease (NIID) is a rare neurodegenerative illness with characteristic brain magnetic resonance imaging (MRI) manifestations: diffuse symmetric white-matter hyperintensities in lateral cerebral ventricle areas in fluid-attenuated inversion recovery (FLAIR) and high-intensity signals along the corticomedullary junction of the frontal-parietal-temporal lobes in diffusion weighted imaging (DWI). Here, we report a case of adult-onset NIID who was misdiagnosed with Susac syndrome (SS) due to unusual corpus callosum imaging findings. Case presentation A 39-year-old man presented with chronic headache, blurred vision, tinnitus, and numbness in the hands as initial symptoms, accompanied by cognitive slowing and decreased memory. Brain MRI revealed round hypointense lesions on T1-weighted imaging (T1WI) and hyperintense lesions on T2WI/FLAIR/DWI in the genu and splenium of the corpus callosum. An initial diagnosis of SS was made based on the presence of the SS-typical symptoms and SS-characteristic radiology changes. Furthermore, the patient's symptoms improved upon completion of a combined pharmacotherapy plan. However, no significant changes were evident 18 months after the brain MRI scan. Eventually, the patient was then diagnosed with NIID based on a skin biopsy and detection of expanded GGC (guanine, guanine, cytosine) repeats in the NOTCH2NLC gene. Conclusion The present NIID case in which there was simultaneous onset of altered nervous and visual system functioning and atypical imaging findings, the atypical imaging findings may reflect an initial change of NIID leukoencephalopathy.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhigang Liang
- Department of Neurology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, China
| |
Collapse
|
5
|
The Involvement of Post-Translational Modifications in Regulating the Development and Progression of Alzheimer's Disease. Mol Neurobiol 2023; 60:3617-3632. [PMID: 36877359 DOI: 10.1007/s12035-023-03277-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/16/2023] [Indexed: 03/07/2023]
Abstract
Post-translational modifications (PTMs) have been recently reported to be involved in the development and progression of Alzheimer's disease (AD). In detail, PTMs include phosphorylation, glycation, acetylation, sumoylation, ubiquitination, methylation, nitration, and truncation, which are associated with pathological functions of AD-related proteins, such as β-amyloid (Aβ), β-site APP-cleavage enzyme 1 (BACE1), and tau protein. In particular, the roles of aberrant PTMs in the trafficking, cleavage, and degradation of AD-associated proteins, leading to the cognitive decline of the disease, are summarized under AD conditions. By summarizing these research progress, the gaps will be filled between PMTs and AD, which will facilitate the discovery of potential biomarkers, leading to the establishment of novel clinical intervention methods against AD.
Collapse
|
6
|
Kurihara M, Mano T, Eto F, Yao I, Sato K, Ohtomo G, Bannai T, Shibata S, Ishiura H, Ikemura M, Matsubara T, Morishima M, Saito Y, Murayama S, Toda T, Setou M, Iwata A. Proteomic profile of nuclei containing p62-positive inclusions in a patient with neuronal intranuclear inclusion disease. Neurobiol Dis 2023; 177:105989. [PMID: 36621630 DOI: 10.1016/j.nbd.2023.105989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023] Open
Abstract
Neuronal intranuclear inclusion disease (NIID) is a neurodegenerative disease characterized by eosinophilic hyaline intranuclear inclusions in the neurons, glial cells, and other somatic cells. Although CGG repeat expansions in NOTCH2NLC have been identified in most East Asian patients with NIID, the pathophysiology of NIID remains unclear. Ubiquitin- and p62-positive intranuclear inclusions are the pathological hallmark of NIID. Targeted immunostaining studies have identified several other proteins present in these inclusions. However, the global molecular changes within nuclei with these inclusions remained unclear. Herein, we analyzed the proteomic profile of nuclei with p62-positive inclusions in a NIID patient with CGG repeat expansion in NOTCH2NLC to discover candidate proteins involved in the NIID pathophysiology. We used fluorescence-activated cell sorting and liquid chromatography-tandem mass spectrometry (LC-MS/MS) to quantify each protein identified in the nuclei with p62-positive inclusions. The distribution of increased proteins was confirmed via immunofluorescence in autopsy brain samples from three patients with genetically confirmed NIID. Overall, 526 proteins were identified, of which 243 were consistently quantified using MS. A 1.4-fold increase was consistently observed for 20 proteins in nuclei with p62-positive inclusions compared to those without. Fifteen proteins identified with medium or high confidence in the LC-MS/MS analysis were further evaluated. Gene ontology enrichment analysis showed enrichment of several terms, including poly(A) RNA binding, nucleosomal DNA binding, and protein binding. Immunofluorescence studies confirmed that the fluorescent intensities of increased RNA-binding proteins identified by proteomic analysis, namely hnRNP A2/B1, hnRNP A3, and hnRNP C1/C2, were higher in the nuclei with p62-positive inclusions than in those without, which were not confined to the intranuclear inclusions. We identified several increased proteins in nuclei with p62-positive inclusions. Although larger studies are needed to validate our results, these proteomic data may form the basis for understanding the pathophysiology of NIID.
Collapse
Affiliation(s)
- Masanori Kurihara
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Neurology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Tatsuo Mano
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Fumihiro Eto
- Department of Cellular and Molecular Anatomy and International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Ikuko Yao
- Department of Cellular and Molecular Anatomy and International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan; Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Kenichiro Sato
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Neuropathology, Graduate School of Medicine, The University of Tokyo. Tokyo, Japan
| | - Gaku Ohtomo
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Taro Bannai
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shota Shibata
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masako Ikemura
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoyasu Matsubara
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Maho Morishima
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Yuko Saito
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Shigeo Murayama
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan; Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy and International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Atsushi Iwata
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Neurology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan.
| |
Collapse
|
7
|
Lou Y, Yu J, Shuai Z, Zhao T, Wang Y, Liu X. Adult-onset neuronal nuclear inclusion disease presenting with mental and behavioral disorders: A case report and literature review. Aging Med (Milton) 2022; 5:297-302. [PMID: 36606264 PMCID: PMC9805289 DOI: 10.1002/agm2.12237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/04/2022] [Indexed: 12/24/2022] Open
Abstract
Neuronal nuclear inclusion disease (NIID) is a rare and chronic progressive neurological degenerative disease. We presented a 68-year-old man with paroxysmal orientation disorder 1 year prior, mental and behavioral disorders for 2 days, and confirmed the diagnosis of NIID with skin biopsy. We suggest that patients with atypical clinical symptoms showed characteristic high signal in the dermatomedullary junction on DWI; NIID should be considered.
Collapse
Affiliation(s)
- Yue Lou
- Department of NeurologyZhejiang HospitalHangzhouChina
| | - Jing‐Ying Yu
- Department of NeurologyZhejiang HospitalHangzhouChina
| | | | - Ting Zhao
- Department of NeurologyZhejiang HospitalHangzhouChina
| | - Yan‐Wen Wang
- Department of NeurologyZhejiang HospitalHangzhouChina
| | - Xiao‐Li Liu
- Department of NeurologyZhejiang HospitalHangzhouChina
| |
Collapse
|
8
|
Yoshioka N, Kurose M, Yano M, Tran DM, Okuda S, Mori-Ochiai Y, Horie M, Nagai T, Nishino I, Shibata S, Takebayashi H. Isoform-specific mutation in Dystonin-b gene causes late-onset protein aggregate myopathy and cardiomyopathy. eLife 2022; 11:78419. [PMID: 35942699 PMCID: PMC9365387 DOI: 10.7554/elife.78419] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/18/2022] [Indexed: 12/03/2022] Open
Abstract
Dystonin (DST), which encodes cytoskeletal linker proteins, expresses three tissue-selective isoforms: neural DST-a, muscular DST-b, and epithelial DST-e. DST mutations cause different disorders, including hereditary sensory and autonomic neuropathy 6 (HSAN-VI) and epidermolysis bullosa simplex; however, etiology of the muscle phenotype in DST-related diseases has been unclear. Because DST-b contains all of the DST-a-encoding exons, known HSAN-VI mutations could affect both DST-a and DST-b isoforms. To investigate the specific function of DST-b in striated muscles, we generated a Dst-b-specific mutant mouse model harboring a nonsense mutation. Dst-b mutant mice exhibited late-onset protein aggregate myopathy and cardiomyopathy without neuropathy. We observed desmin aggregation, focal myofibrillar dissolution, and mitochondrial accumulation in striated muscles, which are common characteristics of myofibrillar myopathy. We also found nuclear inclusions containing p62, ubiquitin, and SUMO proteins with nuclear envelope invaginations as a unique pathological hallmark in Dst-b mutation-induced cardiomyopathy. RNA-sequencing analysis revealed changes in expression of genes responsible for cardiovascular functions. In silico analysis identified DST-b alleles with nonsense mutations in populations worldwide, suggesting that some unidentified hereditary myopathy and cardiomyopathy are caused by DST-b mutations. Here, we demonstrate that the Dst-b isoform is essential for long-term maintenance of striated muscles.
