1
|
Ghanbari A. Beneficial Effects of Exercise in Neuropathic Pain: An Overview of the Mechanisms Involved. Pain Res Manag 2025; 2025:3432659. [PMID: 40040749 PMCID: PMC11879594 DOI: 10.1155/prm/3432659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 02/08/2025] [Indexed: 03/06/2025]
Abstract
Neuropathic pain is a prevalent issue that often arises following injuries to the peripheral or central nervous system. Unfortunately, there is currently no definitive and flawless treatment available to alleviate this type of pain. However, exercise has emerged as a promising nonpharmacological and adjunctive approach, demonstrating a significant impact in reducing pain intensity. This is why physical therapy is considered a beneficial approach for diminishing pain and promoting functional recovery following nerve injuries. Regular physical activity exerts its hypoalgesic effects through a diverse array of mechanisms. These include inhibiting oxidative stress, suppressing inflammation, and modulating neurotransmitter levels, among others. It is possible that multiple activated mechanisms may coexist within an individual. However, the priming mechanism does not need to be the same across all subjects. Each person's response to physical activity and pain modulation may vary depending on their unique physiological and genetic factors. In this review, we aimed to provide a concise overview of the mechanisms underlying the beneficial effects of regular exercise on neuropathic pain. We have discussed several key mechanisms that contribute to the improvement of neuropathic pain through exercise. However, it is important to note that this is not an exhaustive analysis, and there may be other mechanisms at play. Our goal was to provide a brief yet informative exploration of the topic.
Collapse
Affiliation(s)
- Ali Ghanbari
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
- Department of Physiology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
2
|
Zhang WJ, Chen D. Mesenchymal stem cell transplantation plays a role in relieving cancer pain. Front Pharmacol 2024; 15:1483716. [PMID: 39679363 PMCID: PMC11637888 DOI: 10.3389/fphar.2024.1483716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
Tumors can invade, compress, and damage nerves, leading to persistent pain and seriously affecting the quality of life of patients. However, their treatment is challenging. Sensitization of peripheral receptors, abnormal activity of primary sensory neurons, activation of glial cells, enhanced inflammatory responses, and sensory information transmission contribute towards cancer pain. Therefore, considerable attention has been paid to exploring prospective methods to inhibit the occurrence of these factors and relieve cancer pain. Studies on different types of pains have revealed that the transplantation of functionally active cells into the host has the pharmacological effect of producing analgesia. Mesenchymal stem cells (MSCs) can act as small active pumps to reduce the expression of pain-related molecules and produce analgesic effects. Moreover, MSCs can establish complex communication networks with non-tumor and cancer cells in the microenvironment, interact with each other, and can be used as destinations for inflammation and tumor sites, affecting their potential for invasion and metastasis. This emphasizes the key role of MSCs in cancer and pain management. The pain relief mechanisms of MSCs include neuronutrition, neural protection, neural network reconstruction, immune regulation, and improvement of the inflammatory microenvironment around the nerve injury. All of these are beneficial for the recovery of injured or stimulated nerves and the reconstruction of neural function, and play a role in relieving pain. The pain treatment strategy of cell transplantation is to repair injured nerves and produce analgesic pharmacological properties that are different from those of painkillers and other physiotherapies. Although the therapeutic role of MSCs in cancer and pain is in its early stages, the therapeutic value of MSCs for cancer pain has great prospects. Therefore, in this study, we explored the possible mechanism between MSCs and cancer pain, the potential therapeutic role of therapeutic cells in cancer pain, and some problems and challenges.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Jiangxi Medical college, Nanchang, China
| | - Dingyi Chen
- Emergency department, The Second Affiliated Hospital, Nanchang University, Jiangxi Medical college, Nanchang, China
| |
Collapse
|
3
|
Horowitz RS, Randall ZD, Dy CJ. Electrical Stimulation: Enhancing Axonal Growth following Peripheral Nerve Injury. J Hand Surg Asian Pac Vol 2024; 29:373-379. [PMID: 39205525 DOI: 10.1142/s2424835524400034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Electrical stimulation has been integrated in recent decades into rehabilitation protocols following neuromuscular injuries. Existing literature supports the utilisation of prolonged or continuous stimulation generated by implantable or transcutaneous devices for chronic pain subsidence and muscle trophism maintenance, which improve outcomes following microsurgical interventions. Newer uses include brief electrical stimulation for peripheral nerve injury. Brief electrical stimulation has shown promise in expediting regeneration of both torn and crushed nerve axons in the murine model and has been incorporated into a limited number of clinical studies. Augmentation of the natural response of an injured peripheral nerve by electrical stimulation has the potential to accelerate regeneration, presumably leading to improved function and clinical outcomes. We review the existing literature on intraoperative utilisation of electrical stimulation to enhance regeneration, such as neural mechanisms of action and their microscopic effect in animal models, as well as results from initial human studies. Level of Evidence: Level V (Therapeutic).
Collapse
|
4
|
Liu S, Li Q, Wang H, Zhang H, Zhao Q, Su J, Zou J, Feng P, Zhang A. Exercise as a promising alternative for sciatic nerve injury pain relief: a meta-analysis. Front Neurol 2024; 15:1424050. [PMID: 39144705 PMCID: PMC11323690 DOI: 10.3389/fneur.2024.1424050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/23/2024] [Indexed: 08/16/2024] Open
Abstract
Objective The efficacy of drug therapies in managing neuropathic pain is constrained by their limited effectiveness and potential for adverse effects. In contrast, exercise has emerged as a promising alternative for pain relief. In this study, we conducted a systematic evaluation of the therapeutic impact of exercise on neuropathic pain resulting from sciatic nerve injury in rodent models. Methods The PubMed, Embase, and Web of Science databases were retrieved before April 2024. A series of studies regarding the effect of treadmill, swimming, wheel and other exercises on neuropathic pain induced by sciatic nerve injury in rats and mice were collected. Using predefined inclusion criteria, two researchers independently performed literature screening, data extraction, and methodological quality assessment utilizing SYRCLE's risk of bias tool for animal studies. Statistical analysis was conducted using RevMan 5.3 and STATA 12.0 analysis software. Results A total of 12 relevant academic sources were included in the analysis of controlled animal studies, with 133 rodents in the exercise group and 135 rodents in the sedentary group. The meta-analysis revealed that exercise was associated with a significant increase in paw withdrawal mechanical threshold [Standard Mean Difference (SMD) = 0.84, 95% confidence interval (CI): 0.28-1.40, p = 0.003] and paw withdrawal thermal latency (SMD = 1.54, 95%CI: 0.93-2.15, p < 0.0001) in rats and mice with sciatic nerve injury. Subgroup analyses were conducted to evaluate the impact of exercise duration on heterogeneity. The results showed that postoperative exercise duration ≤3 weeks could significantly elevate paw withdrawal mechanical threshold (SMD = 1.04, 95% CI: 0.62-1.46, p < 0.00001). Postoperative exercise duration ≤4 weeks could significantly improve paw withdrawal thermal latency (SMD = 1.93, 95% CI:1.19-2.67, p < 0.00001). Conclusion Exercise represents an effective method for improving mechanical and thermal hypersensitivity resulting from sciatic nerve injury in rodents. Factors such as pain models, the initiation of exercise, the type of exercise, and the species of rodent do not significantly impact the development of exercise-induced hypoalgesia. However, the duration of postoperative exercise plays a crucial role in the onset of exercise-induced hypoalgesia.
Collapse
Affiliation(s)
- Shunxin Liu
- Guangxi University of Chinese Medicine, Nanning, China
| | - Qin Li
- Department of Anesthesiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Huaiming Wang
- Department of Anesthesiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Hongwei Zhang
- Department of Anesthesiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Qi Zhao
- Department of Anesthesiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Jinjun Su
- Department of Anesthesiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Jiang Zou
- Department of Anesthesiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Pengjiu Feng
- Guangxi University of Chinese Medicine, Nanning, China
- Department of Anesthesiology, Liuzhou Traditional Chinese Medicine Hospital, The Third Affiliated Hospital of Guangxi University of Chinese Medicine, Liuzhou, China
| | - Aimin Zhang
- Department of Anesthesiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
5
|
Shi S, Ou X, Du X. Enhanced nerve function recovery in radial nerve palsy patients with humerus shaft fracture: a randomized study of low-frequency pulse electrical stimulation combined with exercise therapy. Front Neurol 2024; 15:1370316. [PMID: 39011357 PMCID: PMC11246844 DOI: 10.3389/fneur.2024.1370316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/17/2024] [Indexed: 07/17/2024] Open
Abstract
Objective To evaluate the effect of low-frequency pulse electrical stimulation plus exercise therapy on nerve function recovery in patients with radial nerve palsy after humerus shaft fracture. Methods A total of 110 patients with humerus shaft fracture and radial nerve injury admitted to our hospital from January 2017 to December 2021 were recruited. They were randomized to receive either conventional exercise therapy (control group) or conventional exercise therapy plus low-frequency pulse electrical stimulation (study group) according to the random number table method, with 55 cases in each. Clinical efficacy, muscle strength recovery, nerve conduction velocity (MCV), amplitude, wrist joint, and elbow joint activities of patients were analyzed and compared. Results Patients with low frequency stimulation (LFS) showed significantly higher treatment effectiveness (89.09%) than those with exercise therapy only (69.09%). The incorporation of LFS with exercise therapy provided more enhancement in the muscle strength of wrist extensor and total finger extensor in patients when compared with a mere exercise intervention, suggesting better muscle function recovery of patients produced by LFS. Moreover, a significant increase in MCV and its amplitude was observed in all included patients, among which those receiving LFS showed a greater escalation of MCV and its amplitude. Following a treatment duration of 6 months, more patients in the LFS cohort were reported to achieve a wrist extension and elbow extension with an angle over 45° than the controls. There was no notable variance in adverse responses noted between the two patient groups. Conclusion In patients afflicted with humerus shaft fracture and radial nerve injury, the amalgamation of exercise therapy with low-frequency pulse electrical stimulation can significantly improve clinical efficacy, promote nerve function, and muscle strength recovery, and features a high safety profile. Relevance to clinical practice The combination of exercise therapy and low-frequency pulsed electrical stimulation can notably improve the promotion of neurologic function and muscle strength recovery in patients with humerus shaft fractures and radial nerve injuries with a high degree of safety.Clinical trial registration:https://www.researchregistry.com, identifier researchregistry9461.
Collapse
Affiliation(s)
- Shaoyan Shi
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xuehai Ou
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xiaolong Du
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
6
|
Liu Z, Lai J, Kong D, Zhao Y, Zhao J, Dai J, Zhang M. Advances in electroactive bioscaffolds for repairing spinal cord injury. Biomed Mater 2024; 19:032005. [PMID: 38636508 DOI: 10.1088/1748-605x/ad4079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
Spinal cord injury (SCI) is a devastating neurological disorder, leading to loss of motor or somatosensory function, which is the most challenging worldwide medical problem. Re-establishment of intact neural circuits is the basis of spinal cord regeneration. Considering the crucial role of electrical signals in the nervous system, electroactive bioscaffolds have been widely developed for SCI repair. They can produce conductive pathways and a pro-regenerative microenvironment at the lesion site similar to that of the natural spinal cord, leading to neuronal regeneration and axonal growth, and functionally reactivating the damaged neural circuits. In this review, we first demonstrate the pathophysiological characteristics induced by SCI. Then, the crucial role of electrical signals in SCI repair is introduced. Based on a comprehensive analysis of these characteristics, recent advances in the electroactive bioscaffolds for SCI repair are summarized, focusing on both the conductive bioscaffolds and piezoelectric bioscaffolds, used independently or in combination with external electronic stimulation. Finally, thoughts on challenges and opportunities that may shape the future of bioscaffolds in SCI repair are concluded.
Collapse
Affiliation(s)
- Zeqi Liu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Jiahui Lai
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Dexin Kong
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Jiakang Zhao
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Jianwu Dai
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Mingming Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| |
Collapse
|
7
|
Liu MC, Guo QF, Zhang WW, Luo HL, Zhang WJ, Hu HJ. Olfactory ensheathing cells as candidate cells for chronic pain treatment. J Chem Neuroanat 2024; 137:102413. [PMID: 38492895 DOI: 10.1016/j.jchemneu.2024.102413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Chronic pain is often accompanied by tissue damage and pain hypersensitivity. It easily relapses and is challenging to cure, which seriously affects the patients' quality of life and is an urgent problem to be solved. Current treatment methods primarily rely on morphine drugs, which do not address the underlying nerve injury and may cause adverse reactions. Therefore, in recent years, scientists have shifted their focus from chronic pain treatment to cell transplantation. This review describes the classification and mechanism of chronic pain through the introduction of the characteristics of olfactory ensheathing cells (OECs), an in-depth discussion of special glial cells through the phagocytosis of nerve debris, receptor-ligand interactions, providing nutrition, and other inhibition of neuroinflammation, and ultimately supporting axon regeneration and mitigation of chronic pain. This review summarizes the potential and limitations of OECs for treating chronic pain by objectively analyzing relevant clinical trials and methods to enhance efficacy and future development prospects.
