1
|
Stachowski NJ, Wheel JH, Singh S, Atoche SJ, Yao L, Garcia-Ramirez DL, Giszter SF, Dougherty KJ. Activity of spinal RORβ neurons is related to functional improvements following combination treatment after complete SCI. Proc Natl Acad Sci U S A 2025; 122:e2406333122. [PMID: 40198697 PMCID: PMC12012501 DOI: 10.1073/pnas.2406333122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 02/05/2025] [Indexed: 04/10/2025] Open
Abstract
Various strategies targeting spinal locomotor circuitry have been associated with functional improvements after spinal cord injury (SCI). However, the neuronal populations mediating beneficial effects remain largely unknown. Using a combination therapy in a mouse model of complete SCI, we show that virally delivered brain-derived neurotrophic factor (BDNF) (AAV-BDNF) activates hindlimb stepping and causes hyperreflexia, whereas submotor threshold epidural stimulation (ES) reduces BDNF-induced hyperreflexia. Given their role in gating proprioceptive afferents and as a potential convergence point of BDNF and ES, we hypothesized that an enhanced excitability of inhibitory RORβ neurons would be associated with locomotor improvements. Ex vivo spinal slice recordings from mice with a range of locomotor and hyperreflexia scores revealed that the excitability of RORβ neurons was related to functional outcome post-SCI. Mice with poor locomotor function after SCI had less excitable RORβ neurons, but the excitability of RORβ neurons was similar between the uninjured and "best stepping" SCI groups. Further, chemogenetic activation of RORβ neurons reduced BDNF-induced hyperreflexia and improved stepping, similar to ES. Our findings identify inhibitory RORβ neurons as a target population to limit hyperreflexia and enhance locomotor function after SCI.
Collapse
Affiliation(s)
- Nicholas J. Stachowski
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA19129
| | - Jaimena H. Wheel
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA19129
| | - Shayna Singh
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA19129
| | - Sebastian J. Atoche
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA19129
| | - Lihua Yao
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA19129
| | - D. Leonardo Garcia-Ramirez
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA19129
| | - Simon F. Giszter
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA19129
| | - Kimberly J. Dougherty
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA19129
| |
Collapse
|
2
|
Huang Z, Li J, Wo J, Li C, Wu Z, Deng X, Liang Y, Li F, Chen B, Jia B, Wang L, Wang Y, Sun G, Li Z, Zhu H, Guest JD, So K, Fu Q, Zhou L. Intranasal Delivery of Brain-Derived Neurotrophic Factor (BDNF)-Loaded Small Extracellular Vesicles for Treating Acute Spinal Cord Injury in Rats and Monkeys. J Extracell Vesicles 2025; 14:e70066. [PMID: 40194993 PMCID: PMC11975507 DOI: 10.1002/jev2.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 03/10/2025] [Indexed: 04/09/2025] Open
Abstract
Besides surgical decompression, neuroprotection and neuroinflammation reduction are critical for acute spinal cord injury (SCI). In this study, we prepared small extracellular vesicles (sEVs) from immortalised mesenchymal stem cells overexpressing brain-derived neurotrophic factor (BDNF) and evaluated whether intranasal administration of BDNF-sEVs is a therapeutic option for acute SCI. In cultured neurons, BDNF loading enhanced neurite outgrowth promoted by sEVs. After intranasal administration, mCherry-labelled sEVs were transported to the injured spinal cords of rats and monkeys and mainly taken up by neurons. In acute SCI rats, intranasal administration of sEVs and BDNF-sEVs reduced glial responses and proinflammatory cytokine production, enhanced neuronal survival and angiogenesis in the lesion, promoted injured axon rewiring, delayed lumbar spinal motoneuron atrophy below the lesion, and improved functional performance. The rats receiving BDNF-sEV treatment showed improved neural repair and functional recovery compared to those with sEV treatment. Intranasal administration of BDNF-sEVs, but not of sEVs, increased BDNF levels and phosphorylation of downstream signals in the rat-injured spinal cord samples, indicating activation of the BDNF/TrkB signalling pathway. In acute SCI monkeys, intranasal administration of BDNF-sEVs was further confirmed to inhibit glial reactivities and proinflammatory cytokine release, increasing BDNF levels in the cerebrospinal fluid, enhancing neural network rewiring of injured spinal cords and neuronal activities of the brain, and improving functional performances in behavioural tests and electrophysiological recordings. In conclusion, BDNF-sEVs play a combinatory therapeutic role of sEVs and BDNF, and intranasal administration of BDNF-sEVs is a potential option for the clinical treatment of acute SCI.
Collapse
Affiliation(s)
- Zhonghai Huang
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord ReconstructionThe Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital)Jinan UniversityHeyuanChina
- Guangdong‐Hongkong‐Macau Institute of CNS RegenerationKey Laboratory of CNS Regeneration (Jinan University)‐Ministry of EducationGuangdong Key Laboratory of Non‐Human Primate ResearchJinan UniversityGuangzhouChina
- Department of OrthopedicsThe First Affiliated HospitalJinan UniversityGuangzhouChina
| | - Jing Li
- Guangdong‐Hongkong‐Macau Institute of CNS RegenerationKey Laboratory of CNS Regeneration (Jinan University)‐Ministry of EducationGuangdong Key Laboratory of Non‐Human Primate ResearchJinan UniversityGuangzhouChina
- Department of Human Anatomy, The College of Basic Medical SciencesJinan UniversityGuangzhouChina
| | - Jin Wo
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord ReconstructionThe Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital)Jinan UniversityHeyuanChina
- Guangdong‐Hongkong‐Macau Institute of CNS RegenerationKey Laboratory of CNS Regeneration (Jinan University)‐Ministry of EducationGuangdong Key Laboratory of Non‐Human Primate ResearchJinan UniversityGuangzhouChina
- Department of OrthopedicsThe First Affiliated HospitalJinan UniversityGuangzhouChina
| | - Cheng‐Lin Li
- Otorhinolaryngology Hospital of The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Zi‐Cong Wu
- Otorhinolaryngology Hospital of The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Xiao‐Hui Deng
- Otorhinolaryngology Hospital of The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Extracellular Vesicle Research and Clinical Translational CenterThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Yaying Liang
- Guangdong‐Hongkong‐Macau Institute of CNS RegenerationKey Laboratory of CNS Regeneration (Jinan University)‐Ministry of EducationGuangdong Key Laboratory of Non‐Human Primate ResearchJinan UniversityGuangzhouChina
| | - Fuxiang Li
- Guangdong‐Hongkong‐Macau Institute of CNS RegenerationKey Laboratory of CNS Regeneration (Jinan University)‐Ministry of EducationGuangdong Key Laboratory of Non‐Human Primate ResearchJinan UniversityGuangzhouChina
| | - Boli Chen
- Guangdong‐Hongkong‐Macau Institute of CNS RegenerationKey Laboratory of CNS Regeneration (Jinan University)‐Ministry of EducationGuangdong Key Laboratory of Non‐Human Primate ResearchJinan UniversityGuangzhouChina
| | - Bin Jia
- Guangdong‐Hongkong‐Macau Institute of CNS RegenerationKey Laboratory of CNS Regeneration (Jinan University)‐Ministry of EducationGuangdong Key Laboratory of Non‐Human Primate ResearchJinan UniversityGuangzhouChina
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT‐MRI CenterThe First Affiliated HospitalJinan UniversityGuangzhouChina
| | - Ying Wang
- Medical Imaging CenterThe First Affiliated HospitalJinan UniversityGuangzhouChina
| | - Guodong Sun
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord ReconstructionThe Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital)Jinan UniversityHeyuanChina
- Department of OrthopedicsThe First Affiliated HospitalJinan UniversityGuangzhouChina
| | - Zhizhong Li
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord ReconstructionThe Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital)Jinan UniversityHeyuanChina
- Department of OrthopedicsThe First Affiliated HospitalJinan UniversityGuangzhouChina
| | - Hui Zhu
- Kunming International Spine and Spinal Cord Injury Treatment CenterKunming Tongren HospitalKunmingChina
| | - James D Guest
- Neurological Surgery and the Miami Project to Cure ParalysisMiller School of MedicineMiamiFloridaUSA
| | - Kwok‐Fai So
- Guangdong‐Hongkong‐Macau Institute of CNS RegenerationKey Laboratory of CNS Regeneration (Jinan University)‐Ministry of EducationGuangdong Key Laboratory of Non‐Human Primate ResearchJinan UniversityGuangzhouChina
- Department of Human Anatomy, The College of Basic Medical SciencesJinan UniversityGuangzhouChina
- Neuroscience and Neurorehabilitation InstituteUniversity of Health and Rehabilitation SciencesQingdaoShandongChina
- Co‐Innovation Center of NeuroregenerationNantong UniversityJiangsuChina
- Center for Exercise and Brain ScienceSchool of PsychologyShanghai University of SportShanghaiChina
| | - Qing‐Ling Fu
- Otorhinolaryngology Hospital of The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Extracellular Vesicle Research and Clinical Translational CenterThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Libing Zhou
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord ReconstructionThe Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital)Jinan UniversityHeyuanChina
- Guangdong‐Hongkong‐Macau Institute of CNS RegenerationKey Laboratory of CNS Regeneration (Jinan University)‐Ministry of EducationGuangdong Key Laboratory of Non‐Human Primate ResearchJinan UniversityGuangzhouChina
- Department of OrthopedicsThe First Affiliated HospitalJinan UniversityGuangzhouChina
- Neuroscience and Neurorehabilitation InstituteUniversity of Health and Rehabilitation SciencesQingdaoShandongChina
- Co‐Innovation Center of NeuroregenerationNantong UniversityJiangsuChina
- Center for Exercise and Brain ScienceSchool of PsychologyShanghai University of SportShanghaiChina
| |
Collapse
|
3
|
Inoue T, Ueno M. The diversity and plasticity of descending motor pathways rewired after stroke and trauma in rodents. Front Neural Circuits 2025; 19:1566562. [PMID: 40191711 PMCID: PMC11968733 DOI: 10.3389/fncir.2025.1566562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 03/10/2025] [Indexed: 04/09/2025] Open
Abstract
Descending neural pathways to the spinal cord plays vital roles in motor control. They are often damaged by brain injuries such as stroke and trauma, which lead to severe motor impairments. Due to the limited capacity for regeneration of neural circuits in the adult central nervous system, currently no essential treatments are available for complete recovery. Notably, accumulating evidence shows that residual circuits of the descending pathways are dynamically reorganized after injury and contribute to motor recovery. Furthermore, recent technological advances in cell-type classification and manipulation have highlighted the structural and functional diversity of these pathways. Here, we focus on three major descending pathways, namely, the corticospinal tract from the cerebral cortex, the rubrospinal tract from the red nucleus, and the reticulospinal tract from the reticular formation, and summarize the current knowledge of their structures and functions, especially in rodent models (mice and rats). We then review and discuss the process and patterns of reorganization induced in these pathways following injury, which compensate for lost connections for recovery. Understanding the basic structural and functional properties of each descending pathway and the principles of the induction and outcome of the rewired circuits will provide therapeutic insights to enhance interactive rewiring of the multiple descending pathways for motor recovery.
Collapse
Affiliation(s)
- Takahiro Inoue
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masaki Ueno
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
4
|
Shamsnia HS, Peyrovinasab A, Amirlou D, Sirouskabiri S, Rostamian F, Basiri N, Shalmani LM, Hashemi M, Hushmandi K, Abdolghaffari AH. BDNF-TrkB Signaling Pathway in Spinal Cord Injury: Insights and Implications. Mol Neurobiol 2025; 62:1904-1944. [PMID: 39046702 DOI: 10.1007/s12035-024-04381-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024]
Abstract
Spinal cord injury (SCI) is a neurodegenerative disorder that has critical impact on patient's life expectance and life span, and this disorder also leads to negative socioeconomic features. SCI is defined as a firm collision to the spinal cord which leads to the fracture and the dislocation of vertebrae. The current available treatment is surgery. However, it cannot fully treat SCI, and many consequences remain after the surgery. Accordingly, finding new therapeutics is critical. BDNF-TrkB signaling is a vital signaling in neuronal differentiation, survival, overgrowth, synaptic plasticity, etc. Hence, many studies evaluate its impact on various neurodegenerative disorders. There are several studies evaluating this signaling in SCI, and they show promising outcomes. It was shown that various exercises, chemical interventions, etc. had significant positive impact on SCI by affecting BDNF-TrkB signaling pathway. This study aims to accumulate and evaluate these data and inspect whether this signaling is effective or not.
Collapse
Affiliation(s)
- Hedieh Sadat Shamsnia
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amirreza Peyrovinasab
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Dorsa Amirlou
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shirin Sirouskabiri
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fatemeh Rostamian
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nasim Basiri
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Leila Mohaghegh Shalmani
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran.
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | | | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, No. 99, Yakhchal, Gholhak, Shariati St, P. O. Box: 19419-33111, Tehran, Iran.