Collapse
Affiliation(s)
- Nozomu Yoshioka
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Transdisciplinary Research Programs, Niigata University, Niigata, Japan
| | - Masayuki Kurose
- Department of Physiology, School of Dentistry, Iwate Medical University, Iwate, Japan
| | - Masato Yano
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Dang Minh Tran
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Shujiro Okuda
- Medical AI Center, School of Medicine, Niigata University, Niigata, Japan
| | - Yukiko Mori-Ochiai
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masao Horie
- Department of Nursing, Niigata College of Nursing, Jōetsu, Japan
| | - Toshihiro Nagai
- Electron Microscope Laboratory, Keio University, Tokyo, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Shinsuke Shibata
- Electron Microscope Laboratory, Keio University, Tokyo, Japan.,Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Center for Coordination of Research Facilities, Niigata University, Niigata, Japan
| |
Collapse
|
9
|
Yoo H, Lee J, Kim B, Moon H, Jeong H, Lee K, Song WJ, Hur JK, Oh Y. Role of post-translational modifications on the alpha-synuclein aggregation-related pathogenesis of Parkinson’s disease. BMB Rep 2022. [PMID: 35733294 PMCID: PMC9340086 DOI: 10.5483/bmbrep.2022.55.7.073] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Together with neuronal loss, the existence of insoluble inclusions of alpha-synuclein (α-syn) in the brain is widely accepted as a hallmark of synucleinopathies including Parkinson’s disease (PD), multiple system atrophy, and dementia with Lewy body. Because the α-syn aggregates are deeply involved in the pathogenesis, there have been many attempts to demonstrate the mechanism of the aggregation and its potential causative factors including post-translational modifications (PTMs). Although no concrete conclusions have been made based on the previous study results, growing evidence suggests that modifications such as phosphorylation and ubiquitination can alter α-syn characteristics to have certain effects on the aggregation process in PD; either facilitating or inhibiting fibrillization. In the present work, we reviewed studies showing the significant impacts of PTMs on α-syn aggregation. Furthermore, the PTMs modulating α-syn aggregation-induced cell death have been discussed.
Collapse
Affiliation(s)
- Hajung Yoo
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Jeongmin Lee
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Bokwang Kim
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Heechang Moon
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Huisu Jeong
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Kyungmi Lee
- Department of Medicine, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Woo Jeung Song
- Department of Medical Genetics, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Junho K. Hur
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
- Department of Medical Genetics, College of Medicine, Hanyang University, Seoul 04763, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Korea
| | - Yohan Oh
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Korea
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
10
|
Yoo H, Lee J, Kim B, Moon H, Jeong H, Lee K, Song WJ, Hur JK, Oh Y. Role of post-translational modifications on the alpha-synuclein aggregation-related pathogenesis of Parkinson's disease. BMB Rep 2022; 55:323-335. [PMID: 35733294 PMCID: PMC9340086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/21/2022] [Accepted: 05/17/2022] [Indexed: 02/21/2025] Open
Abstract
Together with neuronal loss, the existence of insoluble inclusions of alpha-synuclein (α-syn) in the brain is widely accepted as a hallmark of synucleinopathies including Parkinson's disease (PD), multiple system atrophy, and dementia with Lewy body. Because the α-syn aggregates are deeply involved in the pathogenesis, there have been many attempts to demonstrate the mechanism of the aggregation and its potential causative factors including post-translational modifications (PTMs). Although no concrete conclusions have been made based on the previous study results, growing evidence suggests that modifications such as phosphorylation and ubiquitination can alter α-syn characteristics to have certain effects on the aggregation process in PD; either facilitating or inhibiting fibrillization. In the present work, we reviewed studies showing the significant impacts of PTMs on α-syn aggregation. Furthermore, the PTMs modulating α-syn aggregation-induced cell death have been discussed. [BMB Reports 2022; 55(7): 323-335].
Collapse
Affiliation(s)
- Hajung Yoo
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Jeongmin Lee
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Bokwang Kim
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Heechang Moon
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Huisu Jeong
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Kyungmi Lee
- Department of Medicine, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Woo Jeung Song
- Department of Medical Genetics, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Junho K. Hur
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
- Department of Medical Genetics, College of Medicine, Hanyang University, Seoul 04763, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Korea
| | - Yohan Oh
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Korea
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
11
|
Nelson RS, Dammer EB, Santiago JV, Seyfried NT, Rangaraju S. Brain Cell Type-Specific Nuclear Proteomics Is Imperative to Resolve Neurodegenerative Disease Mechanisms. Front Neurosci 2022; 16:902146. [PMID: 35784845 PMCID: PMC9243337 DOI: 10.3389/fnins.2022.902146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/30/2022] [Indexed: 01/19/2023] Open
Abstract
Neurodegenerative diseases (NDs) involve complex cellular mechanisms that are incompletely understood. Emerging findings have revealed that disruption of nuclear processes play key roles in ND pathogenesis. The nucleus is a nexus for gene regulation and cellular processes that together, may underlie pathomechanisms of NDs. Furthermore, many genetic risk factors for NDs encode proteins that are either present in the nucleus or are involved in nuclear processes (for example, RNA binding proteins, epigenetic regulators, or nuclear-cytoplasmic transport proteins). While recent advances in nuclear transcriptomics have been significant, studies of the nuclear proteome in brain have been relatively limited. We propose that a comprehensive analysis of nuclear proteomic alterations of various brain cell types in NDs may provide novel biological and therapeutic insights. This may be feasible because emerging technical advances allow isolation and investigation of intact nuclei from post-mortem frozen human brain tissue with cell type-specific and single-cell resolution. Accordingly, nuclei of various brain cell types harbor unique protein markers which can be used to isolate cell-type specific nuclei followed by down-stream proteomics by mass spectrometry. Here we review the literature providing a rationale for investigating proteomic changes occurring in nuclei in NDs and then highlight the potential for brain cell type-specific nuclear proteomics to enhance our understanding of distinct cellular mechanisms that drive ND pathogenesis.
Collapse
Affiliation(s)
- Ruth S. Nelson
- Department of Neurology, Emory University, Atlanta, GA, United States
| | - Eric B. Dammer
- Department of Biochemistry, Emory University, Atlanta, GA, United States
| | | | | | - Srikant Rangaraju
- Department of Neurology, Emory University, Atlanta, GA, United States,*Correspondence: Srikant Rangaraju
| |
Collapse
|
12
|
Soares ES, Prediger RD, Brocardo PS, Cimarosti HI. SUMO-modifying Huntington's disease. IBRO Neurosci Rep 2022; 12:203-209. [PMID: 35746980 PMCID: PMC9210482 DOI: 10.1016/j.ibneur.2022.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/06/2022] [Indexed: 12/25/2022] Open
Abstract
Small ubiquitin-like modifiers, SUMOs, are proteins that are conjugated to target substrates and regulate their functions in a post-translational modification called SUMOylation. In addition to its physiological roles, SUMOylation has been implicated in several neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's diseases (HD). HD is a neurodegenerative monogenetic autosomal dominant disorder caused by a mutation in the CAG repeat of the huntingtin (htt) gene, which expresses a mutant Htt protein more susceptible to aggregation and toxicity. Besides Htt, other SUMO ligases, enzymes, mitochondrial and autophagic components are also important for the progression of the disease. Here we review the main aspects of Htt SUMOylation and its role in cellular processes involved in the pathogenesis of HD.
Collapse
Affiliation(s)
- Ericks S. Soares
- Post-graduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Rui D. Prediger
- Post-graduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
- Post-graduate Program in Neuroscience, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Patricia S. Brocardo
- Post-graduate Program in Neuroscience, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Helena I. Cimarosti
- Post-graduate Program in Pharmacology, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
- Post-graduate Program in Neuroscience, UFSC, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
13
|
Takamura H, Nakayama Y, Ito H, Katayama T, Fraser PE, Matsuzaki S. SUMO1 Modification of Tau in Progressive Supranuclear Palsy. Mol Neurobiol 2022; 59:4419-4435. [PMID: 35567706 PMCID: PMC9167224 DOI: 10.1007/s12035-022-02734-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/04/2022] [Indexed: 12/03/2022]
Abstract
Small ubiquitin-like modifiers (SUMO) have been implicated in several neurodegenerative diseases. SUMO1 conjugation has been shown to promote aggregation and regulate phosphorylation of the tau protein linked to Alzheimer’s disease and related tauopathies. The current study has demonstrated that SUMO1 co-localizes with intraneuronal tau inclusions in progressive supranuclear palsy (PSP). Immunoprecipitation of isolated and solubilized tau fibrils from PSP tissues revealed SUMO1 conjugation to a cleaved and N-terminally truncated tau. The effects of SUMOylation were examined using tau-SUMO fusion proteins which showed a higher propensity for tau oligomerization of PSP-truncated tau and accumulation on microtubules as compared to the full-length protein. This was found to be specific for SUMO1 as the corresponding SUMO2 fusion protein did not display a significantly altered cytoplasmic distribution or aggregation of tau. Blocking proteasome-mediated degradation promoted the aggregation of the tau fusion proteins with the greatest effect observed for truncated tau-SUMO1. The SUMO1 modification of the truncated tau in PSP may represent a detrimental event that promotes aggregation and impedes the ability of cells to remove the resulting protein deposits. This combination of tau truncation and SUMO1 modification may be a contributing factor in PSP pathogenesis.
Collapse
Affiliation(s)
- Hironori Takamura
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada.,Department of Child Development & Molecular Brain Science, Center for Child Mental Development, United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Yoshiaki Nakayama
- Department of Neurology, Wakayama Medical University, Wakayama, Japan
| | - Hidefumi Ito
- Department of Neurology, Wakayama Medical University, Wakayama, Japan
| | - Taiichi Katayama
- Department of Child Development & Molecular Brain Science, Center for Child Mental Development, United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Shinsuke Matsuzaki
- Department of Child Development & Molecular Brain Science, Center for Child Mental Development, United Graduate School of Child Development, Osaka University, Osaka, Japan. .,Department of Radiological Sciences, Faculty of Health Sciences, Morinomiya University of Medical Sciences, Osaka, Japan.
| |
Collapse
|
14
|
Miki Y, Kamata K, Goto S, Sakuraba H, Mori F, Yamagata K, Kijima H, Fukuda S, Wakabayashi K. The clinical and neuropathological picture of adult neuronal intranuclear inclusion disease with no radiological abnormality. Neuropathology 2022; 42:204-211. [PMID: 35274390 DOI: 10.1111/neup.12792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/29/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022]
Abstract
In typical adult neuronal intranuclear inclusion disease (NIID) with predilection for the basal ganglia or cerebral cortex, not only neurons but also glial cells harbor intranuclear inclusions. In addition, these inclusions are present in the peripheral autonomic nervous system, visceral organs and skin. In NIID cases with an expansion of GGC repeats in the 5'-untranslated region (5'-UTR) of the Notch 2 N-terminal like C (NOTCH2NLC) gene, these repeats are located in an upstream open reading frame (uN2C) and result in the production of a polyglycine-containing protein called uN2CpolyG. Typically, patients with adult NIID show high-intensity signals at the corticomedullary junction on diffusion-weighted brain magnetic resonance imaging. We report a case of adult NIID in a 78-year-old Japanese male, who suffered from mild, non-progressive tremor during life but showed no radiographic abnormalities suggestive of adult NIID. Pathologically, ubiquitin-, p62- and uN2CpolyG-positive neuronal intranuclear inclusions were particularly frequent in the hippocampal formation, but were also seen in the enteric plexuses, kidney and cardiac muscles. By contrast, glial intranuclear inclusions were barely evident in the affected regions. The present case also had an immunohistochemical profile differing from that of typical adult NIID. The findings in this case suggest that adult NIID can show clinical, radiographic and pathological heterogeneity.