Collapse
Affiliation(s)
- Mei-Chen Liu
- The Second Clinical Medical College, Nanchang University, China
| | - Qing-Fa Guo
- The Second Clinical Medical College, Nanchang University, China
| | - Wei-Wei Zhang
- The Second Clinical Medical College, Nanchang University, China
| | - Hong-Liang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China
| | - Hai-Jun Hu
- Anesthesiology Department, The Second Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
8
|
Gouveia D, Cardoso A, Carvalho C, Oliveira AC, Almeida A, Gamboa Ó, Lopes B, Coelho A, Alvites R, Varejão AS, Maurício AC, Ferreira A, Martins Â. Early Intensive Neurorehabilitation in Traumatic Peripheral Nerve Injury-State of the Art. Animals (Basel) 2024; 14:884. [PMID: 38539981 PMCID: PMC10967370 DOI: 10.3390/ani14060884] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 02/24/2025] Open
Abstract
Traumatic nerve injuries are common lesions that affect several hundred thousand humans, as well as dogs and cats. The assessment of nerve regeneration through animal models may provide information for translational research and future therapeutic options that can be applied mutually in veterinary and human medicine, from a One Health perspective. This review offers a hands-on vision of the non-invasive and conservative approaches to peripheral nerve injury, focusing on the role of neurorehabilitation in nerve repair and regeneration. The peripheral nerve injury may lead to hypersensitivity, allodynia and hyperalgesia, with the possibility of joint contractures, decreasing functionality and impairing the quality of life. The question remains regarding how to improve nerve repair with surgical possibilities, but also considering electrical stimulation modalities by modulating sensory feedback, upregulation of BDNF, GFNF, TrKB and adenosine monophosphate, maintaining muscle mass and modulating fatigue. This could be improved by the positive synergetic effect of exercises and physical activity with locomotor training, and other physical modalities (low-level laser therapy, ultrasounds, pulsed electromagnetic fields, electroacupuncture and others). In addition, the use of cell-based therapies is an innovative treatment tool in this field. These strategies may help avoid situations of permanent monoplegic limbs that could lead to amputation.
Collapse
Affiliation(s)
- Débora Gouveia
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (A.C.O.); (Â.M.)
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande, 1749-024 Lisboa, Portugal
| | - Ana Cardoso
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (A.C.O.); (Â.M.)
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
| | - Carla Carvalho
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (A.C.O.); (Â.M.)
| | - Ana Catarina Oliveira
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (A.C.O.); (Â.M.)
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
| | - António Almeida
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal; (A.A.); (Ó.G.); (A.F.)
- Centro Interdisciplinar—Investigação em Saúde Animal (CIISA), Faculdade de Medicina Veterinária, Av. Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal
| | - Óscar Gamboa
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal; (A.A.); (Ó.G.); (A.F.)
- Centro Interdisciplinar—Investigação em Saúde Animal (CIISA), Faculdade de Medicina Veterinária, Av. Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal
| | - Bruna Lopes
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA), Universidade do Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (A.C.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
| | - André Coelho
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA), Universidade do Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (A.C.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
| | - Rui Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA), Universidade do Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (A.C.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
- Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Artur Severo Varejão
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
- CECAV, Centre for Animal Sciences and Veterinary Studies, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Ana Colette Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA), Universidade do Porto (UP), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; (B.L.); (A.C.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
| | - António Ferreira
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal; (A.A.); (Ó.G.); (A.F.)
- Centro Interdisciplinar—Investigação em Saúde Animal (CIISA), Faculdade de Medicina Veterinária, Av. Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal
| | - Ângela Martins
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (A.C.O.); (Â.M.)
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande, 1749-024 Lisboa, Portugal
| |
Collapse
|
9
|
Zou X, Dong Y, Alhaskawi A, Zhou H, Ezzi SHA, Kota VG, Abdulla MHAH, Abdalbary SA, Lu H, Wang C. Techniques and graft materials for repairing peripheral nerve defects. Front Neurol 2024; 14:1307883. [PMID: 38318237 PMCID: PMC10839026 DOI: 10.3389/fneur.2023.1307883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/15/2023] [Indexed: 02/07/2024] Open
Abstract
Peripheral nerve defects refer to damage or destruction occurring in the peripheral nervous system, typically affecting the limbs and face. The current primary approaches to address peripheral nerve defects involve the utilization of autologous nerve transplants or the transplantation of artificial material. Nevertheless, these methods possess certain limitations, such as inadequate availability of donor nerve or unsatisfactory regenerative outcomes post-transplantation. Biomaterials have been extensively studied as an alternative approach to promote the repair of peripheral neve defects. These biomaterials include both natural and synthetic materials. Natural materials consist of collagen, chitosan, and silk, while synthetic materials consist of polyurethane, polylactic acid, and polycaprolactone. Recently, several new neural repair technologies have also been developed, such as nerve regeneration bridging technology, electrical stimulation technology, and stem cell therapy technology. Overall, biomaterials and new neural repair technologies provide new methods and opportunities for repairing peripheral nerve defects. However, these methods still require further research and development to enhance their effectiveness and feasibility.
Collapse
Affiliation(s)
- Xiaodi Zou
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yanzhao Dong
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Ahmad Alhaskawi
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Haiying Zhou
- Faculty of Medicine, The Chinese University of Hong Kong School of Biomedical Science, Shatin, China
| | | | | | | | - Sahar Ahmed Abdalbary
- Department of Orthopedic Physical Therapy, Faculty of Physical Therapy, Nahda University in Beni Suef, Beni Suef, Egypt
| | - Hui Lu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
- Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Zhejiang University, Hangzhou, China
| | - Changxin Wang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
10
|
Gouveia D, Cardoso A, Carvalho C, Rijo I, Almeida A, Gamboa Ó, Lopes B, Sousa P, Coelho A, Balça MM, Salgado AJ, Alvites R, Varejão ASP, Maurício AC, Ferreira A, Martins Â. The Role of Early Rehabilitation and Functional Electrical Stimulation in Rehabilitation for Cats with Partial Traumatic Brachial Plexus Injury: A Pilot Study on Domestic Cats in Portugal. Animals (Basel) 2024; 14:323. [PMID: 38275783 PMCID: PMC10812540 DOI: 10.3390/ani14020323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
This prospective observational cohort pilot study included 22 cats diagnosed with partial traumatic brachial plexus injury (PTBPI), aiming to explore responses to an early intensive neurorehabilitation protocol in a clinical setting. This protocol included functional electrical stimulation (FES), locomotor treadmill training and kinesiotherapy exercises, starting at the time with highest probability of nerve repair. The synergetic benefits of this multimodal approach were based on the potential structural and protective role of proteins and the release of neurotrophic factors. Furthermore, FES was parametrized according to the presence or absence of deep pain. Following treatment, 72.6% of the cats achieved ambulation: 9 cats within 15 days, 2 cats within 30 days and 5 cats within 60 days. During the four-year follow-up, there was evidence of improvement in both muscle mass and muscle weakness, in addition to the disappearance of neuropathic pain. Notably, after the 60 days of neurorehabilitation, 3 cats showed improved ambulation after arthrodesis of the carpus. Thus, early rehabilitation, with FES applied in the first weeks after injury and accurate parametrization according to the presence or absence of deep pain, may help in functional recovery and ambulation, reducing the probability of amputation.
Collapse
Affiliation(s)
- Débora Gouveia
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (I.R.); (Â.M.)
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande, 1749-024 Lisboa, Portugal
| | - Ana Cardoso
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (I.R.); (Â.M.)
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
| | - Carla Carvalho
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (I.R.); (Â.M.)
| | - Inês Rijo
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (I.R.); (Â.M.)
| | - António Almeida
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal; (A.A.); (Ó.G.); (A.F.)
| | - Óscar Gamboa
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal; (A.A.); (Ó.G.); (A.F.)
| | - Bruna Lopes
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (B.L.); (P.S.); (A.C.); (M.M.B.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
| | - Patrícia Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (B.L.); (P.S.); (A.C.); (M.M.B.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
| | - André Coelho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (B.L.); (P.S.); (A.C.); (M.M.B.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
| | - Maria Manuel Balça
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (B.L.); (P.S.); (A.C.); (M.M.B.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
| | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Rui Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (B.L.); (P.S.); (A.C.); (M.M.B.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
- Instituto Universitário de Ciências da Saúde (CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Artur Severo P. Varejão
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
- Department of Veterinary Sciences, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Centro de Ciência Animal e Veterinária (CECAV), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; (B.L.); (P.S.); (A.C.); (M.M.B.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
| | - António Ferreira
- Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal; (A.A.); (Ó.G.); (A.F.)
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
- CIISA—Centro Interdisciplinar-Investigação em Saúde Animal, Faculdade de Medicina Veterinária, Av. Universidade Técnica de Lisboa, 1300-477 Lisboa, Portugal
| | - Ângela Martins
- Arrábida Veterinary Hospital—Arrábida Animal Rehabilitation Center, 2925-538 Setúbal, Portugal; (D.G.); (A.C.); (C.C.); (I.R.); (Â.M.)
- Superior School of Health, Protection and Animal Welfare, Polytechnic Institute of Lusophony, Campo Grande, 1950-396 Lisboa, Portugal
- Faculty of Veterinary Medicine, Lusófona University, Campo Grande, 1749-024 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal;
| |
Collapse
|
11
|
Umansky D, Elzinga K, Midha R. Surgery for mononeuropathies. HANDBOOK OF CLINICAL NEUROLOGY 2024; 201:227-249. [PMID: 38697743 DOI: 10.1016/b978-0-323-90108-6.00012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Advancement in microsurgical techniques and innovative approaches including greater use of nerve and tendon transfers have resulted in better peripheral nerve injury (PNI) surgical outcomes. Clinical evaluation of the patient and their injury factors along with a shift toward earlier time frame for intervention remain key. A better understanding of the pathophysiology and biology involved in PNI and specifically mononeuropathies along with advances in ultrasound and magnetic resonance imaging allow us, nowadays, to provide our patients with a logical and sophisticated approach. While functional outcomes are constantly being refined through different surgical techniques, basic scientific concepts are being advanced and translated to clinical practice on a continuous basis. Finally, a combination of nerve transfers and technological advances in nerve/brain and machine interfaces are expanding the scope of nerve surgery to help patients with amputations, spinal cord, and brain lesions.
Collapse
Affiliation(s)
- Daniel Umansky
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT, United States
| | - Kate Elzinga
- Division of Plastic Surgery, Department of Surgery, University of Calgary, Calgary, AB, Canada
| | - Rajiv Midha
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
12
|
Ghanbari A, Ghasemi S, Zarbakhsh S. Exercise induced myelin protein zero improvement in neuropathic pain rats. Somatosens Mot Res 2023; 40:141-146. [PMID: 36630644 DOI: 10.1080/08990220.2022.2158800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/08/2022] [Indexed: 01/12/2023]
Abstract
PURPOSE Aerobic exercise including swimming plays a suitable role in improving somatosensory injuries. Neuropathic pain is a debilitating condition that occurs following injury or diseases of somatosensory system. In the present study, we tried to investigate the effect of exercise on myelin protein zero of sciatic nerve injured rats. MATERIALS AND METHODS Forty male rats (180-220 g) were divided into five groups (intact, sham, sham + exercise, neuropathy, and neuropathy + exercise). Right Sciatic nerve of anesthetized rats was exposed and loosely ligated (four ligations with 1 mm apart) using catgut chromic sutures to induce neuropathy. After 3 days of recovery, swimming exercise began (20 min/day/5 days a week/4 weeks). Mechanical allodynia and thermal hyperalgesia were detected using Von Frey filaments and plantar test, respectively. Sciatic nerve at the place of injury was dissected out to measure the myelin protein zero by western blot analysis. In the intact and sham groups, sciatic nerve removed at the place similar to injured group. RESULTS We found that neuropathy significantly (p < 0.05) reduced paw withdrawal mechanical and thermal thresholds and swimming exercise significantly (p < 0.05) increased paw withdrawal mechanical and thermal thresholds compared to the neuropathy group. Moreover, we found that MPZ level significantly (p < 0.01) decreased in neuropathy group against that in sham group, and exercise prominently (p < 0.05) reversed MPZ level towards control level. CONCLUSIONS Swimming exercise improves myelin protein zero level in neuropathic rats along with attenuating neuropathic pain. This is a promising approach in improving neuropathological disorders including Charcot-Marie-Tooth and Dejerine-Sottas disease.
Collapse
Affiliation(s)
- Ali Ghanbari
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Sahar Ghasemi
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Sam Zarbakhsh
- Nervous System Stem Cell Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of anatomical sciences, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
13
|
Ruimonte-Crespo J, Plaza-Manzano G, Díaz-Arribas MJ, Navarro-Santana MJ, López-Marcos JJ, Fabero-Garrido R, Seijas-Fernández T, Valera-Calero JA. Aerobic Exercise and Neuropathic Pain: Insights from Animal Models and Implications for Human Therapy. Biomedicines 2023; 11:3174. [PMID: 38137395 PMCID: PMC10740819 DOI: 10.3390/biomedicines11123174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
This narrative review explores the complex relationship between aerobic exercise (AE) and neuropathic pain (NP), particularly focusing on peripheral neuropathies of mechanical origin. Pain, a multifaceted phenomenon, significantly impacts functionality and distress. The International Association for the Study of Pain's definition highlights pain's biopsychosocial nature, emphasizing the importance of patient articulation. Neuropathic pain, arising from various underlying processes, presents unique challenges in diagnosis and treatment. Our methodology involved a comprehensive literature search in the PubMed and SCOPUS databases, focusing on studies relating AE to NP, specifically in peripheral neuropathies caused by mechanical forces. The search yielded 28 articles and 1 book, primarily animal model studies, providing insights into the efficacy of AE in NP management. Results from animal models demonstrate that AE, particularly in forms like no-incline treadmill and swimming, effectively reduces mechanical allodynia and thermal hypersensitivity associated with NP. AE influences neurophysiological mechanisms underlying NP, modulating neurotrophins, cytokines, and glial cell activity. These findings suggest AE's potential in attenuating neurophysiological alterations in NP. However, human model studies are scarce, limiting the direct extrapolation of these findings to human neuropathic conditions. The few available studies indicate AE's potential benefits in peripheral NP, but a lack of specificity in these studies necessitates further research. In conclusion, while animal models show promising results regarding AE's role in mitigating NP symptoms and influencing underlying neurophysiological mechanisms, more human-centric research is required. This review underscores the need for targeted clinical trials to fully understand and harness AE's therapeutic potential in human neuropathic pain, especially of mechanical origin.