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
5
|
Sanati M, Manavi MA, Noruzi M, Behmadi H, Akbari T, Jalali S, Sharifzadeh M, Khoobi M. Carbohydrates and neurotrophic factors: A promising partnership for spinal cord injury rehabilitation. BIOMATERIALS ADVANCES 2025; 166:214054. [PMID: 39332344 DOI: 10.1016/j.bioadv.2024.214054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
Spinal cord injury (SCI) leaves a temporary or enduring motor, sensory, and autonomic function loss, significantly impacting the patient's quality of life. Given their biocompatibility, bioactivity, and tunable attributes, three-dimensional scaffolds frequently employ carbohydrates to facilitate spinal cord regeneration. These scaffolds have also been engineered to be novel local delivery platforms that present distinct advantages in the targeted transportation of drug candidates to the damaged spinal cord, ensuring the right dosage and duration of administration. Neurotrophic factors have emerged as promising therapeutic candidates, preserved neuron survival and encouraged severed axons repair, although their local and continuous delivery is believed to produce considerable spinal cord rehabilitation. This study aims to discuss breakthroughs in scaffold engineering, exploiting carbohydrates as an essential part of their structure, and highlight their impact on spinal cord regeneration and sustained neurotrophic factors delivery to treat SCI.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Amin Manavi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Noruzi
- School of Pharmacy, Semnan University of Medical Sciences, Semnan, Iran
| | - Homayoon Behmadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Akbari
- Department of Microbiology, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Sara Jalali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mehdi Khoobi
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, 1417614411 Tehran, Iran.
| |
Collapse
|
6
|
Lu ZJ, Pan QL, Lin FX. Epigenetic modifications of inflammation in spinal cord injury. Biomed Pharmacother 2024; 179:117306. [PMID: 39153436 DOI: 10.1016/j.biopha.2024.117306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024] Open
Abstract
Spinal cord injury (SCI) is a central nervous system injury that leads to neurological dysfunction or paralysis, which seriously affects patients' quality of life and causes a heavy social and economic burden. The pathological mechanism of SCI has not been fully revealed, resulting in unsatisfactory clinical treatment. Therefore, more research is urgently needed to reveal its precise pathological mechanism. Numerous studies have shown that inflammation is closely related to various pathological processes in SCI. Inflammatory response is an important pathological process leading to secondary injury, and sustained inflammatory response can exacerbate the injury and hinder the recovery of neurological function after injury. Epigenetic modification is considered to be an important regulatory mechanism in the pathological process of many diseases. Epigenetic modification mainly affects the function and characteristics of genes through the reversibility of mechanisms such as DNA methylation, histone modification, and regulation of non-coding RNA, thus having a significant impact on the pathological process of diseases and the survival state of the body. Recently, the role of epigenetic modification in the inflammatory response of SCI has gradually entered the field of view of researchers, and epigenetic modification may be a potential means to treat SCI. In this paper, we review the effects and mechanisms of different types of epigenetic modifications (including histone modifications, DNA methylation, and non-coding RNAs) on post-SCI inflammation and their potential therapeutic effects on inflammation to improve our understanding of the secondary SCI stage. This review aims to help identify new markers, signaling pathways and targeted drugs, and provide theoretical basis and new strategies for the diagnosis and treatment of SCI.
Collapse
Affiliation(s)
- Zhi-Jun Lu
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| | - Qi-Lin Pan
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China
| | - Fei-Xiang Lin
- Department of Spine Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou Hospital-Nanfang Hospital, Southern Medical University), 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| |
Collapse
|
7
|
Kamel DM, Hassan M, Elsawy NA, Hashad D, Fayed AA, Elhabashy AM, Abdel-Fattah YH. Serum brain-derived neurotrophic factor level in patients with disc induced lumbosacral radiculopathy: Relation to pain severity and functional disability. J Clin Neurosci 2024; 128:110773. [PMID: 39137713 DOI: 10.1016/j.jocn.2024.110773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Pain is the major cause of disability in disc induced lumbosacral radiculopathy (LSR) and is related to neurotrophins mainly brain derived neurotrophic factor (BDNF). However, to our knowledge evaluating serum BDNF in disc induced LSR has not been reported before. This study was done to investigate serum BDNF in LSR patients and its relation to pain severity and functional disability. METHODS This case-control study included 40 disc induced LSR patients and 40 age and sex matched healthy subjects. All patients were subjected to neurological examination, electrophysiological evaluation, pain severity assessment using numerical rating scale (NRS) and functional disability assessment using Modified Oswestry Low Back Pain Disability Index (ODI) and Maine-Seattle Back Questionnaire (MSBQ). According to Douleur neuropathique 4 (DN4) questionnaire, patients were divided into those with neuropathic pain and those with non-neuropathic pain. Serum BDNF was measured by enzyme-linked immunosorbent assay in all participants. RESULTS Serum BDNF was significantly higher in LSR patients than in healthy controls (U=272.5, P<0.001). Moreover, serum BDNF was significantly higher in those with neuropathic pain compared to those with non-neuropathic pain (U=35, P=0.03). Serum BDNF had a significant positive correlation with NRS score among those with acute pain (rs=0.537, P=0.026), however there was no significant correlation among those with chronic pain. Furthermore, BDNF had no significant correlation with modified ODI and MSBQ. CONCLUSION Increased serum BDNF may be associated with neuropathic pain and acute pain severity in disc induced LSR. However, it may not be related to chronic pain severity or functional disability.
Collapse
Affiliation(s)
- Dina Mansour Kamel
- Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine, University of Alexandria, Egypt.
| | - Marwa Hassan
- Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine, University of Alexandria, Egypt.
| | - Noha A Elsawy
- Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine, University of Alexandria, Egypt
| | - Doaa Hashad
- Clinical and Chemical Pathology, Faculty of Medicine, University of Alexandria, Egypt
| | | | | | - Yousra Hisham Abdel-Fattah
- Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine, University of Alexandria, Egypt
| |
Collapse
|
8
|
Li Q, Li C, Zhang X. Research Progress on the Effects of Different Exercise Modes on the Secretion of Exerkines After Spinal Cord Injury. Cell Mol Neurobiol 2024; 44:62. [PMID: 39352588 PMCID: PMC11445308 DOI: 10.1007/s10571-024-01497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
Exercise training is a conventional treatment strategy throughout the entire treatment process for patients with spinal cord injury (SCI). Currently, exercise modalities for SCI patients primarily include aerobic exercise, endurance training, strength training, high-intensity interval training, and mind-body exercises. These exercises play a positive role in enhancing skeletal muscle function, inducing neuroprotection and regeneration, thereby influencing neural plasticity, reducing limb spasticity, and improving motor function and daily living abilities in SCI patients. However, the mechanism by which exercise training promotes functional recovery after SCI is still unclear, and there is no consensus on a unified and standardized exercise treatment plan. Different exercise methods may bring different benefits. After SCI, patients' physical activity levels decrease significantly due to factors such as motor dysfunction, which may be a key factor affecting changes in exerkines. The changes in exerkines of SCI patients caused by exercise training are an important and highly relevant and visual evaluation index, which may provide a new research direction for revealing the intrinsic mechanism by which exercise promotes functional recovery after SCI. Therefore, this article summarizes the changes in the expression of common exerkines (neurotrophic factors, inflammatory factors, myokines, bioactive peptides) after SCI, and intends to analyze the impact and role of different exercise methods on functional recovery after SCI from the perspective of exerkines mechanism. We hope to provide theoretical basis and data support for scientific exercise treatment programs after SCI.
Collapse
Affiliation(s)
- Qianxi Li
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Chenyu Li
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Xin Zhang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China.
| |
Collapse
|
9
|
Hingorani S, Paniagua Soriano G, Sánchez Huertas C, Villalba Riquelme EM, López Mocholi E, Martínez Rojas B, Alastrué Agudo A, Dupraz S, Ferrer Montiel AV, Moreno Manzano V. Transplantation of dorsal root ganglia overexpressing the NaChBac sodium channel improves locomotion after complete SCI. Mol Ther 2024; 32:1739-1759. [PMID: 38556794 PMCID: PMC11184342 DOI: 10.1016/j.ymthe.2024.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/21/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
Spinal cord injury (SCI) is a debilitating condition currently lacking treatment. Severe SCI causes the loss of most supraspinal inputs and neuronal activity caudal to the injury, which, coupled with the limited endogenous capacity for spontaneous regeneration, can lead to complete functional loss even in anatomically incomplete lesions. We hypothesized that transplantation of mature dorsal root ganglia (DRGs) genetically modified to express the NaChBac sodium channel could serve as a therapeutic option for functionally complete SCI. We found that NaChBac expression increased the intrinsic excitability of DRG neurons and promoted cell survival and neurotrophic factor secretion in vitro. Transplantation of NaChBac-expressing dissociated DRGs improved voluntary locomotion 7 weeks after injury compared to control groups. Animals transplanted with NaChBac-expressing DRGs also possessed higher tubulin-positive neuronal fiber and myelin preservation, although serotonergic descending fibers remained unaffected. We observed early preservation of the corticospinal tract 14 days after injury and transplantation, which was lost 7 weeks after injury. Nevertheless, transplantation of NaChBac-expressing DRGs increased the neuronal excitatory input by an increased number of VGLUT2 contacts immediately caudal to the injury. Our work suggests that the transplantation of NaChBac-expressing dissociated DRGs can rescue significant motor function, retaining an excitatory neuronal relay activity immediately caudal to injury.
Collapse
Affiliation(s)
- Sonia Hingorani
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Guillem Paniagua Soriano
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Carlos Sánchez Huertas
- Development and Assembly of Bilateral Neural Circuits Laboratory, Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Miguel Hernández, Avenida Santiago Ramon y Cajal, s/n, 03550 Sant Joan d'Alacant, Alicante, Spain
| | - Eva María Villalba Riquelme
- Biochemistry and Molecular Biology Department, Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche-IDiBE, Avenida de la Universidad, s/n, Edificio Torregaitán, 03202 Elche, Alicante, Spain
| | - Eric López Mocholi
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Beatriz Martínez Rojas
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Ana Alastrué Agudo
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Sebastián Dupraz
- Laboratory for Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Antonio Vicente Ferrer Montiel
- Biochemistry and Molecular Biology Department, Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche-IDiBE, Avenida de la Universidad, s/n, Edificio Torregaitán, 03202 Elche, Alicante, Spain
| | - Victoria Moreno Manzano
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain.
| |
Collapse
|
10
|
Ozcicek I, Aysit N, Balcikanli Z, Ayturk NU, Aydeger A, Baydas G, Aydin MS, Altintas E, Erim UC. Development of BDNF/NGF/IKVAV Peptide Modified and Gold Nanoparticle Conductive PCL/PLGA Nerve Guidance Conduit for Regeneration of the Rat Spinal Cord Injury. Macromol Biosci 2024; 24:e2300453. [PMID: 38224015 DOI: 10.1002/mabi.202300453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/22/2023] [Indexed: 01/16/2024]
Abstract
Spinal cord injuries are very common worldwide, leading to permanent nerve function loss with devastating effects in the affected patients. The challenges and inadequate results in the current clinical treatments are leading scientists to innovative neural regenerative research. Advances in nanoscience and neural tissue engineering have opened new avenues for spinal cord injury (SCI) treatment. In order for designed nerve guidance conduit (NGC) to be functionally useful, it must have ideal scaffold properties and topographic features that promote the linear orientation of damaged axons. In this study, it is aimed to develop channeled polycaprolactone (PCL)/Poly-D,L-lactic-co-glycolic acid (PLGA) hybrid film scaffolds, modify their surfaces by IKVAV pentapeptide/gold nanoparticles (AuNPs) or polypyrrole (PPy) and investigate the behavior of motor neurons on the designed scaffold surfaces in vitro under static/bioreactor conditions. Their potential to promote neural regeneration after implantation into the rat SCI by shaping the film scaffolds modified with neural factors into a tubular form is also examined. It is shown that channeled groups decorated with AuNPs highly promote neurite orientation under bioreactor conditions and also the developed optimal NGC (PCL/PLGA G1-IKVAV/BDNF/NGF-AuNP50) highly regenerates SCI. The results indicate that the designed scaffold can be an ideal candidate for spinal cord regeneration.
Collapse
Affiliation(s)
- Ilyas Ozcicek
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey
- Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, 34815, Turkey
| | - Nese Aysit
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey
- Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, 34815, Turkey
| | - Zeynep Balcikanli
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey
| | - Nilufer Ulas Ayturk
- Department of Histology and Embryology, Faculty of Medicine, Çanakkale Onsekiz Mart University, Canakkale, 17020, Turkey
| | - Asel Aydeger
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey
- Graduate School of Health Sciences, Istanbul Medipol University, Istanbul, 34815, Turkey
| | - Gulsena Baydas
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey
- Graduate School of Health Sciences, Istanbul Medipol University, Istanbul, 34815, Turkey
- Department of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, 34815, Turkey
| | - Mehmet Serif Aydin
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey
| | - Esra Altintas
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey
- Graduate School of Health Sciences, Istanbul Medipol University, Istanbul, 34815, Turkey
| | - Umit Can Erim
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, 34810, Turkey
- Department of Analytical Chemistry, School of Pharmacy, Istanbul Medipol University, Istanbul, 34815, Turkey
| |
Collapse
|
11
|
Du X, Kong D, Guo R, Liu B, He J, Zhang J, Amponsah AE, Cui H, Ma J. Combined transplantation of hiPSC-NSC and hMSC ameliorated neuroinflammation and promoted neuroregeneration in acute spinal cord injury. Stem Cell Res Ther 2024; 15:67. [PMID: 38444003 PMCID: PMC10916262 DOI: 10.1186/s13287-024-03655-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a serious clinical condition that has pathological changes such as increased neuroinflammation and nerve tissue damage, which eventually manifests as fibrosis of the injured segment and the development of a spinal cord cavity leading to loss of function. Cell-based therapy, such as mesenchymal stem cells (MSCs) and neural stem cells (NSCs) are promising treatment strategies for spinal cord injury via immunological regulation and neural replacement respectively. However, therapeutic efficacy is rare reported on combined transplantation of MSC and NSC in acute mice spinal cord injury even the potential reinforcement might be foreseen. Therefore, this study was conducted to investigate the safety and efficacy of co-transplanting of MSC and NSC sheets into an SCI mice model on the locomotor function and pathological changes of injured spinal cord. METHODS To evaluate the therapeutic effects of combination cells, acute SCI mice model were established and combined transplantation of hiPSC-NSCs and hMSCs into the lesion site immediately after the injury. Basso mouse scale was used to perform the open-field tests of hind limb motor function at days post-operation (dpo) 1, 3, 5, and 7 after SCI and every week after surgery. Spinal cord and serum samples were collected at dpo 7, 14, and 28 to detect inflammatory and neurotrophic factors. Hematoxylin-eosin (H&E) staining, masson staining and transmission electron microscopy were used to evaluate the morphological changes, fibrosis area and ultrastructure of the spinal cord. RESULT M&N transplantation reduced fibrosis formation and the inflammation level while promoting the secretion of nerve growth factor and brain-derived neurotrophic factor. We observed significant reduction in damaged tissue and cavity area, with dramatic improvement in the M&N group. Compared with the Con group, the M&N group exhibited significantly improved behaviors, particularly limb coordination. CONCLUSION Combined transplantation of hiPSC-NSC and hMSC could significantly ameliorate neuroinflammation, promote neuroregeneration, and decrease spinal fibrosis degree in safe and effective pattern, which would be indicated as a novel potential cell treatment option.