Collapse
Affiliation(s)
- Yasuo Miki
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kosuke Kamata
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shintaro Goto
- Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hirotake Sakuraba
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Fumiaki Mori
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kazufumi Yamagata
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - Hiroshi Kijima
- Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shinsaku Fukuda
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Koichi Wakabayashi
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
15
|
Boivin M, Charlet-Berguerand N. Trinucleotide CGG Repeat Diseases: An Expanding Field of Polyglycine Proteins? Front Genet 2022; 13:843014. [PMID: 35295941 PMCID: PMC8918734 DOI: 10.3389/fgene.2022.843014] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/31/2022] [Indexed: 12/30/2022] Open
Abstract
Microsatellites are repeated DNA sequences of 3–6 nucleotides highly variable in length and sequence and that have important roles in genomes regulation and evolution. However, expansion of a subset of these microsatellites over a threshold size is responsible of more than 50 human genetic diseases. Interestingly, some of these disorders are caused by expansions of similar sequences, sizes and localizations and present striking similarities in clinical manifestations and histopathological features, which suggest a common mechanism of disease. Notably, five identical CGG repeat expansions, but located in different genes, are the causes of fragile X-associated tremor/ataxia syndrome (FXTAS), neuronal intranuclear inclusion disease (NIID), oculopharyngodistal myopathy type 1 to 3 (OPDM1-3) and oculopharyngeal myopathy with leukoencephalopathy (OPML), which are neuromuscular and neurodegenerative syndromes with overlapping symptoms and similar histopathological features, notably the presence of characteristic eosinophilic ubiquitin-positive intranuclear inclusions. In this review we summarize recent finding in neuronal intranuclear inclusion disease and FXTAS, where the causing CGG expansions were found to be embedded within small upstream ORFs (uORFs), resulting in their translation into novel proteins containing a stretch of polyglycine (polyG). Importantly, expression of these polyG proteins is toxic in animal models and is sufficient to reproduce the formation of ubiquitin-positive intranuclear inclusions. These data suggest the existence of a novel class of human genetic pathology, the polyG diseases, and question whether a similar mechanism may exist in other diseases, notably in OPDM and OPML.
Collapse
|
16
|
Boivin M, Deng J, Pfister V, Grandgirard E, Oulad-Abdelghani M, Morlet B, Ruffenach F, Negroni L, Koebel P, Jacob H, Riet F, Dijkstra AA, McFadden K, Clayton WA, Hong D, Miyahara H, Iwasaki Y, Sone J, Wang Z, Charlet-Berguerand N. Translation of GGC repeat expansions into a toxic polyglycine protein in NIID defines a novel class of human genetic disorders: The polyG diseases. Neuron 2021; 109:1825-1835.e5. [PMID: 33887199 PMCID: PMC8186563 DOI: 10.1016/j.neuron.2021.03.038] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/08/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
Neuronal intranuclear inclusion disease (NIID) is a neurodegenerative disease characterized by the presence of intranuclear inclusions of unknown origin. NIID is caused by an expansion of GGC repeats in the 5′ UTR of the NOTCH2NLC (N2C) gene. We found that these repeats are embedded in a small upstream open reading frame (uORF) (uN2C), resulting in their translation into a polyglycine-containing protein, uN2CpolyG. This protein accumulates in intranuclear inclusions in cell and mouse models and in tissue samples of individuals with NIID. Furthermore, expression of uN2CpolyG in mice leads to locomotor alterations, neuronal cell loss, and premature death of the animals. These results suggest that translation of expanded GGC repeats into a novel and pathogenic polyglycine-containing protein underlies the presence of intranuclear inclusions and neurodegeneration in NIID. NIID is a neurodegenerative disease caused by expansion of GGC repeats in NOTCH2NLC These GGC repeats are translated into a polyglycine (polyG) protein The polyG protein is toxic and forms intranuclear inclusions in cells and animals Similarities between FXTAS and NIID define a new set of disorders: polyG diseases
Collapse
Affiliation(s)
- Manon Boivin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U 1258, CNRS UMR 7104, University of Strasbourg, 67404 Illkirch, France
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Véronique Pfister
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U 1258, CNRS UMR 7104, University of Strasbourg, 67404 Illkirch, France
| | - Erwan Grandgirard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U 1258, CNRS UMR 7104, University of Strasbourg, 67404 Illkirch, France
| | - Mustapha Oulad-Abdelghani
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U 1258, CNRS UMR 7104, University of Strasbourg, 67404 Illkirch, France
| | - Bastien Morlet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U 1258, CNRS UMR 7104, University of Strasbourg, 67404 Illkirch, France
| | - Frank Ruffenach
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U 1258, CNRS UMR 7104, University of Strasbourg, 67404 Illkirch, France
| | - Luc Negroni
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U 1258, CNRS UMR 7104, University of Strasbourg, 67404 Illkirch, France
| | - Pascale Koebel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U 1258, CNRS UMR 7104, University of Strasbourg, 67404 Illkirch, France
| | - Hugues Jacob
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U 1258, CNRS UMR 7104, University of Strasbourg, 67404 Illkirch, France
| | - Fabrice Riet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U 1258, CNRS UMR 7104, University of Strasbourg, 67404 Illkirch, France
| | - Anke A Dijkstra
- Department of Pathology, Amsterdam University Medical Centre, Amsterdam Neuroscience, VUmc, Amsterdam, the Netherlands
| | - Kathryn McFadden
- Department of Pathology, IWK Health Centre, Halifax, NS B3K 6R8, Canada
| | - Wiley A Clayton
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Daojun Hong
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hiroaki Miyahara
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Yasushi Iwasaki
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Jun Sone
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan; Department of Neurology, Suzuka National Hospital, Suzuka 513-8501, Japan
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Nicolas Charlet-Berguerand
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U 1258, CNRS UMR 7104, University of Strasbourg, 67404 Illkirch, France.
| |
Collapse
|
17
|
Huang Y, Jin G, Zhan QL, Tian Y, Shen L. Adult-onset neuronal intranuclear inclusion disease, with both stroke-like onset and encephalitic attacks: a case report. BMC Neurol 2021; 21:142. [PMID: 33789591 PMCID: PMC8011180 DOI: 10.1186/s12883-021-02164-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/22/2021] [Indexed: 12/16/2022] Open
Abstract
Background Neuronal intranuclear inclusion disease (NIID) is a neurodegenerative disease, the clinical manifestations of which are complex and easily misdiagnosed. NIID clinical characteristics are varied, affecting the central and peripheral nervous systems and autonomic nerves. In this study, we present an NIID case with both stroke-like onset and encephalitic attacks, which is a rare case report. Case presentation A 68-year-old Chinese female presented with sudden aphasia and limb hemiplegia as the first symptoms, as well as fever, cognitive impairment and mental irritability from encephalitic attacks. During hospitalization, a brain magnetic resonance imaging (MRI) examination detected high signal intensity from diffusion-weighted imaging (DWI) of the bilateral frontal grey matter-white matter junction. Electrophysiological tests revealed the main site of injury was at the myelin sheath in the motor nerves. A skin biopsy revealed eosinophilic spherical inclusion bodies in the nuclei of small sweat gland cells, fibroblasts and fat cells, whilst immunohistochemistry revealed that p62 and ubiquitin antibodies were positive. From genetic analyses, the patient was not a carrier of the fragile X mental retardation 1 (FMR1) permutation, but repeated GGC sequences in the NOTCH2NLC gene confirmed an NIID diagnosis. Through antipsychotic and nutritional support therapy, the patient’s symptoms were completely relieved within 3 weeks. Conclusions This report of an NIID case with both stroke-like onset and encephalitic attacks provides new information for NIID diagnoses, and a comprehensive classification of clinical characteristics.