Collapse
Affiliation(s)
- Jorge Ruimonte-Crespo
- Department of Radiology, Rehabilitation and Physiotherapy, Complutense University of Madrid, 28040 Madrid, Spain; (J.R.-C.); (M.J.D.-A.); (M.J.N.-S.); (J.J.L.-M.); (R.F.-G.); (T.S.-F.); (J.A.V.-C.)
| | - Gustavo Plaza-Manzano
- Department of Radiology, Rehabilitation and Physiotherapy, Complutense University of Madrid, 28040 Madrid, Spain; (J.R.-C.); (M.J.D.-A.); (M.J.N.-S.); (J.J.L.-M.); (R.F.-G.); (T.S.-F.); (J.A.V.-C.)
- Grupo InPhysio, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - María José Díaz-Arribas
- Department of Radiology, Rehabilitation and Physiotherapy, Complutense University of Madrid, 28040 Madrid, Spain; (J.R.-C.); (M.J.D.-A.); (M.J.N.-S.); (J.J.L.-M.); (R.F.-G.); (T.S.-F.); (J.A.V.-C.)
- Grupo InPhysio, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Marcos José Navarro-Santana
- Department of Radiology, Rehabilitation and Physiotherapy, Complutense University of Madrid, 28040 Madrid, Spain; (J.R.-C.); (M.J.D.-A.); (M.J.N.-S.); (J.J.L.-M.); (R.F.-G.); (T.S.-F.); (J.A.V.-C.)
- Grupo InPhysio, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - José Javier López-Marcos
- Department of Radiology, Rehabilitation and Physiotherapy, Complutense University of Madrid, 28040 Madrid, Spain; (J.R.-C.); (M.J.D.-A.); (M.J.N.-S.); (J.J.L.-M.); (R.F.-G.); (T.S.-F.); (J.A.V.-C.)
- Faculty of Life and Natural Sciences, Nebrija University, 28015 Madrid, Spain
| | - Raúl Fabero-Garrido
- Department of Radiology, Rehabilitation and Physiotherapy, Complutense University of Madrid, 28040 Madrid, Spain; (J.R.-C.); (M.J.D.-A.); (M.J.N.-S.); (J.J.L.-M.); (R.F.-G.); (T.S.-F.); (J.A.V.-C.)
| | - Tamara Seijas-Fernández
- Department of Radiology, Rehabilitation and Physiotherapy, Complutense University of Madrid, 28040 Madrid, Spain; (J.R.-C.); (M.J.D.-A.); (M.J.N.-S.); (J.J.L.-M.); (R.F.-G.); (T.S.-F.); (J.A.V.-C.)
| | - Juan Antonio Valera-Calero
- Department of Radiology, Rehabilitation and Physiotherapy, Complutense University of Madrid, 28040 Madrid, Spain; (J.R.-C.); (M.J.D.-A.); (M.J.N.-S.); (J.J.L.-M.); (R.F.-G.); (T.S.-F.); (J.A.V.-C.)
- Grupo InPhysio, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| |
Collapse
|
14
|
Otis C, Bouet E, Keita-Alassane S, Frezier M, Delsart A, Guillot M, Bédard A, Pelletier JP, Martel-Pelletier J, Lussier B, Beaudry F, Troncy E. Face and Predictive Validity of MI-RAT ( Montreal Induction of Rat Arthritis Testing), a Surgical Model of Osteoarthritis Pain in Rodents Combined with Calibrated Exercise. Int J Mol Sci 2023; 24:16341. [PMID: 38003530 PMCID: PMC10671647 DOI: 10.3390/ijms242216341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Validating animal pain models is crucial to enhancing translational research and response to pharmacological treatment. This study investigated the effects of a calibrated slight exercise protocol alone or combined with multimodal analgesia on sensory sensitivity, neuroproteomics, and joint structural components in the MI-RAT model. Joint instability was induced surgically on day (D) 0 in female rats (N = 48) distributed into sedentary-placebo, exercise-placebo, sedentary-positive analgesic (PA), and exercise-PA groups. Daily analgesic treatment (D3-D56) included pregabalin and carprofen. Quantitative sensory testing was achieved temporally (D-1, D7, D21, D56), while cartilage alteration (modified Mankin's score (mMs)) and targeted spinal pain neuropeptide were quantified upon sacrifice. Compared with the sedentary-placebo (presenting allodynia from D7), the exercise-placebo group showed an increase in sensitivity threshold (p < 0.04 on D7, D21, and D56). PA treatment was efficient on D56 (p = 0.001) and presented a synergic anti-allodynic effect with exercise from D21 to D56 (p < 0.0001). Histological assessment demonstrated a detrimental influence of exercise (mMs = 33.3%) compared with sedentary counterparts (mMs = 12.0%; p < 0.001), with more mature transformations. Spinal neuropeptide concentration was correlated with sensory sensitization and modulation sites (inflammation and endogenous inhibitory control) of the forced mobility effect. The surgical MI-RAT OA model coupled with calibrated slight exercise demonstrated face and predictive validity, an assurance of higher clinical translatability.
Collapse
Affiliation(s)
- Colombe Otis
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.O.); (E.B.); (S.K.-A.); (M.F.); (A.D.); (M.G.); (B.L.); (F.B.)
| | - Emilie Bouet
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.O.); (E.B.); (S.K.-A.); (M.F.); (A.D.); (M.G.); (B.L.); (F.B.)
| | - Sokhna Keita-Alassane
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.O.); (E.B.); (S.K.-A.); (M.F.); (A.D.); (M.G.); (B.L.); (F.B.)
| | - Marilyn Frezier
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.O.); (E.B.); (S.K.-A.); (M.F.); (A.D.); (M.G.); (B.L.); (F.B.)
| | - Aliénor Delsart
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.O.); (E.B.); (S.K.-A.); (M.F.); (A.D.); (M.G.); (B.L.); (F.B.)
| | - Martin Guillot
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.O.); (E.B.); (S.K.-A.); (M.F.); (A.D.); (M.G.); (B.L.); (F.B.)
| | - Agathe Bédard
- Charles River Laboratories Montreal ULC, Senneville, QC H9X 1C1, Canada;
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Montréal, QC H2X 0A9, Canada; (J.-P.P.); (J.M.-P.)
| | - Johanne Martel-Pelletier
- Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Montréal, QC H2X 0A9, Canada; (J.-P.P.); (J.M.-P.)
| | - Bertrand Lussier
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.O.); (E.B.); (S.K.-A.); (M.F.); (A.D.); (M.G.); (B.L.); (F.B.)
- Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Montréal, QC H2X 0A9, Canada; (J.-P.P.); (J.M.-P.)
| | - Francis Beaudry
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.O.); (E.B.); (S.K.-A.); (M.F.); (A.D.); (M.G.); (B.L.); (F.B.)
- Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Montréal, QC H2X 0A9, Canada; (J.-P.P.); (J.M.-P.)
- Centre de Recherche sur le Cerveau et L’Apprentissage (CIRCA), Université de Montréal, Montréal, QC H3T 1P1, Canada
| | - Eric Troncy
- Groupe de Recherche en Pharmacologie Animale du Québec (GREPAQ), Department of Biomedical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada; (C.O.); (E.B.); (S.K.-A.); (M.F.); (A.D.); (M.G.); (B.L.); (F.B.)
- Osteoarthritis Research Unit, Université de Montréal Hospital Research Center (CRCHUM), Montréal, QC H2X 0A9, Canada; (J.-P.P.); (J.M.-P.)
- Centre de Recherche sur le Cerveau et L’Apprentissage (CIRCA), Université de Montréal, Montréal, QC H3T 1P1, Canada
| |
Collapse
|
15
|
Han G, Lim DH, Yoo YS, Shin EH, Park JY, Kim D, Kim P, Chung TY. Transcutaneous Electrical Stimulation for the Prevention of Dry Eye Disease after Photorefractive Keratectomy: Randomized Controlled Trial. OPHTHALMOLOGY SCIENCE 2023; 3:100242. [PMID: 36685712 PMCID: PMC9853365 DOI: 10.1016/j.xops.2022.100242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/25/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Objective To evaluate the efficacy and safety of transcutaneous electrical stimulation (TES) for the prevention of dry eye after photorefractive keratectomy (PRK). Design Prospective, single-center, single-blinded, parallel group, placebo-controlled, randomized clinical trial. Participants Between February 2020 and October 2020, patients at the Samsung Medical Center scheduled to undergo PRK to correct myopia were screened and enrolled. Methods The participants in the TES group were instructed to use the electrical stimulation device (Nu Eyne 01, Nu Eyne Co) at the periocular region after the operation, whereas those in the control group were to use the sham device. Dry eye symptoms were evaluated preoperatively and postoperatively at weeks 1, 4, and 12 using the Ocular Surface Disease Index (OSDI) questionnaire, the 5-Item Dry Eye Questionnaire (DEQ-5), and the Standard Patient Evaluation for Eye Dryness II (SPEED II) questionnaire. Dry eye signs were assessed using tear break-up time (TBUT), total corneal fluorescein staining (tCFS), and total conjunctival staining score according to the National Eye Institute/Industry scale. The pain intensity was evaluated using a visual analog scale. Main Outcome Measures Primary outcomes were OSDI and TBUT. Results Twenty-four patients were enrolled and completed follow-up until the end of the study (12 patients in the TES group, 12 patients in the control group). Refractive outcomes and visual acuity were not different between the groups. No serious adverse event was reported with regard to device use. No significant difference in OSDI and SPEED II questionnaires and the DEQ-5 was observed between the groups in the 12th week after surgery. The TBUT scores 12 weeks after the surgery were 9.28 ± 6.90 seconds in the TES group and 5.98 ± 2.55 seconds in the control group with significant difference (P = 0.042). The tCFS and total conjunctival staining score were significantly lower in the TES group than in the control group at postoperative 4 weeks. Pain intensity at the first week was significantly lower in the TES group than in the control group by 65% (P = 0.011). Conclusion The application of TES is safe and effective in improving dry eye disease after PRK. Financial Disclosures The author(s) have no proprietary or commercial interest in any materials discussed in this article.
Collapse
Key Words
- Corneal nerve regeneration
- DED, dry eye disease
- DEQ-5, 5-Item Dry Eye Questionnaire
- Dry eye
- Electrostimulation
- LLT, lipid layer thickness
- NGF, nerve growth factor
- OSDI, Ocular Surface Disease Index
- PRK, photorefractive keratectomy
- Refractive surgery
- SPEED II, Standard Patient Evaluation for Eye Dryness II
- TBUT, tear break-up time
- TES, transcutaneous electrical stimulation
- UDVA, uncorrected distant visual acuity
- tCFS, total corneal fluorescein staining
Collapse
Affiliation(s)
- Gyule Han
- Department of Ophthalmology, Sungkyunkwan University, Samsung Medical Hospital, Seoul, South Korea
| | - Dong Hui Lim
- Department of Ophthalmology, Sungkyunkwan University, Samsung Medical Hospital, Seoul, South Korea
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Young Sik Yoo
- Department of Ophthalmology, Sungkyunkwan University, Samsung Medical Hospital, Seoul, South Korea
- Department of Ophthalmology, College of Medicine, Uijeongbu St. Mary’s Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Eun Hye Shin
- Department of Ophthalmology, Sungkyunkwan University, Samsung Medical Hospital, Seoul, South Korea
| | - Jong Yup Park
- Department of Ophthalmology, Sungkyunkwan University, Samsung Medical Hospital, Seoul, South Korea
- Samsung Biomedical Research Institute, Seoul, South Korea
| | - Dohyoung Kim
- Samsung Biomedical Research Institute, Seoul, South Korea
| | - Pyungkyu Kim
- Samsung Biomedical Research Institute, Seoul, South Korea
| | - Tae-Young Chung
- Department of Ophthalmology, Sungkyunkwan University, Samsung Medical Hospital, Seoul, South Korea
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| |
Collapse
|
16
|
Sleijser-Koehorst MLS, Koop MA, Coppieters MW, Lutke Schipholt IJ, Radisic N, Hooijmans CR, Scholten-Peeters GGM. The effects of aerobic exercise on neuroimmune responses in animals with traumatic peripheral nerve injury: a systematic review with meta-analyses. J Neuroinflammation 2023; 20:104. [PMID: 37138291 PMCID: PMC10155410 DOI: 10.1186/s12974-023-02777-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Increasing pre-clinical evidence suggests that aerobic exercise positively modulates neuroimmune responses following traumatic nerve injury. However, meta-analyses on neuroimmune outcomes are currently still lacking. This study aimed to synthesize the pre-clinical literature on the effects of aerobic exercise on neuroimmune responses following peripheral nerve injury. METHODS MEDLINE (via Pubmed), EMBASE and Web of Science were searched. Controlled experimental studies on the effect of aerobic exercise on neuroimmune responses in animals with a traumatically induced peripheral neuropathy were considered. Study selection, risk of bias assessment and data extraction were performed independently by two reviewers. Results were analyzed using random effects models and reported as standardized mean differences. Outcome measures were reported per anatomical location and per class of neuro-immune substance. RESULTS The literature search resulted in 14,590 records. Forty studies were included, reporting 139 comparisons of neuroimmune responses at various anatomical locations. All studies had an unclear risk of bias. Compared to non-exercised animals, meta-analyses showed the following main differences in exercised animals: (1) in the affected nerve, tumor necrosis factor-α (TNF-α) levels were lower (p = 0.003), while insulin-like growth factor-1 (IGF-1) (p < 0.001) and Growth Associated Protein 43 (GAP43) (p = 0.01) levels were higher; (2) At the dorsal root ganglia, brain-derived neurotrophic factor (BDNF)/BDNF mRNA levels (p = 0.004) and nerve growth factor (NGF)/NGF mRNA (p < 0.05) levels were lower; (3) in the spinal cord, BDNF levels (p = 0.006) were lower; at the dorsal horn, microglia (p < 0.001) and astrocyte (p = 0.005) marker levels were lower; at the ventral horn, astrocyte marker levels (p < 0.001) were higher, and several outcomes related to synaptic stripping were favorably altered; (4) brainstem 5-HT2A receptor levels were higher (p = 0.001); (5) in muscles, BDNF levels (p < 0.001) were higher and TNF-α levels lower (p < 0.05); (6) no significant differences were found for systemic neuroimmune responses in blood or serum. CONCLUSION This review revealed widespread positive modulatory effects of aerobic exercise on neuroimmune responses following traumatic peripheral nerve injury. These changes are in line with a beneficial influence on pro-inflammatory processes and increased anti-inflammatory responses. Given the small sample sizes and the unclear risk of bias of the studies, results should be interpreted with caution.
