1
|
Batterman SA, Islam MK, Jang DG, Feldman EL, Goutman SA. Life Course Exposure to Cyanobacteria and Amyotrophic Lateral Sclerosis Survival. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2025; 22:763. [PMID: 40427878 PMCID: PMC12110991 DOI: 10.3390/ijerph22050763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025]
Abstract
Cyanobacterial harmful algal blooms (cyanoHABs) occur worldwide and can cause ingestion and inhalation exposure to microcystin and other potent toxins. This study develops life course exposure measures for cyanobacteria for application in population studies and then associates these measures with the survival of individuals with amyotrophic lateral sclerosis (ALS). The exposure measures utilize an individual's residence history, date of disease onset, and satellite data from the Cyanobacteria Assessment Network. Residence duration for selected exposure windows referenced to disease onset date was used to weight cyanobacteria concentrations in water bodies within 0.25 to 10 km of each residence. Different concentration metrics, buffer sizes, and exposure windows were evaluated. The 2.5 and 5 km buffers best balanced the likelihood and plausibility of exposure while still resolving exposure contrasts. Over their lifetime, most study participants lived within 5 km of cyanobacteria blooms, and the exposure was associated with up to 0.89 years shorter survival, with significant interactions for individuals reporting swimming, fishing, and private wells. Our findings suggest a new and modifiable risk factor for ALS survival, and a need to confirm exposures and epidemiological findings. These cyanoHAB exposure estimates can facilitate population studies that can discover new relationships with neurodegenerative and other diseases.
Collapse
Affiliation(s)
- Stuart A. Batterman
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Md Kamrul Islam
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Dae Gyu Jang
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; (D.G.J.); (E.L.F.)
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; (D.G.J.); (E.L.F.)
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephen A. Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; (D.G.J.); (E.L.F.)
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Al Haffar M, Fajloun Z, Azar S, Sabatier JM, Abi Khattar Z. Lesser-Known Cyanotoxins: A Comprehensive Review of Their Health and Environmental Impacts. Toxins (Basel) 2024; 16:551. [PMID: 39728809 PMCID: PMC11680425 DOI: 10.3390/toxins16120551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
Cyanobacteria, also known as blue-green algae, are a diverse phylum of photosynthetic, Gram-negative bacteria and one of the largest microbial taxa. These organisms produce cyanotoxins, which are secondary metabolites that can have significant impacts on both human health and the environment. While toxins like Microcystins and Cylindrospermopsins are well-documented and have been extensively studied, other cyanotoxins, including those produced by Lyngbya and Nostoc, remain underexplored. These lesser-known toxins can cause various health issues in humans, including neurotoxicity, hepatotoxicity, and dermatotoxicity, each through distinct mechanisms. Moreover, recent studies have shown that cyanobacteria can be aerosolized and transmitted through the air over long distances, providing an additional route for human exposure to their harmful effects. However, it remains an area that requires much more investigation to accurately assess the health risks and develop appropriate public health guidelines. In addition to direct exposure to toxins, cyanobacteria can lead to harmful algal blooms, which pose further risks to human and wildlife health, and are a global concern. There is limited knowledge about these lesser-known cyanotoxins, highlighting the need for further research to understand their clinical manifestations and improve society's preparedness for the associated health risks. This work aims to review the existing literature on these underexplored cyanotoxins, which are associated with human intoxication, elucidate their clinical relevance, address significant challenges in cyanobacterial research, and provide guidance on mitigating their adverse effects.
Collapse
Affiliation(s)
- Molham Al Haffar
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Tripoli P.O. Box 100, Lebanon; (M.A.H.); (S.A.)
| | - Ziad Fajloun
- Department of Biology, Faculty of Sciences 3, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon;
- Laboratory of Applied Biotechnology (LBA3B), Department of Cell Culture, Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon
| | - Sami Azar
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Tripoli P.O. Box 100, Lebanon; (M.A.H.); (S.A.)
| | - Jean-Marc Sabatier
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
| | - Ziad Abi Khattar
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Tripoli P.O. Box 100, Lebanon; (M.A.H.); (S.A.)
| |
Collapse
|
3
|
Cheng JL, Cook AL, Talbot J, Perry S. How is Excitotoxicity Being Modelled in iPSC-Derived Neurons? Neurotox Res 2024; 42:43. [PMID: 39405005 PMCID: PMC11480214 DOI: 10.1007/s12640-024-00721-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/11/2024] [Accepted: 09/29/2024] [Indexed: 10/19/2024]
Abstract
Excitotoxicity linked either to environmental causes (pesticide and cyanotoxin exposure), excitatory neurotransmitter imbalance, or to intrinsic neuronal hyperexcitability, is a pathological mechanism central to neurodegeneration in amyotrophic lateral sclerosis (ALS). Investigation of excitotoxic mechanisms using in vitro and in vivo animal models has been central to understanding ALS mechanisms of disease. In particular, advances in induced pluripotent stem cell (iPSC) technologies now provide human cell-based models that are readily amenable to environmental and network-based excitotoxic manipulations. The cell-type specific differentiation of iPSC, combined with approaches to modelling excitotoxicity that include editing of disease-associated gene variants, chemogenetics, and environmental risk-associated exposures make iPSC primed to examine gene-environment interactions and disease-associated excitotoxic mechanisms. Critical to this is knowledge of which neurotransmitter receptor subunits are expressed by iPSC-derived neuronal cultures being studied, how their activity responds to antagonists and agonists of these receptors, and how to interpret data derived from multi-parameter electrophysiological recordings. This review explores how iPSC-based studies have contributed to our understanding of ALS-linked excitotoxicity and highlights novel approaches to inducing excitotoxicity in iPSC-derived neurons to further our understanding of its pathological pathways.
Collapse
Affiliation(s)
- Jan L Cheng
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, 17 Liverpool Street, Hobart, TAS, Australia
| | - Anthony L Cook
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, 17 Liverpool Street, Hobart, TAS, Australia
| | - Jana Talbot
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, 17 Liverpool Street, Hobart, TAS, Australia
| | - Sharn Perry
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, 17 Liverpool Street, Hobart, TAS, Australia.
| |
Collapse
|
4
|
Kim SY, Kim M, Park K, Hong S. A systematic review on analytical methods of the neurotoxin β-N-methylamino-L-alanine (BMAA), and its causative microalgae and distribution in the environment. CHEMOSPHERE 2024; 366:143487. [PMID: 39395475 DOI: 10.1016/j.chemosphere.2024.143487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/20/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
β-N-Methylamino-L-alanine (BMAA), a neurotoxin produced by various microalgal groups, is associated with neurodegenerative diseases and is considered a major environmental factor potentially linked to sporadic amyotrophic lateral sclerosis. This study systematically reviews the analytical methods used to study BMAA in publications from 2019 to the present. It also investigates the causative microalgae of BMAA and its geographical distributions in aquatic ecosystems based on studies conducted since 2003. A comprehensive search using the Web of Science database revealed that hydrolysis for extraction (67%), followed by quantification using LC-MS/MS (LC: 84%; MS/MS: 88%), is the most commonly employed method in BMAA analysis. Among analytical methods, RPLC-MS/MS had the highest percentage (88%) of BMAA-positive results and included a high number of quality control (QC) assessments. Various genera of cyanobacteria and diatoms have been reported to produce BMAA. The widespread geographical distribution of BMAA across diverse ecosystems highlights significant environmental and public health concerns. Notably, BMAA accumulation and biomagnification are likely more potent in marine or brackish water ecosystems than in freshwater ecosystems, potentially amplifying its ecological impacts. Future research should prioritize advanced, sensitive methods, particularly LC-MS/MS with as many QC assessments as possible, and should expand investigations to identify novel microalgal producers and previously uncharted geographical areas, with a special focus on marine or brackish water ecosystems. This effort will enhance our understanding of the environmental distribution and impacts of BMAA.
Collapse
Affiliation(s)
- Sea-Yong Kim
- Department of Marine Environmental Sciences & Institute of Marine Environmental Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Mungi Kim
- Department of Earth, Environmental & Space Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Kiho Park
- Department of Earth, Environmental & Space Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seongjin Hong
- Department of Marine Environmental Sciences & Institute of Marine Environmental Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea; Department of Earth, Environmental & Space Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
5
|
Zhang L, Liu J, Liu M. Transsynaptic degeneration of ventral horn motor neurons exists but plays a minor role in lower motor system dysfunction in acute ischemic rats. PLoS One 2024; 19:e0298006. [PMID: 38669239 PMCID: PMC11051614 DOI: 10.1371/journal.pone.0298006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/16/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND As a leading cause of mortality and long-term disability, acute ischemic stroke can produce far-reaching pathophysiological consequences. Accumulating evidence has demonstrated abnormalities in the lower motor system following stroke, while the existence of Transsynaptic degeneration of contralateral spinal cord ventral horn (VH) neurons is still debated. METHODS Using a rat model of acute ischemic stroke, we analyzed spinal cord VH neuron counts contralaterally and ipsilaterally after stroke with immunofluorescence staining. Furthermore, we estimated the overall lower motor unit abnormalities after stroke by simultaneously measuring the modified neurological severity score (mNSS), compound muscle action potential (CMAP) amplitude, repetitive nerve stimulation (RNS), spinal cord VH neuron counts, and the corresponding muscle fiber morphology. The activation status of microglia and extracellular signal-regulated kinase 1/2 (ERK 1/2) in the spinal cord VH was also assessed. RESULTS At 7 days after stroke, the contralateral CMAP amplitudes declined to a nadir indicating lower motor function damage, and significant muscle disuse atrophy was observed on the same side; meanwhile, the VH neurons remained intact. At 14 days after focal stroke, lower motor function recovered with alleviated muscle disuse atrophy, while transsynaptic degeneration occurred on the contralateral side with elevated activation of ERK 1/2, along with the occurrence of neurogenic muscle atrophy. No apparent decrement of CMAP amplitude was observed with RNS during the whole experimental process. CONCLUSIONS This study offered an overview of changes in the lower motor system in experimental ischemic rats. We demonstrated that transsynaptic degeneration of contralateral VH neurons occurred when lower motor function significantly recovered, which indicated the minor role of transsynaptic degeneration in lower motor dysfunction during the acute and subacute phases of focal ischemic stroke.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingwen Liu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Mingsheng Liu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Li M, Qiu J, Yan G, Zheng X, Li A. How does the neurotoxin β-N-methylamino-L-alanine exist in biological matrices and cause toxicity? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171255. [PMID: 38417517 DOI: 10.1016/j.scitotenv.2024.171255] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
The neurotoxin β-N-methylamino-L-alanine (BMAA) has been deemed as a risk factor for some neurodegenerative diseases such as amyotrophic lateral sclerosis/parkinsonism dementia complex (ALS/PDC). This possible link has been proved in some primate models and cell cultures with the appearance that BMAA exposure can cause excitotoxicity, formation of protein aggregates, and/or oxidative stress. The neurotoxin BMAA extensively exists in the environment and can be transferred through the food web to human beings. In this review, the occurrence, toxicological mechanisms, and characteristics of BMAA were comprehensively summarized, and proteins and peptides were speculated as its possible binding substances in biological matrices. It is difficult to compare the published data from previous studies due to the inconsistent analytical methods and components of BMAA. The binding characteristics of BMAA should be focused on to improve our understanding of its health risk to human health in the future.
Collapse
Affiliation(s)
- Min Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Guowang Yan
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xianyao Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| |
Collapse
|
7
|
Sandhu PK, Solonenka JT, Murch SJ. Neurotoxic non-protein amino acids in commercially harvested Lobsters (Homarus americanus H. Milne-Edwards). Sci Rep 2024; 14:8017. [PMID: 38580836 PMCID: PMC10997655 DOI: 10.1038/s41598-024-58778-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/03/2024] [Indexed: 04/07/2024] Open
Abstract
Cyanobacteria produce neurotoxic non-protein amino acids (NPAAs) that accumulate in ecosystems and food webs. American lobsters (Homarus americanus H. Milne-Edwards) are one of the most valuable seafood industries in Canada with exports valued at > $2 billion. Two previous studies have assessed the occurrence of β-N-methylamino-L-alanine (BMAA) in a small number of lobster tissues but a complete study has not previously been undertaken. We measured NPAAs in eyeballs, brain, legs, claws, tails, and eggs of 4 lobsters per year for the 2021 and 2022 harvests. Our study included 4 male and 4 female lobsters. We detected BMAA and its isomers, N-(2-aminoethyl)glycine (AEG), 2,4-diaminobutyric acid (DAB) and β-aminomethyl-L-alanine (BAMA) by a fully validated reverse phase chromatography-tandem mass spectrometry method. We quantified BMAA, DAB, AEG and BAMA in all of the lobster tissues. Our quantification data varied by individual lobster, sex and collection year. Significantly more BMAA was quantified in lobsters harvested in 2021 than 2022. Interestingly, more BAMA was quantified in lobsters harvested in 2022 than 2021. Monitoring of lobster harvests for cyanobacterial neurotoxins when harmful algal bloom events occur could mitigate risks to human health.