Collapse
Affiliation(s)
- Ying Huang
- Department of Neurology, Chongqing Renji Hospital, University of Chinese Academy of Sciences, Chongqing, 400062, China.
| | - Ge Jin
- Department of Neurology, Chongqing Renji Hospital, University of Chinese Academy of Sciences, Chongqing, 400062, China
| | - Qun-Ling Zhan
- Department of Neurology, Chongqing Renji Hospital, University of Chinese Academy of Sciences, Chongqing, 400062, China
| | - Yun Tian
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| |
Collapse
|
18
|
Alquezar C, Arya S, Kao AW. Tau Post-translational Modifications: Dynamic Transformers of Tau Function, Degradation, and Aggregation. Front Neurol 2021; 11:595532. [PMID: 33488497 PMCID: PMC7817643 DOI: 10.3389/fneur.2020.595532] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Post-translational modifications (PTMs) on tau have long been recognized as affecting protein function and contributing to neurodegeneration. The explosion of information on potential and observed PTMs on tau provides an opportunity to better understand these modifications in the context of tau homeostasis, which becomes perturbed with aging and disease. Prevailing views regard tau as a protein that undergoes abnormal phosphorylation prior to its accumulation into the toxic aggregates implicated in Alzheimer's disease (AD) and other tauopathies. However, the phosphorylation of tau may, in fact, represent part of the normal but interrupted function and catabolism of the protein. In addition to phosphorylation, tau undergoes another forms of post-translational modification including (but not limited to), acetylation, ubiquitination, glycation, glycosylation, SUMOylation, methylation, oxidation, and nitration. A holistic appreciation of how these PTMs regulate tau during health and are potentially hijacked in disease remains elusive. Recent studies have reinforced the idea that PTMs play a critical role in tau localization, protein-protein interactions, maintenance of levels, and modifying aggregate structure. These studies also provide tantalizing clues into the possibility that neurons actively choose how tau is post-translationally modified, in potentially competitive and combinatorial ways, to achieve broad, cellular programs commensurate with the distinctive environmental conditions found during development, aging, stress, and disease. Here, we review tau PTMs and describe what is currently known about their functional impacts. In addition, we classify these PTMs from the perspectives of protein localization, electrostatics, and stability, which all contribute to normal tau function and homeostasis. Finally, we assess the potential impact of tau PTMs on tau solubility and aggregation. Tau occupies an undoubtedly important position in the biology of neurodegenerative diseases. This review aims to provide an integrated perspective of how post-translational modifications actively, purposefully, and dynamically remodel tau function, clearance, and aggregation. In doing so, we hope to enable a more comprehensive understanding of tau PTMs that will positively impact future studies.
Collapse
Affiliation(s)
| | | | - Aimee W. Kao
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
19
|
Abstract
Neuronal intranuclear inclusion disease (NIID) is a progressive neurodegenerative disease that had been diagnosed by autopsy until recently, but the number of cases has increased since skin biopsy was reported to be useful in 2011. In 2019, the genetical cause of NIID was identified as the extension of the GGC repeat sequence on the NOTCH2NLC gene, and genetic diagnosis became possible. In NIID, there are two groups: a group onset with cognitive dysfunction, and with leukoencephalopathy on head MRI and a high intensity signal at the corticomedurally junction on DWI, and a group with limb weakness. It is necessary to include NIID in the differential diagnosis of leukoencephalopathy and neuropathy, and it is necessary to combine skin biopsy and genetic testing to accurately diagnose of NIID and promote pathological elucidation.
Collapse
Affiliation(s)
- Jun Sone
- Department of Neurology, National Hospital Organization Suzuka National Hospital
| |
Collapse
|
20
|
Kaur A, Jaiswal N, Raj R, Kumar B, Kapur S, Kumar D, Gahlay GK, Mithu VS. Characterization of Cu2+ and Zn2+ binding sites in SUMO1 and its impact on protein stability. Int J Biol Macromol 2020; 151:204-211. [DOI: 10.1016/j.ijbiomac.2020.02.116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/16/2020] [Accepted: 02/11/2020] [Indexed: 10/25/2022]
|
21
|
Ginkgolic acid promotes autophagy-dependent clearance of intracellular alpha-synuclein aggregates. Mol Cell Neurosci 2019; 101:103416. [PMID: 31654699 DOI: 10.1016/j.mcn.2019.103416] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/31/2022] Open
Abstract
The accumulation of intracytoplasmic inclusion bodies (Lewy bodies) composed of aggregates of the alpha-synuclein (α-syn) protein is the principal pathological characteristic of Parkinson's disease (PD) and may lead to degeneration of dopaminergic neurons. To date there is no medication that can promote the efficient clearance of these pathological aggregates. In this study, the effect on α-syn aggregate clearance of ginkgolic acid (GA), a natural compound extracted from Ginkgo biloba leaves that inhibits SUMOylation amongst other pathways, was assessed in SH-SY5Y neuroblastoma cells and rat primary cortical neurons. Depolarization of SH-SY5Y neuroblastoma cells and rat primary cortical neurons with KCl was used to induce α-syn aggregate formation. Cells pre-treated with either GA or the related compound, anacardic acid, revealed a significant decrease in intracytoplasmic aggregates immunopositive for α-syn and SUMO-1. An increased frequency of autophagosomes was also detected with both compounds. GA post-treatment 24 h after depolarization also significantly diminished α-syn aggregate bearing cells, indicating the clearance of pre-formed aggregates. Autophagy inhibitors blocked GA-dependent clearance of α-syn aggregates, but not increased autophagosome frequency. Western analysis revealed that the reduction in α-syn aggregate frequency obtained with GA pre-treatment was accompanied by little change in the abundance of SUMO conjugates. The current findings show that GA can promote autophagy-dependent clearance of α-syn aggregates and may have potential in disease modifying therapy.
Collapse
|
22
|
Vermilion J, Johnson M, Srinivasan J, Mink JW. Neuronal Intranuclear Inclusion Disease: Longitudinal Case Report of Motor and Nonmotor Symptoms. J Child Neurol 2019; 34:801-805. [PMID: 31304825 PMCID: PMC6801045 DOI: 10.1177/0883073819860566] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neuronal intranuclear inclusion disease is a rare, neurodegenerative disorder with onset in childhood. We report a single case natural history over 10 years and present a review of juvenile parkinsonism and neuronal intranuclear inclusion disease. Our patient was initially seen at the University of Rochester at age 12 years after 4 years of progressive dysarthria, dysphagia, and clumsiness. His neurologic examination was notable for parkinsonism. He had excellent initial response to levodopa, but subsequently developed dopa-induced motor fluctuations, dyskinesias, psychosis, and dystonia. Later in the course, he developed multiple nonmotor symptoms and ultimately died from respiratory failure. Neuropathology demonstrated large eosinophilic nuclear inclusions and small ubiquitin-related modifier 1 (SUMO-1) immunoreactivity, confirming the diagnosis of neuronal intranuclear inclusion disease. This diagnosis should be considered in a patient presenting with juvenile parkinsonism. Clues to the diagnosis include early-onset dopa-induced dyskinesias, gastrointestinal dysfunction, and oculogyric crises.
Collapse
|
23
|
Ma L, Herren AW, Espinal G, Randol J, McLaughlin B, Martinez-Cerdeño V, Pessah IN, Hagerman RJ, Hagerman PJ. Composition of the Intranuclear Inclusions of Fragile X-associated Tremor/Ataxia Syndrome. Acta Neuropathol Commun 2019; 7:143. [PMID: 31481131 PMCID: PMC6720097 DOI: 10.1186/s40478-019-0796-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 08/24/2019] [Indexed: 12/11/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder associated with a premutation repeat expansion (55-200 CGG repeats) in the 5' noncoding region of the FMR1 gene. Solitary intranuclear inclusions within FXTAS neurons and astrocytes constitute a hallmark of the disorder, yet our understanding of how and why these bodies form is limited. Here, we have discovered that FXTAS inclusions emit a distinct autofluorescence spectrum, which forms the basis of a novel, unbiased method for isolating FXTAS inclusions by preparative fluorescence-activated cell sorting (FACS). Using a combination of autofluorescence-based FACS and liquid chromatography/tandem mass spectrometry (LC-MS/MS)-based proteomics, we have identified more than two hundred proteins that are enriched within the inclusions relative to FXTAS whole nuclei. Whereas no single protein species dominates inclusion composition, highly enriched levels of conjugated small ubiquitin-related modifier 2 (SUMO 2) protein and p62/sequestosome-1 (p62/SQSTM1) protein were found within the inclusions. Many additional proteins involved with RNA binding, protein turnover, and DNA damage repair were enriched within inclusions relative to total nuclear protein. The current analysis has also allowed the first direct detection, through peptide sequencing, of endogenous FMRpolyG peptide, the product of repeat-associated non-ATG (RAN) translation of the FMR1 mRNA. However, this peptide was found only at extremely low levels and not within whole FXTAS nuclear preparations, raising the question whether endogenous RAN products exist at quantities sufficient to contribute to FXTAS pathogenesis. The abundance of the inclusion-associated ubiquitin- and SUMO-based modifiers supports a model for inclusion formation as the result of increased protein loads and elevated oxidative stress leading to maladaptive autophagy. These results highlight the need to further investigate FXTAS pathogenesis in the context of endogenous systems.
Collapse
Affiliation(s)
- Lisa Ma
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, One Shields Ave, Davis, CA, USA
| | - Anthony W Herren
- Genome Center, University of California Davis, Davis, California, USA
| | - Glenda Espinal
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, One Shields Ave, Davis, CA, USA
| | - Jamie Randol
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, One Shields Ave, Davis, CA, USA
| | - Bridget McLaughlin
- Department of Pathology and Laboratory Medicine, University of California Davis, School of Medicine, Sacramento, California, USA
| | - Veronica Martinez-Cerdeño
- Department of Pathology and Laboratory Medicine, University of California Davis, School of Medicine, Sacramento, California, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospital of Northern California, University of California Davis, School of Medicine, Sacramento, California, USA
- MIND Institute, University of California Davis Health, Sacramento, California, USA
| | - Isaac N Pessah
- MIND Institute, University of California Davis Health, Sacramento, California, USA
- Department of Molecular Biosciences, University of California Davis, School of Veterinary Medicine, Davis, California, USA
| | - Randi J Hagerman
- MIND Institute, University of California Davis Health, Sacramento, California, USA
- Department of Pediatrics, University of California Davis, School of Medicine, Sacramento, California, USA
| | - Paul J Hagerman
- Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, One Shields Ave, Davis, CA, USA.