Collapse
Affiliation(s)
- Marije L S Sleijser-Koehorst
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences-Program Musculoskeletal Health, Vrije Universiteit Amsterdam, Van Der Boechorststraat 9, 1081 BT, Amsterdam, The Netherlands.
| | - Meghan A Koop
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences-Program Musculoskeletal Health, Vrije Universiteit Amsterdam, Van Der Boechorststraat 9, 1081 BT, Amsterdam, The Netherlands
| | - Michel W Coppieters
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences-Program Musculoskeletal Health, Vrije Universiteit Amsterdam, Van Der Boechorststraat 9, 1081 BT, Amsterdam, The Netherlands
- Menzies Health Institute Queensland, Griffith University, Brisbane and Gold Coast, Australia
- School of Health Sciences and Social Work, Griffith University, Brisbane and Gold Coast, Australia
| | - Ivo J Lutke Schipholt
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences-Program Musculoskeletal Health, Vrije Universiteit Amsterdam, Van Der Boechorststraat 9, 1081 BT, Amsterdam, The Netherlands
- Department of Clinical Chemistry, Laboratory Medical Immunology, Amsterdam University Medical Centre, Location VUmc, Amsterdam, The Netherlands
| | - Nemanja Radisic
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences-Program Musculoskeletal Health, Vrije Universiteit Amsterdam, Van Der Boechorststraat 9, 1081 BT, Amsterdam, The Netherlands
| | - Carlijn R Hooijmans
- Department of Anesthesiology, Pain and Palliative Care (Meta Research Team), Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Gwendolyne G M Scholten-Peeters
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences-Program Musculoskeletal Health, Vrije Universiteit Amsterdam, Van Der Boechorststraat 9, 1081 BT, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Ni L, Yao Z, Zhao Y, Zhang T, Wang J, Li S, Chen Z. Electrical stimulation therapy for peripheral nerve injury. Front Neurol 2023; 14:1081458. [PMID: 36908597 PMCID: PMC9998520 DOI: 10.3389/fneur.2023.1081458] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/06/2023] [Indexed: 03/14/2023] Open
Abstract
Peripheral nerve injury is common and frequently occurs in extremity trauma patients. The motor and sensory impairment caused by the injury will affect patients' daily life and social work. Surgical therapeutic approaches don't assure functional recovery, which may lead to neuronal atrophy and hinder accelerated regeneration. Rehabilitation is a necessary stage for patients to recover better. A meaningful role in non-pharmacological intervention is played by rehabilitation, through individualized electrical stimulation therapy. Clinical studies have shown that electrical stimulation enhances axon growth during nerve repair and accelerates sensorimotor recovery. According to different effects and parameters, electrical stimulation can be divided into neuromuscular, transcutaneous, and functional electrical stimulation. The therapeutic mechanism of electrical stimulation may be to reduce muscle atrophy and promote muscle reinnervation by increasing the expression of structural protective proteins and neurotrophic factors. Meanwhile, it can modulate sensory feedback and reduce neuralgia by inhibiting the descending pathway. However, there are not many summary clinical application parameters of electrical stimulation, and the long-term effectiveness and safety also need to be further explored. This article aims to explore application methodologies for effective electrical stimulation in the rehabilitation of peripheral nerve injury, with simultaneous consideration for fundamental principles of electrical stimulation and the latest technology. The highlight of this paper is to identify the most appropriate stimulation parameters (frequency, intensity, duration) to achieve efficacious electrical stimulation in the rehabilitation of peripheral nerve injury.
Collapse
Affiliation(s)
- Lingmei Ni
- Infection Prevention and Control Department, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhao Yao
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yifan Zhao
- Department of Rehabilitation Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tianfang Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jie Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Siyue Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zuobing Chen
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Kong Y, Kuss M, Shi Y, Fang F, Xue W, Shi W, Liu Y, Zhang C, Zhong P, Duan B. Exercise facilitates regeneration after severe nerve transection and further modulates neural plasticity. Brain Behav Immun Health 2022; 26:100556. [PMID: 36405423 PMCID: PMC9673108 DOI: 10.1016/j.bbih.2022.100556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 11/13/2022] Open
Abstract
Patients with severe traumatic peripheral nerve injury (PNI) always suffer from incomplete recovery and poor functional outcome. Physical exercise-based rehabilitation, as a non-invasive interventional strategy, has been widely acknowledged to improve PNI recovery by promoting nerve regeneration and relieving pain. However, effects of exercise on chronic plastic changes following severe traumatic PNIs have been limitedly discussed. In this study, we created a long-gap sciatic nerve transection followed by autograft bridging in rats and tested the therapeutic functions of treadmill running with low intensity and late initiation. We demonstrated that treadmill running effectively facilitated nerve regeneration and prevented muscle atrophy and thus improved sensorimotor functions and walking performance. Furthermore, exercise could reduce inflammation at the injured nerve as well as prevent the overexpression of TRPV1, a pain sensor, in primary afferent sensory neurons. In the central nervous system, we found that PNI induced transcriptive changes at the ipsilateral lumber spinal dorsal horn, and exercise could reverse the differential expression for genes involved in the Notch signaling pathway. In addition, through neural imaging techniques, we found volumetric, microstructural, metabolite, and neuronal activity changes in supraspinal regions of interest (i.e., somatosensory cortex, motor cortex, hippocampus, etc.) after the PNI, some of which could be reversed through treadmill running. In summary, treadmill running with late initiation could promote recovery from long-gap nerve transection, and while it could reverse maladaptive plasticity after the PNI, exercise may also ameliorate comorbidities, such as chronic pain, mental depression, and anxiety in the long term.
Collapse
Affiliation(s)
- Yunfan Kong
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mitchell Kuss
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yu Shi
- School of Biological Sciences, University of Nebraska Lincoln, Lincoln, NE, 68588, USA
| | - Fang Fang
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Wen Xue
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Wen Shi
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yutong Liu
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Chi Zhang
- School of Biological Sciences, University of Nebraska Lincoln, Lincoln, NE, 68588, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Peng Zhong
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
19
|
Matesanz-García L, Schmid AB, Cáceres-Pajuelo JE, Cuenca-Martínez F, Arribas-Romano A, González-Zamorano Y, Goicoechea-García C, Fernández-Carnero J. Effect of Physiotherapeutic Interventions on Biomarkers of Neuropathic Pain: A Systematic Review of Preclinical Literature. THE JOURNAL OF PAIN 2022; 23:1833-1855. [PMID: 35768044 PMCID: PMC7613788 DOI: 10.1016/j.jpain.2022.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 02/02/2023]
Abstract
The purpose of this systematic review was to evaluate the effects of physiotherapeutic interventions on biomarkers of neuropathic pain in preclinical models of peripheral neuropathic pain (PNP). The search was performed in Pubmed, Web of Science, EMBASE, Cochrane, Cinhal, Psycinfo, Scopus, Medline, and Science Direct. Studies evaluating any type of physiotherapy intervention for PNP (systemic or traumatic) were included. Eighty-one articles were included in this review. The most common PNP model was chronic constriction injury, and the most frequently studied biomarkers were related to neuro-immune processes. Exercise therapy and Electro-acupuncture were the 2 most frequently studied physiotherapy interventions while acupuncture and joint mobilization were less frequently examined. Most physiotherapeutic interventions modulated the expression of biomarkers related to neuropathic pain. Whereas the results seem promising; they have to be considered with caution due to the high risk of bias of included studies and high heterogeneity of the type and anatomical localization of biomarkers reported. The review protocol is registered on PROSPERO (CRD42019142878). PERSPECTIVE: This article presents the current evidence about physiotherapeutic interventions on biomarkers of neuropathic pain in preclinical models of peripheral neuropathic pain. Existing findings are reviewed, and relevant data are provided on the effectiveness of each physiotherapeutic modality, as well as its certainty of evidence and clinical applicability.
Collapse
Affiliation(s)
- Luis Matesanz-García
- Escuela Internacional de Doctorado, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, Alcorcón, Spain; Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain
| | - Annina B Schmid
- Nuffield Department for Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | | | - Ferran Cuenca-Martínez
- Exercise Intervention for Health Research Group (EXINH-RG), Department of Physiotherapy, University of Valencia, Valencia, Spain.
| | - Alberto Arribas-Romano
- Escuela Internacional de Doctorado, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, Alcorcón, Spain; Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, Madrid, Spain
| | - Yeray González-Zamorano
- Escuela Internacional de Doctorado, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, Alcorcón, Spain; Grupo de Investigación de Neurorrehabilitación del Daño Cerebral y los Trastornos del Movimiento (GINDAT), Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | | | - Josué Fernández-Carnero
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, Madrid, Spain; Grupo de Investigación de Neurorrehabilitación del Daño Cerebral y los Trastornos del Movimiento (GINDAT), Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain; Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, Madrid, Spain; Grupo Multidisciplinar de Investigación y Tratamiento del Dolor, Grupo de Excelencia Investigadora URJC-Banco de Santander, Madrid, Spain; La Paz Hospital Institute for Health Research, IdiPAZ, Madrid, Spain
| |
Collapse
|
20
|
Tiwari AP, Lokai T, Albin B, Yang IH. A Review on the Technological Advances and Future Perspectives of Axon Guidance and Regeneration in Peripheral Nerve Repair. Bioengineering (Basel) 2022; 9:bioengineering9100562. [PMID: 36290530 PMCID: PMC9598559 DOI: 10.3390/bioengineering9100562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Despite a significant advance in the pathophysiological understanding of peripheral nerve damage, the successful treatment of large nerve defects remains an unmet medical need. In this article, axon growth guidance for peripheral nerve regeneration was systematically reviewed and discussed mainly from the engineering perspective. In addition, the common approaches to surgery, bioengineering approaches to emerging technologies such as optogenetic stimulation and magnetic stimulation for functional recovery were discussed, along with their pros and cons. Additionally, clear future perspectives of axon guidance and nerve regeneration were addressed.
Collapse
|
21
|
Yoo YS, Park S, Eun P, Park YM, Lim DH, Chung TY. Corneal Neuro-Regenerative Effect of Transcutaneous Electrical Stimulation in Rabbit Lamellar Keratectomy Model. Transl Vis Sci Technol 2022; 11:17. [PMID: 36223127 PMCID: PMC9583744 DOI: 10.1167/tvst.11.10.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose This study aimed to evaluate the effect of transcutaneous electrical stimulation (TES) on corneal nerve regeneration in rabbits injured from superficial lamellar keratectomy (SLK). Methods New Zealand White rabbits were used in this experimental study. To induce corneal nerve damage, SLK was performed using a 7.0-mm trephine. TES was applied for 28 days after the corneal nerve injury. Corneal sensitivity, Western blotting, real-time polymerase chain reaction (PCR), and immunofluorescence were performed to observe changes in the corneal tissue. Results In the 2-Hz and 20-Hz electrical stimulation groups, the degree of corneal wound healing increased by more than 10% compared to the control group, but no significant difference was observed. Conversely, the electrical stimulation (2-Hz or 20-Hz) group showed significantly increased corneal sensitivity compared to the control group. Western blot analysis revealed that small proline-rich protein 1A (SPRR1a), a regeneration-associated protein was significantly increased in the 2-Hz group on days 1 and 7 compared to that in the other groups. Once again, nerve regeneration in the 2-Hz group was supported by the results of PCR, in which a significant increase in the nerve growth factor (NGF) on day 1 was observed compared with the other groups. Moreover, immunofluorescence after 28 days of electrical stimulation showed significant nerve regeneration in the 2-Hz group. Conclusions TES promoted corneal nerve regeneration in rabbit SLK model. The application of electrical stimulation of 2-Hz frequency was more effective than the 20-Hz frequency, showing potential clinical applications for corneal diseases. Translational Relevance This study shows how application of TES to the eyes that exhibit corneal nerve damage can improve corneal nerve regeneration examined by histologic analysis.