Collapse
Affiliation(s)
- Pawanjit K Sandhu
- Department of Chemistry, University of British Columbia, Syilx Okanagan Nation Territory, Kelowna, BC, V1V 1V7, Canada
| | - Julia T Solonenka
- Department of Chemistry, University of British Columbia, Syilx Okanagan Nation Territory, Kelowna, BC, V1V 1V7, Canada
| | - Susan J Murch
- Department of Chemistry, University of British Columbia, Syilx Okanagan Nation Territory, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
8
|
Du Q, Xing N, Guo S, Li R, Meng X, Wang S. Cycads: A comprehensive review of its botany, traditional uses, phytochemistry, pharmacology and toxicology. PHYTOCHEMISTRY 2024; 220:114001. [PMID: 38286200 DOI: 10.1016/j.phytochem.2024.114001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
Cycads, which primarily consist of the families Cycadaceae and Zamiaceae, possess intrinsic therapeutic attributes that are prominently expressed across their morphological spectrum, including roots, leaves, flowers, and seeds. In Chinese traditional medicine, the leaves of cycads are particularly revered for their profound healing capabilities. This meticulous review engages with existing literature on cycads and presents insightful avenues for future research. Over 210 phytoconstituents have been isolated and identified from various cycad tissues, including flavonoids, azoxy metabolites, sterols, lignans, non-proteogenic amino acids, terpenoids, and other organic constituents. The contemporary pharmacological discourse highlights the antineoplastic, antimicrobial, and antidiabetic activities inherent in these ancient plants, which are of particular importance to the field of oncology. Despite the prevalent focus on crude extracts and total flavonoid content, our understanding of the nuanced pharmacodynamics of cycads lags considerably behind. The notoriety of cycads derived toxicity, notably within the context of Guam's neurological disease cluster, has precipitated an established emphasis on toxicological research within this field. As such, this critical review emphasizes nascent domains deserving of academic and clinical pursuit, whilst nested within the broader matrix of current scientific understanding. The systematic taxonomy, traditional applications, phytochemical composition, therapeutic potential, and safety profile of cycads are holistically interrogated, assimilating an indispensable repository for future scholarly inquiries. In conclusion, cycads stand as a veritable treasure trove of pharmacological virtue, displaying remarkable therapeutic prowess and holding vast promise for ongoing scientific discovery and clinical utilization.
Collapse
Affiliation(s)
- Qinyun Du
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Nan Xing
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Sa Guo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Rui Li
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, China
| | - Xianli Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Shaohui Wang
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, China; School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
9
|
van Onselen R, Downing TG. Uptake of β-N-methylamino-L-alanine (BMAA) into glutamate-specific synaptic vesicles: Exploring the validity of the excitotoxicity mechanism of BMAA. Neurosci Lett 2024; 821:137593. [PMID: 38103629 DOI: 10.1016/j.neulet.2023.137593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
The first mechanism of toxicity proposed for the cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) was excitotoxicity, and this was supported by numerous in vitro studies in which overactivation of both ionotropic and metabotropic glutamate receptors was reported. However, the excitotoxicity of BMAA is weak in comparison with other known excitotoxins and on par with that of glutamate, implying that to achieve sufficient synaptic concentrations of BMAA to cause classical in vivo excitotoxicity, BMAA must either accumulate in synapses to allow persistent glutamate receptor activation or it must be released in sufficiently high concentrations into synapses to cause the overexcitation. Since it has been shown that BMAA can be readily removed from synapses, release of high concentrations of BMAA into synapses must be shown to confirm its role as an excitotoxin in in vivo systems. This study therefore sought to evaluate the uptake of BMAA into synaptic vesicles and to determine if BMAA affects the uptake of glutamate into synaptic vesicles. There was no evidence to support uptake of BMAA into glutamate-specific synaptic vesicles but there was some indication that BMAA may affect the uptake of glutamate into synaptic vesicles. The uptake of BMAA into synaptic vesicles isolated from areas other than the cerebral cortex should be investigated before definite conclusions can be drawn about the role of BMAA as an excitotoxin.
Collapse
Affiliation(s)
- Rianita van Onselen
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa; Department of Biochemistry and Microbiology, Nelson Mandela University, Gqeberha, South Africa
| | - Tim G Downing
- Department of Biochemistry and Microbiology, Nelson Mandela University, Gqeberha, South Africa.
| |
Collapse
|
10
|
Pinto A, Botelho MJ, Churro C, Asselman J, Pereira P, Pereira JL. A review on aquatic toxins - Do we really know it all regarding the environmental risk posed by phytoplankton neurotoxins? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118769. [PMID: 37597370 DOI: 10.1016/j.jenvman.2023.118769] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/24/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
Aquatic toxins are potent natural toxins produced by certain cyanobacteria and marine algae species during harmful cyanobacterial and algal blooms (CyanoHABs and HABs, respectively). These harmful bloom events and the toxins produced during these events are a human and environmental health concern worldwide, with occurrence, frequency and severity of CyanoHABs and HABs being predicted to keep increasing due to ongoing climate change scenarios. These contexts, as well as human health consequences of some toxins produced during bloom events have been thoroughly reviewed before. Conversely, the wider picture that includes the non-human biota in the assessment of noxious effects of toxins is much less covered in the literature and barely covered by review works. Despite direct human exposure to aquatic toxins and related deleterious effects being responsible for the majority of the public attention to the blooms' problematic, it constitutes a very limited fraction of the real environmental risk posed by these toxins. The disruption of ecological and trophic interactions caused by these toxins in the aquatic biota building on deleterious effects they may induce in different species is paramount as a modulator of the overall magnitude of the environmental risk potentially involved, thus necessarily constraining the quality and efficiency of the management strategies that should be placed. In this way, this review aims at updating and consolidating current knowledge regarding the adverse effects of aquatic toxins, attempting to going beyond their main toxicity pathways in human and related models' health, i.e., also focusing on ecologically relevant model organisms. For conciseness and considering the severity in terms of documented human health risks as a reference, we restricted the detailed revision work to neurotoxic cyanotoxins and marine toxins. This comprehensive revision of the systemic effects of aquatic neurotoxins provides a broad overview of the exposure and the hazard that these compounds pose to human and environmental health. Regulatory approaches they are given worldwide, as well as (eco)toxicity data available were hence thoroughly reviewed. Critical research gaps were identified particularly regarding (i) the toxic effects other than those typical of the recognized disease/disorder each toxin causes following acute exposure in humans and also in other biota; and (ii) alternative detection tools capable of being early-warning signals for aquatic toxins occurrence and therefore provide better human and environmental safety insurance. Future directions on aquatic toxins research are discussed in face of the existent knowledge, with particular emphasis on the much-needed development and implementation of effective alternative (eco)toxicological biomarkers for these toxins. The wide-spanning approach followed herein will hopefully stimulate future research more broadly addressing the environmental hazardous potential of aquatic toxins.
Collapse
Affiliation(s)
- Albano Pinto
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal.
| | - Maria João Botelho
- IPMA, Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165, Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Catarina Churro
- IPMA, Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165, Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Bluebridge Building, Ostend Science Park 1, 8400, Ostend, Belgium
| | - Patrícia Pereira
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal
| | - Joana Luísa Pereira
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal
| |
Collapse
|
11
|
Ricciardelli A, Pollio A, Costantini M, Zupo V. Harmful and beneficial properties of cyanotoxins: Two sides of the same coin. Biotechnol Adv 2023; 68:108235. [PMID: 37567398 DOI: 10.1016/j.biotechadv.2023.108235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 07/25/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Cyanotoxins are by definition "harmful agents" produced by cyanobacteria. Their toxicity has been extensively studied and reviewed over the years. Cyanotoxins have been commonly classified, based on their poisonous effects on mammals, into three main classes, neurotoxins, hepatotoxins and dermatotoxins, and, considering their chemical features, mainly identified as peptides, alkaloids and lipopolysaccharides. Here we propose a broader subdivision of cyanotoxins into eight distinct classes, taking into account their molecular structures, biosynthesis and modes of action: alkaloids, non-ribosomal peptides, polyketides, non-protein amino acids, indole alkaloids, organophosphates, lipopeptides and lipoglycans. For each class, the structures and primary mechanisms of toxicity of the main representative cyanotoxins are reported. Despite their powerful biological activities, only recently scientists have considered the biotechnological potential of cyanotoxins, and their applications both in medical and in industrial settings, even if only a few of these have reached the biotech market. In this perspective, we discuss the potential uses of cyanotoxins as anticancer, antimicrobial, and biocidal agents, as common applications for cytotoxic compounds. Furthermore, taking into account their mechanisms of action, we describe peculiar potential bioactivities for several cyanotoxin classes, such as local anaesthetics, antithrombotics, neuroplasticity promoters, immunomodulating and antifouling agents. In this review, we aim to stimulate research on the potential beneficial roles of cyanotoxins, which require interdisciplinary cooperation to facilitate the discovery of innovative biotechnologies.
Collapse
Affiliation(s)
- Annarita Ricciardelli
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cinthìa, 80125 Naples, Italy.
| | - Antonino Pollio
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cinthìa, 80125 Naples, Italy.
| | - Maria Costantini
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton, 80133 Naples, Italy.
| | - Valerio Zupo
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Ischia Marine Centre, Punta San Pietro, 80077 Naples, Italy.
| |
Collapse
|
12
|
Stipa G, Ancidoni A, Vanacore N, Bellomo G. Raw Water and ALS: A Unifying Hypothesis for the Environmental Agents Involved in ALS. Ann Neurosci 2023; 30:124-132. [PMID: 37706096 PMCID: PMC10496797 DOI: 10.1177/09727531221120358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/22/2022] [Indexed: 09/15/2023] Open
Abstract
Different studies identified the presence of several altered genes in familial and sporadic amyotrophic lateral sclerosis (ALS) forms. The experimental data, together with the epidemiological data, would seem to suggest the existence of molecular mechanisms (e.g., axonal transport) related to these genes, together with a susceptibility of the same genes to certain environmental factors that would therefore suggest an impact of the environment on the etiopathogenesis of ALS. In our review, we considered the most relevant environmental clusters around the world, collecting different hypotheses and underlining common environmental factors among the different clusters. Moreover, further epidemiological data identified a higher risk of ALS in professional athletes and, in particular, in soccer and football players. Despite this increased risk of ALS highlighted by the epidemiological evidence in aforementioned sports, the mechanisms remain unclear. At last, the use of raw water has been associated with ALS risk. The aim of the present review is to characterize a possible relationship between these clusters, to be explored in the context of the interaction between genetic and environmental factors on the etiopathogenesis of ALS.
Collapse
Affiliation(s)
- Giuseppe Stipa
- Clinical Neurophysiology Division, Neuroscience Department, S. Maria University Hospital, Terni, Italy
| | - Antonio Ancidoni
- National Center for Disease Prevention and Health Promotion, National Institute of Health (ISS), Roma, Italy
| | - Nicola Vanacore
- National Center for Disease Prevention and Health Promotion, National Institute of Health (ISS), Roma, Italy
| | - Guido Bellomo
- National Center for Disease Prevention and Health Promotion, National Institute of Health (ISS), Roma, Italy
| |
Collapse
|
13
|
Degradation of cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) using ozone process: influencing factors and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:47873-47881. [PMID: 36749520 DOI: 10.1007/s11356-023-25754-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
β-N-methylamino-L-alanine (BMAA), which has been considered as an environmental factor that caused amyotrophic lateral sclerosis/parkinsonism-dementia complex (ALS/PDC) or Alzheimer's disease, could be produced by a variety of genera cyanobacteria. BMAA is widely present in water sources contaminated by cyanobacteria and may threaten human health through drinking water. Although oxidants commonly used in drinking water plants such as chlorine, ozone, hydrogen peroxide, and hydroxyl radicals have been shown to effectively degrade BMAA, there are limited studies on the mechanism of BMAA degradation by different oxidants, especially ozone. This work systematically explored the effectiveness of BMAA ozonation degradation, investigated the effect of the operating parameters on the effectiveness of degradation, and speculated on the pathways of BMAA decomposition. The results showed that BMAA could be quickly eliminated by ozone, and the removal rates of BMAA were nearly 100% in pure water, but the removal rates were reduced in actual water. BMAA was primarily degraded by direct oxidation of ozone molecules in acidic and near-neutral conditions, and indirect oxidation of •OH accounted for the main part under strong alkaline conditions. The pH value had a significant effect on the decomposition of BMAA, and the degradation rate of BMAA was fastest at near-neutral pH value. The degradation rates of TOC were significantly lower than that of BMAA, indicating that by-products were generated during the degradation process. Three by-products ([M-H]+ = 105, 90, and 88) were identified by UPLC-MS/MS, and the degradation pathways of BMAA were proposed. The production of by-products was attributed to the fracture of the C-N bonds. This work is helpful for the in-depth understanding on the mechanism and demonstration of the feasibility of the oxidation of BMAA by the ozone process. HIGHLIGHTS: • The reaction of ozonation BMAA was easy to occur. • The degradation rate was fast under near-neutral conditions. • Direct oxidation under neural conditions was the main pathway for ozone degradation of BMAA. • Three products were detected, and the reaction path was inferred.