- MIND Institute, University of California Davis Health, Sacramento, California, USA.
| |
Collapse
|
24
|
Expansion of Human-Specific GGC Repeat in Neuronal Intranuclear Inclusion Disease-Related Disorders. Am J Hum Genet 2019; 105:166-176. [PMID: 31178126 PMCID: PMC6612530 DOI: 10.1016/j.ajhg.2019.05.013] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 05/17/2019] [Indexed: 12/11/2022] Open
Abstract
Neuronal intranuclear inclusion disease (NIID) is a slowly progressing neurodegenerative disease characterized by eosinophilic intranuclear inclusions in the nervous system and multiple visceral organs. The clinical manifestation of NIID varies widely, and both familial and sporadic cases have been reported. Here we have performed genetic linkage analysis and mapped the disease locus to 1p13.3-q23.1; however, whole-exome sequencing revealed no potential disease-causing mutations. We then performed long-read genome sequencing and identified a large GGC repeat expansion within human-specific NOTCH2NLC. Expanded GGC repeats as the cause of NIID was further confirmed in an additional three NIID-affected families as well as five sporadic NIID-affected case subjects. Moreover, given the clinical heterogeneity of NIID, we examined the size of the GGC repeat among 456 families with a variety of neurological conditions with the known pathogenic genes excluded. Surprisingly, GGC repeat expansion was observed in two Alzheimer disease (AD)-affected families and three parkinsonism-affected families, implicating that the GGC repeat expansions in NOTCH2NLC could also contribute to the pathogenesis of both AD and PD. Therefore, we suggest defining a term NIID-related disorders (NIIDRD), which will include NIID and other related neurodegenerative diseases caused by the expanded GGC repeat within human-specific NOTCH2NLC.
Collapse
|
25
|
Vijayakumaran S, Pountney DL. SUMOylation, aging and autophagy in neurodegeneration. Neurotoxicology 2018; 66:53-57. [PMID: 29490232 DOI: 10.1016/j.neuro.2018.02.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/22/2018] [Accepted: 02/25/2018] [Indexed: 12/14/2022]
Abstract
Protein homeostasis is essential for the wellbeing of several cellular systems. Post-translational modifications (PTM) coordinate various pathways in response to abnormal aggregation of proteins in neurodegenerative disease states. In the presence of accumulating misfolded proteins and toxic aggregates, the small ubiquitin-like modifier (SUMO) is associated with various substrates, including chaperones and other recruited factors, for refolding and for clearance via proteolytic systems, such as the ubiquitin-proteasome pathway (UPS), chaperone-mediated autophagy (CMA) and macroautophagy. However, these pathological aggregates are also known to inhibit both the UPS and CMA, further creating a toxic burden on cells. This review suggests that re-routing cytotoxic aggregates towards selective macroautophagy by modulating the SUMO pathway could provide new mechanisms towards neuroprotection.
Collapse
Affiliation(s)
- Shamini Vijayakumaran
- Menzies Health Institute Queensland, School of Medical Science, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Dean L Pountney
- Menzies Health Institute Queensland, School of Medical Science, Griffith University, Gold Coast, Queensland 4222, Australia.
| |
Collapse
|
26
|
Nakano Y, Takahashi-Fujigasaki J, Sengoku R, Kanemaru K, Arai T, Kanda T, Murayama S. PML Nuclear Bodies Are Altered in Adult-Onset Neuronal Intranuclear Hyaline Inclusion Disease. J Neuropathol Exp Neurol 2017; 76:585-594. [PMID: 28863453 DOI: 10.1093/jnen/nlx039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Neuronal intranuclear hyaline inclusion disease (NIHID) is a neurodegenerative disorder characterized by the presence of eosinophilic nuclear inclusions (NIs) in diverse cell lines in systemic organs. Adult-onset NIHID typically manifests with dementia associated with leukoencephalopathy. The detection of NIs in skin biopsies is useful for an antemortem diagnosis. A previous analysis suggested that NIs in NIHID originated from nuclear bodies (NBs), an important nuclear domain related to the ubiquitin-p62-mediated protein degradation system. In this study, we analyzed skin samples from 5 NIHID and 5 control cases immunohistochemically and electron microscopically. In the control cases, small but significant amounts of ubiquitin- and p62-positive intranuclear structures were found. These structures were consistently colocalized with promyelocytic leukemia protein (PML), an essential component of NBs, in particular when activated. The p62- and PML-positive structures were more frequently found in NIHID cases. Activated NBs, having a core and a shell, were observed by electron microscopy in control but not in NIHID cases. Instead, immature and mature filamentous NIs were found only in the NIHID cases. Our results indicate that NBs could not be normally activated in the NIHID, and an abnormal alteration of NBs might be related to the pathogenesis of NIHID.
Collapse
Affiliation(s)
- Yuta Nakano
- Brain Bank for Aging Research, Department of Neuropathology, Department of Neurology, and Department of Pathology; Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology, Tokyo, Japan; Department of Neurology and Clinical Neuroscience; and Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Junko Takahashi-Fujigasaki
- Brain Bank for Aging Research, Department of Neuropathology, Department of Neurology, and Department of Pathology; Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology, Tokyo, Japan; Department of Neurology and Clinical Neuroscience; and Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Renpei Sengoku
- Brain Bank for Aging Research, Department of Neuropathology, Department of Neurology, and Department of Pathology; Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology, Tokyo, Japan; Department of Neurology and Clinical Neuroscience; and Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Kazutomi Kanemaru
- Brain Bank for Aging Research, Department of Neuropathology, Department of Neurology, and Department of Pathology; Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology, Tokyo, Japan; Department of Neurology and Clinical Neuroscience; and Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Tomio Arai
- Brain Bank for Aging Research, Department of Neuropathology, Department of Neurology, and Department of Pathology; Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology, Tokyo, Japan; Department of Neurology and Clinical Neuroscience; and Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Takashi Kanda
- Brain Bank for Aging Research, Department of Neuropathology, Department of Neurology, and Department of Pathology; Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology, Tokyo, Japan; Department of Neurology and Clinical Neuroscience; and Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Shigeo Murayama
- Brain Bank for Aging Research, Department of Neuropathology, Department of Neurology, and Department of Pathology; Tokyo Metropolitan Geriatric Hospital and Institution of Gerontology, Tokyo, Japan; Department of Neurology and Clinical Neuroscience; and Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| |
Collapse
|
27
|
Anderson DB, Zanella CA, Henley JM, Cimarosti H. Sumoylation: Implications for Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:261-281. [PMID: 28197918 DOI: 10.1007/978-3-319-50044-7_16] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The covalent posttranslational modifications of proteins are critical events in signaling cascades that enable cells to efficiently, rapidly and reversibly respond to extracellular stimuli. This is especially important in the CNS where the processes affecting synaptic communication between neurons are highly complex and very tightly regulated. Sumoylation regulates the function and fate of a diverse array of proteins and participates in the complex cell signaling pathways required for cell survival. One of the most complex signaling pathways is synaptic transmission.Correct synaptic function is critical to the working of the brain and its alteration through synaptic plasticity mediates learning, mental disorders and stroke. The investigation of neuronal sumoylation is a new and exciting field and the functional and pathophysiological implications are far-reaching. Sumoylation has already been implicated in a diverse array of neurological disorders. Here we provide an overview of current literature highlighting recent insights into the role of sumoylation in neurodegeneration. In addition we present a brief assessment of drug discovery in the analogous ubiquitin system and extrapolate on the potential for development of novel therapies that might target SUMO-associated mechanisms of neurodegenerative disease.
Collapse
Affiliation(s)
- Dina B Anderson
- Ipsen Bioinnovation Ltd, Units 4-10 The Quadrant, Barton Lane, Abingdon, OX14 3YS, UK
| | - Camila A Zanella
- Department of Pharmacology, Federal University of Santa Catarina, Campus Universitario - Trindade, Florianopolis, CEP, 88040-900, Brazil
| | - Jeremy M Henley
- MRC Centre for Synaptic Plasticity, School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Helena Cimarosti
- Department of Pharmacology, Federal University of Santa Catarina, Campus Universitario - Trindade, Florianopolis, CEP, 88040-900, Brazil.
| |
Collapse
|
28
|
Bodea L, Eckert A, Ittner LM, Piguet O, Götz J. Tau physiology and pathomechanisms in frontotemporal lobar degeneration. J Neurochem 2016; 138 Suppl 1:71-94. [PMID: 27306859 PMCID: PMC5094566 DOI: 10.1111/jnc.13600] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/31/2016] [Accepted: 02/24/2016] [Indexed: 12/27/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) has been associated with toxic intracellular aggregates of hyperphosphorylated tau (FTLD-tau). Moreover, genetic studies identified mutations in the MAPT gene encoding tau in familial cases of the disease. In this review, we cover a range of aspects of tau function, both in the healthy and diseased brain, discussing several in vitro and in vivo models. Tau structure and function in the healthy brain is presented, accentuating its distinct compartmentalization in neurons and its role in microtubule stabilization and axonal transport. Furthermore, tau-driven pathology is discussed, introducing current concepts and the underlying experimental evidence. Different aspects of pathological tau phosphorylation, the protein's genomic and domain organization as well as its spreading in disease, together with MAPT-associated mutations and their respective models are presented. Dysfunction related to other post-transcriptional modifications and their effect on normal neuronal functions such as cell cycle, epigenetics and synapse dynamics are also discussed, providing a mechanistic explanation for the observations made in FTLD-tau cases, with the possibility for therapeutic intervention. In this review, we cover aspects of tau function, both in the healthy and diseased brain, referring to different in vitro and in vivo models. In healthy neurons, tau is compartmentalized, with higher concentrations found in the distal part of the axon. Cargo molecules are sensitive to this gradient. A disturbed tau distribution, as found in frontotemporal lobar degeneration (FTLD-tau), has severe consequences for cellular physiology: tau accumulates in the neuronal soma and dendrites, leading among others to microtubule depolymerization and impaired axonal transport. Tau forms insoluble aggregates that sequester additional molecules stalling cellular physiology. Neuronal communication is gradually lost as toxic tau accumulates in dendritic spines with subsequent degeneration of synapses and synaptic loss. Thus, by providing a mechanistic explanation for the observations made in FTLD-tau cases, arises a possibility for therapeutic interventions. This article is part of the Frontotemporal Dementia special issue.