Collapse
Affiliation(s)
- Young-Sik Yoo
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Department of Ophthalmology, College of Medicine, Uijeongbu St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Sera Park
- Samsung Biomedical Research Institute, Seoul, South Korea
| | - Pyeonghwa Eun
- Samsung Biomedical Research Institute, Seoul, South Korea
| | - Young Min Park
- Samsung Biomedical Research Institute, Seoul, South Korea
| | - Dong Hui Lim
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Tae-Young Chung
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| |
Collapse
|
22
|
Cho YH, Seo TB. The timing point of exercise intervention regulates neuropathic pain-related molecules in the ipsilateral dorsal root ganglion neurons after sciatic nerve injury. J Exerc Rehabil 2022; 18:286-293. [PMID: 36420470 PMCID: PMC9650311 DOI: 10.12965/jer.2244382.191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/11/2022] [Indexed: 02/06/2024] Open
Abstract
The purpose of this study was to determine whether the timing of tread-mill exercise application can control expression levels of neuropathic pain- and regeneration-related proteins in the ipsilateral lumbar 4 (L4) to 6 (L6) dorsal root ganglion cells (DRG) after sciatic nerve injury (SNI). The experimental rats were randomly divided into five groups: the normal control, SNI+sedentary (IS), exercise+SNI (EI), SNI+exercise (IE), exercise+SNI+exercise (EIE) groups. The rats in exercise groups per-formed treadmill exercise at a speed of 8 m/min for 30 min once a day during 14 days before and/or after SNI. For investigating the expression of specific neuropathic pain and regeneration-related proteins in DRG, we prepared L4 to L6 DRG in the ipsilateral side. In the quantitative analysis, growth associated protein 43 (GAP-43) and brain-derived neurotrophic factor levels were further increased in the ipsilateral DRG at all treadmill exercise groups than those in IS group. In the histological findings, GAP-43 was qualitatively increased IE and EIE groups than IS group at DRG. Wnt3a and β-catenin were dramatically downregulated in EIE and IE groups than IS groups. In addition, nuclear factor kappa-light-chain-enhancer of activated B cells and tumor necrosis factor-α were significantly decreased in IE and EIE groups than IS group in the ipsilateral DRG. Our findings suggested novel information that regular low-intensity exercise before and/or after SNI might be a therapeutic and preventive approaches for relieving neuropathic pain and improving axonal elongation after peripheral nerve injury.
Collapse
Affiliation(s)
- Yeong-Hyun Cho
- Department of Kinesiology, College of Natural Science, Jeju National University, Jeju,
Korea
| | - Tae-Beom Seo
- Department of Kinesiology, College of Natural Science, Jeju National University, Jeju,
Korea
| |
Collapse
|
23
|
Rubio MA, Herrando-Grabulosa M, Gaja-Capdevila N, Vilches JJ, Navarro X. Characterization of somatosensory neuron involvement in the SOD1 G93A mouse model. Sci Rep 2022; 12:7600. [PMID: 35534694 PMCID: PMC9085861 DOI: 10.1038/s41598-022-11767-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/14/2022] [Indexed: 11/09/2022] Open
Abstract
SOD1G93A mice show loss of cutaneous small fibers, as in ALS patients. Our objective is to characterize the involvement of different somatosensory neuron populations and its temporal progression in the SOD1G93A mice. We aim to further define peripheral sensory involvement, analyzing at the same time points the neuronal bodies located in the dorsal root ganglia (DRG) and the distal part of their axons in the skin, in order to shed light in the mechanisms of sensory involvement in ALS. We performed immunohistochemical analysis of peptidergic (CGRP), non-peptidergic (IB4) fibers in epidermis, as well as sympathetic sudomotor fibers (VIP) in the footpads of SOD1G93A mice and wild type littermates at 4, 8, 12 and 16 weeks of age. We also immunolabeled and quantified neuronal bodies of IB4, CGRP and parvalbumin (PV) positive sensory neurons in lumbar DRG. We detected a reduction of intraepidermal nerve fiber density in the SOD1G93A mice of both peptidergic and non-peptidergic axons, compared with the WT, being the non-peptidergic the fewest. Sweat gland innervation was similarly affected in the SOD1G93A mouse at 12 weeks. Nonetheless, the number of DRG neurons from different sensory populations remained unchanged during all stages. Cutaneous sensory axons are affected in the SOD1G93A mouse, with non-peptidergic being slightly more vulnerable than peptidergic axons. Loss or lack of growth of the distal portion of sensory axons with preservation of the corresponding neuronal bodies suggest a distal axonopathy.
Collapse
Affiliation(s)
- Miguel A Rubio
- Neuromuscular Unit, Department of Neurology, Hospital del Mar, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences and CIBERNED, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mireia Herrando-Grabulosa
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences and CIBERNED, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Nuria Gaja-Capdevila
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences and CIBERNED, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Jorge J Vilches
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences and CIBERNED, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences and CIBERNED, Universitat Autònoma de Barcelona, Bellaterra, Spain. .,Unitat de Fisiologia Medica, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
24
|
Application of electrical stimulation for peripheral nerve regeneration: Stimulation parameters and future horizons. INTERDISCIPLINARY NEUROSURGERY 2021. [DOI: 10.1016/j.inat.2021.101117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
25
|
Takahara-Yamauchi R, Ikemoto H, Okumo T, Sakhri FZ, Horikawa H, Nakamura A, Sakaue S, Kato M, Adachi N, Sunagawa M. Analgesic effect of voluntary exercise in a rat model of persistent pain via suppression of microglial activation in the spinal cord. Biomed Res 2021; 42:67-76. [PMID: 33840672 DOI: 10.2220/biomedres.42.67] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this study, we employed a rodent model for persistent allodynia and hyperalgesia to determine whether voluntary exercise could exert analgesic effects on these pain symptoms. Rats were subcutaneously injected with formalin into the plantar surface of the right hind paw to induce mechanical allodynia and hyperalgesia. We assessed the analgesic effects of a voluntary wheel running (VWR) using the von Frey test and investigated microglial proliferation in the dorsal horn of the spinal cord. We also determined the effect of formalin and VWR on the protein expression levels of brain-derived neurotrophic factor (BDNF), its receptor TrkB, and K+-Cl- cotransporter 2 (KCC2), which play a key role in inducing allodynia and hyperalgesia. Rats with access to the running wheels showed beneficial effects on persistent formalin-induced mechanical allodynia and hyperalgesia. The effects of VWR were elicited through the suppression of formalin-induced microglial proliferation, TrkB up-regulation, and KCC2 down-regulation in the spinal cord. BDNF, however, might not contribute to the beneficial effects of VWR. Our results show an analgesic effect of voluntary physical exercise in a rodent model with persistent pain, possibly through the regulation of microglial proliferation and TrkB and KCC2 expression in the spinal cord.
Collapse
Affiliation(s)
- Risa Takahara-Yamauchi
- Department of Physiology, School of Medicine, Showa University.,Faculty of Arts and Sciences at Fujiyoshida, Showa University
| | - Hideshi Ikemoto
- Department of Physiology, School of Medicine, Showa University
| | - Takayuki Okumo
- Department of Physiology, School of Medicine, Showa University
| | | | | | - Akiou Nakamura
- Department of Physiology, School of Medicine, Showa University
| | - Satoshi Sakaue
- Department of Physiology, School of Medicine, Showa University
| | - Mami Kato
- Department of Physiology, School of Medicine, Showa University
| | - Naoki Adachi
- Department of Physiology, School of Medicine, Showa University
| | | |
Collapse
|
26
|
Leitzelar BN, Koltyn KF. Exercise and Neuropathic Pain: A General Overview of Preclinical and Clinical Research. SPORTS MEDICINE-OPEN 2021; 7:21. [PMID: 33751253 PMCID: PMC7984211 DOI: 10.1186/s40798-021-00307-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
Neuropathic pain is a disease of the somatosensory system that is characterized by tingling, burning, and/or shooting pain. Medication is often the primary treatment, but it can be costly, thus there is an interest in understanding alternative low-cost treatments such as exercise. The following review includes an overview of the preclinical and clinical literature examining the influence of exercise on neuropathic pain. Preclinical studies support the hypothesis that exercise reduces hyperalgesia and allodynia in animal models of neuropathic pain. In human research, observational studies suggest that those who are more physically active have lower risk of developing neuropathic pain compared to those who are less active. Exercise studies suggest aerobic exercise training (e.g., 16 weeks); a combination of aerobic and resistance exercise training (e.g., 10–12 weeks); or high-intensity interval training (e.g., 15 weeks) reduces aspects of neuropathic pain such as worst pain over the past month, pain over the past 24 h, pain scores, or pain interference. However, not all measures of pain improve following exercise training (e.g., current pain, heat pain threshold). Potential mechanisms and future directions are also discussed to aid in the goal of understanding the role of exercise in the management of neuropathic pain. Future research using standardized methods to further understanding of the dose of exercise needed to manage neuropathic pain is warranted.
Collapse
Affiliation(s)
- Brianna N Leitzelar
- Department of Kinesiology, University of Wisconsin-Madison, 1300 University Ave., Madison, WI, 53706, USA
| | - Kelli F Koltyn
- Department of Kinesiology, University of Wisconsin-Madison, 1300 University Ave., Madison, WI, 53706, USA.
| |
Collapse
|
27
|
Ferrari LM, Rodríguez-Meana B, Bonisoli A, Cutrone A, Micera S, Navarro X, Greco F, Del Valle J. All-Polymer Printed Low-Cost Regenerative Nerve Cuff Electrodes. Front Bioeng Biotechnol 2021; 9:615218. [PMID: 33644015 PMCID: PMC7902501 DOI: 10.3389/fbioe.2021.615218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
Neural regeneration after lesions is still limited by several factors and new technologies are developed to address this issue. Here, we present and test in animal models a new regenerative nerve cuff electrode (RnCE). It is based on a novel low-cost fabrication strategy, called "Print and Shrink", which combines the inkjet printing of a conducting polymer with a heat-shrinkable polymer substrate for the development of a bioelectronic interface. This method allows to produce miniaturized regenerative cuff electrodes without the use of cleanroom facilities and vacuum based deposition methods, thus highly reducing the production costs. To fully proof the electrodes performance in vivo we assessed functional recovery and adequacy to support axonal regeneration after section of rat sciatic nerves and repair with RnCE. We investigated the possibility to stimulate the nerve to activate different muscles, both in acute and chronic scenarios. Three months after implantation, RnCEs were able to stimulate regenerated motor axons and induce a muscular response. The capability to produce fully-transparent nerve interfaces provided with polymeric microelectrodes through a cost-effective manufacturing process is an unexplored approach in neuroprosthesis field. Our findings pave the way to the development of new and more usable technologies for nerve regeneration and neuromodulation.
Collapse
Affiliation(s)
- Laura M Ferrari
- Center for Micro-BioRobotics @SSSA, Istituto Italiano di Tecnologia, Pontedera, Italy.,The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pontedera, Italy.,Université Côte d'Azur, INRIA, Sophia Antipolis, France
| | - Bruno Rodríguez-Meana
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, and CIBERNED, Bellaterra, Spain
| | - Alberto Bonisoli
- Center for Micro-BioRobotics @SSSA, Istituto Italiano di Tecnologia, Pontedera, Italy.,The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Annarita Cutrone
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pontedera, Italy
| | - Silvestro Micera
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pontedera, Italy.,Bertarelli Foundation Chair in Translational NeuroEngineering, Center for Neuroprosthetics and Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, and CIBERNED, Bellaterra, Spain
| | - Francesco Greco
- Center for Micro-BioRobotics @SSSA, Istituto Italiano di Tecnologia, Pontedera, Italy.,Institute of Solid State Physics, NAWI Graz, Graz University of Technology, Graz, Austria.,Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Jaume Del Valle
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, and CIBERNED, Bellaterra, Spain
| |
Collapse
|
28
|
Heinzel JC, Oberhauser V, Keibl C, Swiadek N, Längle G, Frick H, Kolbenschlag J, Prahm C, Grillari J, Hercher D. Evaluation of Functional Recovery in Rats After Median Nerve Resection and Autograft Repair Using Computerized Gait Analysis. Front Neurosci 2021; 14:593545. [PMID: 33551723 PMCID: PMC7859340 DOI: 10.3389/fnins.2020.593545] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Computerized gait analysis is a common evaluation method in rat models of hind limb nerve injuries, but its use remains unpublished in models of segmental nerve injury of the forelimb. It was the aim of this work to investigate if computerized gait analysis is a feasible evaluation method in a rat model of segmental median nerve injury and autograft repair. Ten male Lewis rats underwent 7-mm resection of the right median nerve with immediate autograft repair. The left median nerve was resected without repair and served as an internal control. Animals were assessed for 12 weeks after surgery via CatWalk (CW) gait analysis every 2 weeks. Evaluation of motor recovery by means of the grasping test was performed weekly while electrophysiological measurements were performed at the end of the observation period. CW data were correlated with grasping strength at each post-operative time point. CW data were also correlated with electrophysiology using linear regression analysis. Principal component analysis was performed to identify clusters of outcome metrics. Recovery of motor function was observable 4 weeks after surgery, but grasping strength was significantly reduced (p < 0.01) compared to baseline values until post-operative week 6. In terms of sensory recovery, the pain-related parameter Duty Cycle showed significant (p < 0.05) recovery starting from post-operative week 8. The Print Area of the right paw was significantly (p < 0.05) increased compared to the left side starting from post-operative week 10. Various parameters of gait correlated significantly (p < 0.05) with mean and maximum grasping strength. However, only Stand Index showed a significant correlation with compound muscle action potential (CMAP) amplitude (p < 0.05). With this work, we prove that computerized gait analysis is a valid and feasible method to evaluate functional recovery after autograft repair of the rat median nerve. We were able to identify parameters such as Print Area, Duty Cycle, and Stand Index, which allow assessment of nerve regeneration. The course of these parameters following nerve resection without repair was also assessed. Additionally, external paw rotation was identified as a valid parameter to evaluate motor reinnervation. In summary, computerized gait analysis is a valuable additional tool to study nerve regeneration in rats with median nerve injury.