Collapse
Affiliation(s)
- Xiaofeng Du
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Desheng Kong
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Ruiyun Guo
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Boxin Liu
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Jingjing He
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Jinyu Zhang
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Asiamah Ernest Amponsah
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, PMB UCC, Cape Coast, Ghana
| | - Huixian Cui
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China.
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China.
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China.
- Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
| | - Jun Ma
- Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China.
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China.
- Hebei International Joint Research Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China.
- Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
| |
Collapse
|
12
|
Zipser CM, Curt A. Disease-specific interventions using cell therapies for spinal cord disease/injury. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:263-282. [PMID: 39341658 DOI: 10.1016/b978-0-323-90120-8.00007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Traumatic spinal cord injury (SCI) may occur across the lifespan and is of global relevance. Damage of the spinal cord results in para- or tetraplegia and is associated with neuropathic pain, spasticity, respiratory, and autonomic dysfunction (i.e., control of bladder-bowel function). While the acute surgical treatment aims at stabilizing the spine and decompressing the damaged spinal cord, SCI patients require neurorehabilitation to restore neural function and to compensate for any impairments including motor disability, pain treatment, and bladder/bowel management. However, the spinal cord has a limited capacity to regenerate and much of the disability may persist, depending on the initial lesion severity and level of injury. For this reason, and the lack of effective drug treatments, there is an emerging interest and urgent need in promoting axonal regeneration and remyelination after SCI through cell- and stem-cell based therapies. This review briefly summarizes the state-of the art management of acute SCI and its neurorehabilitation to critically appraise phase I/II trials from the last two decades that have investigated cell-based therapies (i.e., Schwann cells, macrophages, and olfactory ensheathing cells) and stem cell-based therapies (i.e., neural stem cells, mesenchymal, and hematopoietic stem cells). Recently, two large multicenter trials provided evidence for the safety and feasibility of neural stem cell transplantation into the injured cord, whilst two monocenter trials also showed this to be the case for the transplantation of Schwann cells into the posttraumatic cord cavity. These are milestone studies that will facilitate further interventional trials. However, the clinical adoption of such approaches remains unproven, as there is only limited encouraging data, often in single patients, and no proven trial evidence to support regulatory approval.
Collapse
Affiliation(s)
- Carl Moritz Zipser
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland.
| |
Collapse
|
13
|
Hermann DM, Bacigaluppi M, Peruzzotti-Jametti L. Editorial: Hot topics in cellular neuropathology, volume II: promoting neuronal plasticity in the injured central nervous system. Front Cell Neurosci 2023; 17:1269763. [PMID: 37731464 PMCID: PMC10507398 DOI: 10.3389/fncel.2023.1269763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 08/23/2023] [Indexed: 09/22/2023] Open
Affiliation(s)
- Dirk M. Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Marco Bacigaluppi
- Department of Neurology and Neuroimmunology Unit, San Raffaele Hospital, Milan, Italy
| | - Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| |
Collapse
|
14
|
Kiss Bimbova K, Bacova M, Kisucka A, Gálik J, Ileninova M, Kuruc T, Magurova M, Lukacova N. Impact of Endurance Training on Regeneration of Axons, Glial Cells, and Inhibitory Neurons after Spinal Cord Injury: A Link between Functional Outcome and Regeneration Potential within the Lesion Site and in Adjacent Spinal Cord Tissue. Int J Mol Sci 2023; 24:ijms24108616. [PMID: 37239968 DOI: 10.3390/ijms24108616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Endurance training prior to spinal cord injury (SCI) has a beneficial effect on the activation of signaling pathways responsible for survival, neuroplasticity, and neuroregeneration. It is, however, unclear which training-induced cell populations are essential for the functional outcome after SCI. Adult Wistar rats were divided into four groups: control, six weeks of endurance training, Th9 compression (40 g/15 min), and pretraining + Th9 compression. The animals survived six weeks. Training alone increased the gene expression and protein level of immature CNP-ase oligodendrocytes (~16%) at Th10, and caused rearrangements in neurotrophic regulation of inhibitory GABA/glycinergic neurons at the Th10 and L2 levels, known to contain the interneurons with rhythmogenic potential. Training + SCI upregulated markers for immature and mature (CNP-ase, PLP1) oligodendrocytes by ~13% at the lesion site and caudally, and increased the number of GABA/glycinergic neurons in specific spinal cord regions. In the pretrained SCI group, the functional outcome of hindlimbs positively correlated with the protein levels of CNP-ase, PLP1, and neurofilaments (NF-l), but not with the outgrowing axons (Gap-43) at the lesion site and caudally. These results indicate that endurance training applied before SCI potentiates the repair in damaged spinal cord, and creates a suitable environment for neurological outcome.
Collapse
Affiliation(s)
- Katarina Kiss Bimbova
- Department of Neurodegeneration, Plasticity and Repair, Institute of Neurobiology, Biomedical Research Centre of Slovak Academy of Sciences, Soltesovej 4-6, 040 01 Kosice, Slovakia
| | - Maria Bacova
- Department of Neurodegeneration, Plasticity and Repair, Institute of Neurobiology, Biomedical Research Centre of Slovak Academy of Sciences, Soltesovej 4-6, 040 01 Kosice, Slovakia
| | - Alexandra Kisucka
- Department of Neurodegeneration, Plasticity and Repair, Institute of Neurobiology, Biomedical Research Centre of Slovak Academy of Sciences, Soltesovej 4-6, 040 01 Kosice, Slovakia
| | - Ján Gálik
- Department of Neurodegeneration, Plasticity and Repair, Institute of Neurobiology, Biomedical Research Centre of Slovak Academy of Sciences, Soltesovej 4-6, 040 01 Kosice, Slovakia
| | - Maria Ileninova
- Department of Neurodegeneration, Plasticity and Repair, Institute of Neurobiology, Biomedical Research Centre of Slovak Academy of Sciences, Soltesovej 4-6, 040 01 Kosice, Slovakia
| | - Tomas Kuruc
- Department of Neurodegeneration, Plasticity and Repair, Institute of Neurobiology, Biomedical Research Centre of Slovak Academy of Sciences, Soltesovej 4-6, 040 01 Kosice, Slovakia
| | - Martina Magurova
- Department of Neurodegeneration, Plasticity and Repair, Institute of Neurobiology, Biomedical Research Centre of Slovak Academy of Sciences, Soltesovej 4-6, 040 01 Kosice, Slovakia
| | - Nadezda Lukacova
- Department of Neurodegeneration, Plasticity and Repair, Institute of Neurobiology, Biomedical Research Centre of Slovak Academy of Sciences, Soltesovej 4-6, 040 01 Kosice, Slovakia
| |
Collapse
|
15
|
Zargani M, Ramirez-Campillo R, Arabzadeh E. Swimming and L-arginine loaded chitosan nanoparticles ameliorates aging-induced neuron atrophy, autophagy marker LC3, GABA and BDNF-TrkB pathway in the spinal cord of rats. Pflugers Arch 2023; 475:621-635. [PMID: 36869900 DOI: 10.1007/s00424-023-02795-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/05/2023] [Accepted: 02/08/2023] [Indexed: 03/05/2023]
Abstract
Aging is associated with muscle atrophy, and erosion and destruction of neuronal pathways in the spinal cord. The study aim was to assess the effect of swimming training (Sw) and L-arginine loaded chitosan nanoparticles (LA-CNPs) on the sensory and motor neuron population, autophagy marker LC3, total oxidant status/total antioxidant capacity, behavioural test, GABA and BDNF-TrkB pathway in the spinal cord of aging rats. The rats were randomized to five groups: young (8-weeks) control (n = 7), old control (n = 7), old Sw (n = 7), old LA-CNPs (n = 7) and old Sw + LA-CNPs (n = 7). Groups under LA-CNPs supplementation received 500 mg/kg/day. Sw groups performed a swimming exercise programme 5 days per week for 6 weeks. Upon the completion of the interventions the rats were euthanized and the spinal cord was fixed and frozen for histological assessment, IHC, and gene expression analysis. The old group had more atrophy in the spinal cord with higher changes in LC3 as an indicator of autophagy in the spinal cord compared to the young group (p < 0.0001). The old Sw + LA-CNPs group increased (improved) spinal cord GABA (p = 0.0187), BDNF (p = 0.0003), TrkB (p < 0.0001) gene expression, decreased autophagy marker LC3 protein (p < 0.0001), nerve atrophy and jumping/licking latency (p < 0.0001), improved sciatic functional index score and total oxidant status/total antioxidant capacity compared to the old group (p < 0.0001). In conclusion, swimming and LA-CNPs seems to ameliorate aging-induced neuron atrophy, autophagy marker LC3, oxidant-antioxidant status, functional restoration, GABA and BDNF-TrkB pathway in the spinal cord of aging rats. Our study provides experimental evidence for a possible positive role of swimming and L-arginine loaded chitosan nanoparticles to decrease complications of aging.
Collapse
Affiliation(s)
- Mehdi Zargani
- Department of Exercise Physiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Rodrigo Ramirez-Campillo
- Exercise and Rehabilitation Sciences Laboratory, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, 7591538, Santiago, Chile
| | - Ehsan Arabzadeh
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Dorrian RM, Berryman CF, Lauto A, Leonard AV. Electrical stimulation for the treatment of spinal cord injuries: A review of the cellular and molecular mechanisms that drive functional improvements. Front Cell Neurosci 2023; 17:1095259. [PMID: 36816852 PMCID: PMC9936196 DOI: 10.3389/fncel.2023.1095259] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating condition that causes severe loss of motor, sensory and autonomic functions. Additionally, many individuals experience chronic neuropathic pain that is often refractory to interventions. While treatment options to improve outcomes for individuals with SCI remain limited, significant research efforts in the field of electrical stimulation have made promising advancements. Epidural electrical stimulation, peripheral nerve stimulation, and functional electrical stimulation have shown promising improvements for individuals with SCI, ranging from complete weight-bearing locomotion to the recovery of sexual function. Despite this, there is a paucity of mechanistic understanding, limiting our ability to optimize stimulation devices and parameters, or utilize combinatorial treatments to maximize efficacy. This review provides a background into SCI pathophysiology and electrical stimulation methods, before exploring cellular and molecular mechanisms suggested in the literature. We highlight several key mechanisms that contribute to functional improvements from electrical stimulation, identify gaps in current knowledge and highlight potential research avenues for future studies.
Collapse
Affiliation(s)
- Ryan M. Dorrian
- Spinal Cord Injury Research Group, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia,*Correspondence: Ryan M. Dorrian,
| | | | - Antonio Lauto
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Anna V. Leonard
- Spinal Cord Injury Research Group, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
17
|
Molecular mechanisms of exercise contributing to tissue regeneration. Signal Transduct Target Ther 2022; 7:383. [PMID: 36446784 PMCID: PMC9709153 DOI: 10.1038/s41392-022-01233-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/03/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2022] Open
Abstract
Physical activity has been known as an essential element to promote human health for centuries. Thus, exercise intervention is encouraged to battle against sedentary lifestyle. Recent rapid advances in molecular biotechnology have demonstrated that both endurance and resistance exercise training, two traditional types of exercise, trigger a series of physiological responses, unraveling the mechanisms of exercise regulating on the human body. Therefore, exercise has been expected as a candidate approach of alleviating a wide range of diseases, such as metabolic diseases, neurodegenerative disorders, tumors, and cardiovascular diseases. In particular, the capacity of exercise to promote tissue regeneration has attracted the attention of many researchers in recent decades. Since most adult human organs have a weak regenerative capacity, it is currently a key challenge in regenerative medicine to improve the efficiency of tissue regeneration. As research progresses, exercise-induced tissue regeneration seems to provide a novel approach for fighting against injury or senescence, establishing strong theoretical basis for more and more "exercise mimetics." These drugs are acting as the pharmaceutical alternatives of those individuals who cannot experience the benefits of exercise. Here, we comprehensively provide a description of the benefits of exercise on tissue regeneration in diverse organs, mainly focusing on musculoskeletal system, cardiovascular system, and nervous system. We also discuss the underlying molecular mechanisms associated with the regenerative effects of exercise and emerging therapeutic exercise mimetics for regeneration, as well as the associated opportunities and challenges. We aim to describe an integrated perspective on the current advances of distinct physiological mechanisms associated with exercise-induced tissue regeneration on various organs and facilitate the development of drugs that mimics the benefits of exercise.
Collapse
|
18
|
Nicoletti VG, Pajer K, Calcagno D, Pajenda G, Nógrádi A. The Role of Metals in the Neuroregenerative Action of BDNF, GDNF, NGF and Other Neurotrophic Factors. Biomolecules 2022; 12:biom12081015. [PMID: 35892326 PMCID: PMC9330237 DOI: 10.3390/biom12081015] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/14/2022] Open
Abstract
Mature neurotrophic factors and their propeptides play key roles ranging from the regulation of neuronal growth and differentiation to prominent participation in neuronal survival and recovery after injury. Their signaling pathways sculpture neuronal circuits during brain development and regulate adaptive neuroplasticity. In addition, neurotrophic factors provide trophic support for damaged neurons, giving them a greater capacity to survive and maintain their potential to regenerate their axons. Therefore, the modulation of these factors can be a valuable target for treating or preventing neurologic disorders and age-dependent cognitive decline. Neuroregenerative medicine can take great advantage by the deepening of our knowledge on the molecular mechanisms underlying the properties of neurotrophic factors. It is indeed an intriguing topic that a significant interplay between neurotrophic factors and various metals can modulate the outcome of neuronal recovery. This review is particularly focused on the roles of GDNF, BDNF and NGF in motoneuron survival and recovery from injuries and evaluates the therapeutic potential of various neurotrophic factors in neuronal regeneration. The key role of metal homeostasis/dyshomeostasis and metal interaction with neurotrophic factors on neuronal pathophysiology is also highlighted as a novel mechanism and potential target for neuronal recovery. The progress in mechanistic studies in the field of neurotrophic factor-mediated neuroprotection and neural regeneration, aiming at a complete understanding of integrated pathways, offers possibilities for the development of novel neuroregenerative therapeutic approaches.