Collapse
|
14
|
Stellon D, Talbot J, Hewitt AW, King AE, Cook AL. Seeing Neurodegeneration in a New Light Using Genetically Encoded Fluorescent Biosensors and iPSCs. Int J Mol Sci 2023; 24:1766. [PMID: 36675282 PMCID: PMC9861453 DOI: 10.3390/ijms24021766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Neurodegenerative diseases present a progressive loss of neuronal structure and function, leading to cell death and irrecoverable brain atrophy. Most have disease-modifying therapies, in part because the mechanisms of neurodegeneration are yet to be defined, preventing the development of targeted therapies. To overcome this, there is a need for tools that enable a quantitative assessment of how cellular mechanisms and diverse environmental conditions contribute to disease. One such tool is genetically encodable fluorescent biosensors (GEFBs), engineered constructs encoding proteins with novel functions capable of sensing spatiotemporal changes in specific pathways, enzyme functions, or metabolite levels. GEFB technology therefore presents a plethora of unique sensing capabilities that, when coupled with induced pluripotent stem cells (iPSCs), present a powerful tool for exploring disease mechanisms and identifying novel therapeutics. In this review, we discuss different GEFBs relevant to neurodegenerative disease and how they can be used with iPSCs to illuminate unresolved questions about causes and risks for neurodegenerative disease.
Collapse
Affiliation(s)
- David Stellon
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7000, Australia
| | - Jana Talbot
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7000, Australia
| | - Alex W. Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Anna E. King
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7000, Australia
| | - Anthony L. Cook
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7000, Australia
| |
Collapse
|
15
|
Bozzi Cionci N, Reggio M, Baffoni L, Di Gioia D. Probiotic Administration for the Prevention and Treatment of Gastrointestinal, Metabolic and Neurological Disorders. ADVANCES IN PREDICTIVE, PREVENTIVE AND PERSONALISED MEDICINE 2023:219-250. [DOI: 10.1007/978-3-031-19564-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
16
|
Lopicic S, Svirčev Z, Palanački Malešević T, Kopitović A, Ivanovska A, Meriluoto J. Environmental Neurotoxin β- N-Methylamino-L-alanine (BMAA) as a Widely Occurring Putative Pathogenic Factor in Neurodegenerative Diseases. Microorganisms 2022; 10:2418. [PMID: 36557671 PMCID: PMC9781992 DOI: 10.3390/microorganisms10122418] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
In the present review we have discussed the occurrence of β-N-methylamino-L-alanine (BMAA) and its natural isomers, and the organisms and sample types in which the toxin(s) have been detected. Further, the review discusses general pathogenic mechanisms of neurodegenerative diseases, and how modes of action of BMAA fit in those mechanisms. The biogeography of BMAA occurrence presented here contributes to the planning of epidemiological research based on the geographical distribution of BMAA and human exposure. Analysis of BMAA mechanisms in relation to pathogenic processes of neurodegeneration is used to critically assess the potential significance of the amino acid as well as to identify gaps in our understanding. Taken together, these two approaches provide the basis for the discussion on the potential role of BMAA as a secondary factor in neurodegenerative diseases, the rationale for further research and possible directions the research can take, which are outlined in the conclusions.
Collapse
Affiliation(s)
- Srdjan Lopicic
- Faculty of Medicine, University of Belgrade, Dr Subotića Starijeg 8, 11000 Belgrade, Serbia
| | - Zorica Svirčev
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland
| | - Tamara Palanački Malešević
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - Aleksandar Kopitović
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Aleksandra Ivanovska
- Innovation Center of the Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Jussi Meriluoto
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland
| |
Collapse
|
17
|
Koksharova OA, Safronova NA. Non-Proteinogenic Amino Acid β-N-Methylamino-L-Alanine (BMAA): Bioactivity and Ecological Significance. Toxins (Basel) 2022; 14:539. [PMID: 36006201 PMCID: PMC9414260 DOI: 10.3390/toxins14080539] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 11/21/2022] Open
Abstract
Research interest in a non-protein amino acid β-N-methylamino-L-alanine (BMAA) arose due to the discovery of a connection between exposure to BMAA and the occurrence of neurodegenerative diseases. Previous reviews on this topic either considered BMAA as a risk factor for neurodegenerative diseases or focused on the problems of detecting BMAA in various environmental samples. Our review is devoted to a wide range of fundamental biological problems related to BMAA, including the molecular mechanisms of biological activity of BMAA and the complex relationships between producers of BMAA and the environment in various natural ecosystems. At the beginning, we briefly recall the most important facts about the producers of BMAA (cyanobacteria, microalgae, and bacteria), the pathways of BMAA biosynthesis, and reliable methods of identification of BMAA. The main distinctive feature of our review is a detailed examination of the molecular mechanisms underlying the toxicity of BMAA to living cells. A brand new aspect, not previously discussed in any reviews, is the effect of BMAA on cyanobacterial cells. These recent studies, conducted using transcriptomics and proteomics, revealed potent regulatory effects of BMAA on the basic metabolism and cell development of these ancient photoautotrophic prokaryotes. Exogenous BMAA strongly influences cell differentiation and primary metabolic processes in cyanobacteria, such as nitrogen fixation, photosynthesis, carbon fixation, and various biosynthetic processes involving 2-oxoglutarate and glutamate. Cyanobacteria were found to be more sensitive to exogenous BMAA under nitrogen-limited growth conditions. We suggest a hypothesis that this toxic diaminoacid can be used by phytoplankton organisms as a possible allelopathic tool for controlling the population of cyanobacterial cells during a period of intense competition for nitrogen and other resources in various ecosystems.
Collapse
Affiliation(s)
- Olga A. Koksharova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Square, 2, 123182 Moscow, Russia
| | - Nina A. Safronova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
18
|
Kim SY, Hedberg P, Winder M, Rydberg S. Evidence of 2,4-diaminobutyric acid (DAB) production as a defense mechanism in diatom Thalassiosira pseudonana. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 249:106210. [PMID: 35665646 DOI: 10.1016/j.aquatox.2022.106210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
The neurotoxic secondary metabolite β-N-methylamino-L-alanine (BMAA) and its structural isomer 2,4-diaminobutyric acid (DAB) are known to be produced by various phytoplankton groups. Despite the worldwide spread of these toxin producers, no obvious role and function of BMAA and DAB in diatoms have been identified. Here, we investigated the effects of biotic factors, i.e., predators and competitors, as possible causes of BMAA and/or DAB regulation in the two diatom species Phaeodactylum tricornutum and Thalassiosira pseudonana. DAB was specifically regulated in T. pseudonana by the presence of predators and competitors. The effects of DAB on both diatoms as competitors and on the copepod Tigriopus sp. as predator at individual and at population levels were examined. The toxic effects of DAB on the growth of T. pseudonana and the population of Tigriopus sp. were significant. The effect of DAB as a defensive secondary metabolite is assumed to be environmentally relevant depending on the number of the copepods. The results show a potential function of DAB that can play an important role in defense mechanisms of T. pseudonana.
Collapse
Affiliation(s)
- Sea-Yong Kim
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE 10691 Stockholm, Sweden
| | - Per Hedberg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE 10691 Stockholm, Sweden
| | - Monika Winder
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE 10691 Stockholm, Sweden
| | - Sara Rydberg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE 10691 Stockholm, Sweden.
| |
Collapse
|
19
|
Courtier A, Potheret D, Giannoni P. Environmental bacteria as triggers to brain disease: Possible mechanisms of toxicity and associated human risk. Life Sci 2022; 304:120689. [DOI: 10.1016/j.lfs.2022.120689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/11/2022] [Accepted: 06/01/2022] [Indexed: 11/24/2022]
|
20
|
Kazemi Shariat Panahi H, Dehhaghi M, Heng B, Lane DJR, Bush AI, Guillemin GJ, Tan VX. Neuropathological Mechanisms of β-N-Methylamino-L-Alanine (BMAA) with a Focus on Iron Overload and Ferroptosis. Neurotox Res 2022; 40:614-635. [PMID: 35023054 DOI: 10.1007/s12640-021-00455-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 02/08/2023]
Abstract
The incidence of neurodegenerative diseases and cyanobacterial blooms is concomitantly increasing worldwide. The cyanotoxin β-N-methylamino-L-alanine (BMAA) is produced by most of the Cyanobacteria spp. This cyanotoxin is described as a potential environmental etiology factor for some sporadic neurodegenerative diseases. Climate change and eutrophication significantly increase the frequency and intensity of cyanobacterial bloom in water bodies. This review evaluates different neuropathological mechanisms of BMAA at molecular and cellular levels and compares the related studies to provide some useful recommendations. Additionally, the structure and properties of BMAA as well as its microbial origin, especially by gut bacteria, are also briefly covered. Unlike previous reviews, we hypothesize the possible neurotoxic mechanism of BMAA through iron overload. We also discuss the involvement of BMAA in excitotoxicity, TAR DNA-binding protein 43 (TDP-43) translocation and accumulation, tauopathy, and other protein misincorporation and misfolding.
Collapse
Affiliation(s)
- Hamed Kazemi Shariat Panahi
- Neuroinflammation Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mona Dehhaghi
- Neuroinflammation Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- PANDIS.Org, Bendigo, Australia
- Department of Microbial Biotechnology, School of Biology and Centre of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Benjamin Heng
- Neuroinflammation Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Gilles J Guillemin
- Neuroinflammation Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
- PANDIS.Org, Bendigo, Australia.
| | - Vanessa X Tan
- Neuroinflammation Group, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- PANDIS.Org, Bendigo, Australia
| |
Collapse
|
21
|
Abbes S, Vo Duy S, Munoz G, Dinh QT, Simon DF, Husk B, Baulch HM, Vinçon-Leite B, Fortin N, Greer CW, Larsen ML, Venkiteswaran JJ, Martínez Jerónimo FF, Giani A, Lowe CD, Tromas N, Sauvé S. Occurrence of BMAA Isomers in Bloom-Impacted Lakes and Reservoirs of Brazil, Canada, France, Mexico, and the United Kingdom. Toxins (Basel) 2022; 14:251. [PMID: 35448860 PMCID: PMC9026818 DOI: 10.3390/toxins14040251] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 11/21/2022] Open
Abstract
The neurotoxic alkaloid β-N-methyl-amino-l-alanine (BMAA) and related isomers, including N-(2-aminoethyl glycine) (AEG), β-amino-N-methyl alanine (BAMA), and 2,4-diaminobutyric acid (DAB), have been reported previously in cyanobacterial samples. However, there are conflicting reports regarding their occurrence in surface waters. In this study, we evaluated the impact of amending lake water samples with trichloroacetic acid (0.1 M TCA) on the detection of BMAA isomers, compared with pre-existing protocols. A sensitive instrumental method was enlisted for the survey, with limits of detection in the range of 5−10 ng L−1. Higher detection rates and significantly greater levels (paired Wilcoxon’s signed-rank tests, p < 0.001) of BMAA isomers were observed in TCA-amended samples (method B) compared to samples without TCA (method A). The overall range of B/A ratios was 0.67−8.25 for AEG (up to +725%) and 0.69−15.5 for DAB (up to +1450%), with absolute concentration increases in TCA-amended samples of up to +15,000 ng L−1 for AEG and +650 ng L−1 for DAB. We also documented the trends in the occurrence of BMAA isomers for a large breadth of field-collected lakes from Brazil, Canada, France, Mexico, and the United Kingdom. Data gathered during this overarching campaign (overall, n = 390 within 45 lake sampling sites) indicated frequent detections of AEG and DAB isomers, with detection rates of 30% and 43% and maximum levels of 19,000 ng L−1 and 1100 ng L−1, respectively. In contrast, BAMA was found in less than 8% of the water samples, and BMAA was not found in any sample. These results support the analyses of free-living cyanobacteria, wherein BMAA was often reported at concentrations of 2−4 orders of magnitude lower than AEG and DAB. Seasonal measurements conducted at two bloom-impacted lakes indicated limited correlations of BMAA isomers with total microcystins or chlorophyll-a, which deserves further investigation.