Collapse
Affiliation(s)
- Johannes C Heinzel
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Viola Oberhauser
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Claudia Keibl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Nicole Swiadek
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Gregor Längle
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Helen Frick
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Jonas Kolbenschlag
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Cosima Prahm
- Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Department of Biotechnology, Institute of Molecular Biotechnology, BOKU-University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - David Hercher
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
29
|
Heinzel J, Längle G, Oberhauser V, Hausner T, Kolbenschlag J, Prahm C, Grillari J, Hercher D. Use of the CatWalk gait analysis system to assess functional recovery in rodent models of peripheral nerve injury – a systematic review. J Neurosci Methods 2020; 345:108889. [DOI: 10.1016/j.jneumeth.2020.108889] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
|
30
|
Huang SH, Yang SM, Lo JJ, Wu SH, Tai MH. Irisin Gene Delivery Ameliorates Burn-Induced Sensory and Motor Neuropathy. Int J Mol Sci 2020; 21:ijms21207798. [PMID: 33096842 PMCID: PMC7589574 DOI: 10.3390/ijms21207798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 01/12/2023] Open
Abstract
Burn-related neuropathy is common and often involves pain, paresthesia, or muscle weakness. Irisin, an exercise-induced myokine after cleavage from its membrane precursor fibronectin type III domain-containing 5 (FNDC5), exhibits neuroprotective and anti-inflammatory activities. A rat model of third-degree burn on the right hind paw was used to investigate the therapeutic role of irisin/FNDC5. Rats received burn injury and were treated with intrathecal recombinant adenovirus containing the irisin sequence (Ad-irisin) at 3 weeks postburn. One week later, mechanical allodynia was examined. The expression of irisin in cerebrospinal fluid (CSF) was detected. Ipsilateral gastrocnemius muscle and lumbar spinal cord were also obtained for further investigation. Furthermore, the anti-apoptotic effect of recombinant irisin in SH-SY5Y cells was evaluated through tumor necrosis factor alpha (TNFα) stimulus to mimic burn injury. We noted intrathecal Ad-irisin attenuated pain sensitization and gastrocnemius muscle atrophy by modulating the level of irisin in CSF, and the expression of neuronal FNDC5/irisin and TNFα in the spinal cord. Ad-irisin also ameliorated neuronal apoptosis in both dorsal and ventral horns. Furthermore, recombinant irisin attenuated TNFα-induced SH-SY5Y cell apoptosis. In summary, irisin attenuated allodynia and muscle wasting by ameliorating neuroinflammation-induced neuronal apoptosis.
Collapse
Affiliation(s)
- Shu-Hung Huang
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shih-Ming Yang
- Institute of Biomedical Sciences, National Sun Yat-Sun University, Kaohsiung 804, Taiwan;
| | - Jing-Jou Lo
- Department of General Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Sheng-Hua Wu
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Anesthesiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Anesthesiology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
- Correspondence: (S.-H.W.); (M.-H.T.)
| | - Ming-Hong Tai
- Institute of Biomedical Sciences, National Sun Yat-Sun University, Kaohsiung 804, Taiwan;
- Correspondence: (S.-H.W.); (M.-H.T.)
| |
Collapse
|
31
|
Schwann Cell Role in Selectivity of Nerve Regeneration. Cells 2020; 9:cells9092131. [PMID: 32962230 PMCID: PMC7563640 DOI: 10.3390/cells9092131] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Peripheral nerve injuries result in the loss of the motor, sensory and autonomic functions of the denervated segments of the body. Neurons can regenerate after peripheral axotomy, but inaccuracy in reinnervation causes a permanent loss of function that impairs complete recovery. Thus, understanding how regenerating axons respond to their environment and direct their growth is essential to improve the functional outcome of patients with nerve lesions. Schwann cells (SCs) play a crucial role in the regeneration process, but little is known about their contribution to specific reinnervation. Here, we review the mechanisms by which SCs can differentially influence the regeneration of motor and sensory axons. Mature SCs express modality-specific phenotypes that have been associated with the promotion of selective regeneration. These include molecular markers, such as L2/HNK-1 carbohydrate, which is differentially expressed in motor and sensory SCs, or the neurotrophic profile after denervation, which differs remarkably between SC modalities. Other important factors include several molecules implicated in axon-SC interaction. This cell–cell communication through adhesion (e.g., polysialic acid) and inhibitory molecules (e.g., MAG) contributes to guiding growing axons to their targets. As many of these factors can be modulated, further research will allow the design of new strategies to improve functional recovery after peripheral nerve injuries.
Collapse
|
32
|
Lesnak JB, Sluka KA. Mechanism of exercise-induced analgesia: what we can learn from physically active animals. Pain Rep 2020; 5:e850. [PMID: 33490844 PMCID: PMC7808683 DOI: 10.1097/pr9.0000000000000850] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/26/2020] [Accepted: 07/31/2020] [Indexed: 12/29/2022] Open
Abstract
Physical activity has become a first-line treatment in rehabilitation settings for individuals with chronic pain. However, research has only recently begun to elucidate the mechanisms of exercise-induced analgesia. Through the study of animal models, exercise has been shown to induce changes in the brain, spinal cord, immune system, and at the site of injury to prevent and reduce pain. Animal models have also explored beneficial effects of exercise through different modes of exercise including running, swimming, and resistance training. This review will discuss the central and peripheral mechanisms of exercise-induced analgesia through different modes, intensity, and duration of exercise as well as clinical applications of exercise with suggestions for future research directions.
Collapse
Affiliation(s)
- Joseph B. Lesnak
- Department of Physical Therapy and Rehabilitation Sciences, University of Iowa, Iowa City, IA, USA
| | - Kathleen A. Sluka
- Department of Physical Therapy and Rehabilitation Sciences, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
33
|
Sun L, Lv Y, Tian J, Yu T, Niu F, Zhang X, Du D. Regular Swimming Exercise Attenuated Neuroma Pain in Rats: Involvement of Leptin and Adiponectin. THE JOURNAL OF PAIN 2019; 20:1112-1124. [DOI: 10.1016/j.jpain.2019.02.097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/22/2019] [Accepted: 02/18/2019] [Indexed: 02/07/2023]
|
34
|
Interleukin-4 mediates the analgesia produced by low-intensity exercise in mice with neuropathic pain. Pain 2019; 159:437-450. [PMID: 29140923 DOI: 10.1097/j.pain.0000000000001109] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Peripheral nerve injury (PNI) activates the immune system, resulting in increased proinflammatory cytokines at the site of injury and in the spinal cord dorsal horn. Exercise modulates the immune system promoting an anti-inflammatory phenotype of macrophages in uninjured muscle, and increases in anti-inflammatory cytokines can promote healing and analgesia. We proposed that PNI will decrease, and treadmill exercise will increase, release of anti-inflammatory cytokines at the site of injury and in the spinal cord. We show that 2 weeks of treadmill exercise improves neuropathic pain behaviors in mice: mechanical hyperalgesia, escape and avoidance behavior, and spontaneous locomotor activity. Peripheral nerve injury reduced anti-inflammatory cytokines (interleukin-4 [IL-4], IL-1ra, and IL-5) at the site of nerve injury and in the spinal dorsal horn, whereas exercise restored IL-4, IL-1ra, and IL-5 concentrations to preinjury levels. IL4 mice and mice treated with IL-4 antibody did not develop analgesia to treadmill exercise. Using immunohistochemical staining of the sciatic nerve, treadmill exercise increased the percentage of M2 macrophages (secretes anti-inflammatory cytokines) and decreased M1 macrophages (secretes proinflammatory cytokines) when compared with sedentary mice. The increased M2 and decreased M1 macrophages in exercised mice did not occur in IL-4 mice. In the spinal cord, PNI increased glial cell activation, brain-derived neurotrophic factor and β-nerve growth factor levels, and decreased IL-4 and IL-1ra levels, whereas treadmill exercise suppressed glial cells activation (Glial Fibrillary Acidic Protein and Iba1 immunoreactivity), reduced brain-derived neurotrophic factor and β-nerve growth factor, and increased IL-4, IL-1ra, and IL-5 concentrations. Our results suggest that IL-4 mediates the analgesia produced by low-intensity exercise by modulating peripheral and central neuroimmune responses in mice with neuropathic pain.
Collapse
|
35
|
Arbat-Plana A, Puigdomenech M, Navarro X, Udina E. Role of Noradrenergic Inputs From Locus Coeruleus on Changes Induced on Axotomized Motoneurons by Physical Exercise. Front Cell Neurosci 2019; 13:65. [PMID: 30863285 PMCID: PMC6399159 DOI: 10.3389/fncel.2019.00065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 02/11/2019] [Indexed: 11/13/2022] Open
Abstract
Physical rehabilitation is one of the cornerstones for the treatment of lesions of the nervous system. After peripheral nerve injuries, activity dependent therapies promote trophic support for the paralyzed muscles, enhance axonal growth and also modulate the maladaptive plastic changes induced by the injury at the spinal level. We have previously demonstrated that an intensive protocol of treadmill running (TR) in rats reduces synaptic stripping on axotomized motoneurons, preserves their perineuronal nets (PNN) and attenuates microglia reactivity. However, it is not clear through which mechanisms exercise is exerting these effects. Here we aimed to evaluate if activation of the locus coeruleus (LC), the noradrenergic center in the brain stem, plays a role in these effects. Since LC is strongly activated during stressful situations, as during intensive exercise, we selectively destroyed the LC by administering the neurotoxin DPS-4 before injuring the sciatic nerve of adult rats. Animals without LC had increased microglia reactivity around injured motoneurons. In these animals, an increasing intensity protocol of TR was not able to prevent synaptic stripping on axotomized motoneurons and the reduction in the thickness of their PNN. In contrast, TR was still able to attenuate microglia reactivity in DSP-4 treated animals, thus indicating that the noradrenergic projections are important for some but not all the effects that exercise induces on the spinal cord after peripheral nerve injury. Moreover, animals subjected to treadmill training showed delayed muscle reinnervation, more evident if treated with DSP-4. However, we did not find differences in treated animals regarding the H/M amplitude ratio, which increased during the first stages of regeneration in all injured groups.
Collapse
Affiliation(s)
- Ariadna Arbat-Plana
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Maria Puigdomenech
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Esther Udina
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
36
|
López-Álvarez VM, Cobianchi S, Navarro X. Chronic electrical stimulation reduces hyperalgesia and associated spinal changes induced by peripheral nerve injury. Neuromodulation 2019; 22:509-518. [PMID: 30786105 DOI: 10.1111/ner.12927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/05/2018] [Accepted: 01/02/2019] [Indexed: 12/23/2022]
Abstract
OBJECTIVES We aimed to investigate if different protocols of electrical stimulation following nerve injury might improve neuropathic pain outcomes and modify associated plastic changes at the spinal cord level. MATERIALS AND METHODS Adult rats were subjected to sciatic nerve transection and repair, and distributed in four groups: untreated (SNTR, n = 12), repeated acute electrical stimulation (rAES, 50 Hz, one hour, n = 12), chronic electrical stimulation (CES, 50 Hz, one hour, n = 12), and increasing-frequency chronic electrical stimulation (iCES, one hour, n = 12) delivered during two weeks following the lesion. The threshold of nociceptive withdrawal to mechanical stimuli was evaluated by means of a Von Frey algesimeter during three weeks postlesion. Spinal cord samples were processed by immunohistochemistry for labeling glial cells, adrenergic receptors, K+ -Cl- cotransporter 2 (KCC2) and GABA. RESULTS Acute electrical stimulation (50 Hz, one hour) delivered at 3, 7, and 14 days induced an immediate increase of mechanical pain threshold that disappeared after a few days. Chronic electrical stimulation given daily reduced mechanical hyperalgesia until the end of follow-up, being more sustained with the iCES than with constant 50 Hz stimulation (CES). Chronic stimulation protocols restored the expression of β2 adrenergic receptor and of KCC2 in the dorsal horn, which were significantly reduced by nerve injury. These treatments decreased also the activation of microglia and astrocytes in the dorsal horn. CONCLUSION Daily electrical stimulation, especially if frequency-patterned, was effective in ameliorating hyperalgesia after nerve injury, and partially preventing the proinflammatory and hyperalgesic changes in the dorsal horn associated to neuropathic pain.