Collapse
Affiliation(s)
- Vincenzo Giuseppe Nicoletti
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Medical Biochemistry, University of Catania, 95124 Catania, Italy; (V.G.N.); (D.C.)
| | - Krisztián Pajer
- Department of Anatomy, Histology and Embryology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary;
| | - Damiano Calcagno
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Medical Biochemistry, University of Catania, 95124 Catania, Italy; (V.G.N.); (D.C.)
| | - Gholam Pajenda
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Research Centre for Traumatology of the Austrian Workers, 1200 Vienna, Austria;
- Department for Trauma Surgery, Medical University Vienna, 1090 Vienna, Austria
| | - Antal Nógrádi
- Department of Anatomy, Histology and Embryology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary;
- Correspondence: ; Tel.: +36-6-234-2855
| |
Collapse
|
19
|
Islam A, Tom VJ. The use of viral vectors to promote repair after spinal cord injury. Exp Neurol 2022; 354:114102. [PMID: 35513025 DOI: 10.1016/j.expneurol.2022.114102] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022]
Abstract
Spinal cord injury (SCI) is a devastating event that can permanently disrupt multiple modalities. Unfortunately, the combination of the inhibitory environment at a central nervous system (CNS) injury site and the diminished intrinsic capacity of adult axons for growth results in the failure for robust axonal regeneration, limiting the ability for repair. Delivering genetic material that can either positively or negatively modulate gene expression has the potential to counter the obstacles that hinder axon growth within the spinal cord after injury. A popular gene therapy method is to deliver the genetic material using viral vectors. There are considerations when deciding on a viral vector approach for a particular application, including the type of vector, as well as serotypes, and promoters. In this review, we will discuss some of the aspects to consider when utilizing a viral vector approach to as a therapy for SCI. Additionally, we will discuss some recent applications of gene therapy to target extrinsic and/or intrinsic barriers to promote axon regeneration after SCI in preclinical models. While still in early stages, this approach has potential to treat those living with SCI.
Collapse
Affiliation(s)
- Ashraful Islam
- Drexel University College of Medicine, Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Philadelphia, PA, USA
| | - Veronica J Tom
- Drexel University College of Medicine, Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Herr SA, Gardeen SS, Low PS, Shi R. Targeted delivery of acrolein scavenger hydralazine in spinal cord injury using folate-linker-drug conjugation. Free Radic Biol Med 2022; 184:66-73. [PMID: 35398493 DOI: 10.1016/j.freeradbiomed.2022.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/30/2022] [Accepted: 04/03/2022] [Indexed: 11/26/2022]
Abstract
Oxidative stress has been shown to play a critical pathogenic role in functional loss after spinal cord injury (SCI). As a direct result of oxidative stress, lipid peroxidation-derived aldehydes have emerged as key culprits that sustain secondary injury and contribute significantly to pathological outcomes. Acrolein, a neurotoxin, has been shown to be elevated in SCI and can result in post-SCI neurological deficits. Reducing acrolein has therefore emerged as a novel and effective therapeutic strategy in SCI. Previous studies have revealed that hydralazine, an FDA approved blood pressure lowering medication, when administered after SCI shows strong acrolein scavenging capabilities and significantly improves cellular and behavioral outcomes. However, while effective at scavenging acrolein, hydralazine's blood pressure lowering activity can have a detrimental impact on neurotrauma patients. Here, our goal was to preserve the acrolein scavenging capability while mitigating the effect of hydralazine on blood pressure. We accomplished this using a folate-targeted delivery system to deploy hydralazine to the folate receptor positive inflammatory site of the cord injury. Using a model of rat SCI, we found that this system is effective for targeting the injury site, and that folate targeted hydralazine can scavenge acrolein without significantly impacting blood pressure.
Collapse
Affiliation(s)
- Seth A Herr
- Center for Paralysis Research & Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University. Lynn Hall, 625 N Harrison St. West Lafayette, IN, 47907, USA.
| | - Spencer S Gardeen
- Department of Chemistry, College of Science, Purdue University. Drug Discovery Building, 720 Clinic Dr. West Lafayette, IN, 47907, USA.
| | - Philip S Low
- Department of Chemistry, College of Science, Purdue University. Drug Discovery Building, 720 Clinic Dr. West Lafayette, IN, 47907, USA.
| | - Riyi Shi
- Center for Paralysis Research & Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University. Lynn Hall, 625 N Harrison St. West Lafayette, IN, 47907, USA.
| |
Collapse
|
21
|
Fauss GNK, Hudson KE, Grau JW. Role of Descending Serotonergic Fibers in the Development of Pathophysiology after Spinal Cord Injury (SCI): Contribution to Chronic Pain, Spasticity, and Autonomic Dysreflexia. BIOLOGY 2022; 11:234. [PMID: 35205100 PMCID: PMC8869318 DOI: 10.3390/biology11020234] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 12/12/2022]
Abstract
As the nervous system develops, nerve fibers from the brain form descending tracts that regulate the execution of motor behavior within the spinal cord, incoming sensory signals, and capacity to change (plasticity). How these fibers affect function depends upon the transmitter released, the receptor system engaged, and the pattern of neural innervation. The current review focuses upon the neurotransmitter serotonin (5-HT) and its capacity to dampen (inhibit) neural excitation. A brief review of key anatomical details, receptor types, and pharmacology is provided. The paper then considers how damage to descending serotonergic fibers contributes to pathophysiology after spinal cord injury (SCI). The loss of serotonergic fibers removes an inhibitory brake that enables plasticity and neural excitation. In this state, noxious stimulation can induce a form of over-excitation that sensitizes pain (nociceptive) circuits, a modification that can contribute to the development of chronic pain. Over time, the loss of serotonergic fibers allows prolonged motor drive (spasticity) to develop and removes a regulatory brake on autonomic function, which enables bouts of unregulated sympathetic activity (autonomic dysreflexia). Recent research has shown that the loss of descending serotonergic activity is accompanied by a shift in how the neurotransmitter GABA affects neural activity, reducing its inhibitory effect. Treatments that target the loss of inhibition could have therapeutic benefit.
Collapse
Affiliation(s)
| | | | - James W. Grau
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77843, USA; (G.N.K.F.); (K.E.H.)
| |
Collapse
|
22
|
Woods I, O'Connor C, Frugoli L, Kerr S, Gutierrez Gonzalez J, Stasiewicz M, McGuire T, Cavanagh B, Hibbitts A, Dervan A, O'Brien FJ. Biomimetic Scaffolds for Spinal Cord Applications Exhibit Stiffness-Dependent Immunomodulatory and Neurotrophic Characteristics. Adv Healthc Mater 2022; 11:e2101663. [PMID: 34784649 DOI: 10.1002/adhm.202101663] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/04/2021] [Indexed: 01/14/2023]
Abstract
After spinal cord injury (SCI), tissue engineering scaffolds offer a potential bridge for regeneration across the lesion and support repair through proregenerative signaling. Ideal biomaterial scaffolds that mimic the physicochemical properties of native tissue have the potential to provide innate trophic signaling while also minimizing damaging inflammation. To address this challenge, taking cues from the spinal cord's structure, the proregenerative signaling capabilities of native cord components are compared in vitro. A synergistic mix of collagen-IV and fibronectin (Coll-IV/Fn) is found to optimally enhance axonal extension from neuronal cell lines (SHSY-5Y and NSC-34) and induce morphological features typical of quiescent astrocytes. This optimal composition is incorporated into hyaluronic acid scaffolds with aligned pore architectures but varying stiffnesses (0.8-3 kPa). Scaffolds with biomimetic mechanical properties (<1 kPa), functionalized with Coll-IV/Fn, not only modulate primary astrocyte behavior but also stimulate the production of anti-inflammatory cytokine IL-10 in a stiffness-dependent manner. Seeded SHSY-5Y neurons generate distributed neuronal networks, while softer biomimetic scaffolds promote axonal outgrowth in an ex vivo model of axonal regrowth. These results indicate that the interaction of stiffness and biomaterial composition plays an essential role in vitro in generating repair-critical cellular responses and demonstrates the potential of biomimetic scaffold design.
Collapse
Affiliation(s)
- Ian Woods
- Tissue Engineering Research Group Department of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland (RCSI) 123 St. Stephen's Green, Dublin 2, D02YN77 Ireland
| | - Cian O'Connor
- Tissue Engineering Research Group Department of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland (RCSI) 123 St. Stephen's Green, Dublin 2, D02YN77 Ireland
| | - Lisa Frugoli
- Tissue Engineering Research Group Department of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland (RCSI) 123 St. Stephen's Green, Dublin 2, D02YN77 Ireland
| | - Seán Kerr
- Tissue Engineering Research Group Department of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland (RCSI) 123 St. Stephen's Green, Dublin 2, D02YN77 Ireland
| | - Javier Gutierrez Gonzalez
- Tissue Engineering Research Group Department of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland (RCSI) 123 St. Stephen's Green, Dublin 2, D02YN77 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre RCSI 123 St Stephen's Green, Dublin 2, D02YN77 Ireland
| | - Martyna Stasiewicz
- Tissue Engineering Research Group Department of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland (RCSI) 123 St. Stephen's Green, Dublin 2, D02YN77 Ireland
| | - Tara McGuire
- Tissue Engineering Research Group Department of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland (RCSI) 123 St. Stephen's Green, Dublin 2, D02YN77 Ireland
| | - Brenton Cavanagh
- Tissue Engineering Research Group Department of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland (RCSI) 123 St. Stephen's Green, Dublin 2, D02YN77 Ireland
- Cellular and Molecular Imaging Core Royal College of Surgeons in Ireland 123 St. Stephen's Green, Dublin 2, D02YN77 Ireland
| | - Alan Hibbitts
- Tissue Engineering Research Group Department of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland (RCSI) 123 St. Stephen's Green, Dublin 2, D02YN77 Ireland
| | - Adrian Dervan
- Tissue Engineering Research Group Department of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland (RCSI) 123 St. Stephen's Green, Dublin 2, D02YN77 Ireland
| | - Fergal J. O'Brien
- Tissue Engineering Research Group Department of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland (RCSI) 123 St. Stephen's Green, Dublin 2, D02YN77 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre RCSI 123 St Stephen's Green, Dublin 2, D02YN77 Ireland
- Trinity Centre for Biomedical Engineering Trinity College Dublin Dublin 2, D02R590 Ireland
| |
Collapse
|
23
|
Liu ZH, Huang YC, Kuo CY, Chuang CC, Chen CC, Chen NY, Yip PK, Chen JP. Co-Delivery of Docosahexaenoic Acid and Brain-Derived Neurotropic Factor from Electrospun Aligned Core-Shell Fibrous Membranes in Treatment of Spinal Cord Injury. Pharmaceutics 2022; 14:321. [PMID: 35214053 PMCID: PMC8880006 DOI: 10.3390/pharmaceutics14020321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/21/2022] Open
Abstract
To restore lost functions while repairing the neuronal structure after spinal cord injury (SCI), pharmacological interventions with multiple therapeutic agents will be a more effective modality given the complex pathophysiology of acute SCI. Toward this end, we prepared electrospun membranes containing aligned core-shell fibers with a polylactic acid (PLA) shell, and docosahexaenoic acid (DHA) or a brain-derived neurotropic factor (BDNF) in the core. The controlled release of both pro-regenerative agents is expected to provide combinatory treatment efficacy for effective neurogenesis, while aligned fiber topography is expected to guide directional neurite extension. The in vitro release study indicates that both DHA and BDNF could be released continuously from the electrospun membrane for up to 50 days, while aligned microfibers guide the neurite extension of primary cortical neurons along the fiber axis. Furthermore, the PLA/DHA/BDNF core-shell fibrous membrane (CSFM) provides a significantly higher neurite outgrowth length from the neuron cells than the PLA/DHA CSFM. This is supported by the upregulation of genes associated with neuroprotection and neuroplasticity from RT-PCR analysis. From an in vivo study by implanting a drug-loaded CSFM into the injury site of a rat suffering from SCI with a cervical hemisection, the co-delivery of DHA and BDNF from a PLA/DHA/BDNF CSFM could significantly improve neurological function recovery from behavioral assessment, as well as provide neuroprotection and promote neuroplasticity changes in recovered neuronal tissue from histological analysis.
Collapse
Affiliation(s)
- Zhuo-Hao Liu
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan; (Z.-H.L.); (Y.-C.H.); (C.-C.C.); (C.-C.C.)
| | - Yin-Cheng Huang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan; (Z.-H.L.); (Y.-C.H.); (C.-C.C.); (C.-C.C.)
| | - Chang-Yi Kuo
- Department of Chemical and Materials and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan;
| | - Chi-Cheng Chuang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan; (Z.-H.L.); (Y.-C.H.); (C.-C.C.); (C.-C.C.)
| | - Ching-Chang Chen
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan; (Z.-H.L.); (Y.-C.H.); (C.-C.C.); (C.-C.C.)
| | - Nan-Yu Chen
- Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan;
| | - Ping K. Yip
- Centre for Neuroscience, Surgery & Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK;
| | - Jyh-Ping Chen
- Department of Chemical and Materials and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan;
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
24
|
Pieragostino D, Lanzini M, Cicalini I, Cufaro MC, Damiani V, Mastropasqua L, De Laurenzi V, Nubile M, Lanuti P, Bologna G, Agnifili L, Del Boccio P. Tear proteomics reveals the molecular basis of the efficacy of human recombinant nerve growth factor treatment for Neurotrophic Keratopathy. Sci Rep 2022; 12:1229. [PMID: 35075190 PMCID: PMC8786855 DOI: 10.1038/s41598-022-05229-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 01/03/2022] [Indexed: 11/11/2022] Open
Abstract
Neurotrophic Keratopathy (NK), classified as an orphan disease (ORPHA137596), is a rare degenerative corneal disease characterized by epithelial instability and decreased corneal sensitivity caused by the damage to the corneal nerves. The administration of human recombinant nerve growth factor (rhNGF) eye drops, as a licensed-in-Europe specific medication for treatment of moderate and severe NK, has added promising perspectives to the management of this disorder by providing a valid alternative to the neurotization surgery. However, few studies have been conducted to the molecular mechanism underlying the response to the treatment. Here, we carried out tears proteomics to highlight the protein expression during pharmacological treatment of NK (Data are available via ProteomeXchange with identifier PXD025408).Our data emphasized a proteome modulation during rhNGF treatment related to an increase in DNA synthesis, an activation of both BDNF signal and IL6 receptor. Furthermore, the amount of neuronal Extracellular Vesicles EVs (CD171+) correlated with the EVs carrying IL6R (CD126+) together associated to the inflammatory EVs (CD45+) in tears. Such scenario determined drug response, confirmed by an in vivo confocal microscopy analysis, showing an increase in length, density and number of nerve fiber branches during treatment. In summary, rhNGF treatment seems to determine an inflammatory micro-environment, mediated by functionalized EVs, defining the drug response by stimulating protein synthesis and fiber regeneration.