Collapse
Affiliation(s)
- Safa Abbes
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada; (S.A.); (S.V.D.); (G.M.); (Q.T.D.); (D.F.S.)
| | - Sung Vo Duy
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada; (S.A.); (S.V.D.); (G.M.); (Q.T.D.); (D.F.S.)
| | - Gabriel Munoz
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada; (S.A.); (S.V.D.); (G.M.); (Q.T.D.); (D.F.S.)
| | - Quoc Tuc Dinh
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada; (S.A.); (S.V.D.); (G.M.); (Q.T.D.); (D.F.S.)
| | - Dana F. Simon
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada; (S.A.); (S.V.D.); (G.M.); (Q.T.D.); (D.F.S.)
| | - Barry Husk
- BlueLeaf Inc., Drummondville, QC J2B 5E9, Canada;
| | - Helen M. Baulch
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK S7N 3H5, Canada;
| | | | - Nathalie Fortin
- National Research Council Canada, Energy, Mining, and Environment, Montréal, QC H4P 2R2, Canada; (N.F.); (C.W.G.)
| | - Charles W. Greer
- National Research Council Canada, Energy, Mining, and Environment, Montréal, QC H4P 2R2, Canada; (N.F.); (C.W.G.)
| | - Megan L. Larsen
- Faculty of Science, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada; (M.L.L.); (J.J.V.)
| | - Jason J. Venkiteswaran
- Faculty of Science, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada; (M.L.L.); (J.J.V.)
| | | | - Alessandra Giani
- Department of Botany, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | - Chris D. Lowe
- Centre for Ecology and Conservation, University of Exeter, Exeter TR10 9FE, UK;
| | - Nicolas Tromas
- Department of Biological Sciences, Université de Montréal, Montréal, QC H2V 0B3, Canada;
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada; (S.A.); (S.V.D.); (G.M.); (Q.T.D.); (D.F.S.)
| |
Collapse
|
22
|
D’Antona S, Caramenti M, Porro D, Castiglioni I, Cava C. Amyotrophic Lateral Sclerosis: A Diet Review. Foods 2021; 10:foods10123128. [PMID: 34945679 PMCID: PMC8702143 DOI: 10.3390/foods10123128] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/26/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease related to upper and lower motor neurons degeneration. Although the environmental and genetic causes of this disease are still unclear, some factors involved in ALS onset such as oxidative stress may be influenced by diet. A higher risk of ALS has been correlated with a high fat and glutamate intake and β-methylamino-L-alanine. On the contrary, a diet based on antioxidant and anti-inflammatory compounds, such as curcumin, creatine, coenzyme Q10, vitamin E, vitamin A, vitamin C, and phytochemicals could reduce the risk of ALS. However, data are controversial as there is a discrepancy among different studies due to a limited number of samples and the many variables that are involved. In addition, an improper diet could lead to an altered microbiota and consequently to an altered metabolism that could predispose to the ALS onset. In this review we summarized some research that involve aspects related to ALS such as the epidemiology, the diet, the eating behaviour, the microbiota, and the metabolic diseases. Further research is needed to better comprehend the role of diet and the metabolic diseases in the mechanisms leading to ALS onset and progression.
Collapse
Affiliation(s)
- Salvatore D’Antona
- Institute of Bioimaging and Molecular Physiology, National Research Council (IBFM-CNR), Via F.lli Cervi 93, 20054 Milan, Italy; (S.D.); (M.C.); (D.P.)
| | - Martina Caramenti
- Institute of Bioimaging and Molecular Physiology, National Research Council (IBFM-CNR), Via F.lli Cervi 93, 20054 Milan, Italy; (S.D.); (M.C.); (D.P.)
| | - Danilo Porro
- Institute of Bioimaging and Molecular Physiology, National Research Council (IBFM-CNR), Via F.lli Cervi 93, 20054 Milan, Italy; (S.D.); (M.C.); (D.P.)
| | - Isabella Castiglioni
- Department of Physics “G. Occhialini”, University of Milan-Bicocca, Piazza della Scienza 3, 20126 Milan, Italy;
| | - Claudia Cava
- Institute of Bioimaging and Molecular Physiology, National Research Council (IBFM-CNR), Via F.lli Cervi 93, 20054 Milan, Italy; (S.D.); (M.C.); (D.P.)
- Correspondence:
| |
Collapse
|
23
|
Davis DA, Garamszegi SP, Banack SA, Dooley PD, Coyne TM, McLean DW, Rotstein DS, Mash DC, Cox PA. BMAA, Methylmercury, and Mechanisms of Neurodegeneration in Dolphins: A Natural Model of Toxin Exposure. Toxins (Basel) 2021; 13:toxins13100697. [PMID: 34678990 PMCID: PMC8540894 DOI: 10.3390/toxins13100697] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 01/15/2023] Open
Abstract
Dolphins are well-regarded sentinels for toxin exposure and can bioaccumulate a cyanotoxin called β-N-methylamino-l-alanine (BMAA) that has been linked to human neurodegenerative disease. The same dolphins also possessed hallmarks of Alzheimer’s disease (AD), suggesting a possible association between toxin exposure and neuropathology. However, the mechanisms of neurodegeneration in dolphins and the impact cyanotoxins have on these processes are unknown. Here, we evaluate BMAA exposure by investigating transcription signatures using PCR for dolphin genes homologous to those implicated in AD and related dementias: APP, PSEN1, PSEN2, MAPT, GRN, TARDBP, and C9orf72. Immunohistochemistry and Sevier Münger silver staining were used to validate neuropathology. Methylmercury (MeHg), a synergistic neurotoxicant with BMAA, was also measured using PT-GC-AFS. We report that dolphins have up to a three-fold increase in gene transcription related to Aβ+ plaques, neurofibrillary tangles, neuritic plaques, and TDP-43+ intracytoplasmic inclusions. The upregulation of gene transcription in our dolphin cohort paralleled increasing BMAA concentration. In addition, dolphins with BMAA exposures equivalent to those reported in AD patients displayed up to a 14-fold increase in AD-type neuropathology. MeHg was detected (0.16–0.41 μg/g) and toxicity associated with exposure was also observed in the brain. These results demonstrate that dolphins develop neuropathology associated with AD and exposure to BMAA and MeHg may augment these processes.
Collapse
Affiliation(s)
- David A. Davis
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (S.P.G.); (P.D.D.); (D.W.M.); (D.C.M.)
- Correspondence:
| | - Susanna P. Garamszegi
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (S.P.G.); (P.D.D.); (D.W.M.); (D.C.M.)
| | - Sandra Anne Banack
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY 83001, USA; (S.A.B.); (P.A.C.)
| | - Patrick D. Dooley
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (S.P.G.); (P.D.D.); (D.W.M.); (D.C.M.)
| | - Thomas M. Coyne
- Office of the District 21 Medical Examiner, Fort Myers, FL 33907, USA;
| | - Dylan W. McLean
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (S.P.G.); (P.D.D.); (D.W.M.); (D.C.M.)
| | | | - Deborah C. Mash
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (S.P.G.); (P.D.D.); (D.W.M.); (D.C.M.)
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, FL 33328, USA
| | - Paul Alan Cox
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY 83001, USA; (S.A.B.); (P.A.C.)
| |
Collapse
|
24
|
Italiano CJ, Pu L, Violi JP, Duggin IG, Rodgers KJ. Cysteine biosynthesis contributes to β-methylamino-l-alanine tolerance in Escherichia coli. Res Microbiol 2021; 172:103852. [PMID: 34246779 DOI: 10.1016/j.resmic.2021.103852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 11/25/2022]
Abstract
In contrast to mammalian cells, bacteria such as Escherichia coli have been shown to display tolerance towards the neurotoxin β-methylamino-l-alanine (BMAA) suggesting that these prokaryotes possess a way to metabolise BMAA or its products, resulting in their export, degradation, or detoxification. Single gene deletion mutants of E. coli K-12 with inactivated amino acid biosynthesis pathways were treated with 500 μg/ml BMAA and the resulting growth was monitored. Wild type E. coli and most of the gene deletion mutants displayed unaltered growth in the presence of BMAA over 12 h. Conversely, deletion of genes in the cysteine biosynthesis pathway, cysE, cysK or cysM resulted in a BMAA dose-dependent growth delay in minimal medium. Through further studies of the ΔcysE strain, we observed increased susceptibility to oxidative stress from H2O2 in minimal medium, and disruptions in glutathione levels and oxidation state. The cysteine biosynthesis pathway is therefore linked to the tolerance of BMAA and oxidative stress in E. coli, which potentially represents a mechanism of BMAA detoxification.
Collapse
Affiliation(s)
- Carly J Italiano
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Lisa Pu
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Jake P Violi
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Iain G Duggin
- The iThree Institute, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Kenneth J Rodgers
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
25
|
Wang C, Yan C, Qiu J, Liu C, Yan Y, Ji Y, Wang G, Chen H, Li Y, Li A. Food web biomagnification of the neurotoxin β-N-methylamino-L-alanine in a diatom-dominated marine ecosystem in China. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124217. [PMID: 33129020 DOI: 10.1016/j.jhazmat.2020.124217] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/25/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
The neurotoxin β-N-methylamino-L-alanine (BMAA) reported in some cyanobacteria and eukaryote microalgae is a cause of concern due to its potential risk of human neurodegenerative diseases. Here, BMAA distribution in phytoplankton, zooplankton, and other marine organisms was investigated in Jiaozhou Bay, China, a diatom-dominated marine ecosystem, during four seasons in 2019. Results showed that BMAA was biomagnified in the food web from phytoplankton to higher trophic levels. Trophic magnification factors (TMFs) for zooplankton, bivalve mollusks, carnivorous crustaceans and carnivorous gastropod mollusks were ca. 4.58, 30.1, 42.5, and 74.4, respectively. Putative identification of β-amino-N-methylalanine (BAMA), an isomer of BMAA, was frequently detected in phytoplankton samples. A total of 56 diatom strains of the genera Pseudo-nitzschia, Thalassiosira, Chaetoceros, Planktoniella, and Minidiscus isolated from the Chinese coast were cultured in the laboratory, among which 21 strains contained BMAA mainly in precipitated bound form at toxin concentrations ranging from 0.11 to 3.95 µg/g dry weight. Only 2,4-diaminobutyric acid (DAB) but not BMAA or BAMA was detected in seven species of bacteria isolated from the gut of gastropod Neverita didyma, suggesting that this benthic vector of BMAA may have accumulated this compound via trophic transfer.
Collapse
Affiliation(s)
- Chao Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Chen Yan
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Chao Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Yeju Yan
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Ying Ji
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Guixiang Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Hongju Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Yang Li
- Guangdong Provincial Key Laboratory of Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| |
Collapse
|
26
|
Ra D, Sa B, Sl B, Js M, Sj M, DA D, Ew S, O K, Eb B, Ad C, Vx T, Gg G, Pa C, Dc M, Wg B. Is Exposure to BMAA a Risk Factor for Neurodegenerative Diseases? A Response to a Critical Review of the BMAA Hypothesis. Neurotox Res 2021; 39:81-106. [PMID: 33547590 PMCID: PMC7904546 DOI: 10.1007/s12640-020-00302-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
Abstract
In a literature survey, Chernoff et al. (2017) dismissed the hypothesis that chronic exposure to β-N-methylamino-L-alanine (BMAA) may be a risk factor for progressive neurodegenerative disease. They question the growing scientific literature that suggests the following: (1) BMAA exposure causes ALS/PDC among the indigenous Chamorro people of Guam; (2) Guamanian ALS/PDC shares clinical and neuropathological features with Alzheimer's disease, Parkinson's disease, and ALS; (3) one possible mechanism for protein misfolds is misincorporation of BMAA into proteins as a substitute for L-serine; and (4) chronic exposure to BMAA through diet or environmental exposures to cyanobacterial blooms can cause neurodegenerative disease. We here identify multiple errors in their critique including the following: (1) their review selectively cites the published literature; (2) the authors reported favorably on HILIC methods of BMAA detection while the literature shows significant matrix effects and peak coelution in HILIC that may prevent detection and quantification of BMAA in cyanobacteria; (3) the authors build alternative arguments to the BMAA hypothesis, rather than explain the published literature which, to date, has been unable to refute the BMAA hypothesis; and (4) the authors erroneously attribute methods to incorrect studies, indicative of a failure to carefully consider all relevant publications. The lack of attention to BMAA research begins with the review's title which incorrectly refers to BMAA as a "non-essential" amino acid. Research regarding chronic exposure to BMAA as a cause of human neurodegenerative diseases is emerging and requires additional resources, validation, and research. Here, we propose strategies for improvement in the execution and reporting of analytical methods and the need for additional and well-executed inter-lab comparisons for BMAA quantitation. We emphasize the need for optimization and validation of analytical methods to ensure that they are fit-for-purpose. Although there remain gaps in the literature, an increasingly large body of data from multiple independent labs using orthogonal methods provides increasing evidence that chronic exposure to BMAA may be a risk factor for neurological illness.
Collapse
Affiliation(s)
- Dunlop Ra
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA.
| | - Banack Sa
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA
| | - Bishop Sl
- Lewis Research Group, Faculty of Science, University of Calgary, Alberta, Canada
| | - Metcalf Js
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA
| | - Murch Sj
- Department of Chemistry, University of British Columbia, Kelowna, BC, Canada
| | - Davis DA
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Stommel Ew
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Karlsson O
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Brittebo Eb
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | | | - Tan Vx
- Department of Biological Sciences, Macquarie University Centre for Motor Neuron Disease Research, Macquarie University, Ryde, Australia
| | - Guillemin Gg
- Department of Biological Sciences, Macquarie University Centre for Motor Neuron Disease Research, Macquarie University, Ryde, Australia
| | - Cox Pa
- Brain Chemistry Labs, Institute for Ethnomedicine, Jackson, WY, USA
| | - Mash Dc
- Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Bradley Wg
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
27
|
Nowruzi B, Porzani SJ. Toxic compounds produced by cyanobacteria belonging to several species of the order Nostocales: A review. J Appl Toxicol 2020; 41:510-548. [PMID: 33289164 DOI: 10.1002/jat.4088] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022]
Abstract
Cyanobacteria are well recognised as producers of a wide range of natural compounds that are in turn recognised as toxins that have potential and useful applications in the future as pharmaceutical agents. The order Nostocales, which is largely overlooked in this regard, has become increasingly recognised as a source of toxin producers including Anabaena, Nostoc, Hapalosiphon, Fischerella, Anabaenopsis, Aphanizomenon, Gloeotrichia, Cylindrospermopsis, Scytonema, Raphidiopsis, Cuspidothrix, Nodularia, Stigonema, Calothrix, Cylindrospermum and Desmonostoc species. The toxin compounds (i.e., microcystins, nodularin, anatoxins, ambiguines, fischerindoles and welwitindolinones) and metabolites are about to have a destructive effect on both inland and aquatic environment aspects. The present review gives an overview of the various toxins that are extracted by the order Nostocales. The current research suggests that these compounds that are produced by cyanobacterial species have promising future considerations as potentially harmful algae and as promising leads for drug discovery.