Collapse
Affiliation(s)
- Víctor M López-Álvarez
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Stefano Cobianchi
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| | - Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| |
Collapse
|
37
|
Holanda V, Chavantes M, Wu X, Anders J. The Mechanistic Basis for Photobiomodulation Therapy of Neuropathic Pain by Near Infrared Laser Light. BRAZILIAN NEUROSURGERY 2018; 49:516-524. [DOI: 10.1002/lsm.22628] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/16/2016] [Indexed: 12/17/2022]
Abstract
Background and Objective Various irradiances have been reported to be beneficial for the treatment of neuropathic pain with near infrared light. However, the mechanistic basis for the beneficial outcomes may vary based on the level of irradiance or fluence rate used. Using in vivo and in vitro experimental models, this study determined the mechanistic basis of photobiomodulation therapy (PBMT) for the treatment of neuropathic pain using a high irradiance.Study Design/Materials and Methods ln vitro experiments: Cultured, rat DRG were randomly assigned to control or laser treatment (L T) groups with different irradiation times (2, 5, 30, 60 or 120s). The laser parameters were: output power = 960 mW, irradiance = 300mW/cm2, 808 nm wavelength and spot size = 3cm diameter/ area = 7.07cm2, with different fluences according to irradiation times. Mitochondrial metabolic activity was measured with the MTS assay. The DRG neurons were immunostained using a primary antibody to β-Tubulin III. ln vivo experiments: spared nerve injury surgery (SNI), an animal model of persistent peripheral neuropathic pain, was used. The injured rats were randomly divided into three groups (n = 5). 1) Control: SNI without LT, 2) Short term: SNI with LT on day 7 and euthanized on day 7, 3) Long term: SNI with LT on day 7 and euthanized on day 22. An 808 nm wavelength laser was used for all treatment groups. Treatment was performed once on Day 7 post-surgery. The transcutaneous treatment parameters were: output power: 10 W, fluence rate: 270 mW/cm2, treatment time: 120s. The laser probe was moved along the course of the sciatic/sural nerve during the treatment. Within 1 hour of irradiation, behavior tests were performed to assess its immediate effect on sensory allodynia and hyperalgesia caused by SNI.Results ln vitro experiments: Mitochondrial metabolism was significantly lower compared with controls for all LT groups. Varicosities and undulations formed in neurites of DRG neurons with a cell body diameter 30µm or less. ln neurites of DRG neurons with a cell body diameter of greater than 30µm, varicosities formed only in the 120s group. ln vivo experiments: For heat hyperalgesia, there was a statistically significant reduction in sensitivity to the heat stimulus compared with the measurements done on day 7 prior to LT. A decrease in the sensitivity to the heat stimulus was found in the LT groups compared with the control group on day 15 and 21. For cold allodynia and mechanical hyperalgesia, a significant decrease in sensitivity to cold and pin prick was found within 1 hour after L T. Sensitivity to these stimuli returned to the control levels after 5 days post-L T. No significant difference was found in mechanical allodynia between control and L T groups for all time points examined.Conclusion These in vitro and in vivo studies indicate that treatment with an irradiance/fluence rate at 270 m W/cm2 or higher at the level of the nerve can rapidly block pain transmission. A combination therapy is proposed to treat neuropathic pain with initial high irradiance/fluence rates for fast pain relief, followed by low irradiance/fluence rates for prolonged pain relief by altering chronic inflammation.
Collapse
Affiliation(s)
- Vanessa Holanda
- Post Graduate Program in Biophotonics Applied to the Health Sciences, Universidade Nove de Julho-UNINOVE, São Paulo, SP, Brazil
- Center of Neurology and Neurosurgery Associates (CENNA), Beneficência Portuguesa of São Paulo Hospital, São Paulo, SP, Brazil
| | - Maria Chavantes
- Post Graduate Program in Biophotonics Applied to the Health Sciences, Universidade Nove de Julho-UNINOVE, São Paulo, SP, Brazil
- Post Graduate Program in Medicine, University Nove de Julho—UNINOVE, São Paulo, SP, Brazil
| | - Xingjia Wu
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Juanita Anders
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
38
|
Dorsey SG, Resnick BM, Renn CL. Precision Health: Use of Omics to Optimize Self-Management of Chronic Pain in Aging. Res Gerontol Nurs 2018; 11:7-13. [PMID: 29370441 DOI: 10.3928/19404921-20171128-01] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chronic pain has become a public health epidemic based on the number of Americans affected and its associated health care costs. Unfortunately, there are few efficacious treatments to manage chronic pain and as the population of older adults and centenarians who are at high risk for chronic pain continues to grow, the chronic pain epidemic will continue to worsen unless new therapeutic strategies are discovered. In the current era of precision medicine, there is a major emphasis being placed on the use of self-management and omics to discover new therapeutic targets and design treatment strategies that are tailored to the individual patient. This commentary discusses the current state of the science related to omics and self-management of chronic pain in older adults, the role of gerontological nurses in this process, and future directions. [Res Gerontol Nurs. 2018; 11(1):7-13.].
Collapse
|
39
|
Chhaya SJ, Quiros-Molina D, Tamashiro-Orrego AD, Houlé JD, Detloff MR. Exercise-Induced Changes to the Macrophage Response in the Dorsal Root Ganglia Prevent Neuropathic Pain after Spinal Cord Injury. J Neurotrauma 2018; 36:877-890. [PMID: 30152715 DOI: 10.1089/neu.2018.5819] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Spinal cord injury (SCI) induces neuropathic pain that is refractory to treatment. Central and peripheral immune responses to SCI play critical roles in pain development. Although immune responses in the dorsal horn have been implicated in SCI-pain, immune mechanisms in the periphery, especially in the dorsal root ganglia (DRG), where nociceptor cell bodies reside, have not been well studied. Exercise is an immunomodulator, and we showed previously that early exercise after SCI reduces pain development. However, the mechanisms of exercise-mediated pain reduction are not understood. Therefore, we examined the 1) underlying immune differences in the spinal cord and DRG between rats with and without pain and 2) immunomodulatory effects of exercise in pain reduction. Rats were subjected to a unilateral contusion at C5 and tested for pain development using von Frey and mechanical conflict-avoidance paradigms. A subgroup of rats was exercised on forced running wheels starting at 5 days post-injury for 4 weeks. We observed greater microglial activation in the C7-C8 dorsal horn of rats with SCI-induced pain compared to rats with normal sensation, and early exercise reduced this activation independently of pain behavior. Further, abnormal pain sensation strongly correlated with an increased number of DRG macrophages. Importantly, exercise-treated rats that maintain normal sensation also have a lower number of macrophages in the DRG. Our data suggest that macrophage presence in the DRG may be an important effector of pain development, and early wheel walking exercise may mediate pain prevention by modulating the injury-induced macrophage response in the DRG. Further supportive evidence demonstrated that rats that developed pain despite exercise intervention still displayed a significantly elevated number of macrophages in the DRG. Collectively, these data suggest that macrophage presence in the DRG may be an amenable cellular target for future therapies.
Collapse
Affiliation(s)
- Soha J Chhaya
- Department of Neurobiology and Anatomy, Spinal Cord Research Center, College of Medicine Drexel University Philadelphia, Pennsylvania
| | - Daniel Quiros-Molina
- Department of Neurobiology and Anatomy, Spinal Cord Research Center, College of Medicine Drexel University Philadelphia, Pennsylvania
| | - Alessandra D Tamashiro-Orrego
- Department of Neurobiology and Anatomy, Spinal Cord Research Center, College of Medicine Drexel University Philadelphia, Pennsylvania
| | - John D Houlé
- Department of Neurobiology and Anatomy, Spinal Cord Research Center, College of Medicine Drexel University Philadelphia, Pennsylvania
| | - Megan Ryan Detloff
- Department of Neurobiology and Anatomy, Spinal Cord Research Center, College of Medicine Drexel University Philadelphia, Pennsylvania
| |
Collapse
|
40
|
Deng Y, Xu Y, Liu H, Peng H, Tao Q, Liu H, Liu H, Wu J, Chen X, Fan J. Electrical stimulation promotes regeneration and re-myelination of axons of injured facial nerve in rats. Neurol Res 2018. [PMID: 29513163 DOI: 10.1080/01616412.2018.1428390] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Objective To investigate the effects of electrical stimulation (ES) on the nerve regeneration and functional recovery of facial expression muscles in facial nerve defect rats. Methods Sixty rats were surgically introduced with a 1-cm defect on the right facial nerves and evenly divided into the Surgery group (Group A, the main trunk of the right facial nerve was surgically cut-off with a 1.0 cm at the foramina stylomastoideum) and the Surgery + ES group (Group B). Twenty normal rats were as normal control group (without receiving surgery or ES). For rats in group B, the orbicularis oris muscle of the right paralyzed face was stimulated with an electrical pulse of 3 V, 20 Hz and 0.3 mA for 1 h each day. The effects of ES on the facial muscle movement, compound muscle action potentials (CMAPs), histological structure, and the expression levels of S100B and NF200 proteins were comparatively studied. Results In group A, facial paralysis scores were slightly improved from day 1 to 28; the facial nerve trunks had swelled and malformed till day 14; and CMAPs could be induced in fewer animals and were abnormal, resulting in a slow recovery of the facial muscle movement. In group B, facial paralysis scores were improved from 4 to 2.6 during the 4 weeks; more rats showed a higher amplitude and shorter latency of CMAPs from day 14 to 28 after surgery; and increased axons and the expression of S100B and NF200 proteins and gradually decreased swelling in the injured facial nerve. Conclusion ES promotes outgrowth and myelination of axons and a partial functional recovery of facial muscles in injured facial nerve rats.
Collapse
Affiliation(s)
- Yue Deng
- a Department of Otolaryngology Head and Neck Surgery , Changzheng Hospital, Second Military Medical University , Shanghai , China
| | - Yaping Xu
- a Department of Otolaryngology Head and Neck Surgery , Changzheng Hospital, Second Military Medical University , Shanghai , China
| | - Huanhai Liu
- a Department of Otolaryngology Head and Neck Surgery , Changzheng Hospital, Second Military Medical University , Shanghai , China
| | - Hu Peng
- a Department of Otolaryngology Head and Neck Surgery , Changzheng Hospital, Second Military Medical University , Shanghai , China
| | - Qilei Tao
- a Department of Otolaryngology Head and Neck Surgery , Changzheng Hospital, Second Military Medical University , Shanghai , China
| | - Hongyi Liu
- a Department of Otolaryngology Head and Neck Surgery , Changzheng Hospital, Second Military Medical University , Shanghai , China
| | - Haibin Liu
- a Department of Otolaryngology Head and Neck Surgery , Changzheng Hospital, Second Military Medical University , Shanghai , China
| | - Jian Wu
- a Department of Otolaryngology Head and Neck Surgery , Changzheng Hospital, Second Military Medical University , Shanghai , China
| | - Xiaoping Chen
- b Department of Otolaryngology Head and Neck Surgery , Gongli Hospital, Second Military Medical University , Shanghai , China
| | - Jingping Fan
- a Department of Otolaryngology Head and Neck Surgery , Changzheng Hospital, Second Military Medical University , Shanghai , China
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Physical activity is increasingly recommended for chronic pain. In this review, we briefly survey recent, high-quality meta-analyses on the effects of exercise in human chronic pain populations, followed by a critical discussion of the rodent literature. RECENT FINDINGS Most meta-analytical studies on the effects of exercise in human chronic pain populations describe moderate improvements in various types of chronic pain, despite substantial variability in the outcomes reported in the primary literature. The most consistent findings suggest that while greater adherence to exercise programs produces better outcomes, there is minimal support for the superiority of one type of exercise over another. The rodent literature similarly suggests that while regular exercise reduces hypersensitivity in rodent models of chronic pain, exercise benefits do not appear to relate to either the type of injury or any particular facet of the exercise paradigm. Potential factors underlying these results are discussed, including the putative involvement of stress-induced analgesic effects associated with certain types of exercise paradigms. Exercise research using rodent models of chronic pain would benefit from increased attention to the role of stress in exercise-induced analgesia, as well as the incorporation of more clinically relevant exercise paradigms.
Collapse
Affiliation(s)
- Mark Henry Pitcher
- Pain and Integrative Neuroscience Laboratory, National Center for Complementary and Integrative Health, National Institutes of Health, Room 1E-420, 35A Convent Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
42
|
Paddock N, Sheppard P, Gardiner P. Chronic Increases in Daily Neuromuscular Activity Promote Changes in Gene Expression in Small and Large Dorsal Root Ganglion Neurons in Rat. Neuroscience 2018; 388:171-180. [PMID: 30031124 DOI: 10.1016/j.neuroscience.2018.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/04/2018] [Accepted: 07/11/2018] [Indexed: 01/22/2023]
Abstract
The purpose of this study was to determine the response, in rat, to chronic physical activity in small and large DRG neurons. Rats were cage-confined or underwent 16-18 weeks of daily increased activity, via 2 h of treadmill running per day or free access to voluntary exercise wheels, following which small (≤30 µm) and large (≥40 µm) diameter DRG neurons were harvested by laser capture microdissection from flash-frozen lumbar DRGs. Relative mRNA levels were determined using real-time polymerase chain reaction. Following chronic treadmill and voluntary wheel exercise, gene expression responses in neurons mostly differed between exercise types. Changes in both small and large DRG neurons included increases in opioid receptor mu subunit (MOR), NGF and GAP43, and decreases in 5HT1A, TrkA, TrkB, and delta-type opioid receptor (DOR) mRNAs. In small DRG neurons, treadmill exercise increased the expression of mRNA for 5HT1D and decreased expression for 5HT1F receptors. In large DRG neurons, voluntary wheel exercise decreased the expression for 5HT1D receptors, whereas both treadmill and voluntary wheel exercise decreased the expression of mRNA for TrkC receptors. DRG neurons show slightly more changes in gene expression after voluntary exercise compared to the treadmill exercise group. Small and large lumbar sensory neurons are responsive to chronically increased neuromuscular activity by changing the expression of genes, the products of which could potentially change the sensory processing of nociceptors and proprioceptors, which could in turn alter functions such as pain transmission and locomotor coordination.