Collapse
Affiliation(s)
- Damiana Pieragostino
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy. .,Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.
| | - Manuela Lanzini
- Department of Medicine and Aging Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Ophthalmology Clinic, National Centre of High Technology (CNAT) in Ophthalmology, University of "G d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Ilaria Cicalini
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.,Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Maria Concetta Cufaro
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.,Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Verena Damiani
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.,Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Leonardo Mastropasqua
- Department of Medicine and Aging Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Ophthalmology Clinic, National Centre of High Technology (CNAT) in Ophthalmology, University of "G d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Vincenzo De Laurenzi
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.,Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Mario Nubile
- Department of Medicine and Aging Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Ophthalmology Clinic, National Centre of High Technology (CNAT) in Ophthalmology, University of "G d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Paola Lanuti
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.,Department of Medicine and Aging Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Giuseppina Bologna
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.,Department of Medicine and Aging Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Luca Agnifili
- Department of Medicine and Aging Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Ophthalmology Clinic, National Centre of High Technology (CNAT) in Ophthalmology, University of "G d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Piero Del Boccio
- Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.,Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
25
|
Luo H, Chen X, Zhuang P, Wu S, Wei J, Xu W. Cotransplantation with RADA16-PRG-Self-Assembled Nanopeptide Scaffolds, Bone Mesenchymal Stem Cells and Brain-Derived Neurotrophic Factor-Adeno-Associated Virus Promote Functional Repair After Acute Spinal Cord Injury in Rats. J Biomed Nanotechnol 2022; 18:225-233. [PMID: 35180916 DOI: 10.1166/jbn.2022.3216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We transplanted RADA16-PRG self-assembled nanopeptide scaffolds (SAPNSs), bone mesenchymal stem cells (BMSCs), and a brain-derived neurotrophic factor (BDNF)-expressing adeno-associated virus (AAV) into rats subjected to acute spinal cord injury (SCI) to investigate the effects of these transplantations on acute SCI repair and explore their mechanisms. Forty-eight SCI rats were randomly divided into four groups: BBR, BR, B, and NC groups. Seven and 28 days after SCI, evoked potentials (EPs) and BBB scores were assessed to evaluate the recovery of rats' motor behavior and sensory function after injury. HE and toluidine blue staining were performed to investigate the histological structure of the spinal cord tissue of rats from each group, and immunofluorescence staining was used to observe the red fluorescent protein (RFP) intensity of BMSCs and glial fibrillary acidic protein (GFAP) and neurofilament (NF) in the damaged area in each group. RT-PCR was utilized to detect the expression levels of the BDNF, GFAP, and neuron-specific enolase (NSE) genes in the injured area in each group. The results showed that cotransplantation of RADA16-PRG-SAPNs, BMSCs, and BDNF-AVV promoted the spinal cord's motor and sensory function of SCI rats; increased levels of BMSCs, inhabited glial cells proliferation, and promoted neurons proliferations in the injured area; and increased NF, BDNF, and NSE levels and decreased its GFAP in the injured area. Thus, cotransplantation of RADA16-PRG-SAPNS, BMSCs, and BDNF-AAV can prolong the survival time of BMSCs in rats, reduce the postoperative scarring caused by glial proliferation, and promote the migration and proliferation of neurons in the injured area, resulting in the promotion of functional repair after acute SCI.
Collapse
Affiliation(s)
- Hongbin Luo
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
| | - Xuemin Chen
- The School of Clinical Medical, Fujian Medical University, Fuzhou, 350000, China
| | - Peifeng Zhuang
- The School of Clinical Medical, Fujian Medical University, Fuzhou, 350000, China
| | - Songye Wu
- The School of Clinical Medical, Fujian Medical University, Fuzhou, 350000, China
| | - Jie Wei
- The School of Clinical Medical, Fujian Medical University, Fuzhou, 350000, China
| | - Weihong Xu
- Department of Orthopedics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
| |
Collapse
|
26
|
Randelman M, Zholudeva LV, Vinit S, Lane MA. Respiratory Training and Plasticity After Cervical Spinal Cord Injury. Front Cell Neurosci 2021; 15:700821. [PMID: 34621156 PMCID: PMC8490715 DOI: 10.3389/fncel.2021.700821] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/11/2021] [Indexed: 12/30/2022] Open
Abstract
While spinal cord injuries (SCIs) result in a vast array of functional deficits, many of which are life threatening, the majority of SCIs are anatomically incomplete. Spared neural pathways contribute to functional and anatomical neuroplasticity that can occur spontaneously, or can be harnessed using rehabilitative, electrophysiological, or pharmacological strategies. With a focus on respiratory networks that are affected by cervical level SCI, the present review summarizes how non-invasive respiratory treatments can be used to harness this neuroplastic potential and enhance long-term recovery. Specific attention is given to "respiratory training" strategies currently used clinically (e.g., strength training) and those being developed through pre-clinical and early clinical testing [e.g., intermittent chemical stimulation via altering inhaled oxygen (hypoxia) or carbon dioxide stimulation]. Consideration is also given to the effect of training on non-respiratory (e.g., locomotor) networks. This review highlights advances in this area of pre-clinical and translational research, with insight into future directions for enhancing plasticity and improving functional outcomes after SCI.
Collapse
Affiliation(s)
- Margo Randelman
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States.,Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Lyandysha V Zholudeva
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States.,Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, United States.,Gladstone Institutes, San Francisco, CA, United States
| | - Stéphane Vinit
- INSERM, END-ICAP, Université Paris-Saclay, UVSQ, Versailles, France
| | - Michael A Lane
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States.,Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
27
|
Corticospinal Motor Circuit Plasticity After Spinal Cord Injury: Harnessing Neuroplasticity to Improve Functional Outcomes. Mol Neurobiol 2021; 58:5494-5516. [PMID: 34341881 DOI: 10.1007/s12035-021-02484-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
Spinal cord injury (SCI) is a devastating condition that affects approximately 294,000 people in the USA and several millions worldwide. The corticospinal motor circuitry plays a major role in controlling skilled movements and in planning and coordinating movements in mammals and can be damaged by SCI. While axonal regeneration of injured fibers over long distances is scarce in the adult CNS, substantial spontaneous neural reorganization and plasticity in the spared corticospinal motor circuitry has been shown in experimental SCI models, associated with functional recovery. Beneficially harnessing this neuroplasticity of the corticospinal motor circuitry represents a highly promising therapeutic approach for improving locomotor outcomes after SCI. Several different strategies have been used to date for this purpose including neuromodulation (spinal cord/brain stimulation strategies and brain-machine interfaces), rehabilitative training (targeting activity-dependent plasticity), stem cells and biological scaffolds, neuroregenerative/neuroprotective pharmacotherapies, and light-based therapies like photodynamic therapy (PDT) and photobiomodulation (PMBT). This review provides an overview of the spontaneous reorganization and neuroplasticity in the corticospinal motor circuitry after SCI and summarizes the various therapeutic approaches used to beneficially harness this neuroplasticity for functional recovery after SCI in preclinical animal model and clinical human patients' studies.
Collapse
|
28
|
Otsuka T, Maeda Y, Kurose T, Nakagawa K, Mitsuhara T, Kawahara Y, Yuge L. Comparisons of Neurotrophic Effects of Mesenchymal Stem Cells Derived from Different Tissues on Chronic Spinal Cord Injury Rats. Stem Cells Dev 2021; 30:865-875. [PMID: 34148410 DOI: 10.1089/scd.2021.0070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cell-based therapies with mesenchymal stem cells (MSCs) are considered as promising strategies for spinal cord injury (SCI). MSCs have unique characteristics due to differences in the derived tissues. However, relatively few studies have focused on differences in the therapeutic effects of MSCs derived from different tissues. In this study, the therapeutic effects of adipose tissue-derived MSCs, bone marrow-derived MSCs, and cranial bone-derived MSCs (cMSCs) on chronic SCI model rats were compared. MSCs were established from the collected adipose tissue, bone marrow, and cranial bone. Neurotrophic factor expression of each MSC type was analyzed by real-time PCR. SCI rats were established using the weight-drop method and transplanted intravenously with MSCs at 4 weeks after SCI. Hindlimb motor function was evaluated from before injury to 4 weeks after transplantation. Endogenous neurotrophic factor and neural repair factor expression in spinal cord (SC) tissue were examined by real-time PCR and western blot analyses. Although there were no differences in the expression levels of cell surface markers and multipotency, expression of Bdnf, Ngf, and Sort1 (Nt-3) was relatively higher in cMSCs. Transplantation of cMSCs improved motor function of chronic SCI model rats. Although there was no difference in the degree of engraftment of transplanted cells in the injured SC tissue, transplantation of cMSCs enhanced Bdnf, TrkB, and Gap-43 messenger RNA expression and synaptophysin protein expression in injured SC tissue. As compared with MSCs derived other tissues, cMSCs highly express many neurotrophic factors, which improved motor function in chronic SCI model rats by promoting endogenous neurotrophic and neural plasticity factors. These results demonstrate the efficacy of cMSCs in cell-based therapy for chronic SCI.
Collapse
Affiliation(s)
- Takashi Otsuka
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuyo Maeda
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoyuki Kurose
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kei Nakagawa
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takafumi Mitsuhara
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | | | - Louis Yuge
- Division of Bio-Environmental Adaptation Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Space Bio-Laboratories Co., Ltd., Hiroshima, Japan
| |
Collapse
|
29
|
Ye J, Jin S, Cai W, Chen X, Zheng H, Zhang T, Lu W, Li X, Liang C, Chen Q, Wang Y, Gu X, Yu B, Chen Z, Wang X. Rationally Designed, Self-Assembling, Multifunctional Hydrogel Depot Repairs Severe Spinal Cord Injury. Adv Healthc Mater 2021; 10:e2100242. [PMID: 34029000 DOI: 10.1002/adhm.202100242] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/25/2021] [Indexed: 01/03/2023]
Abstract
Following severe spinal cord injury (SCI), dysregulated neuroinflammation causes neuronal and glial apoptosis, resulting in scar and cystic cavity formation during wound healing and ultimately the formation of an atrophic microenvironment that inhibits nerve regrowth. Because of this complex and dynamic pathophysiology, a systemic solution for scar- and cavity-free wound healing with microenvironment remodeling to promote nerve regrowth has rarely been explored. A one-step solution is proposed through a self-assembling, multifunctional hydrogel depot that punctually releases the anti-inflammatory drug methylprednisolone sodium succinate (MPSS) and growth factors (GFs) locally according to pathophysiology to repair severe SCI. Synergistically releasing the anti-inflammatory drug MPSS and GFs in the hydrogel depot throughout SCI pathophysiology protects spared tissues/axons from secondary injury, promotes scar boundary- and cavity-free wound healing, and results in permissive bridges for remarkable axonal regrowth. Behavioral and electrophysiological studies indicate that remnants of spared axons, not regenerating axons, mediate functional recovery, strongly suggesting that additional interventions are still required to render the rebuilt neuronal circuits functional. These findings pave the way for the development of a systemic solution to treat acute SCI.