Collapse
Affiliation(s)
- Bahareh Nowruzi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Samaneh Jafari Porzani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
28
|
Davis DA, Cox PA, Banack SA, Lecusay PD, Garamszegi SP, Hagan MJ, Powell JT, Metcalf JS, Palmour RM, Beierschmitt A, Bradley WG, Mash DC. l-Serine Reduces Spinal Cord Pathology in a Vervet Model of Preclinical ALS/MND. J Neuropathol Exp Neurol 2020; 79:393-406. [PMID: 32077471 PMCID: PMC7092359 DOI: 10.1093/jnen/nlaa002] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/14/2020] [Indexed: 12/11/2022] Open
Abstract
The early neuropathological features of amyotrophic lateral sclerosis/motor neuron disease (ALS/MND) are protein aggregates in motor neurons and microglial activation. Similar pathology characterizes Guamanian ALS/Parkinsonism dementia complex, which may be triggered by the cyanotoxin β-N-methylamino-l-alanine (BMAA). We report here the occurrence of ALS/MND-type pathological changes in vervets (Chlorocebus sabaeus; n = 8) fed oral doses of a dry powder of BMAA HCl salt (210 mg/kg/day) for 140 days. Spinal cords and brains from toxin-exposed vervets were compared to controls fed rice flour (210 mg/kg/day) and to vervets coadministered equal amounts of BMAA and l-serine (210 mg/kg/day). Immunohistochemistry and quantitative image analysis were used to examine markers of ALS/MND and glial activation. UHPLC-MS/MS was used to confirm BMAA exposures in dosed vervets. Motor neuron degeneration was demonstrated in BMAA-dosed vervets by TDP-43+ proteinopathy in anterior horn cells, by reactive astrogliosis, by activated microglia, and by damage to myelinated axons in the lateral corticospinal tracts. Vervets dosed with BMAA + l-serine displayed reduced neuropathological changes. This study demonstrates that chronic dietary exposure to BMAA causes ALS/MND-type pathological changes in the vervet and coadministration of l-serine reduces the amount of reactive gliosis and the number of protein inclusions in motor neurons.
Collapse
Affiliation(s)
- David A Davis
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Paul Alan Cox
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida.,Brain Chemistry Labs, Jackson Hole, Wyoming
| | - Sandra Anne Banack
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida.,Brain Chemistry Labs, Jackson Hole, Wyoming
| | | | | | - Matthew J Hagan
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida
| | | | | | - Roberta M Palmour
- Behavioural Science Foundation, St. Kitts and Nevis, West Indies.,Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Amy Beierschmitt
- Behavioural Science Foundation, St. Kitts and Nevis, West Indies.,Department of Clinical Sciences, Ross University School of Veterinary Medicine, St. Kitts and Nevis, West Indies
| | - Walter G Bradley
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Deborah C Mash
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida.,Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida.,Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, Florida
| |
Collapse
|
29
|
Silva DF, Candeias E, Esteves AR, Magalhães JD, Ferreira IL, Nunes-Costa D, Rego AC, Empadinhas N, Cardoso SM. Microbial BMAA elicits mitochondrial dysfunction, innate immunity activation, and Alzheimer's disease features in cortical neurons. J Neuroinflammation 2020; 17:332. [PMID: 33153477 PMCID: PMC7643281 DOI: 10.1186/s12974-020-02004-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND After decades of research recognizing it as a complex multifactorial disorder, sporadic Alzheimer's disease (sAD) still has no known etiology. Adding to the myriad of different pathways involved, bacterial neurotoxins are assuming greater importance in the etiology and/or progression of sAD. β-N-Methylamino-L-alanine (BMAA), a neurotoxin produced by some microorganisms namely cyanobacteria, was previously detected in the brains of AD patients. Indeed, the consumption of BMAA-enriched foods has been proposed to induce amyotrophic lateral sclerosis-parkinsonism-dementia complex (ALS-PDC), which implicated this microbial metabolite in neurodegeneration mechanisms. METHODS Freshly isolated mitochondria from C57BL/6 mice were treated with BMAA and O2 consumption rates were determined. O2 consumption and glycolysis rates were also measured in mouse primary cortical neuronal cultures. Further, mitochondrial membrane potential and ROS production were evaluated by fluorimetry and the integrity of mitochondrial network was examined by immunofluorescence. Finally, the ability of BMAA to activate neuronal innate immunity was quantified by addressing TLRs (Toll-like receptors) expression, p65 NF-κB translocation into the nucleus, increased expression of NLRP3 (Nod-like receptor 3), and pro-IL-1β. Caspase-1 activity was evaluated using a colorimetric substrate and mature IL-1β levels were also determined by ELISA. RESULTS Treatment with BMAA reduced O2 consumption rates in both isolated mitochondria and in primary cortical cultures, with additional reduced glycolytic rates, decrease mitochondrial potential and increased ROS production. The mitochondrial network was found to be fragmented, which resulted in cardiolipin exposure that stimulated inflammasome NLRP3, reinforced by decreased mitochondrial turnover, as indicated by increased p62 levels. BMAA treatment also activated neuronal extracellular TLR4 and intracellular TLR3, inducing p65 NF-κB translocation into the nucleus and activating the transcription of NLRP3 and pro-IL-1β. Increased caspase-1 activity resulted in elevated levels of mature IL-1β. These alterations in mitochondrial metabolism and inflammation increased Tau phosphorylation and Aβ peptides production, two hallmarks of AD. CONCLUSIONS Here we propose a unifying mechanism for AD neurodegeneration in which a microbial toxin can induce mitochondrial dysfunction and activate neuronal innate immunity, which ultimately results in Tau and Aβ pathology. Our data show that neurons, alone, can mount inflammatory responses, a role previously attributed exclusively to glial cells.
Collapse
Affiliation(s)
- Diana F Silva
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal.,IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Emanuel Candeias
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal.,Ph.D. Programme in Biomedicine and Experimental Biology (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - A Raquel Esteves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal.,IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - João D Magalhães
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal.,Ph.D. Programme in Biomedicine and Experimental Biology (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - I Luísa Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal.,IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Daniela Nunes-Costa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal.,Ph.D. Programme in Biomedicine and Experimental Biology (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - A Cristina Rego
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal.,Institute of Biochemistry, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Nuno Empadinhas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal.,IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Sandra M Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal. .,Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
30
|
Soto T, Buzzi ED, Rotstein NP, German OL, Politi LE. Damaging effects of BMAA on retina neurons and Müller glial cells. Exp Eye Res 2020; 202:108342. [PMID: 33144094 DOI: 10.1016/j.exer.2020.108342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 10/23/2022]
Abstract
B-N-methylamino-L-alanine (BMAA), a cyanotoxin produced by most cyanobacteria, has been proposed to cause long term damages leading to neurodegenerative diseases, including Amyotrophic Lateral Sclerosis/Parkinsonism Dementia complex (ALS/PDC) and retinal pathologies. Previous work has shown diverse mechanisms leading to BMAA-induced degeneration; however, the underlying mechanisms of toxicity affecting retina cells are not fully elucidated. We here show that BMAA treatment of rat retina neurons in vitro induced nuclear fragmentation and cell death in both photoreceptors (PHRs) and amacrine neurons, provoking mitochondrial membrane depolarization. Pretreatment with the N-Methyl-D-aspartate (NMDA) receptor antagonist MK-801 prevented BMAA-induced death of amacrine neurons, but not that of PHRs, implying activation of NMDA receptors participated only in amacrine cell death. Noteworthy, BMAA stimulated a selective axonal outgrowth in amacrine neurons, simultaneously promoting growth cone destabilization. BMAA partially decreased the viability of Müller glial cells (MGC), the main glial cell type in the retina, induced marked alterations in their actin cytoskeleton and impaired their capacity to protect retinal neurons. BMAA also induced cell death and promoted axonal outgrowth in differentiated rat pheochromocytoma (PC12) cells, implying these effects were not limited to amacrine neurons. These results suggest that BMAA is toxic for retina neurons and MGC and point to the involvement of NMDA receptors in amacrine cell death, providing new insight into the mechanisms involved in BMAA neurotoxic effects in the retina.
Collapse
Affiliation(s)
- Tamara Soto
- Instituto de Investigaciones Bioquímicas, Depto. de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS)-CONICET, 8000, Bahía Blanca, Buenos Aires, Argentina
| | - Edgardo D Buzzi
- Instituto de Investigaciones Bioquímicas, Depto. de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS)-CONICET, 8000, Bahía Blanca, Buenos Aires, Argentina; Department of Biology, Biochemistry and Pharmacy, Universidad Nacional Del Sur (UNS)-CONICET, Argentina
| | - Nora P Rotstein
- Instituto de Investigaciones Bioquímicas, Depto. de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS)-CONICET, 8000, Bahía Blanca, Buenos Aires, Argentina; Department of Biology, Biochemistry and Pharmacy, Universidad Nacional Del Sur (UNS)-CONICET, Argentina
| | - O Lorena German
- Instituto de Investigaciones Bioquímicas, Depto. de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS)-CONICET, 8000, Bahía Blanca, Buenos Aires, Argentina; Department of Biology, Biochemistry and Pharmacy, Universidad Nacional Del Sur (UNS)-CONICET, Argentina
| | - Luis E Politi
- Instituto de Investigaciones Bioquímicas, Depto. de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS)-CONICET, 8000, Bahía Blanca, Buenos Aires, Argentina.
| |
Collapse
|
31
|
Behavior and gene expression in the brain of adult self-fertilizing mangrove rivulus fish (Kryptolebias marmoratus) after early life exposure to the neurotoxin β-N-methylamino-l-alanine (BMAA). Neurotoxicology 2020; 79:110-121. [DOI: 10.1016/j.neuro.2020.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022]
|
32
|
Fiore M, Parisio R, Filippini T, Mantione V, Platania A, Odone A, Signorelli C, Pietrini V, Mandrioli J, Teggi S, Costanzini S, Antonio C, Zuccarello P, Oliveri Conti G, Nicoletti A, Zappia M, Vinceti M, Ferrante M. Living near waterbodies as a proxy of cyanobacteria exposure and risk of amyotrophic lateral sclerosis: a population based case-control study. ENVIRONMENTAL RESEARCH 2020; 186:109530. [PMID: 32335431 DOI: 10.1016/j.envres.2020.109530] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/11/2020] [Accepted: 04/11/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Epidemiological studies highlighted the possibility that exposure to cyanotoxins leads to the development of the neurodegenerative disease amyotrophic lateral sclerosis (ALS). METHODS We devised a population-based case-control study in two Italian populations. We used residential proximity of the residence to water bodies as a measure of possible exposure to cyanotoxins. RESULTS Based on 703 newly-diagnosed ALS cases and 2737 controls, we calculated an ALS odds ratio (OR) of 1.41 (95% CI: 0.72-2.74) for current residence in the vicinity of water bodies, and a slightly lower estimate for historical residence (OR: 1.31; 95% CI: 0.57-2.99). Subjects <65 years and people living in the Northern Italy province of Modena had higher ORs, especially when historical residence was considered. CONCLUSIONS Overall, despite some risk of bias due to exposure misclassification and unmeasured confounding, our results appear to support the hypothesis that cyanotoxin exposure may increase ALS risk.