Collapse
Affiliation(s)
- Natasha Paddock
- Spinal Cord Research Center, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Patricia Sheppard
- Spinal Cord Research Center, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Phillip Gardiner
- Spinal Cord Research Center, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
43
|
Belmonte LAO, Martins TC, Salm DC, Emer AA, de Oliveira BH, Mathias K, Goldim MP, Horewicz VV, Piovezan AP, Bobinski F, Petronilho F, Martins DF. Effects of Different Parameters of Continuous Training and High-Intensity Interval Training in the Chronic Phase of a Mouse Model of Complex Regional Pain Syndrome Type I. THE JOURNAL OF PAIN 2018; 19:1445-1460. [PMID: 30006271 DOI: 10.1016/j.jpain.2018.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/15/2018] [Accepted: 06/26/2018] [Indexed: 01/03/2023]
Abstract
This study evaluated the effects of continuous and interval running on a treadmill on mechanical hyperalgesia in an animal model of chronic postischemia pain and analyzed the mechanism of action of this effect. Different groups of male Swiss mice with chronic postischemia pain, induced by 3 hours of paw ischemia followed by reperfusion, ran on the treadmill in different protocols-the speed (10, 13, 16, or 19 m/min), duration (15, 30, or 60 minutes), weekly frequency (3 or 5 times), weekly increase in continuous and interval running speed-were tested. Mechanical hyperalgesia was evaluated by von Frey filament 7, 14, and 21 days after paw ischemia followed by reperfusion. On day 11 after paw ischemia followed by reperfusion and after 5 days of continuous and interval running, concentrations of cytokines, oxidative stress parameters, and extracellular signal-regulated kinase 1/2 and AKT 1/2/3 expression in the spinal cord were measured. The results showed that continuous running has an antihyperalgesic effect that depends on intensity and volume. Interval running has a longer-lasting antihyperalgesic effect than continuous running. The antihyperalgesic effect depends on intensity and volume in continuous running, and increasing speed maintains the antihyperalgesic effect in both protocols. In the spinal cord, both runs decreased tumor necrosis factor-α and interleukin-6 levels and increased interleukin-10. Both running protocols reduced oxidative damage in the spinal cord. Only interval running had lower concentrations of phosphorylated extracellular signal-regulated kinase 1/2 in the spinal cord. Interval running presented a great antihyperalgesic potential with more promising results than continuous running, which may be owing to the fact that the interval running can activate different mechanisms from those activated by continuous running. PERSPECTIVE: A minimum of .5-hour sessions of moderate to high intensity ≥3 times a week are essential parameters for continuous and interval running-induced analgesia. However, interval running was shown to be more effective than continuous running and can be an important adjuvant treatment to chronic pain.
Collapse
Affiliation(s)
- Luiz Augusto Oliveira Belmonte
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Thiago César Martins
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Daiana Cristina Salm
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Aline Armiliato Emer
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Bruna Hoffman de Oliveira
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Khiany Mathias
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Laboratory of Neurobiology of Inflammatory and Metabolic Processes, University of Southern Santa Catarina at Tubarão, SC, Brazil
| | - Mariana Pereira Goldim
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Laboratory of Neurobiology of Inflammatory and Metabolic Processes, University of Southern Santa Catarina at Tubarão, SC, Brazil
| | - Verônica Vargas Horewicz
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Anna Paula Piovezan
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Franciane Bobinski
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Fabrícia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, University of Southern Santa Catarina at Tubarão, SC, Brazil
| | - Daniel Fernandes Martins
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil.
| |
Collapse
|
44
|
Ye H, Du X, Hua Q. Effects of voluntary exercise on antiretroviral therapy-induced neuropathic pain in mice. J Physiol Sci 2018; 68:521-530. [PMID: 28975573 PMCID: PMC10717227 DOI: 10.1007/s12576-017-0570-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022]
Abstract
Antiretroviral therapy (ART) often results in painful peripheral neuropathy. Given that voluntary exercise has been shown to be beneficial in terms of modulating pain-like behaviors in various animal models of peripheral neuropathy, we have investigated the effects of voluntary wheel running on neuropathic pain induced by chronic ART. We first established an animal model of peripheral neuropathy induced by chronic 2',3'-dideoxycytidine (ddC) treatment. We showed that mice receiving ddC (3 mg/kg/day) had increased mechanical and thermal sensitivity at 9 weeks after the onset of the treatment. We also found that voluntary wheel running attenuated or delayed the onset of ddC-induced peripheral neuropathy. This phenomenon was associated with the attenuation of dorsal root ganglion nociceptive neuron membrane excitability and reduction in the expression of the transient receptor potential cation channel subfamily V member 1 (TRPV1). Taken together, these results suggest that voluntary exercise is an effective strategy by which ART-induced peripheral neuropathy can be alleviated.
Collapse
Affiliation(s)
- Hong Ye
- Department of Anesthesiology, Daqing Oil Field General Hospital, No. 9 Saertu District, Daqing, 163000, Heilongjiang, China
| | - Xingguang Du
- Department of Anesthesiology, Daqing Oil Field General Hospital, No. 9 Saertu District, Daqing, 163000, Heilongjiang, China
| | - Qingli Hua
- Department of Anesthesiology, Daqing Longnan Hospital, No. 35 Patriotic Road, Ranghulu District, Daqing, 163000, Heilongjiang, China.
| |
Collapse
|
45
|
Lebonvallet N, Laverdet B, Misery L, Desmoulière A, Girard D. New insights into the roles of myofibroblasts and innervation during skin healing and innovative therapies to improve scar innervation. Exp Dermatol 2018; 27:950-958. [DOI: 10.1111/exd.13681] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Nicolas Lebonvallet
- Department of Dermatology and EA4685 “Laboratory Interactions Neurons-Keratinocytes”; Faculty of Medicine and Health Sciences; University of Western Brittany; Brest France
| | - Betty Laverdet
- Department of Physiology and EA6309 “Myelin Maintenance and Peripheral Neuropathies”; Faculty of Pharmacy; University of Limoges; Limoges France
| | - Laurent Misery
- Department of Dermatology and EA4685 “Laboratory Interactions Neurons-Keratinocytes”; Faculty of Medicine and Health Sciences; University of Western Brittany; Brest France
| | - Alexis Desmoulière
- Department of Physiology and EA6309 “Myelin Maintenance and Peripheral Neuropathies”; Faculty of Pharmacy; University of Limoges; Limoges France
| | - Dorothée Girard
- Department of Physiology and EA6309 “Myelin Maintenance and Peripheral Neuropathies”; Faculty of Pharmacy; University of Limoges; Limoges France
| |
Collapse
|
46
|
Kobiela Ketz A, Byrnes KR, Grunberg NE, Kasper CE, Osborne L, Pryor B, Tosini NL, Wu X, Anders JJ. Characterization of Macrophage/Microglial Activation and Effect of Photobiomodulation in the Spared Nerve Injury Model of Neuropathic Pain. PAIN MEDICINE 2018; 18:932-946. [PMID: 27497321 DOI: 10.1093/pm/pnw144] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Objective Neuropathic pain is common and debilitating with limited effective treatments. Macrophage/microglial activation along ascending somatosensory pathways following peripheral nerve injury facilitates neuropathic pain. However, polarization of macrophages/microglia in neuropathic pain is not well understood. Photobiomodulation treatment has been used to decrease neuropathic pain, has anti-inflammatory effects in spinal injury and wound healing models, and modulates microglial polarization in vitro. Our aim was to characterize macrophage/microglia response after peripheral nerve injury and modulate the response with photobiomodulation. Methods Adult male Sprague-Dawley rats were randomly assigned to sham (N = 13), spared nerve injury (N = 13), or injury + photobiomodulation treatment groups (N = 7). Mechanical hypersensitivity was assessed with electronic von Frey. Photobiomodulation (980 nm) was applied to affected hind paw (output power 1 W, 20 s, 41cm above skin, power density 43.25 mW/cm 2 , dose 20 J), dorsal root ganglia (output power 4.5W, 19s, in skin contact, power density 43.25 mW/cm 2 , dose 85.5 J), and spinal cord regions (output power 1.5 W, 19s, in skin contact, power density 43.25 mW/cm 2 , dose 28.5 J) every other day from day 7-30 post-operatively. Immunohistochemistry characterized macrophage/microglial activation. Results Injured groups demonstrated mechanical hypersensitivity 1-30 days post-operatively. Photobiomodulation-treated animals began to recover after two treatments; at day 26, mechanical sensitivity reached baseline. Peripheral nerve injury caused region-specific macrophages/microglia activation along spinothalamic and dorsal-column medial lemniscus pathways. A pro-inflammatory microglial marker was expressed in the spinal cord of injured rats compared to photobiomodulation-treated and sham group. Photobiomodulation-treated dorsal root ganglion macrophages expressed anti-inflammatory markers. Conclusion Photobiomodulation effectively reduced mechanical hypersensitivity, potentially through modulating macrophage/microglial activation to an anti-inflammatory phenotype.
Collapse
Affiliation(s)
- Ann Kobiela Ketz
- Center for Nursing Science and Clinical Inquiry, Landstuhl Regional Medical Center, Landstuhl, Germany
| | - Kimberly R Byrnes
- Anatomy, Physiology & Genetics, The Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Neil E Grunberg
- Departments of Neuroscience, Uniformed Services University, Bethesda, MD, USA.,Department of Medical and Clinical Psychology, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Christine E Kasper
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Lisa Osborne
- Daniel K. Inouye Graduate School of Nursing, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | | | - Xingjia Wu
- Anatomy, Physiology & Genetics, The Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Juanita J Anders
- Anatomy, Physiology & Genetics, The Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
47
|
Bertolini GRF, Kakihata CMM, Peretti AL, Bernardino GR, Karvat J, Silva JLDC, Brancalhão RMC, Ribeiro LDFC. Effects of the platelet-rich fibrin associated with physical exercise in a model of median nerve compression. MOTRIZ: REVISTA DE EDUCACAO FISICA 2018. [DOI: 10.1590/s1980-6574201700040010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
48
|
Feter N, Freitas M, Gonzales N, Umpierre D, Cardoso R, Rombaldi A. Effects of physical exercise on myelin sheath regeneration: A systematic review and meta-analysis. Sci Sports 2018. [DOI: 10.1016/j.scispo.2017.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
49
|
Goganau I, Sandner B, Weidner N, Fouad K, Blesch A. Depolarization and electrical stimulation enhance in vitro and in vivo sensory axon growth after spinal cord injury. Exp Neurol 2017; 300:247-258. [PMID: 29183676 DOI: 10.1016/j.expneurol.2017.11.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/20/2017] [Accepted: 11/23/2017] [Indexed: 11/28/2022]
Abstract
Activity dependent plasticity is a key mechanism for the central nervous system (CNS) to adapt to its environment. Whether neuronal activity also influences axonal regeneration in the injured CNS, and whether electrical stimulation (ES) can activate regenerative programs in the injured CNS remains incompletely understood. Using KCl-induced depolarization, in vivo ES followed by ex-vivo neurite growth assays and ES after spinal cord lesions and cell grafting, we aimed to identify parameters important for ES-enhanced neurite growth and axonal regeneration. Using cultures of sensory neurons, neurite growth was analyzed after KCl-induced depolarization for 1-72h. Increased neurite growth was detected after short-term stimulation and after longer stimulation if a sufficient delay between stimulation and growth measurements was provided. After in vivo ES (20Hz, 2× motor threshold, 0.2ms, 1h) of the intact sciatic nerve in adult Fischer344 rats, sensory neurons showed a 2-fold increase in in vitro neurite length one week later compared to sham animals, an effect not observed one day after ES. Longer ES (7h) and repeated ES (7days, 1h each) also increased growth by 56-67% one week later, but provided no additional benefit. In vivo growth of dorsal column sensory axons into a graft of bone marrow stromal cells 4weeks after a cervical spinal cord lesion was also enhanced with a single post-injury 1h ES of the intact sciatic nerve and was also observed after repeated ES without inducing pain-like behavior. While ES did not result in sensory functional recovery, our data indicate that ES has time-dependent influences on the regenerative capacity of sensory neurons and might further enhance axonal regeneration in combinatorial approaches after SCI.
Collapse
Affiliation(s)
- Ioana Goganau
- Spinal Cord Injury Center, Heidelberg University Hospital, Schlierbacher Landstr. 200A, 69118 Heidelberg, Germany
| | - Beatrice Sandner
- Spinal Cord Injury Center, Heidelberg University Hospital, Schlierbacher Landstr. 200A, 69118 Heidelberg, Germany
| | - Norbert Weidner
- Spinal Cord Injury Center, Heidelberg University Hospital, Schlierbacher Landstr. 200A, 69118 Heidelberg, Germany
| | - Karim Fouad
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry and Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, 3-87 Corbett Hall, Edmonton, Alberta T6G 2G4, Canada
| | - Armin Blesch
- Spinal Cord Injury Center, Heidelberg University Hospital, Schlierbacher Landstr. 200A, 69118 Heidelberg, Germany; Stark Neurosciences Research Institute, Indiana University School of Medicine, Dept. of Neurological Surgery and Goodman Campbell Brain and Spine, 320 West 15th St., Indianapolis, IN 46202, USA.
| |
Collapse
|
50
|
Arbat‐Plana A, Navarro X, Udina E. Effects of forced, passive, and voluntary exercise on spinal motoneurons changes after peripheral nerve injury. Eur J Neurosci 2017; 46:2885-2892. [DOI: 10.1111/ejn.13739] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 09/26/2017] [Accepted: 10/12/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Ariadna Arbat‐Plana
- Unitat de Fisiologia Mèdica Institute of Neurosciences Department of Cell Biology, Physiology and Immunology Universitat Autònoma de Barcelona Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) Av Can Domènech, Edifici M E‐08193 Bellaterra Spain
| | - Xavier Navarro
- Unitat de Fisiologia Mèdica Institute of Neurosciences Department of Cell Biology, Physiology and Immunology Universitat Autònoma de Barcelona Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) Av Can Domènech, Edifici M E‐08193 Bellaterra Spain
| | - Esther Udina
- Unitat de Fisiologia Mèdica Institute of Neurosciences Department of Cell Biology, Physiology and Immunology Universitat Autònoma de Barcelona Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) Av Can Domènech, Edifici M E‐08193 Bellaterra Spain
| |
Collapse
|