Collapse
Affiliation(s)
- Jingjia Ye
- Department of Neurobiology and Department of Orthopedics 2nd Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang Province 310009 P. R.China
- NHC and CAMS Key Laboratory of Medical Neurobiology MOE Frontier Science Center for Brain Research and Brain–Machine Integration School of Brain Science and Brain Medicine Zhejiang University Hangzhou Zhejiang Province 310003 P. R. China
| | - Shuang Jin
- NHC and CAMS Key Laboratory of Medical Neurobiology MOE Frontier Science Center for Brain Research and Brain–Machine Integration School of Brain Science and Brain Medicine Zhejiang University Hangzhou Zhejiang Province 310003 P. R. China
| | - Wanxiong Cai
- NHC and CAMS Key Laboratory of Medical Neurobiology MOE Frontier Science Center for Brain Research and Brain–Machine Integration School of Brain Science and Brain Medicine Zhejiang University Hangzhou Zhejiang Province 310003 P. R. China
| | - Xiangfeng Chen
- Department of Neurobiology and Department of Orthopedics 2nd Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang Province 310009 P. R.China
- NHC and CAMS Key Laboratory of Medical Neurobiology MOE Frontier Science Center for Brain Research and Brain–Machine Integration School of Brain Science and Brain Medicine Zhejiang University Hangzhou Zhejiang Province 310003 P. R. China
| | - Hanyu Zheng
- NHC and CAMS Key Laboratory of Medical Neurobiology MOE Frontier Science Center for Brain Research and Brain–Machine Integration School of Brain Science and Brain Medicine Zhejiang University Hangzhou Zhejiang Province 310003 P. R. China
| | - Tianfang Zhang
- Department of Rehabilitation Medicine First Affiliated Hospital College of Medicine Zhejiang University Hangzhou Zhejiang Province 310003 P. R. China
| | - Wujie Lu
- Department of Rehabilitation Medicine First Affiliated Hospital College of Medicine Zhejiang University Hangzhou Zhejiang Province 310003 P. R. China
| | - Xiaojian Li
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior CAS Key Laboratory of Brain Connectome and Manipulation the Brain Cognition and Brain Disease Institute (BCBCI) Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen‐Hong Kong Institute of Brain Science‐Shenzhen Fundamental Research Institutions Shenzhen Guangdong Province 518055 P. R. China
| | - Chengzhen Liang
- Department of Neurobiology and Department of Orthopedics 2nd Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang Province 310009 P. R.China
| | - Qixin Chen
- Department of Neurobiology and Department of Orthopedics 2nd Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang Province 310009 P. R.China
| | - Yaxian Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products Nantong University Nantong Jiangsu Province 226001 P. R. China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products Nantong University Nantong Jiangsu Province 226001 P. R. China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products Nantong University Nantong Jiangsu Province 226001 P. R. China
| | - Zuobing Chen
- Department of Rehabilitation Medicine First Affiliated Hospital College of Medicine Zhejiang University Hangzhou Zhejiang Province 310003 P. R. China
| | - Xuhua Wang
- Department of Neurobiology and Department of Orthopedics 2nd Affiliated Hospital Zhejiang University School of Medicine Hangzhou Zhejiang Province 310009 P. R.China
- NHC and CAMS Key Laboratory of Medical Neurobiology MOE Frontier Science Center for Brain Research and Brain–Machine Integration School of Brain Science and Brain Medicine Zhejiang University Hangzhou Zhejiang Province 310003 P. R. China
- Co‐innovation Center of Neuroregeneration Nantong University Nantong Jiangsu Province 226001 P. R. China
| |
Collapse
|
30
|
Sieck GC, Gransee HM, Zhan WZ, Mantilla CB. Acute intrathecal BDNF enhances functional recovery after cervical spinal cord injury in rats. J Neurophysiol 2021; 125:2158-2165. [PMID: 33949892 DOI: 10.1152/jn.00146.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Unilateral C2 hemisection (C2SH) disrupts descending inspiratory-related drive to phrenic motor neurons and thus, silences rhythmic diaphragm muscle (DIAm) activity. There is gradual recovery of rhythmic DIAm EMG activity over time post-C2SH, consistent with neuroplasticity, which is enhanced by chronic (2 wk) intrathecal BDNF treatment. In the present study, we hypothesized that acute (30 min) intrathecal BDNF treatment also enhances recovery of DIAm EMG activity after C2SH. Rats were implanted with bilateral DIAm EMG electrodes to verify the absence of ipsilateral eupneic DIAm EMG activity at the time of C2SH and at 3 days post-C2SH. In those animals displaying no recovery of DIAm EMG activity after 28 days (n = 7), BDNF was administered intrathecally (450 mcg) at C4. DIAm EMG activity was measured continuously both before and for 30 min after BDNF treatment, during eupnea, hypoxia-hypercapnia, and spontaneous sighs. Acute BDNF treatment restored eupneic DIAm EMG activity in all treated animals to an amplitude that was 78% ± 9% of pre-C2SH root mean square (RMS) (P < 0.001). In addition, acute BDNF treatment increased DIAm RMS EMG amplitude during hypoxia-hypercapnia (P = 0.023) but had no effect on RMS EMG amplitude during sighs. These results support an acute modulatory role of BDNF signaling on excitatory synaptic transmission at phrenic motor neurons after cervical spinal cord injury.NEW & NOTEWORTHY Brain-derived neurotrophic factor (BDNF) plays an important role in promoting neuroplasticity following unilateral C2 spinal hemisection (C2SH). BDNF was administered intrathecally in rats displaying lack of ipsilateral inspiratory-related diaphragm (DIAm) EMG activity after C2SH. Acute BDNF treatment (30 min) restored eupneic DIAm EMG activity in all treated animals to 78% ± 9% of pre-C2SH level. In addition, acute BDNF treatment increased DIAm EMG amplitude during hypoxia-hypercapnia but had no effect on EMG amplitude during sighs.
Collapse
Affiliation(s)
- Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota.,Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Heather M Gransee
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Wen-Zhi Zhan
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Carlos B Mantilla
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota.,Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
31
|
Bilchak JN, Caron G, Côté MP. Exercise-Induced Plasticity in Signaling Pathways Involved in Motor Recovery after Spinal Cord Injury. Int J Mol Sci 2021; 22:ijms22094858. [PMID: 34064332 PMCID: PMC8124911 DOI: 10.3390/ijms22094858] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023] Open
Abstract
Spinal cord injury (SCI) leads to numerous chronic and debilitating functional deficits that greatly affect quality of life. While many pharmacological interventions have been explored, the current unsurpassed therapy for most SCI sequalae is exercise. Exercise has an expansive influence on peripheral health and function, and by activating the relevant neural pathways, exercise also ameliorates numerous disorders of the central nervous system (CNS). While the exact mechanisms by which this occurs are still being delineated, major strides have been made in the past decade to understand the molecular underpinnings of this essential treatment. Exercise rapidly and prominently affects dendritic sprouting, synaptic connections, neurotransmitter production and regulation, and ionic homeostasis, with recent literature implicating an exercise-induced increase in neurotrophins as the cornerstone that binds many of these effects together. The field encompasses vast complexity, and as the data accumulate, disentangling these molecular pathways and how they interact will facilitate the optimization of intervention strategies and improve quality of life for individuals affected by SCI. This review describes the known molecular effects of exercise and how they alter the CNS to pacify the injury environment, increase neuronal survival and regeneration, restore normal neural excitability, create new functional circuits, and ultimately improve motor function following SCI.
Collapse
|
32
|
Jones I, Novikova LN, Wiberg M, Carlsson L, Novikov LN. Human Embryonic Stem Cell-derived Neural Crest Cells Promote Sprouting and Motor Recovery Following Spinal Cord Injury in Adult Rats. Cell Transplant 2021; 30:963689720988245. [PMID: 33522309 PMCID: PMC7863557 DOI: 10.1177/0963689720988245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Spinal cord injury results in irreversible tissue damage and permanent sensorimotor impairment. The development of novel therapeutic strategies that improve the life quality of affected individuals is therefore of paramount importance. Cell transplantation is a promising approach for spinal cord injury treatment and the present study assesses the efficacy of human embryonic stem cell–derived neural crest cells as preclinical cell-based therapy candidates. The differentiated neural crest cells exhibited characteristic molecular signatures and produced a range of biologically active trophic factors that stimulated in vitro neurite outgrowth of rat primary dorsal root ganglia neurons. Transplantation of the neural crest cells into both acute and chronic rat cervical spinal cord injury models promoted remodeling of descending raphespinal projections and contributed to the partial recovery of forelimb motor function. The results achieved in this proof-of-concept study demonstrates that human embryonic stem cell–derived neural crest cells warrant further investigation as cell-based therapy candidates for the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Iwan Jones
- 59588Umeå Center for Molecular Medicine, Umeå University, Umeå, Sweden.,Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | | | - Mikael Wiberg
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden.,Department of Surgical and Perioperative Science, Section of Hand and Plastic Surgery, Umeå University, Umeå, Sweden
| | - Leif Carlsson
- 59588Umeå Center for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Lev N Novikov
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
33
|
Effect of Various Exercise Regimens on Selected Exercise-Induced Cytokines in Healthy People. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18031261. [PMID: 33572495 PMCID: PMC7908590 DOI: 10.3390/ijerph18031261] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 12/21/2022]
Abstract
Different forms of physical activity—endurance, resistance or dynamic power—stimulate cytokine release from various tissues to the bloodstream. Receptors for exercise-induced cytokines are present in muscle tissue, adipose tissue, liver, brain, bones, cardiovascular system, immune system, pancreas, and skin. They have autocrine, paracrine and endocrine activities. Many of them regulate the myocyte growth and differentiation necessary for muscle hypertrophy and myogenesis. They also modify energy homeostasis, lipid, carbohydrate, and protein metabolism, regulate inflammation and exchange information (crosstalk) between remote organs. So far, interleukin 6 and irisin have been the best studied exercise-induced cytokines. However, many more can be grouped into myokines, hepatokines and adipomyokines. This review focuses on the less known exercise-induced cytokines such as myostatin, follistatin, decorin, brain-derived neurotrophic factor, fibroblast growth factor 21 and interleukin 15, and their relation to various forms of exercise, i.e., acute vs. chronic, regular training in healthy people.
Collapse
|
34
|
Savidan J, Beaud ML, Rouiller EM. Cutaneous Inputs to Dorsal Column Nuclei in Adult Macaque Monkeys Subjected to Unilateral Lesion of the Primary Motor Cortex or of the Cervical Spinal Cord and Treatments Promoting Axonal Growth. Neurosci Insights 2020; 15:2633105520973991. [PMID: 33283186 PMCID: PMC7683840 DOI: 10.1177/2633105520973991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/27/2020] [Indexed: 11/17/2022] Open
Abstract
The highly interconnected somatosensory and motor systems are subjected to connectivity changes at close or remote locations following a central nervous system injury. What is the impact of unilateral injury of the primary motor cortex (hand area; MCI) or of the cervical cord (hemisection at C7-C8 level; SCI) on the primary somatosensory (cutaneous) inputs to the dorsal column nuclei (DCN) in adult macaque monkeys? The effects of treatments promoting axonal growth were assessed. In the SCI group (n = 4), 1 monkey received a control antibody and 3 monkeys a combination treatment of anti-Nogo-A antibody and brain-derived neurotrophic factor (BDNF). In the MCI group (n = 4), 2 monkeys were untreated and 2 were treated with the anti-Nogo-A antibody. Using trans-ganglionic transport of cholera toxin B subunit injected in the first 2 fingers and toes on both sides, the areas of axonal terminal fields in the cuneate and gracile nuclei were bilaterally compared. Unilateral SCI at C7-C8 level, encroaching partially on the dorsal funiculus, resulted in an ipsilesional lower extent of the inputs from the toes in the gracile nuclei, not modified by the combined treatment. SCI at C7-C8 level did not affect the bilateral balance of primary inputs to the cuneate nuclei, neither in absence nor in presence of the combined treatment. MCI targeted to the hand area did not impact on the primary inputs to the cuneate nuclei in 2 untreated monkeys. After MCI, the administration of anti-Nogo-A antibody resulted in a slight bilateral asymmetrical extent of cutaneous inputs to the cuneate nuclei, with a larger extent ipsilesionally. Overall, remote effects following MCI or SCI have not been observed at the DCN level, except possibly after MCI and anti-Nogo-A antibody treatment.
Collapse
Affiliation(s)
- Julie Savidan
- Faculty of Sciences and Medicine, Fribourg Centre for Cognition, Department of Neurosciences and Movement Sciences, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Marie-Laure Beaud
- Faculty of Sciences and Medicine, Fribourg Centre for Cognition, Department of Neurosciences and Movement Sciences, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Eric M Rouiller
- Faculty of Sciences and Medicine, Fribourg Centre for Cognition, Department of Neurosciences and Movement Sciences, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
35
|
Gardner TJ, Bourne CM, Dacek MM, Kurtz K, Malviya M, Peraro L, Silberman PC, Vogt KC, Unti MJ, Brentjens R, Scheinberg D. Targeted Cellular Micropharmacies: Cells Engineered for Localized Drug Delivery. Cancers (Basel) 2020; 12:E2175. [PMID: 32764348 PMCID: PMC7465970 DOI: 10.3390/cancers12082175] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 12/19/2022] Open
Abstract
The recent emergence of engineered cellular therapies, such as Chimeric antigen receptor (CAR) CAR T and T cell receptor (TCR) engineered T cells, has shown great promise in the treatment of various cancers. These agents aggregate and expand exponentially at the tumor site, resulting in potent immune activation and tumor clearance. Moreover, the ability to elaborate these cells with therapeutic agents, such as antibodies, enzymes, and immunostimulatory molecules, presents an unprecedented opportunity to specifically modulate the tumor microenvironment through cell-mediated drug delivery. This unique pharmacology, combined with significant advances in synthetic biology and cell engineering, has established a new paradigm for cells as vectors for drug delivery. Targeted cellular micropharmacies (TCMs) are a revolutionary new class of living drugs, which we envision will play an important role in cancer medicine and beyond. Here, we review important advances and considerations underway in developing this promising advancement in biological therapeutics.
Collapse
Affiliation(s)
- Thomas J. Gardner
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
| | - Christopher M. Bourne
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
- Immunology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Megan M. Dacek
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA;
| | - Keifer Kurtz
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA;
| | - Manish Malviya
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
| | - Leila Peraro
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
| | - Pedro C. Silberman
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA;
| | - Kristen C. Vogt
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mildred J. Unti
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA;
| | - Renier Brentjens
- Department of Medicine, Memorial Hospital, New York, NY 10065, USA;
| | - David Scheinberg
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA; (T.J.G.); (C.M.B.); (M.M.D.); (K.K.); (M.M.); (L.P.); (P.C.S.); (K.C.V.)
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA;
- Department of Medicine, Memorial Hospital, New York, NY 10065, USA;
| |
Collapse
|
36
|
Jack AS, Hurd C, Martin J, Fouad K. Electrical Stimulation as a Tool to Promote Plasticity of the Injured Spinal Cord. J Neurotrauma 2020; 37:1933-1953. [PMID: 32438858 DOI: 10.1089/neu.2020.7033] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Unlike their peripheral nervous system counterparts, the capacity of central nervous system neurons and axons for regeneration after injury is minimal. Although a myriad of therapies (and different combinations thereof) to help promote repair and recovery after spinal cord injury (SCI) have been trialed, few have progressed from bench-top to bedside. One of the few such therapies that has been successfully translated from basic science to clinical applications is electrical stimulation (ES). Although the use and study of ES in peripheral nerve growth dates back nearly a century, only recently has it started to be used in a clinical setting. Since those initial experiments and seminal publications, the application of ES to restore function and promote healing have greatly expanded. In this review, we discuss the progression and use of ES over time as it pertains to promoting axonal outgrowth and functional recovery post-SCI. In doing so, we consider four major uses for the study of ES based on the proposed or documented underlying mechanism: (1) using ES to introduce an electric field at the site of injury to promote axonal outgrowth and plasticity; (2) using spinal cord ES to activate or to increase the excitability of neuronal networks below the injury; (3) using motor cortex ES to promote corticospinal tract axonal outgrowth and plasticity; and (4) leveraging the timing of paired stimuli to produce plasticity. Finally, the use of ES in its current state in the context of human SCI studies is discussed, in addition to ongoing research and current knowledge gaps, to highlight the direction of future studies for this therapeutic modality.