Collapse
Affiliation(s)
- Liviu‐Gabriel Bodea
- Clem Jones Centre for Ageing Dementia ResearchQueensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Anne Eckert
- Neurobiology LaboratoryPsychiatric University Clinics BaselUniversity of BaselBaselSwitzerland
| | - Lars Matthias Ittner
- Dementia Research UnitSchool of Medical SciencesFaculty of MedicineUniversity of New South WalesSydneyNSWAustralia
| | | | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia ResearchQueensland Brain InstituteThe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
29
|
Schorova L, Martin S. Sumoylation in Synaptic Function and Dysfunction. Front Synaptic Neurosci 2016; 8:9. [PMID: 27199730 PMCID: PMC4848311 DOI: 10.3389/fnsyn.2016.00009] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/08/2016] [Indexed: 12/18/2022] Open
Abstract
Sumoylation has recently emerged as a key post-translational modification involved in many, if not all, biological processes. Small Ubiquitin-like Modifier (SUMO) polypeptides are covalently attached to specific lysine residues of target proteins through a dedicated enzymatic pathway. Disruption of the SUMO enzymatic pathway in the developing brain leads to lethality indicating that this process exerts a central role during embryonic and post-natal development. However, little is still known regarding how this highly dynamic protein modification is regulated in the mammalian brain despite an increasing number of data implicating sumoylated substrates in synapse formation, synaptic communication and plasticity. The aim of this review is therefore to briefly describe the enzymatic SUMO pathway and to give an overview of our current knowledge on the function and dysfunction of protein sumoylation at the mammalian synapse.
Collapse
Affiliation(s)
- Lenka Schorova
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (UMR7275), University of Nice-Sophia-Antipolis, Laboratory of Excellence "Network for Innovation on Signal Transduction, Pathways in Life Sciences" Valbonne, France
| | - Stéphane Martin
- Institut de Pharmacologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique (UMR7275), University of Nice-Sophia-Antipolis, Laboratory of Excellence "Network for Innovation on Signal Transduction, Pathways in Life Sciences" Valbonne, France
| |
Collapse
|
30
|
Abstract
Tau is a microtubule-associated protein that has a role in stabilizing neuronal microtubules and thus in promoting axonal outgrowth. Structurally, tau is a natively unfolded protein, is highly soluble and shows little tendency for aggregation. However, tau aggregation is characteristic of several neurodegenerative diseases known as tauopathies. The mechanisms underlying tau pathology and tau-mediated neurodegeneration are debated, but considerable progress has been made in the field of tau research in recent years, including the identification of new physiological roles for tau in the brain. Here, we review the expression, post-translational modifications and functions of tau in physiology and in pathophysiology.
Collapse
Affiliation(s)
- Yipeng Wang
- German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany.,CAESAR Research Center, 53175 Bonn, Germany
| | - Eckhard Mandelkow
- German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany.,CAESAR Research Center, 53175 Bonn, Germany.,Max Planck Institute for Metabolism Research, Hamburg Outstation, c/o DESY, Hamburg, Germany
| |
Collapse
|
31
|
Abstract
α-Synuclein inclusion bodies are a pathological hallmark of several neurodegenerative diseases, including Parkinson’s disease, and contain aggregated α-synuclein and a variety of recruited factors, including protein chaperones, proteasome components, ubiquitin and the small ubiquitin-like modifier, SUMO-1. Cell culture and animal model studies suggest that misfolded, aggregated α-synuclein is actively translocated via the cytoskeletal system to a region of the cell where other factors that help to lessen the toxic effects can also be recruited. SUMO-1 covalently conjugates to various intracellular target proteins in a way analogous to ubiquitination to alter cellular distribution, function and metabolism and also plays an important role in a growing list of cellular pathways, including exosome secretion and apoptosis. Furthermore, SUMO-1 modified proteins have recently been linked to cell stress responses, such as oxidative stress response and heat shock response, with increased SUMOylation being neuroprotective in some cases. Several recent studies have linked SUMOylation to the ubiquitin-proteasome system, while other evidence implicates the lysosomal pathway. Other reports depict a direct mechanism whereby sumoylation reduced the aggregation tendency of α-synuclein, and reduced the toxicity. However, the precise role of SUMO-1 in neurodegeneration remains unclear. In this review, we explore the potential direct or indirect role(s) of SUMO-1 in the cellular response to misfolded α-synuclein in neurodegenerative disorders.
Collapse
|
32
|
Alonso A, Greenlee M, Matts J, Kline J, Davis KJ, Miller RK. Emerging roles of sumoylation in the regulation of actin, microtubules, intermediate filaments, and septins. Cytoskeleton (Hoboken) 2015; 72:305-39. [PMID: 26033929 PMCID: PMC5049490 DOI: 10.1002/cm.21226] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 05/25/2015] [Accepted: 05/27/2015] [Indexed: 12/29/2022]
Abstract
Sumoylation is a powerful regulatory system that controls many of the critical processes in the cell, including DNA repair, transcriptional regulation, nuclear transport, and DNA replication. Recently, new functions for SUMO have begun to emerge. SUMO is covalently attached to components of each of the four major cytoskeletal networks, including microtubule-associated proteins, septins, and intermediate filaments, in addition to nuclear actin and actin-regulatory proteins. However, knowledge of the mechanisms by which this signal transduction system controls the cytoskeleton is still in its infancy. One story that is beginning to unfold is that SUMO may regulate the microtubule motor protein dynein by modification of its adaptor Lis1. In other instances, cytoskeletal elements can both bind to SUMO non-covalently and also be conjugated by it. The molecular mechanisms for many of these new functions are not yet clear, but are under active investigation. One emerging model links the function of MAP sumoylation to protein degradation through SUMO-targeted ubiquitin ligases, also known as STUbL enzymes. Other possible functions for cytoskeletal sumoylation are also discussed.
Collapse
Affiliation(s)
- Annabel Alonso
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Matt Greenlee
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Jessica Matts
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Jake Kline
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Kayla J. Davis
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Rita K. Miller
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| |
Collapse
|
33
|
Feligioni M, Marcelli S, Knock E, Nadeem U, Arancio O, E. Fraser P. SUMO modulation of protein aggregation and degradation. AIMS MOLECULAR SCIENCE 2015. [DOI: 10.3934/molsci.2015.4.382] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
34
|
SUMOylation at K340 inhibits tau degradation through deregulating its phosphorylation and ubiquitination. Proc Natl Acad Sci U S A 2014; 111:16586-91. [PMID: 25378699 DOI: 10.1073/pnas.1417548111] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intracellular accumulation of the abnormally modified tau is hallmark pathology of Alzheimer's disease (AD), but the mechanism leading to tau aggregation is not fully characterized. Here, we studied the effects of tau SUMOylation on its phosphorylation, ubiquitination, and degradation. We show that tau SUMOylation induces tau hyperphosphorylation at multiple AD-associated sites, whereas site-specific mutagenesis of tau at K340R (the SUMOylation site) or simultaneous inhibition of tau SUMOylation by ginkgolic acid abolishes the effect of small ubiquitin-like modifier protein 1 (SUMO-1). Conversely, tau hyperphosphorylation promotes its SUMOylation; the latter in turn inhibits tau degradation with reduction of solubility and ubiquitination of tau proteins. Furthermore, the enhanced SUMO-immunoreactivity, costained with the hyperphosphorylated tau, is detected in cerebral cortex of the AD brains, and β-amyloid exposure of rat primary hippocampal neurons induces a dose-dependent SUMOylation of the hyperphosphorylated tau. Our findings suggest that tau SUMOylation reciprocally stimulates its phosphorylation and inhibits the ubiquitination-mediated tau degradation, which provides a new insight into the AD-like tau accumulation.
Collapse
|
35
|
Disruption of SUMO-specific protease 2 induces mitochondria mediated neurodegeneration. PLoS Genet 2014; 10:e1004579. [PMID: 25299344 PMCID: PMC4191884 DOI: 10.1371/journal.pgen.1004579] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 07/08/2014] [Indexed: 12/20/2022] Open
Abstract
Post-translational modification of proteins by small ubiquitin-related modifier (SUMO) is reversible and highly evolutionarily conserved from yeasts to humans. Unlike ubiquitination with a well-established role in protein degradation, sumoylation may alter protein function, activity, stability and subcellular localization. Members of SUMO-specific protease (SENP) family, capable of SUMO removal, are involved in the reversed conjugation process. Although SUMO-specific proteases are known to reverse sumoylation in many well-defined systems, their importance in mammalian development and pathogenesis remains largely elusive. In patients with neurodegenerative diseases, aberrant accumulation of SUMO-conjugated proteins has been widely described. Several aggregation-prone proteins modulated by SUMO have been implicated in neurodegeneration, but there is no evidence supporting a direct involvement of SUMO modification enzymes in human diseases. Here we show that mice with neural-specific disruption of SENP2 develop movement difficulties which ultimately results in paralysis. The disruption induces neurodegeneration where mitochondrial dynamics is dysregulated. SENP2 regulates Drp1 sumoylation and stability critical for mitochondrial morphogenesis in an isoform-specific manner. Although dispensable for development of neural cell types, this regulatory mechanism is necessary for their survival. Our findings provide a causal link of SUMO modification enzymes to apoptosis of neural cells, suggesting a new pathogenic mechanism for neurodegeneration. Exploring the protective effect of SENP2 on neuronal cell death may uncover important preventive and therapeutic strategies for neurodegenerative diseases.