Collapse
Affiliation(s)
- Maria Fiore
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy, Via Santa Sofia, 87, 95123; Environmental and Food Hygiene Laboratory (LIAA). Department "G.F. Ingrassia", University of Catania, Catania, Italy, Via Santa Sofia, 87, 95123.
| | - Roberto Parisio
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy, Via Santa Sofia, 87, 95123
| | - Tommaso Filippini
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Valerio Mantione
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy, Via Santa Sofia, 87, 95123
| | - Armando Platania
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy, Via Santa Sofia, 87, 95123
| | - Anna Odone
- Department of Biomedical, Biotechnological, and Translational Sciences, University of Parma, 14 Via Gramsci, 43126, Parma, Italy
| | - Carlo Signorelli
- Department of Biomedical, Biotechnological, and Translational Sciences, University of Parma, 14 Via Gramsci, 43126, Parma, Italy; School of Medicine, University Vita-Salute San Raffaele, 58 Via Olgettina Milano, 20132, Milan, Italy
| | - Vladimiro Pietrini
- Department of Neuroscience, Neurology Unit, University of Parma, 14 Via Gramsci, 43126, Parma, Italy
| | - Jessica Mandrioli
- Department of Neuroscience, S. Agostino-Estense Hospital, and University of Modena and Reggio Emilia, 1355 Via Pietro Giardini, 41126, Modena, Italy
| | - Sergio Teggi
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, 10 Via Vivarelli, 41125, Modena, Italy
| | - Sofia Costanzini
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, 10 Via Vivarelli, 41125, Modena, Italy
| | - Cristaldi Antonio
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy, Via Santa Sofia, 87, 95123; Environmental and Food Hygiene Laboratory (LIAA). Department "G.F. Ingrassia", University of Catania, Catania, Italy, Via Santa Sofia, 87, 95123
| | - Pietro Zuccarello
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy, Via Santa Sofia, 87, 95123; Environmental and Food Hygiene Laboratory (LIAA). Department "G.F. Ingrassia", University of Catania, Catania, Italy, Via Santa Sofia, 87, 95123
| | - Gea Oliveri Conti
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy, Via Santa Sofia, 87, 95123; Environmental and Food Hygiene Laboratory (LIAA). Department "G.F. Ingrassia", University of Catania, Catania, Italy, Via Santa Sofia, 87, 95123.
| | - Alessandra Nicoletti
- Section of Neurosciences, Department "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Mario Zappia
- Section of Neurosciences, Department "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Marco Vinceti
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, MA, United States
| | - Margherita Ferrante
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy, Via Santa Sofia, 87, 95123; Environmental and Food Hygiene Laboratory (LIAA). Department "G.F. Ingrassia", University of Catania, Catania, Italy, Via Santa Sofia, 87, 95123
| |
Collapse
|
33
|
Di Gioia D, Bozzi Cionci N, Baffoni L, Amoruso A, Pane M, Mogna L, Gaggìa F, Lucenti MA, Bersano E, Cantello R, De Marchi F, Mazzini L. A prospective longitudinal study on the microbiota composition in amyotrophic lateral sclerosis. BMC Med 2020; 18:153. [PMID: 32546239 PMCID: PMC7298784 DOI: 10.1186/s12916-020-01607-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND A connection between amyotrophic lateral sclerosis (ALS) and altered gut microbiota composition has previously been reported in animal models. This work is the first prospective longitudinal study addressing the microbiota composition in ALS patients and the impact of a probiotic supplementation on the gut microbiota and disease progression. METHODS Fifty patients and 50 matched controls were enrolled. The microbial profile of stool samples from patients and controls was analyzed via PCR-Denaturing Gradient Gel Electrophoresis, and the main microbial groups quantified via qPCR. The whole microbiota was then analyzed via next generation sequencing after amplification of the V3-V4 region of 16S rDNA. Patients were then randomized to receive probiotic treatment or placebo and followed up for 6 months with ALSFRS-R, BMI, and FVC%. RESULTS The results demonstrate that the gut microbiota of ALS patients is characterized by some differences with respect to controls, regardless of the disability degree. Moreover, the gut microbiota composition changes during the course of the disease as demonstrated by the significant decrease in the number of observed operational taxonomic unit during the follow-up. Interestingly, an unbalance between potentially protective microbial groups, such as Bacteroidetes, and other with potential neurotoxic or pro-inflammatory activity, such as Cyanobacteria, has been shown. The 6-month probiotic treatment influenced the gut microbial composition; however, it did not bring the biodiversity of intestinal microbiota of patients closer to that of control subjects and no influence on the progression of the disease measured by ALSFRS-R was demonstrated. CONCLUSIONS Our study poses the bases for larger clinical studies to characterize the microbiota changes as a novel ALS biomarker and to test new microbial strategy to ameliorate the health status of the gut. TRIAL REGISTRATION CE 107/14, approved by the Ethics Committee of the "Maggiore della Carità" University Hospital, Italy.
Collapse
Affiliation(s)
- Diana Di Gioia
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 42, Bologna, Italy
| | - Nicole Bozzi Cionci
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 42, Bologna, Italy
| | - Loredana Baffoni
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 42, Bologna, Italy
| | - Angela Amoruso
- BIOLAB RESEARCH srl, via E. Mattei 3, 28100, Novara, Italy
| | - Marco Pane
- BIOLAB RESEARCH srl, via E. Mattei 3, 28100, Novara, Italy
| | - Luca Mogna
- BIOLAB RESEARCH srl, via E. Mattei 3, 28100, Novara, Italy
| | - Francesca Gaggìa
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin 42, Bologna, Italy
| | - Maria Ausiliatrice Lucenti
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore della Carità Hospital, Corso Mazzini 18, 28100, Novara, Italy
| | - Enrica Bersano
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore della Carità Hospital, Corso Mazzini 18, 28100, Novara, Italy
| | - Roberto Cantello
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore della Carità Hospital, Corso Mazzini 18, 28100, Novara, Italy
| | - Fabiola De Marchi
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore della Carità Hospital, Corso Mazzini 18, 28100, Novara, Italy
| | - Letizia Mazzini
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore della Carità Hospital, Corso Mazzini 18, 28100, Novara, Italy.
| |
Collapse
|
34
|
Transfer of the Neurotoxin β- N-methylamino-l-alanine (BMAA) in the Agro-Aqua Cycle. Mar Drugs 2020; 18:md18050244. [PMID: 32384637 PMCID: PMC7281744 DOI: 10.3390/md18050244] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/30/2022] Open
Abstract
The neurotoxic non-protein amino acid β-N-methylamino-l-alanine (BMAA) is connected to the development of neurodegenerative diseases. BMAA has been shown to accumulate in aquatic ecosystems, and filter-feeding molluscs seem particularly susceptible to BMAA accumulation. The blue mussels farmed along the Swedish coastline in the Baltic Sea are, due to their small size, exclusively used to produce feed for chicken and fish in the agro-aqua cycle. We have investigated the possible biotransfer of BMAA from mussels, via mussel-based feed, into chickens. Chickens were divided into two groups, the control and the treatment. BMAA was extracted from the muscle, liver, brain, and eye tissues in both chicken groups; a UPLC-MS/MS method was subsequently used to quantify BMAA. The results indicate detectable concentrations of BMAA in both chicken groups. However, the BMAA concentration in chicken was 5.65 times higher in the treatment group than the control group, with the highest concentration found in muscle tissue extracted from the treatment group chickens. These data suggest that there is a BMAA transfer route within the agro-aqua cycle, so further investigation is recommended before using mussel-based feed in the chicken industry.
Collapse
|
35
|
Li A, Espinoza J, Hamdoun A. Inhibitory effects of neurotoxin β-N-methylamino-L-alanine on fertilization and early development of the sea urchin Lytechinus pictus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 221:105425. [PMID: 32058875 DOI: 10.1016/j.aquatox.2020.105425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Neurotoxin β-N-methylamino-L-alanine (BMAA) has been widely detected in diverse aquatic organisms and hypothesized as an environmental risk to neurodegenerative diseases in humans. However, the knowledge of its toxicity to marine organisms requires attention. In the present study, embryos and sperm of the sea urchin, Lytechinus pictus, were used to assess the toxicity of BMAA. Effects of BMAA on fertilization and development of sea urchin embryos were measured, and its impacts on efflux transport of sea urchin blastula were also assayed. Results demonstrated that the fertilization and development of embryos were significantly inhibited by high concentrations of BMAA above 300 μg L-1. The EC50 values indicated by active swimming larvae and total larvae numbers at 96 HPF (hours post fertilization) were 165 μg L-1 (1.4 μmol L-1) and 329 μg L-1 (2.8 μmol L-1), respectively. Additionally, sperm exposed to BMAA for 10 min significantly reduced the fertilization ratio of sea urchin eggs. However, the ABC transport activity on the cytomembrane of sea urchin blastula was not inhibited by the presence of BMAA at 50 μg L-1, even up to 500 μg L-1. Abnormal division and developmental malformations occurred at different developmental stages for sea urchin embryos exposed to BMAA at 500 μg L-1. The inhibitory effects of BMAA on sea urchin embryos were reported at the first time in this study, for which the toxicological mechanisms will be explored in future studies.
Collapse
Affiliation(s)
- Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| | - Jose Espinoza
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, USA
| | - Amro Hamdoun
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, USA
| |
Collapse
|
36
|
Zhang Y, Whalen JK. Production of the neurotoxin beta-N-methylamino-l-alanine may be triggered by agricultural nutrients: An emerging public health issue. WATER RESEARCH 2020; 170:115335. [PMID: 31812811 DOI: 10.1016/j.watres.2019.115335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 11/18/2019] [Accepted: 11/23/2019] [Indexed: 06/10/2023]
Abstract
Diverse taxa of cyanobacteria, dinoflagellates and diatoms produce β-N-methylamino-l-alanine (BMAA), a non-lipophilic, non-protein amino acid. BMAA is a neurotoxin in mammals. Its ingestion may be linked to human neurodegenerative diseases, namely the Amyotrophic lateral sclerosis/Parkinsonism dementia complex, based on epidemiological evidence from regions where cyanobacterial harmful algal blooms occur frequently. In controlled environments, cyanobacteria produce BMAA in response to ecophysiological cues such as nutrient availability, which may explain the elevated BMAA concentrations in freshwater environments that receive nutrient-rich agricultural runoff. This critical review paper summarizes what is known about how BMAA supports ecophysiological functions like nitrogen metabolism, photosyntheis and provides a competitive advantage to cyanobacteria in controlled and natural environments. We explain how BMAA production affected competitive interactions among the N2-fixing and non-N2-fixing populations in a freshwater cyanobacterial bloom that was stimulated by nutrient loading from the surrounding agricultural landscape. Better control of nutrients in agricultural fields is an excellent strategy to avoid the negative environmental consequences and public health concerns related to BMAA production.
Collapse
Affiliation(s)
- Yanyan Zhang
- McGill University, Department of Natural Resource Sciences, Macdonald Campus, 21, 111 Lakeshore Road, Ste-Anne-de, Bellevue, Quebec, H9X 3V9, Canada
| | - Joann K Whalen
- McGill University, Department of Natural Resource Sciences, Macdonald Campus, 21, 111 Lakeshore Road, Ste-Anne-de, Bellevue, Quebec, H9X 3V9, Canada.
| |
Collapse
|
37
|
Bishop SL, Murch SJ. A systematic review of analytical methods for the detection and quantification of β-N-methylamino-l-alanine (BMAA). Analyst 2019; 145:13-28. [PMID: 31742261 DOI: 10.1039/c9an01252d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are influenced by environmental factors such as exposure to toxins including the cyanotoxin β-N-methylamino-l-alanine (BMAA) that can bioaccumulate in common food sources such as fish, mussels and crabs. Accurate and precise analytical methods are needed to detect and quantify BMAA to minimize human health risks. The objective of this review is to provide a comprehensive overview of the methods used for BMAA analysis from 2003 to 2019 and to evaluate the reported performance characteristics for each method to determine the consensus data for each analytical approach and different sample matrices. Detailed searches of the database Web of Science™ (WoS) were performed between August 21st, 2018 and April 5th, 2019. Eligible studies included analytical methods for the detection and quantification of BMAA in cyanobacteria and bioaccumulated BMAA in higher trophic levels, in phytoplankton and zooplankton and in human tissues and fluids. This systematic review has limitations in that only the English language literature is included and it did not include standard operating protocols nor any method validation data that have not been made public. We identified 148 eligible studies, of which a positive result for BMAA in one or more samples analyzed was reported in 84% (125 out of 148) of total studies, 57% of HILIC studies, 92% of RPLC studies and 71% of other studies. The largest discrepancy between different methods arose from the analysis of cyanobacteria samples, where BMAA was detected in 95% of RPLC studies but only in 25% of HILIC studies. Without sufficient published validation of each method's performance characteristics, it is difficult to establish each method as fit for purpose for each sample matrix. The importance of establishing methods as appropriate for their intended use is evidenced by the inconsistent reporting of BMAA across environmental samples, despite its prevalence in diverse ecosystems and food webs.