Collapse
Affiliation(s)
- Andrew S Jack
- Department of Neurological Surgery, University of California San Francisco (UCSF), San Francisco, California, USA
| | - Caitlin Hurd
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - John Martin
- Department of Molecular, Cellular, and Biomedical Sciences, City University of New York School of Medicine, and City University of New York Graduate Center, New York, New York, USA
| | - Karim Fouad
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada.,Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
37
|
Soluble SORLA Enhances Neurite Outgrowth and Regeneration through Activation of the EGF Receptor/ERK Signaling Axis. J Neurosci 2020; 40:5908-5921. [PMID: 32601248 DOI: 10.1523/jneurosci.0723-20.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 01/01/2023] Open
Abstract
SORLA is a transmembrane trafficking protein associated with Alzheimer's disease risk. Although SORLA is abundantly expressed in neurons, physiological roles for SORLA remain unclear. Here, we show that cultured transgenic neurons overexpressing SORLA feature longer neurites, and accelerated neurite regeneration with wounding. Enhanced release of a soluble form of SORLA (sSORLA) is observed in transgenic mouse neurons overexpressing human SORLA, while purified sSORLA promotes neurite extension and regeneration. Phosphoproteomic analyses demonstrate enrichment of phosphoproteins related to the epidermal growth factor (EGFR)/ERK pathway in SORLA transgenic mouse hippocampus from both genders. sSORLA coprecipitates with EGFR in vitro, and sSORLA treatment increases EGFR Y1173 phosphorylation, which is involved in ERK activation in cultured neurons. Furthermore, sSORLA triggers ERK activation, whereas pharmacological EGFR or ERK inhibition reverses sSORLA-dependent enhancement of neurite outgrowth. In search for downstream ERK effectors activated by sSORLA, we identified upregulation of Fos expression in hippocampus from male mice overexpressing SORLA by RNAseq analysis. We also found that Fos is upregulated and translocates to the nucleus in an ERK-dependent manner in neurons treated with sSORLA. Together, these results demonstrate that sSORLA is an EGFR-interacting protein that activates EGFR/ERK/Fos signaling to enhance neurite outgrowth and regeneration.SIGNIFICANCE STATEMENT SORLA is a transmembrane trafficking protein previously known to reduce the levels of amyloid-β, which is critical in the pathogenesis of Alzheimer's disease. In addition, SORLA mutations are a risk factor for Alzheimer's disease. Interestingly, the SORLA ectodomain is cleaved into a soluble form, sSORLA, which has been shown to regulate cytoskeletal signaling pathways and cell motility in cells outside the nervous system. We show here that sSORLA binds and activates the EGF receptor to induce downstream signaling through the ERK serine/threonine kinase and the Fos transcription factor, thereby enhancing neurite outgrowth. These findings reveal a novel role for sSORLA in promoting neurite regeneration through the EGF receptor/ERK/Fos pathway, thereby demonstrating a potential neuroprotective mechanism involving SORLA.
Collapse
|
38
|
Wang M, Jia L, Wu X, Sun Z, Xu Z, Kong C, Ma L, Zhao R, Lu S. Deep Brain Stimulation Improves Motor Function in Rats with Spinal Cord Injury by Increasing Synaptic Plasticity. World Neurosurg 2020; 140:e294-e303. [PMID: 32407911 DOI: 10.1016/j.wneu.2020.05.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To investigate the effect of deep brain stimulation (DBS) on rats with spinal cord injury (SCI) and its possible molecular mechanism. METHODS A rat SCI model was prepared using a modified Allen method. The animals were randomly divided into 3 groups (n = 12 per group): the sham group, the SCI group, and the SCI + DBS group. Then, DBS was applied to the rats in the SCI + DBS group for half an hour per day for 4 weeks. Basso, Beattie, and Bresnahan scores were used to assess spinal function. RESULTS DBS significantly improved hindlimb motor function in SCI rats, and the protein expression levels of brain-derived neurotrophic factor, the mammalian target of rapamycin, tropomyosin-related kinase B, protein kinase B, p70 ribosomal S6 protein kinase, postsynaptic density protein 95, and synaptophysin increased correspondingly. CONCLUSIONS DBS improves motor function in rats with SCI by increasing synaptic plasticity via tropomyosin-related kinase B-protein kinase B-mammalian target of rapamycin pathway.
Collapse
Affiliation(s)
- Min Wang
- Department of Orthopedics, Xuanwu Hospital Capital Medical University, Beijing, China; The fourth Department of Orthopedics, Jincheng General Hospital, Jincheng, Shanxi Province, China
| | - Lina Jia
- Beijing Key Laboratory of Mental Disorders & The National Clinical Research Center for Mental Disorder, Beijing Anding Hospital, Capital Medical University, Beijing, China; Department of Neurology, Jincheng General Hospital, Jincheng, Shanxi Province, China
| | - Xiaobo Wu
- The fourth Department of Orthopedics, Jincheng General Hospital, Jincheng, Shanxi Province, China
| | - Zuoli Sun
- Beijing Key Laboratory of Mental Disorders & The National Clinical Research Center for Mental Disorder, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Zheng Xu
- The fourth Department of Orthopedics, Jincheng General Hospital, Jincheng, Shanxi Province, China
| | - Chao Kong
- Department of Orthopedics, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Lin Ma
- The fourth Department of Orthopedics, Jincheng General Hospital, Jincheng, Shanxi Province, China
| | - Ruifeng Zhao
- The fourth Department of Orthopedics, Jincheng General Hospital, Jincheng, Shanxi Province, China
| | - Shibao Lu
- Department of Orthopedics, Xuanwu Hospital Capital Medical University, Beijing, China.
| |
Collapse
|
39
|
Leake PA, Akil O, Lang H. Neurotrophin gene therapy to promote survival of spiral ganglion neurons after deafness. Hear Res 2020; 394:107955. [PMID: 32331858 DOI: 10.1016/j.heares.2020.107955] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/16/2020] [Accepted: 03/26/2020] [Indexed: 12/13/2022]
Abstract
Hearing impairment is a major health and economic concern worldwide. Currently, the cochlear implant (CI) is the standard of care for remediation of severe to profound hearing loss, and in general, contemporary CIs are highly successful. But there is great variability in outcomes among individuals, especially in children, with many CI users deriving much less or even marginal benefit. Much of this variability is related to differences in auditory nerve survival, and there has been substantial interest in recent years in exploring potential therapies to improve survival of the cochlear spiral ganglion neurons (SGN) after deafness. Preclinical studies using osmotic pumps and other approaches in deafened animal models to deliver neurotrophic factors (NTs) directly to the cochlea have shown promising results, especially with Brain-Derived Neurotrophic Factor (BDNF). More recent studies have focused on the use of NT gene therapy to force expression of NTs by target cells within the cochlea. This could provide the means for a one-time treatment to promote long-term NT expression and improve neural survival after deafness. This review summarizes the evidence for the efficacy of exogenous NTs in preventing SGN degeneration after hearing loss and reviews the animal research to date suggesting that NT gene therapy can elicit long-term NT expression in the cochlea, resulting in significantly improved SGN and radial nerve fiber survival after deafness. In addition, we discuss NT gene therapy in other non-auditory applications and consider some of the remaining issues with regard to selecting optimal vectors, timing of treatment, and place/method of delivery, etc. that must be resolved prior to considering clinical application.
Collapse
Affiliation(s)
- Patricia A Leake
- S & I Epstein Laboratory, Dept. of Otolaryngology Head and Neck Surgery, University of California San Francisco, 2340 Sutter Street, Room N331, San Francisco, CA, 94115-1330, USA.
| | - Omar Akil
- S & I Epstein Laboratory, Dept. of Otolaryngology Head and Neck Surgery, University of California San Francisco, 2340 Sutter Street, Room N331, San Francisco, CA, 94115-1330, USA
| | - Hainan Lang
- Dept. of Pathology and Laboratory Medicine, Medical University of South Carolina, 165 Ashley Avenue, Room RS613, Charleston, SC, 29414, USA
| |
Collapse
|
40
|
Rodríguez-Barrera R, Flores-Romero A, Buzoianu-Anguiano V, Garcia E, Soria-Zavala K, Incontri-Abraham D, Garibay-López M, Juárez-Vignon Whaley JJ, Ibarra A. Use of a Combination Strategy to Improve Morphological and Functional Recovery in Rats With Chronic Spinal Cord Injury. Front Neurol 2020; 11:189. [PMID: 32300328 PMCID: PMC7142263 DOI: 10.3389/fneur.2020.00189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/28/2020] [Indexed: 01/10/2023] Open
Abstract
Immunization with neural derived peptides (INDP), as well as scar removal (SR) and the use of matrices with bone marrow-mesenchymal stem cells (MSCs), have been studied separately and proven to induce a functional and morphological improvement after spinal cord injury (SCI). Herein, we evaluated the therapeutic effects of INDP combined with SR and a fibrin glue matrix (FGM) with MSCs (FGM-MSCs), on motor recovery, axonal regeneration-associated molecules and cytokine expression, axonal regeneration (catecholaminergic and serotonergic fibers), and the induction of neurogenesis after a chronic SCI. For this purpose, female adult Sprague-Dawley rats were subjected to SCI, 60 days after lesion, rats were randomly distributed in four groups: (1) Rats immunized with complete Freund's adjuvant + PBS (vehicle; PBS-I); (2) Rats with SR+ FGM-MSCs; (3) Rats with SR+ INDP + FGM-MSCs; (4) Rats only with INDP. Afterwards, we evaluated motor recovery using the BBB locomotor test. Sixty days after the therapy, protein expression of TNFα, IL-4, IL-10, BDNF, and GAP-43 were evaluated using ELISA assay. The number of catecholaminergic and serotonergic fibers were also determined. Neurogenesis was evaluated through immunofluorescence. The results show that treatment with INDP alone significantly increased motor recovery, anti-inflammatory cytokines, regeneration-associated molecules, axonal regeneration, and neurogenesis when compared to the rest of the groups. Our findings suggest that the combination therapy (SR + INDP + FGM-MSCs) modifies the non-permissive microenvironment post SCI, but it is not capable of inducing an appropriate axonal regeneration or neurogenesis when compared to the treatment with INDP alone.
Collapse
Affiliation(s)
- Roxana Rodríguez-Barrera
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico.,Proyecto CAMINA A.C., Mexico City, Mexico
| | - Adrián Flores-Romero
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico.,Proyecto CAMINA A.C., Mexico City, Mexico
| | | | - Elisa Garcia
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico.,Proyecto CAMINA A.C., Mexico City, Mexico
| | - Karla Soria-Zavala
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico.,Proyecto CAMINA A.C., Mexico City, Mexico
| | - Diego Incontri-Abraham
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico
| | - Marcela Garibay-López
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico
| | - Juan José Juárez-Vignon Whaley
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico
| | - Antonio Ibarra
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, Mexico.,Proyecto CAMINA A.C., Mexico City, Mexico
| |
Collapse
|
41
|
Sutherland TC, Geoffroy CG. The Influence of Neuron-Extrinsic Factors and Aging on Injury Progression and Axonal Repair in the Central Nervous System. Front Cell Dev Biol 2020; 8:190. [PMID: 32269994 PMCID: PMC7109259 DOI: 10.3389/fcell.2020.00190] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/06/2020] [Indexed: 12/21/2022] Open
Abstract
In the aging western population, the average age of incidence for spinal cord injury (SCI) has increased, as has the length of survival of SCI patients. This places great importance on understanding SCI in middle-aged and aging patients. Axon regeneration after injury is an area of study that has received substantial attention and made important experimental progress, however, our understanding of how aging affects this process, and any therapeutic effort to modulate repair, is incomplete. The growth and regeneration of axons is mediated by both neuron intrinsic and extrinsic factors. In this review we explore some of the key extrinsic influences on axon regeneration in the literature, focusing on inflammation and astrogliosis, other cellular responses, components of the extracellular matrix, and myelin proteins. We will describe how each element supports the contention that axonal growth after injury in the central nervous system shows an age-dependent decline, and how this may affect outcomes after a SCI.
Collapse
Affiliation(s)
- Theresa C Sutherland
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX, United States
| | - Cédric G Geoffroy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX, United States
| |
Collapse
|
42
|
Beverungen H, Klaszky SC, Klaszky M, Côté MP. Rehabilitation Decreases Spasticity by Restoring Chloride Homeostasis through the Brain-Derived Neurotrophic Factor-KCC2 Pathway after Spinal Cord Injury. J Neurotrauma 2020; 37:846-859. [PMID: 31578924 PMCID: PMC7071070 DOI: 10.1089/neu.2019.6526] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Activity-based therapy is routinely integrated in rehabilitation programs to facilitate functional recovery after spinal cord injury (SCI). Among its beneficial effects is a reduction of hyperreflexia and spasticity, which affects ∼75% of the SCI population. Unlike current anti-spastic pharmacological treatments, rehabilitation attenuates spastic symptoms without causing an active depression in spinal excitability, thus avoiding further interference with motor recovery. Understanding how activity-based therapies contribute to decrease spasticity is critical to identifying new pharmacological targets and to optimize rehabilitation programs. It was recently demonstrated that a decrease in the expression of KCC2, a neuronal Cl- extruder, contributes to the development spasticity in SCI rats. Although exercise can decrease spinal hyperexcitability and increase KCC2 expression on lumbar motoneurons after SCI, a causal effect remains to be established. Activity-dependent processes include an increase in brain-derived neurotrophic factor (BDNF) expression. Interestingly, BDNF is a regulator of KCC2 but also a potent modulator of spinal excitability. Therefore, we hypothesized that after SCI, the activity-dependent increase in KCC2 expression: 1) functionally contributes to reduce hyperreflexia, and 2) is regulated by BDNF. SCI rats chronically received VU0240551 (KCC2 blocker) or TrkB-IgG (BDNF scavenger) during the daily rehabilitation sessions and the frequency-dependent depression of the H-reflex, a monitor of hyperreflexia, was recorded 4 weeks post-injury. Our results suggest that the activity-dependent increase in KCC2 functionally contributes to H-reflex recovery and critically depends on BDNF activity. This study provides a new perspective in understanding how exercise impacts hyperreflexia by identifying the biological basis of the recovery of function.