Collapse
|
36
|
Henley JM, Craig TJ, Wilkinson KA. Neuronal SUMOylation: mechanisms, physiology, and roles in neuronal dysfunction. Physiol Rev 2014; 94:1249-85. [PMID: 25287864 PMCID: PMC4187031 DOI: 10.1152/physrev.00008.2014] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Protein SUMOylation is a critically important posttranslational protein modification that participates in nearly all aspects of cellular physiology. In the nearly 20 years since its discovery, SUMOylation has emerged as a major regulator of nuclear function, and more recently, it has become clear that SUMOylation has key roles in the regulation of protein trafficking and function outside of the nucleus. In neurons, SUMOylation participates in cellular processes ranging from neuronal differentiation and control of synapse formation to regulation of synaptic transmission and cell survival. It is a highly dynamic and usually transient modification that enhances or hinders interactions between proteins, and its consequences are extremely diverse. Hundreds of different proteins are SUMO substrates, and dysfunction of protein SUMOylation is implicated in a many different diseases. Here we briefly outline core aspects of the SUMO system and provide a detailed overview of the current understanding of the roles of SUMOylation in healthy and diseased neurons.
Collapse
Affiliation(s)
- Jeremy M Henley
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Tim J Craig
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Kevin A Wilkinson
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
37
|
Beyond the glutamine expansion: influence of posttranslational modifications of ataxin-1 in the pathogenesis of spinocerebellar ataxia type 1. Mol Neurobiol 2014; 50:866-874. [PMID: 24752589 DOI: 10.1007/s12035-014-8703-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/31/2014] [Indexed: 01/05/2023]
Abstract
Posttranslational modifications are crucial mechanisms that modulate various cellular signaling pathways, and their dysregulation is associated with many human diseases. Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited neurodegenerative disease characterized by progressive ataxia, mild cognitive impairments, difficulty with speaking and swallowing, and respiratory failure. It is caused by the expansion of an unstable CAG trinucleotide repeat encoding a glutamine tract in Ataxin-1 (ATXN1). Although the expansion of the polyglutamine tract is the key determinant of the disease, protein domains outside of the polyglutamine tract and posttranslational modifications of ATXN1 significantly alter the neurotoxicity of SCA1. ATXN1 undergoes several posttranslational modifications, including phosphorylation, ubiquitination, sumoylation, and transglutamination. Such modifications can alter the stability of ATXN1 or its activity in the regulation of target gene expression and therefore contribute to SCA1 toxicity. This review outlines different types of posttranslational modifications in ATXN1 and discusses their potential regulatory mechanisms and effects on SCA1 pathogenesis. Finally, the manipulation of posttranslational modifications as a potential therapeutic approach will be discussed.
Collapse
|
38
|
Miki Y, Mori F, Kon T, Tanji K, Toyoshima Y, Yoshida M, Sasaki H, Kakita A, Takahashi H, Wakabayashi K. Accumulation of the sigma-1 receptor is common to neuronal nuclear inclusions in various neurodegenerative diseases. Neuropathology 2014; 34:148-58. [PMID: 24313828 DOI: 10.1111/neup.12080] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/23/2013] [Accepted: 10/28/2013] [Indexed: 01/02/2023]
Abstract
The sigma-1 receptor (SIGMAR1) is now known to be one of the endoplasmic reticulum (ER) chaperones, which participate in the degradation of misfolded proteins in cells via the ER-related degradation machinery linked to the ubiquitin-proteasome pathway. Mutations of the SIGMAR1 gene are implicated in the pathogenesis of familial frontotemporal lobar degeneration and motor neuron disease. Involvement of ER dysfunction in the formation of inclusion bodies in various neurodegenerative diseases has also become evident. We performed immunohistochemical staining to clarify the localization of SIGMAR1 in the brains of patients with neurodegenerative disorders, including trans-activation response DNA protein 43 (TDP-43) proteinopathy, tauopathy, α-synucleinopathy, polyglutamine disease and intranuclear inclusion body disease (INIBD). Double-immunocytofluorescence and Western blot analyses of cultured cells were also performed to investigate the role of SIGMAR1 using a specific exportin 1 inhibitor, leptomycin B and an ER stress inducer, thapsigargin. SIGMAR1 was consistently shown to be co-localized with neuronal nuclear inclusions in TDP-43 proteinopathy, five polyglutamine diseases and INIBD, as well as in intranuclear Marinesco bodies in aged normal controls. Cytoplasmic inclusions in neurons and glial cells were unreactive for SIGMAR1. In cultured cells, immunocytofluorescent study showed that leptomycin B and thapsigargin were shown to sequester SIGMAR1 within the nucleus, acting together with p62. This finding was also supported by immunoblot analysis. These results indicate that SIGMAR1 might shuttle between the nucleus and the cytoplasm. Neurodegenerative diseases characterized by neuronal nuclear inclusions might utilize the ER-related degradation machinery as a common pathway for the degradation of aberrant proteins.
Collapse
Affiliation(s)
- Yasuo Miki
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Droescher M, Chaugule VK, Pichler A. SUMO rules: regulatory concepts and their implication in neurologic functions. Neuromolecular Med 2013; 15:639-60. [PMID: 23990202 DOI: 10.1007/s12017-013-8258-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/08/2013] [Indexed: 01/17/2023]
Abstract
Posttranslational modification of proteins by the small ubiquitin-like modifier (SUMO) is a potent regulator of various cellular events. Hundreds of substrates have been identified, many of them involved in vital processes like transcriptional regulation, signal transduction, protein degradation, cell cycle regulation, DNA repair, chromatin organization, and nuclear transport. In recent years, protein sumoylation increasingly attracted attention, as it could be linked to heart failure, cancer, and neurodegeneration. However, underlying mechanisms involving how modification by SUMO contributes to disease development are still scarce thus necessitating further research. This review aims to critically discuss currently available concepts of the SUMO pathway, thereby highlighting regulation in the healthy versus diseased organism, focusing on neurologic aspects. Better understanding of differential regulation in health and disease may finally allow to uncover pathogenic mechanisms and contribute to the development of disease-specific therapies.
Collapse
Affiliation(s)
- Mathias Droescher
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108, Freiburg, Germany
| | | | | |
Collapse
|
40
|
Abstract
Parkinson's disease (PD) is one of the most common degenerative disorders of the central nervous system that produces motor and non-motor symptoms. The majority of cases are idiopathic and characterized by the presence of Lewy bodies containing fibrillar α-synuclein. Small ubiquitin-related modifier (SUMO) immunoreactivity was observed among others in cases with PD. Key disease-associated proteins are SUMO-modified, linking this posttranslational modification to neurodegeneration. SUMOylation and SUMO-mediated mechanisms have been intensively studied in recent years, revealing nuclear and extranuclear functions for SUMO in a variety of cellular processes, including the regulation of transcriptional activity, modulation of signal transduction pathways, and response to cellular stress. This points to a role for SUMO more than just an antagonist to ubiquitin and proteasomal degradation. The identification of risk and age-at-onset gene loci was a breakthrough in PD and promoted the understanding of molecular mechanisms in the pathology. PD has been increasingly linked with mitochondrial dysfunction and impaired mitochondrial quality control. Interestingly, SUMO is involved in many of these processes and up-regulated in response to cellular stress, further emphasizing the importance of SUMOylation in physiology and disease.
Collapse
Affiliation(s)
- Katrin Eckermann
- Department of Neurology, University Medical Center Goettingen, Waldweg 33, 37073, Goettingen, Germany,
| |
Collapse
|
41
|
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline and is the most common cause of dementia in the elderly. Histopathologically, AD features insoluble aggregates of two proteins in the brain, amyloid-β (Aβ) and the microtubule-associated protein tau, both of which have been linked to the small ubiquitin-like modifier (SUMO). A large body of research has elucidated many of the molecular and cellular pathways that underlie AD, including those involving the abnormal Aβ and tau aggregates. However, a full understanding of the etiology and pathogenesis of the disease has remained elusive. Consequently, there are currently no effective therapeutic options that can modify the disease progression and slow or stop the decline of cognitive functioning. As part of the effort to address this lacking, there needs a better understanding of the signaling pathways that become impaired under AD pathology, including the regulatory mechanisms that normally control those networks. One such mechanism involves SUMOylation, which is a post-translational modification (PTM) that is involved in regulating many aspects of cell biology and has also been found to have several critical neuron-specific roles. Early studies have indicated that the SUMO system is likely altered with AD-type pathology, which may impact Aβ levels and tau aggregation. Although still a relatively unexplored topic, SUMOylation will likely emerge as a significant factor in AD pathogenesis in ways which may be somewhat analogous to other regulatory PTMs such as phosphorylation. Thus, in addition to the upstream effects on tau and Aβ processing, there may also be downstream effects mediated by Aβ aggregates or other AD-related factors on SUMO-regulated signaling pathways. Multiple proteins that have functions relevant to AD pathology have been identified as SUMO substrates, including those involved in synaptic physiology, mitochondrial dynamics, and inflammatory signaling. Ongoing studies will determine how these SUMO-regulated functions in neurons and glial cells may be impacted by Aβ and AD pathology. Here, we present a review of the current literature on the involvement of SUMO in AD, as well as an overview of the SUMOylated proteins and pathways that are potentially dysregulated with AD pathogenesis.
Collapse
|
42
|
Krumova P, Weishaupt JH. Sumoylation in neurodegenerative diseases. Cell Mol Life Sci 2013; 70:2123-38. [PMID: 23007842 PMCID: PMC11113377 DOI: 10.1007/s00018-012-1158-3] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 08/30/2012] [Accepted: 09/03/2012] [Indexed: 12/12/2022]
Abstract
The yeast SUMO (small ubiquitin-like modifier) orthologue SMT3 was initially discovered in a genetic suppressors screen for the centromeric protein Mif2 (Meluh and Koshland in Mol Bio Cell 6:793-807, 1). Later, it turned out that the homologous mammalian proteins SUMO1 to SUMO4 are reversible protein modifiers that can form isopeptide bonds with lysine residues of respective target proteins (Mahajan et al. in Cell 88:97-107, 2). This was the discovery of a post-translational modification called sumoylation, which enzymatically resembles ubiquitination. However, very soon it became clear that SUMO attachments served a far more diverse role than ubiquitination. Meanwhile, numerous cellular processes are known to be subject to the impact of SUMO modification, including transcription, protein targeting, protein solubility, apoptosis or activity of various enzymes. In many instances, SUMO proteins create new protein interaction surfaces or block existing interaction domains (Geiss-Friedlander and Melchior in Nat Rev in Mol Cell Biol 8:947-956, 3). For the past few years, sumoylation attracted increasing attention as a versatile regulator of toxic protein properties in neurodegenerative diseases. In this review, we summarize the growing knowledge about the involvement of sumoylation in neurodegeneration, and discuss the underlying molecular principles affected by this multifaceted and intriguing post-translational modification.