Collapse
Affiliation(s)
- Stephanie L Bishop
- Chemistry, University of British Columbia, Kelowna, British Columbia, CanadaV1V 1V7.
| | | |
Collapse
|
38
|
A Single Laboratory Validation for the Analysis of Underivatized β-N-Methylamino-L-Alanine (BMAA). Neurotox Res 2019; 39:49-71. [PMID: 31823228 DOI: 10.1007/s12640-019-00137-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/28/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023]
Abstract
β-N-Methylamino-L-alanine (BMAA) is a non-protein amino acid produced by cyanobacteria that can accumulate in ecosystems and food webs. Human exposure to cyanobacterial and algal blooms may be a risk factor for neurodegenerative diseases such as Alzheimer's disease and amyotrophic lateral sclerosis. Analytical chemists have struggled to find reliable methods for BMAA analysis in complex sample matrices. Analysis of BMAA is complicated by at least 3 naturally occurring isomers: N-(2-aminoethyl)glycine (AEG), 2,4-diaminobutyric acid (DAB), and β-aminomethyl-L-alanine (BAMA). More than 350 publications have reported detection and quantification of BMAA and its isomers, but varying results have led to controversy in the literature. The objective of this study was to perform a single laboratory validation (SLV) of a frequently published method for BMAA analysis using a ZIC-HILIC column. We investigated the selectivity, linearity, accuracy, precision, and sensitivity of the method and our data show that this HILIC method fails many of the criteria for a validated method. The method fails the criterion for selectivity as the chromatography does not separate BMAA from its isomer BAMA. Sensitivity of the method greatly decreased over the experimental period and it demonstrated a higher limit of detection (LOD) (7.5 pg on column) and a higher lower limit of quantification (LLOQ) (30 pg on column) than other published validated methods. The method demonstrated poor precision of repeated injections of standards of BMAA with % relative standard deviation (%RSD) values that ranged from 37 to 107% while HorRat values for BMAA had a fail rate of 80% and BAMA had a fail rate of 73%. No HorRat values between 0.5 and 2 were found for repeated injections of standards of AEG and DAB. Recovery of 13C3,15N2-BMAA in a cyanobacterial matrix was < 10% in experiments and we were also unable to accurately detect other protein amino acids including methionine, cysteine, or alanine, indicating matrix effects. The results of this study demonstrate that the ZIC-HILIC column is not fit for purpose for the analysis of BMAA in cyanobacterial matrices and further provides explanations for the high level of negative results reported by researchers using this method.
Collapse
|
39
|
Production of β-methylamino-L-alanine (BMAA) and Its Isomers by Freshwater Diatoms. Toxins (Basel) 2019; 11:toxins11090512. [PMID: 31480725 PMCID: PMC6784237 DOI: 10.3390/toxins11090512] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/23/2019] [Accepted: 08/29/2019] [Indexed: 12/14/2022] Open
Abstract
β-methylamino-L-alanine (BMAA) is a non-protein amino acid that has been implicated as a risk factor for motor neurone disease (MND). BMAA is produced by a wide range of cyanobacteria globally and by a small number of marine diatoms. BMAA is commonly found with two of its constitutional isomers: 2,4-diaminobutyric acid (2,4-DAB), and N-(2-aminoethyl)glycine (AEG). The isomer 2,4-DAB, like BMAA, has neurotoxic properties. While many studies have shown BMAA production by cyanobacteria, few studies have looked at other algal groups. Several studies have shown BMAA production by marine diatoms; however, there are no studies examining freshwater diatoms. This study aimed to determine if some freshwater diatoms produced BMAA, and which diatom taxa are capable of BMAA, 2,4-DAB and AEG production. Five axenic diatom cultures were established from river and lake sites across eastern Australia. Cultures were harvested during the stationary growth phase and intracellular amino acids were extracted. Using liquid chromatography triple quadrupole mass spectrometry (LC-MS/MS), diatom extracts were analysed for the presence of both free and protein-associated BMAA, 2,4-DAB and AEG. Of the five diatom cultures analysed, four were found to have detectable BMAA and AEG, while 2,4-DAB was found in all cultures. These results show that BMAA production by diatoms is not confined to marine genera and that the prevalence of these non-protein amino acids in Australian freshwater environments cannot be solely attributed to cyanobacteria.
Collapse
|
40
|
Wu X, Wu H, Gu X, Zhang R, Ye J, Sheng Q. Biomagnification characteristics and health risk assessment of the neurotoxin BMAA in freshwater aquaculture products of Taihu Lake Basin, China. CHEMOSPHERE 2019; 229:332-340. [PMID: 31078890 DOI: 10.1016/j.chemosphere.2019.04.210] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/15/2019] [Accepted: 04/28/2019] [Indexed: 06/09/2023]
Abstract
In freshwater aquaculture ecosystems with high-frequency occurrences of cyanobacteria blooms, a chronic neurotoxic cyanobacteria toxin, β-N-methylamino-l-alanine (BMAA), is a new pollutant that affects the normal growth, development, and reproduction of aquaculture organisms. BMAA poses a great threat to the food quality and food safety of aquatic products. In this paper, high-performance liquid chromatography-mass spectrometry (HPLC-MS/MS) was used to detect the contents of BMAA in the edible portions of six representative freshwater aquaculture products (Corbicula fluminea, Anodonta arcaeformis, Macrobrachium nipponense, Eriocheir sinensis, Ctenopharyngodon idella, and Mylopharyngodon piceus) from Taihu Lake Basin in China. Noncarcinogenic health risks were assessed with reference to the model recommended by the International Environmental Modelling and Software Society and based on the biomagnification characteristics of BMAA in the various aquaculture products investigated by the stable nitrogen isotope technique. The average BMAA concentrations in the edible portions of the six freshwater culture products were from 2.05 ± 1.40 to 4.21 ± 1.26 μg g-1 dry weight (DW), and the difference was significant (p < 0.05), such a difference increased with the increase in the trophic level in the aquaculture products. Although a biomagnification indication was observed, the trophic magnification factor (TMF) was only 1.20 which exhibited a relatively low biomagnification efficiency. The annual health risk values of BMAA in all the measured aquatic products were within the maximum tolerable range (<1 × 10-6 a-1), and the health risk increased with the increase in the trophic level. The risk values of BMAA in the six freshwater aquaculture products for children was slightly higher than the negligible level (<1 × 10-7 a-1), thus there might have potential health risks for children's long-term consumption. Considering China's national conditions, the guidance values of BMAA based on the quality and safety of freshwater aquaculture products were proposed to be 7.2 μg g-1 DW for adults and 1.8 μg g-1 DW for children.
Collapse
Affiliation(s)
- Xiang Wu
- Key Laboratory of Aquatic Resources Conservation and Development Technology Research, College of Life Sciences, Huzhou University, Huzhou City, Zhejiang Province, 313000, China.
| | - Hao Wu
- Environmental Protection Monitoring Centre Station, Huzhou City, Zhejiang Province, 313000, China
| | - Xiaoxiao Gu
- Key Laboratory of Aquatic Resources Conservation and Development Technology Research, College of Life Sciences, Huzhou University, Huzhou City, Zhejiang Province, 313000, China
| | - Rongfei Zhang
- Key Laboratory of Aquatic Resources Conservation and Development Technology Research, College of Life Sciences, Huzhou University, Huzhou City, Zhejiang Province, 313000, China
| | - Jinyun Ye
- Key Laboratory of Aquatic Resources Conservation and Development Technology Research, College of Life Sciences, Huzhou University, Huzhou City, Zhejiang Province, 313000, China
| | - Qiang Sheng
- Key Laboratory of Aquatic Resources Conservation and Development Technology Research, College of Life Sciences, Huzhou University, Huzhou City, Zhejiang Province, 313000, China
| |
Collapse
|
41
|
Metabolism of the neurotoxic amino acid β-N-methylamino-L-alanine in human cell culture models. Toxicon 2019; 168:131-139. [PMID: 31330193 DOI: 10.1016/j.toxicon.2019.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/12/2022]
Abstract
Human dietary exposure to the environmental neurotoxin β-N-methylamino-L-alanine (BMAA) has been implicated in an increased risk of developing sporadic neurodegenerative diseases like Alzheimer's and amyotrophic lateral sclerosis. Evidence suggests that humans are exposed to BMAA globally, but very little is known about BMAA metabolism in mammalian systems, let alone in humans. The most plausible, evidence-based mechanisms of BMAA toxicity rely on the metabolic stability of the amino acid and that, following ingestion, it enters the circulatory system unmodified. BMAA crosses from the intestinal lumen into the circulatory system, and the small intestine and liver are the first sites for dietary amino acid metabolism. Both tissues have substantial amino acid metabolic needs, which are largely fulfilled by dietary amino acids. Metabolism of BMAA in these tissues has been largely overlooked, yet is important in gauging the true human exposure risk. Here we investigate the potential for BMAA metabolism by the human liver and small intestine, using in vitro cell systems. Data show that BMAA metabolism via common proteinogenic amino acid metabolic pathways is negligible, and that in the presence of other amino acids cellular uptake of BMAA is substantially reduced. These data suggest that the majority of ingested BMAA remains unmodified following passage through the small intestine and liver. This not only supports oral BMAA exposure as a plausible exposure route to toxic doses of BMAA, but also supports previous notions that protein deficient diets or malnutrition may increase an individual's susceptibility to BMAA absorption and subsequent toxicity.
Collapse
|
42
|
Pierozan P, Karlsson O. Mitotically heritable effects of BMAA on striatal neural stem cell proliferation and differentiation. Cell Death Dis 2019; 10:478. [PMID: 31209203 PMCID: PMC6579766 DOI: 10.1038/s41419-019-1710-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/30/2019] [Accepted: 05/28/2019] [Indexed: 11/24/2022]
Abstract
The widespread environmental contaminant β-methylamino-L-alanine (BMAA) is a developmental neurotoxicant that can induce long-term learning and memory deficits. Studies have shown high transplacental transfer of 3H-BMAA and a significant uptake in fetal brain. Therefore, more information on how BMAA may influence growth and differentiation of neural stem cells is required for assessment of the risk to the developing brain. The aim of this study was to investigate direct and mitotically inherited effects of BMAA exposure using primary striatal neurons and embryonic neural stem cells. The neural stem cells were shown to be clearly more susceptible to BMAA exposure than primary neurons. Exposure to 250 µM BMAA reduced neural stem cell proliferation through apoptosis and G2/M arrest. At lower concentrations (50–100 µM), not affecting cell proliferation, BMAA reduced the differentiation of neural stem cells into astrocytes, oligodendrocytes, and neurons through glutamatergic mechanisms. Neurons that were derived from the BMAA-treated neuronal stem cells demonstrated morphological alterations including reduced neurite length, and decreased number of processes and branches per cell. Interestingly, the BMAA-induced changes were mitotically heritable to daughter cells. The results suggest that early-life exposure to BMAA impairs neuronal stem cell programming, which is vital for development of the nervous system and may result in long-term consequences predisposing for both neurodevelopmental disorders and neurodegenerative disease later in life. More attention should be given to the potential adverse effects of BMAA exposure on brain development.
Collapse
Affiliation(s)
- Paula Pierozan
- Science for Life Laboratory, Department of Environmental Sciences and Analytical Chemistry, Stockholm University, 114 18, Stockholm, Sweden.,Department of Pharmaceutical Biosciences, Uppsala University, Box 591, 751 24, Uppsala, Sweden
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Sciences and Analytical Chemistry, Stockholm University, 114 18, Stockholm, Sweden. .,Department of Pharmaceutical Biosciences, Uppsala University, Box 591, 751 24, Uppsala, Sweden.
| |
Collapse
|
43
|
Manolidi K, Triantis TM, Kaloudis T, Hiskia A. Neurotoxin BMAA and its isomeric amino acids in cyanobacteria and cyanobacteria-based food supplements. JOURNAL OF HAZARDOUS MATERIALS 2019; 365:346-365. [PMID: 30448548 DOI: 10.1016/j.jhazmat.2018.10.084] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 06/09/2023]
Abstract
Cyanobacteria are photosynthetic microorganisms distributed globally in aquatic and terrestrial environments. They are also industrially cultivated to be used as dietary supplements, as they have a high nutritional value; however, they are also known to produce a wide range of toxic secondary metabolites, called cyanotoxins. BMAA (β-methylamino-l-alanine) and its most common structural isomers, DAB (2,4-diaminobutyric acid) and AEG (N-2-aminoethylglycine) produced by cyanobacteria, are non-proteinogenic amino acids that have been associated with neurodegenerative diseases. A possible route of exposure to those amino acids is through consumption of food supplements based on cyanobacteria. The review critically discusses existing reports regarding the occurrence of BMAA, DAB and AEG in cyanobacteria and cyanobacteria-based food supplements. It is shown that inconsistencies in reported results could be attributed to performance of different methods of extraction and analysis applied and in ambiguities regarding determination of soluble and bound fractions of the compounds. The critical aspect of this review aims to grow awareness of human intake of neurotoxic amino acids, while results presented in literature concerning dietary supplements aim to promote further research, quality control as well as development of guidelines for cyanotoxins in food products.