Collapse
Affiliation(s)
- Henrike Beverungen
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Samantha Choyke Klaszky
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Michael Klaszky
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Marie-Pascale Côté
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
43
|
Epac2 Promotes Axonal Outgrowth and Attenuates the Glial Reaction in an Ex Vivo Model of Spinal Cord Injury. J Neurosci 2020; 40:2184-2185. [PMID: 32161180 DOI: 10.1523/jneurosci.2450-19.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 01/25/2023] Open
|
44
|
Matsuda M, Kanno H, Sugaya T, Yamaya S, Yahata K, Handa K, Shindo T, Shimokawa H, Ozawa H, Itoi E. Low-energy extracorporeal shock wave therapy promotes BDNF expression and improves functional recovery after spinal cord injury in rats. Exp Neurol 2020; 328:113251. [PMID: 32087252 DOI: 10.1016/j.expneurol.2020.113251] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023]
Abstract
Low-energy extracorporeal shock wave therapy (ESWT) has been used to treat various human diseases. Previous studies have shown that low-energy ESWT promotes the release of various cell growth factors and trophic factors from the cells surrounding the target lesion. The aim of the current study was to determine whether the application of low-energy ESWT upregulates the expression of brain-derived neurotrophic factor (BDNF) and reduces neural tissue damage and functional impairment using a rat model of thoracic spinal cord contusion injury. We found that low-energy ESWT promoted BDNF expression in the damaged neural tissue. The expression of BDNF was increased in various neural cells at the lesion. Additionally, low-energy ESWT increased the area of spared white matter and the number of oligodendrocytes in the injured spinal cord compared with untreated control animals. There were more axonal fibers around the injured site after the application of low-energy ESWT than control. Importantly, low-energy ESWT improved the locomotor functions evaluated by both the BBB scale and ladder rung walking test in addition to the sensory function measured using a von Frey test. Moreover, the electrophysiological assessment confirmed that the conductivity of the central motor pathway in the injured spinal cord was restored by low-energy ESWT. These findings indicate that low-energy ESWT promotes BDNF expression at the lesion site and reduces the neural tissue damage and functional impairment following spinal cord injury. Our results support the potential application of low-energy ESWT as a novel therapeutic strategy for treating spinal cord injury.
Collapse
Affiliation(s)
- Michiharu Matsuda
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Haruo Kanno
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| | - Takehiro Sugaya
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Seiji Yamaya
- Department of Orthopaedic Surgery, Sendai Nishitaga National Hospital, Sendai 982-8555, Japan.
| | - Kenichiro Yahata
- Department of Orthopaedic Surgery, Sendai Nishitaga National Hospital, Sendai 982-8555, Japan
| | - Kyoichi Handa
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| | - Tomohiko Shindo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| | - Hiroshi Ozawa
- Department of Orthopaedic Surgery, Tohoku Medical and Pharmaceutical University, Faculty of Medicine, 1-15-1, Fukumuro Miyagino-ku, Sendai 983-8536, Japan.
| | - Eiji Itoi
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, 1-1, Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| |
Collapse
|
45
|
Sarveazad A, Agah S, Babahajian A, Amini N, Bahardoust M. Predictors of 5 year survival rate in hepatocellular carcinoma patients. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2019; 24:86. [PMID: 31741658 PMCID: PMC6856560 DOI: 10.4103/jrms.jrms_1017_18] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/25/2019] [Accepted: 07/04/2019] [Indexed: 12/23/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common primary hepatic malignancies and growing challenges of global health. In this study, for the first time in Iran, we investigated the 5-year survival rate and prognostic factors in patients with HCC. Materials and Methods In this historical cohort study, we examined the medical records of 227 HCC patients who were registered in the central tumor registry of our institution from September 2007 to September 2017. Demographic data, clinical parameters, received treatments, and survival curves from time of diagnosis were evaluated. Kaplan-Meier was used for univariate analysis, and multivariable analysis was performed by Cox regression. Results A total of 208 (91.63%) patients were dead. The 5-year survival rate was estimated 19 (8.37%). The average follow-up in this study was 14.3 months. Overall median survival rate was 12.1 months. Univariate analysis showed that tumor size, metastasis, number of involved lymph node, hepatitis type, and treatment were significantly related to the survival rate, and Cox regression analysis revealed that the tumor size >3 cm (hazard ratio [HR] = 3.06, 95% confidence interval [CI] = 1.68-4.97; P = 0.027), involved lymph nodes >2 (HR = 4.12, 95% CI = 2.66-6.38; P = 0.001), metastasis (HR = 3.87, 95% CI = 3.13-6.54; P = 0.011), combination therapy with surgery and chemotherapy (HR = 0.4, 95% CI = 0.15-0.79; P = 0.023), and coinfection with hepatitis B virus and hepatitis C virus (HR = 2.11, 95% CI = 1.81-4.6; P = 0.036) are the most relevant prognostic factors with 5-year survival rate in patients with HCC. Conclusion Results of this study will help estimate survival rates for patients with HCC according to their clinical status.
Collapse
Affiliation(s)
- Arash Sarveazad
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Asrin Babahajian
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Naser Amini
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mansour Bahardoust
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Suppression of miR-10a-5p in bone marrow mesenchymal stem cells enhances the therapeutic effect on spinal cord injury via BDNF. Neurosci Lett 2019; 714:134562. [PMID: 31626878 DOI: 10.1016/j.neulet.2019.134562] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/28/2019] [Accepted: 10/14/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUNDS/AIMS Brain-derived neurotrophic factor (BDNF) plays a primary role in the maturation, proliferation, and differentiation of neuronal cells, can induce bone-marrow-derived mesenchymal stem cells (MSCs) to differentiate into nerve cells. This study aims to explore whether regulation of BDNF through microRNAs (miRNAs) in MSCs may further enhance the therapeutic effect on spinal cord injury (SCI). METHODS Bioinformatics analyses were done to predict miRNAs that target BDNF in MSCs. Dual-luciferase reporter gene assays were performed to verify the target relationship between microRNA and BDNF. We examined the mRNA and protein levels of BDNF in MSCs by RT-qPCR and Western blot, respectively. CCK 8 assay was chosen to assess cell viability. MSCs were transduced with miR-10a-5p-ASO, which were transplanted into rats that underwent SCI. The tissue integrity percentage, cavity volume, and Basso-Beattie-Bresnahan (BBB) scale were assessed. Neurofilament (NF) was detected using immunohistochemistry. Histological features of spinal cord tissues examined following HE staining. RESULTS MiR-10a-5p inhibited protein translation of BDNF, through binding to the 3'-UTR of the BDNF. MSCs transduced with MiR-10a-5p-ASO further increased the tissue integrity percentage, decreased cavity volume, and enhanced the recovery of BBB score in SCI model rats, compared to control MSCs. CONCLUSION Upregulation of BDNF by miR-10a-5p suppression in MSCs further improve the therapeutic potential of MSCs in treating SCI in rats.
Collapse
|
47
|
Charsar BA, Brinton MA, Locke K, Chen AY, Ghosh B, Urban MW, Komaravolu S, Krishnamurthy K, Smit R, Pasinelli P, Wright MC, Smith GM, Lepore AC. AAV2-BDNF promotes respiratory axon plasticity and recovery of diaphragm function following spinal cord injury. FASEB J 2019; 33:13775-13793. [PMID: 31577916 DOI: 10.1096/fj.201901730r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
More than half of spinal cord injury (SCI) cases occur in the cervical region, leading to respiratory dysfunction due to damaged neural circuitry that controls critically important muscles such as the diaphragm. The C3-C5 spinal cord is the location of phrenic motor neurons (PhMNs) that are responsible for diaphragm activation; PhMNs receive bulbospinal excitatory drive predominately from supraspinal neurons of the rostral ventral respiratory group (rVRG). Cervical SCI results in rVRG axon damage, PhMN denervation, and consequent partial-to-complete paralysis of hemidiaphragm. In a rat model of C2 hemisection SCI, we expressed the axon guidance molecule, brain-derived neurotrophic factor (BDNF), selectively at the location of PhMNs (ipsilateral to lesion) to promote directed growth of rVRG axons toward PhMN targets by performing intraspinal injections of adeno-associated virus serotype 2 (AAV2)-BDNF vector. AAV2-BDNF promoted significant functional diaphragm recovery, as assessed by in vivo electromyography. Within the PhMN pool ipsilateral to injury, AAV2-BDNF robustly increased sprouting of both spared contralateral-originating rVRG axons and serotonergic fibers. Furthermore, AAV2-BDNF significantly increased numbers of putative monosynaptic connections between PhMNs and these sprouting rVRG and serotonergic axons. These findings show that targeting circuit plasticity mechanisms involving the enhancement of synaptic inputs from spared axon populations is a powerful strategy for restoring respiratory function post-SCI.-Charsar, B. A., Brinton, M. A., Locke, K., Chen, A. Y., Ghosh, B., Urban, M. W., Komaravolu, S., Krishnamurthy, K., Smit, R., Pasinelli, P., Wright, M. C., Smith, G. M., Lepore, A. C. AAV2-BDNF promotes respiratory axon plasticity and recovery of diaphragm function following spinal cord injury.
Collapse
Affiliation(s)
- Brittany A Charsar
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Michael A Brinton
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Katherine Locke
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Anna Y Chen
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Biswarup Ghosh
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mark W Urban
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Sreeya Komaravolu
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Karthik Krishnamurthy
- Department of Neuroscience, Jefferson Weinberg Amyotrophic Lateral Sclerosis (ALS) Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Rupert Smit
- Department of Anatomy and Cell Biology, Department of Neuroscience, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Piera Pasinelli
- Department of Neuroscience, Jefferson Weinberg Amyotrophic Lateral Sclerosis (ALS) Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Megan C Wright
- Department of Biology, Arcadia University, Philadelphia, Pennsylvania, USA
| | - George M Smith
- Department of Anatomy and Cell Biology, Department of Neuroscience, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Angelo C Lepore
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
48
|
Song YH, Agrawal NK, Griffin JM, Schmidt CE. Recent advances in nanotherapeutic strategies for spinal cord injury repair. Adv Drug Deliv Rev 2019; 148:38-59. [PMID: 30582938 PMCID: PMC6959132 DOI: 10.1016/j.addr.2018.12.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/12/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) is a devastating and complicated condition with no cure available. The initial mechanical trauma is followed by a secondary injury characterized by inflammatory cell infiltration and inhibitory glial scar formation. Due to the limitations posed by the blood-spinal cord barrier, systemic delivery of therapeutics is challenging. Recent development of various nanoscale strategies provides exciting and promising new means of treating SCI by crossing the blood-spinal cord barrier and delivering therapeutics. As such, we discuss different nanomaterial fabrication methods and provide an overview of recent studies where nanomaterials were developed to modulate inflammatory signals, target inhibitory factors in the lesion, and promote axonal regeneration after SCI. We also review emerging areas of research such as optogenetics, immunotherapy and CRISPR-mediated genome editing where nanomaterials can provide synergistic effects in developing novel SCI therapy regimens, as well as current efforts and barriers to clinical translation of nanomaterials.
Collapse
Affiliation(s)
- Young Hye Song
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Nikunj K Agrawal
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Jonathan M Griffin
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
49
|
Hyperbaric oxygen therapy reduces apoptosis and dendritic/synaptic degeneration via the BDNF/TrkB signaling pathways in SCI rats. Life Sci 2019; 229:187-199. [DOI: 10.1016/j.lfs.2019.05.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/06/2019] [Accepted: 05/10/2019] [Indexed: 12/15/2022]
|
50
|
Deng K, Balog BM, Lin DL, Hanzlicek B, Song QX, Zhu H, Damaser MS. Daily bilateral pudendal nerve electrical stimulation improves recovery from stress urinary incontinence. Interface Focus 2019; 9:20190020. [PMID: 31263536 DOI: 10.1098/rsfs.2019.0020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2019] [Indexed: 01/04/2023] Open
Abstract
Stress urinary incontinence (SUI) in women is strongly associated with childbirth which injures the pudendal nerve (PN) and the external urethral sphincter (EUS) during delivery. Electrical stimulation (ES) can increase brain-derived neurotrophic factor (BDNF) expression in injured neurons, activate Schwann cells and promote neuroregeneration after nerve injury. The aim of this study was to determine if more frequent ES would increase recovery from SUI in a rat model. Forty female Sprague-Dawley rats underwent either sham injury or pudendal nerve crush (PNC) and vaginal distention (VD) to establish SUI. Immediately after injury, electrodes were implanted at the pudendal nerve bilaterally. Each injured animal underwent sham ES, twice per week ES (2/week), or daily ES of 1 h duration for two weeks. Urethral and nerve function were assessed with leak point pressure (LPP), EUS electromyography and pudendal nerve sensory branch potential (PNSBP) recordings two weeks after injury. LPP was significantly increased after daily ES compared to 2/week ES. EUS neuromuscular junction innervation was decreased after injury with sham ES, but improved after 2/week or daily ES. This study demonstrates that daily bilateral ES to the pudendal nerve can accelerate recovery from SUI. Daily ES improved urethral function more than 2/week ES.
Collapse
Affiliation(s)
- Kangli Deng
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA.,Department of Urology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, People's Republic of China.,Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave. ND20, Cleveland, OH 44195, USA
| | - Brian M Balog
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA.,Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave. ND20, Cleveland, OH 44195, USA.,Department of Biology, University of Akron, Akron, OH, USA
| | - Dan Li Lin
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA.,Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave. ND20, Cleveland, OH 44195, USA
| | - Brett Hanzlicek
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA.,Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave. ND20, Cleveland, OH 44195, USA
| | - Qi-Xiang Song
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA.,Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave. ND20, Cleveland, OH 44195, USA.,Department of Urology, Changhai Hospital, The Second Military Medical University, Shanghai, People's Republic of China
| | - Hui Zhu
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA.,Glickman Urologic and Kidney Institute, Cleveland Clinic, 9500 Euclid Ave. Q100, Cleveland, OH 44195, USA
| | - Margot S Damaser
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA.,Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave. ND20, Cleveland, OH 44195, USA.,Glickman Urologic and Kidney Institute, Cleveland Clinic, 9500 Euclid Ave. Q100, Cleveland, OH 44195, USA
| |
Collapse
|