Collapse
Affiliation(s)
- Petranka Krumova
- Neuroscience, Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4002, Basel, Switzerland.
| | | |
Collapse
|
43
|
Baczyk D, Drewlo S, Kingdom JCP. Emerging role of SUMOylation in placental pathology. Placenta 2013; 34:606-12. [PMID: 23628505 DOI: 10.1016/j.placenta.2013.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/08/2013] [Accepted: 03/27/2013] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Small ubiquitin-like modifiers (SUMO) conjugate to target proteins in a dynamic, reversible manner to function as post-translational modifiers. SUMOylation of target proteins can impinge on their localization, in addition to their activity or stability. Differential expression of deSUMOylating enzymes (SENP 1 and 2) contributes to altered mammalian placental development and function in mice. Severe preeclampsia (sPE) is associated with abnormal placental development and chronic ischemic injury. Extra- and intracellular stimuli/stressors that include hypoxic-activated pathways are known modulators of SUMOylation. In this current study we hypothesized that placentas from sPE patients will display up regulation in the SUMO regulatory pathway. METHODS Utilizing qRT-PCR, immuno-blotting and Western techniques, we determined the expression levels of SUMO pathway genes in healthy and diseased placentas. We also exposed placental explants to hypoxia to study the effect on the SUMOylation pathway. RESULTS We observed steady-state expression of SUMO1-3, SUMO-conjugated enzyme-UBC9 and deSUMOylating enzymes - SENPs, throughout normal gestation. An elevated level of free SUMO1-3 and SUMO-protein conjugates was observed in sPE placentas. Furthermore, placental UBC9 levels were strikingly increased in the same sPE patients. Hypoxia-induced SUMOylation in first trimester placental explants. DISCUSSION Our data demonstrate an elevated steady-state of SUMOylation in sPE placentas compared with gestational aged-matched controls. The observed hyper-SUMOylation in sPE placentas correlates with elevated expression of UBC9 rather than with reduced expression of SENPs Hypoxia may contribute to alterations in placental SUMOylation pathway. CONCLUSION Increased placental SUMOylation may contribute to the pathogenesis of serious placental pathology that causes extreme preterm birth.
Collapse
Affiliation(s)
- D Baczyk
- Research Centre for Women's and Infants' Health, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, 25 Orde Street, Toronto, Ontario M5T 3H7, Canada.
| | | | | |
Collapse
|
44
|
Increased SUMO-1 expression in the unilateral rotenone-lesioned mouse model of Parkinson's disease. Neurosci Lett 2013; 544:119-24. [PMID: 23583339 DOI: 10.1016/j.neulet.2013.03.057] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 02/12/2013] [Accepted: 03/31/2013] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease resulting from progressive loss of dopaminergic nigrostriatal neurons. α-Synuclein protein conformational changes, resulting in cytotoxic/aggregated proteins, have been linked to PD pathogenesis. We investigated a unilateral rotenone-lesioned mouse PD model. Unilateral lesion of the medial forebrain bundle for two groups of male C57 black mice (n=5); adult (6-12 months) group and aged (1.75-2 years) group, was via stereotactic rotenone injection. After 2 weeks post-lesion, phenotypic Parkinsonian symptoms, resting tremor, postural instability, left-handed bias, ipsiversive rotation and bradykinesia were observed and were more severe in the aged group. We investigated protein expression profiles of the post-translational modifier, SUMO-1, and α-synuclein between the treated and control hemisphere, and between adult and aged groups. Western analysis of the brain homogenates indicated that there were statistically significant (p<0.05) increases in several specific molecular weight species (ranging 12-190 kDa) of both SUMO-1 (0.75-4.3-fold increased) and α-synuclein (1.6-19-fold increase) in the lesioned compared to un-lesioned hemisphere, with the adult mice showing proportionately greater increases in SUMO-1 than the aged group.
Collapse
|
45
|
SUMO-1 is Associated with a Subset of Lysosomes in Glial Protein Aggregate Diseases. Neurotox Res 2012; 23:1-21. [DOI: 10.1007/s12640-012-9358-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/19/2012] [Accepted: 10/26/2012] [Indexed: 10/27/2022]
|
46
|
Mori F, Tanji K, Odagiri S, Hattori M, Hoshikawa Y, Kono C, Yasui K, Yokoi S, Hasegawa Y, Kamitani T, Yoshida M, Wakabayashi K. Ubiquitin-related proteins in neuronal and glial intranuclear inclusions in intranuclear inclusion body disease. Pathol Int 2012; 62:407-11. [PMID: 22612509 DOI: 10.1111/j.1440-1827.2012.02812.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recent studies have shown that eosinophilic intranuclear inclusions (INI) in the brain of patients with intranuclear inclusion body disease (INIBD) are immunopositive for ubiquitin and ubiquitin-related proteins (URP). However, the extent and frequency of URP-immunoreactive inclusions in INIBD are uncertain. We immunohistochemically examined the brain, spinal cord and dorsal root ganglia from five patients with INIBD, using a virtual slide system with sequential staining of the same sections with hematoxylin and eosin and by immunolabeling with antibodies against ubiquitin and URP (NEDD8, NUB1, SUMO-1 and SUMO-2). Intranuclear inclusions were widely distributed in neurons and glial cells in all the cases. Sequential staining revealed that 100% of INI in neurons and glial cells were positive for ubiquitin. Moreover, the majority or a significant proportion of INI were positive for NEDD8, NUB1, SUMO-1 and SUMO-2. However, the proportions of NEDD8-, NUB1- and SUMO-1-positive inclusions were significantly higher in neurons than in glial cells (P < 0.05). These findings suggest that proteins related to ubiquitination and proteasomal degradation are involved in the formation of INI in INIBD.
Collapse
Affiliation(s)
- Fumiaki Mori
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Aggregated a-synuclein is the major component of inclusions in Parkinson's disease and other synucleinopathy brains indicating that a-syn aggregation is associated with the pathogenesis of neurodegenerative disorders. Although the mechanisms underlying a-syn aggregation and toxicity are not fully elucidated, it is clear that a-syn undergoes post-translational modifications and interacts with numerous proteins and other macromolecules, metals, hormones, neurotransmitters, drugs and poisons that can all modulate its aggregation propensity. The current and most recent findings regarding the factors modulating a-syn aggregation process are discussed in detail.
Collapse
|
48
|
Odagiri S, Tanji K, Mori F, Kakita A, Takahashi H, Kamitani T, Wakabayashi K. Immunohistochemical analysis of Marinesco bodies, using antibodies against proteins implicated in the ubiquitin-proteasome system, autophagy and aggresome formation. Neuropathology 2011; 32:261-6. [PMID: 22118216 DOI: 10.1111/j.1440-1789.2011.01267.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Marinesco bodies (MBs) are spherical eosinophilic intranuclear inclusions in pigmented neurons in the substantia nigra and locus ceruleus. Previous immunohistochemical studies have shown that MBs are positive for ubiquitin, p62 and SUMO-1, suggesting the involvement of ubiquitination and related proteins in the formation or disaggregation of MBs. However, the involvement is not thoroughly understood. Therefore, we immunohistochemically examined the midbrain from five control subjects ranged from 53 to 84 years old. MBs were positive for various proteins implicated in the ubiquitin-proteasome system (ubiquitin, p62, EDD1, NEDD8, NUB1, SUMO-1 and SUMO-2), aggresome formation (HDAC6) and autophagy (ubiquitin, p62, LC3, GABARAP and GATE-16). These findings suggest that proteins related to ubiquitination, proteasomal degradation and autophagy are involved in the formation or disaggregation of MBs.
Collapse
Affiliation(s)
- Saori Odagiri
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| | | | | | | | | | | | | |
Collapse
|
49
|
Matos CA, de Macedo-Ribeiro S, Carvalho AL. Polyglutamine diseases: The special case of ataxin-3 and Machado–Joseph disease. Prog Neurobiol 2011; 95:26-48. [DOI: 10.1016/j.pneurobio.2011.06.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 06/06/2011] [Accepted: 06/07/2011] [Indexed: 10/18/2022]
|
50
|
Lai SC, Jung SM, Grattan-Smith P, Sugo E, Lin YW, Chen RS, Chen CC, Wu-Chou YH, Lang AE, Lu CS. Neuronal intranuclear inclusion disease: two cases of dopa-responsive juvenile parkinsonism with drug-induced dyskinesia. Mov Disord 2010; 25:1274-9. [PMID: 20629123 DOI: 10.1002/mds.22876] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There are very few conditions that present with dopa-responsive juvenile parkinsonism. We present two such children with neuronal intranuclear inclusion disease (NIID) who had an initial good levodopa response that was soon complicated by disabling dopa-induced dyskinesia. One child was diagnosed by rectal biopsy in life, and the other diagnosis was confirmed at postmortem. In this patient, dopamine transporter imaging showed severely decreased binding of the radiotracer in the striatum on both sides. Bilateral subthalamic deep brain stimulation in this patient produced initial improvement, but this was not sustained. Both patients died within 10 years of symptom onset. As well as levodopa responsiveness with rapid onset of dyskinesia, clues to the diagnosis of NIID in patients presenting with parkinsonism include the presence of gaze-evoked nystagmus, early onset dysarthria and dysphagia and oculogyric crises. Differential diagnosis of clinical symptoms and neuropathological findings are discussed including the approach to rectal biopsy for early diagnosis.
Collapse
Affiliation(s)
- Szu-Chia Lai
- Neuroscience Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|