Collapse
Affiliation(s)
- Korina Manolidi
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "DEMOKRITOS", Patriarchou Grigoriou E' & Neapoleos 27, 15341, Athens, Greece; National and Kapodistrian University of Athens, Faculty of Chemistry, 15784, Panepistimiopolis, Athens, Greece.
| | - Theodoros M Triantis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "DEMOKRITOS", Patriarchou Grigoriou E' & Neapoleos 27, 15341, Athens, Greece.
| | - Triantafyllos Kaloudis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "DEMOKRITOS", Patriarchou Grigoriou E' & Neapoleos 27, 15341, Athens, Greece; Water Quality Control Department, Athens Water Supply and Sewerage Company - EYDAP SA, Athens, Greece.
| | - Anastasia Hiskia
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "DEMOKRITOS", Patriarchou Grigoriou E' & Neapoleos 27, 15341, Athens, Greece.
| |
Collapse
|
44
|
|
45
|
β-N-methylamino-L-alanine (BMAA) suppresses cell cycle progression of non-neuronal cells. Sci Rep 2018; 8:17995. [PMID: 30573743 PMCID: PMC6301973 DOI: 10.1038/s41598-018-36418-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 11/21/2018] [Indexed: 12/25/2022] Open
Abstract
β-N-methylamino-L-alanine (BMAA), a natural non-proteinaceous amino acid, is a neurotoxin produced by a wide range of cyanobacteria living in various environments. BMAA is a candidate environmental risk factor for neurodegenerative diseases such as amyotrophic lateral sclerosis and Parkinson-dementia complex. Although BMAA is known to exhibit weak neuronal excitotoxicity via glutamate receptors, the underlying mechanism of toxicity has yet to be fully elucidated. To examine the glutamate receptor-independent toxicity of BMAA, we investigated the effects of BMAA in non-neuronal cell lines. BMAA potently suppressed the cell cycle progression of NIH3T3 cells at the G1/S checkpoint without inducing plasma membrane damage, apoptosis, or overproduction of reactive oxygen species, which were previously reported for neurons and neuroblastoma cells treated with BMAA. We found no evidence that activation of glutamate receptors was involved in the suppression of the G1/S transition by BMAA. Our results indicate that BMAA affects cellular functions, such as the division of non-neuronal cells, through glutamate receptor-independent mechanisms.
Collapse
|
46
|
Facciponte DN, Bough MW, Seidler D, Carroll JL, Ashare A, Andrew AS, Tsongalis GJ, Vaickus LJ, Henegan PL, Butt TH, Stommel EW. Identifying aerosolized cyanobacteria in the human respiratory tract: A proposed mechanism for cyanotoxin-associated diseases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:1003-1013. [PMID: 30248825 PMCID: PMC6159226 DOI: 10.1016/j.scitotenv.2018.07.226] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/12/2018] [Accepted: 07/17/2018] [Indexed: 05/10/2023]
Abstract
Cyanobacteria produce harmful toxins that have been associated with several acute conditions and chronic human diseases, like gastroenteritis, non-alcoholic liver disease, and amyotrophic lateral sclerosis. Aerosol from waterbodies appears to be a likely mechanism for exposure. We conducted a study of human biospecimens focused on the cyanobacterial aerosilization process by evaluating the extent to which cyanobacteria can invade the human respiratory tract. Our study suggests that humans routinely inhale aerosolized cyanobacteria, which can be harbored in the nostrils and the lungs. Using PCR, cyanobacteria were found at high frequencies in the upper respiratory tract (92.20%) and central airway (79.31%) of our study subjects. Nasal swabs were not predictive of bronchoalveolar lavage (BAL) when detecting inhaled cyanobacteria. Interestingly, we found no evidence that time of year was a significant factor for cyanobacteria positivity (BAL cytology p = 1.0 and PCR p = 1.0); (nasal swab cytology p = 0.051 and PCR p = 0.65). Additionally, we found that proximity to a waterbody was not a significant factor for cyanobacteria positivity in BAL and nasal swabs collected during cyanobacteria bloom season [May-October] (p = 0.46 and p = 0.38). These data suggest that cyanobacteria exposure may be a prevalent and chronic phenomenon not necessarily restricted to waterbodies alone. Sources of indoor exposure warrant future investigation. Given the widespread prevalence of cyanobacterial exposure in the airway, investigation of the aerosol spread of cyanotoxins, more specifically, is warranted. Our findings are consistent with the hypothesis that aerosol is a significant route for cyanobacteria exposure, and thus a likely route of transmission for cyanotoxin-associated human diseases.
Collapse
Affiliation(s)
- Dominic N Facciponte
- Dartmouth-Hitchcock Medical Center, Department of Neurology, One Medical Center Dr., Lebanon, NH 03756, USA.
| | - Matthew W Bough
- Dartmouth-Hitchcock Medical Center, Department of Neurology, One Medical Center Dr., Lebanon, NH 03756, USA; Dartmouth College, Hanover, NH 03755, USA
| | - Darius Seidler
- Dartmouth-Hitchcock Medical Center, Department of Pulmonary and Critical Care Medicine, One Medical Center Dr., Lebanon, NH 03756, USA; Geisel School of Medicine at Dartmouth, One Rope Ferry Rd., Hanover, NH 03755, USA
| | - James L Carroll
- Dartmouth-Hitchcock Medical Center, Department of Pulmonary and Critical Care Medicine, One Medical Center Dr., Lebanon, NH 03756, USA; Geisel School of Medicine at Dartmouth, One Rope Ferry Rd., Hanover, NH 03755, USA
| | - Alix Ashare
- Dartmouth-Hitchcock Medical Center, Department of Pulmonary and Critical Care Medicine, One Medical Center Dr., Lebanon, NH 03756, USA; Geisel School of Medicine at Dartmouth, One Rope Ferry Rd., Hanover, NH 03755, USA
| | - Angeline S Andrew
- Dartmouth-Hitchcock Medical Center, Department of Neurology, One Medical Center Dr., Lebanon, NH 03756, USA; Geisel School of Medicine at Dartmouth, One Rope Ferry Rd., Hanover, NH 03755, USA
| | - Gregory J Tsongalis
- Dartmouth-Hitchcock Medical Center, Department of Pathology and Laboratory Medicine, One Medical Center Dr., Lebanon, NH 03756, USA; Geisel School of Medicine at Dartmouth, One Rope Ferry Rd., Hanover, NH 03755, USA
| | - Louis J Vaickus
- Dartmouth-Hitchcock Medical Center, Department of Pathology and Laboratory Medicine, One Medical Center Dr., Lebanon, NH 03756, USA; Geisel School of Medicine at Dartmouth, One Rope Ferry Rd., Hanover, NH 03755, USA
| | - Patricia L Henegan
- Dartmouth-Hitchcock Medical Center, Department of Neurology, One Medical Center Dr., Lebanon, NH 03756, USA
| | - Tanya H Butt
- Dartmouth-Hitchcock Medical Center, Department of Neurology, One Medical Center Dr., Lebanon, NH 03756, USA
| | - Elijah W Stommel
- Dartmouth-Hitchcock Medical Center, Department of Neurology, One Medical Center Dr., Lebanon, NH 03756, USA; Geisel School of Medicine at Dartmouth, One Rope Ferry Rd., Hanover, NH 03755, USA.
| |
Collapse
|
47
|
Cyanobacterial Neurotoxin Beta-Methyl-Amino-l-Alanine Affects Dopaminergic Neurons in Optic Ganglia and Brain of Daphnia magna. Toxins (Basel) 2018; 10:toxins10120527. [PMID: 30544796 PMCID: PMC6315693 DOI: 10.3390/toxins10120527] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/02/2018] [Accepted: 12/06/2018] [Indexed: 12/31/2022] Open
Abstract
The non-proteinogenic amino acid beta-methyl-amino-l-alanine (BMAA) is a neurotoxin produced by cyanobacteria. BMAA accumulation in the brain of animals via biomagnification along the food web can contribute to the development of neurodegenerative diseases such as Amyotrophic lateral sclerosis/Parkinsonism dementia complex (ALS/PDC), the latter being associated with a loss of dopaminergic neurons. Daphnia magna is an important microcrustacean zooplankton species that plays a key role in aquatic food webs, and BMAA-producing cyanobacteria often form part of their diet. Here, we tested the effects of BMAA on putative neurodegeneration of newly identified specific dopaminergic neurons in the optic ganglia/brain complex of D. magna using quantitative tyrosine-hydroxylase immunohistochemistry and fluorescence cytometry. The dopaminergic system was analysed in fed and starved isogenic D. magna adults incubated under different BMAA concentrations over 4 days. Increased BMAA concentration showed significant decrease in the stainability of dopaminergic neurons of D. magna, with fed animals showing a more extreme loss. Furthermore, higher BMAA concentrations tended to increase offspring mortality during incubation. These results are indicative of ingested BMAA causing neurodegeneration of dopaminergic neurons in D. magna and adversely affecting reproduction. This may imply similar effects of BMAA on known human neurodegenerative diseases involving dopaminergic neurons.
Collapse
|
48
|
Chen YT, Chen WR, Lin TF. Oxidation of cyanobacterial neurotoxin beta-N-methylamino-L-alanine (BMAA) with chlorine, permanganate, ozone, hydrogen peroxide and hydroxyl radical. WATER RESEARCH 2018; 142:187-195. [PMID: 29879656 DOI: 10.1016/j.watres.2018.05.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/19/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Beta-N-methylamino-L-alanine (BMAA), a new cyanobacterial neurotoxin produced by more than 20 genera of cyanobacteria, has been associated with amyotrophic lateral sclerosis/parkinsonism-dementia complex (ALS/PDC) or Alzheimer's disease. Although BMAA has been shown to be removed in drinking water treatment plants (DWTPs), studies regarding the reactions between BMAA and the commonly used oxidants in DWTPs are limited to chlorine under specific conditions. In this study, the reaction kinetics between BMAA and five oxidants commonly used in DWTPs, including chlorine, potassium permanganate, ozone, hydrogen peroxide and hydroxyl radical were investigated. The oxidation of BMAA by chlorine, ozone or OH radical followed the second order reaction rate law, and the reaction rate was in the order of OH radicals > ozone >> chlorine. The rate constants increased by 20 times from 2 × 103 M-1s-1 at pH 5.8 to 4.93 × 104 M-1s-1 at pH 7, and kept in a relatively stable level at pH 7-9.5; rate constants of OH radicals were 1.11 × 108 M-1s-1 at pH 6.5 and 5.51 × 109- 1.35 × 1010 M-1s-1 at pH > 6.5. For both permanganate and H2O2 only, the removal of BMAA was negligible. The pH dependency of chlorine and the OH radical may be attributed to the neutral form of BMAA with free lone pair electrons readily to be attacked by oxidants. However, for ozonation of BMAA, the rate constants were 1.88 × 106-3.72 × 1010 M-1s-1, with a linear dependency on pH, implying that the hydroxide concentration governs the reaction. In addition, the rate of BMAA degradation was found to be slower in natural water if compared with that in deionized water.
Collapse
Affiliation(s)
- Yi-Ting Chen
- Department of Environmental Engineering and Global Water Quality Research Center, National Cheng Kung University, Tainan City, 70101, Taiwan
| | - Wan-Ru Chen
- Department of Environmental Engineering and Global Water Quality Research Center, National Cheng Kung University, Tainan City, 70101, Taiwan
| | - Tsair-Fuh Lin
- Department of Environmental Engineering and Global Water Quality Research Center, National Cheng Kung University, Tainan City, 70101, Taiwan.
| |
Collapse
|
49
|
Ubiquity of the neurotoxin β-N-methylamino-L-alanine and its isomers confirmed by two different mass spectrometric methods in diverse marine mollusks. Toxicon 2018; 151:129-136. [DOI: 10.1016/j.toxicon.2018.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/24/2018] [Accepted: 07/05/2018] [Indexed: 12/11/2022]
|
50
|
Pierozan P, Andersson M, Brandt I, Karlsson O. The environmental neurotoxin β-N-methylamino-L-alanine inhibits melatonin synthesis in primary pinealocytes and a rat model. J Pineal Res 2018. [PMID: 29528516 DOI: 10.1111/jpi.12488] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The environmental neurotoxin β-N-methylamino-L-alanine (BMAA) is a glutamate receptor agonist that can induce oxidative stress and has been implicated as a possible risk factor for neurodegenerative disease. Detection of BMAA in mussels, crustaceans, and fish illustrates that the sources of human exposure to this toxin are more abundant than previously anticipated. The aim of this study was to determine uptake of BMAA in the pineal gland and subsequent effects on melatonin production in primary pinealocyte cultures and a rat model. Autoradiographic imaging of 10-day-old male rats revealed a high and selective uptake in the pineal gland at 30 minutes to 24 hours after 14 C-L-BMAA administration (0.68 mg/kg). Primary pinealocyte cultures exposed to 0.05-3 mmol/L BMAA showed a 57%-93% decrease in melatonin synthesis in vitro. Both the metabotropic glutamate receptor 3 (mGluR3) antagonist Ly341495 and the protein kinase C (PKC) activator phorbol-12-myristate-13-acetate prevented the decrease in melatonin secretion, suggesting that BMAA inhibits melatonin synthesis by mGluR3 activation and PKC inhibition. Serum analysis revealed a 45% decrease in melatonin concentration in neonatal rats assessed 2 weeks after BMAA administration (460 mg/kg) and confirmed an inhibition of melatonin synthesis in vivo. Given that melatonin is a most important neuroprotective molecule in the brain, the etiology of BMAA-induced neurodegeneration may include mechanisms beyond direct excitotoxicity and oxidative stress.
Collapse
Affiliation(s)
- Paula Pierozan
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Marie Andersson
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
| | - Ingvar Brandt
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
| | - Oskar Karlsson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|