1
|
Zhou F, Feng X, Xu Z, Yan F, Song G, Tang L. Design, synthesis and biological activity of 8-hydroxy modified urolithin A derivatives as phosphodiesterase type II (PDE2) inhibitors. Bioorg Med Chem 2025; 121:118127. [PMID: 40015121 DOI: 10.1016/j.bmc.2025.118127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/01/2025]
Abstract
Urolithin A (UA) is a naturally occurring polyphenolic compound.Due to its remarkable efficacy in safeguarding the central nervous system, UA has emerged as a promising candidate for drug development targeting neurodegenerative diseases such as Alzheimer's. However, the source of UA is limited and the activity of UA to inhibit PDE2 needs to be further improved. Therefore, this study will be optimized on the basis of UA to seek PDE2 inhibitors with better activity. In this study, we designed a series of UA derivatives based on 4HTX as the target protein and UA as the lead compound, utilizing the binding crystal structures of 4HTX and BAY60-7550 as references. After thorough screening, we successfully identified the 8-hydroxyl group as the precise site of modification. Utilizing 2-bromo-5-hydroxybenzoic acid as our primary raw material, we synthesized a series of the 8-hydroxyl modified UA. Subsequently, we evaluated the inhibitory activity of these synthesized UA derivatives using a phosphodiesterase assay kit. Ultimately, we screened a total of 34 derivatives; among them, compounds 1f, 1q, 2d, and 2j exhibited significant inhibitory activity against PDE2 with half-maximal inhibitory concentrations of 3.05 μM, 0.67 μM, 0.57 μM, and 4.96 μM, respectively.
Collapse
Affiliation(s)
- Feng Zhou
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China.
| | - Xiaoqing Feng
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China.
| | - Zhongqiu Xu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China.
| | - Fen Yan
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China.
| | - Guoqiang Song
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China.
| | - Long Tang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
2
|
Wang ZW, Niu L, Riaz S. Regulation of Ryanodine Receptor-Dependent Neurotransmitter Release by AIP, Calstabins, and Presenilins. ADVANCES IN NEUROBIOLOGY 2023; 33:287-304. [PMID: 37615871 DOI: 10.1007/978-3-031-34229-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Ryanodine receptors (RyRs) are Ca2+ release channels located in the endoplasmic reticulum membrane. Presynaptic RyRs play important roles in neurotransmitter release and synaptic plasticity. Recent studies suggest that the proper function of presynaptic RyRs relies on several regulatory proteins, including aryl hydrocarbon receptor-interacting protein, calstabins, and presenilins. Dysfunctions of these regulatory proteins can greatly impact neurotransmitter release and synaptic plasticity by altering the function or expression of RyRs. This chapter aims to describe the interaction between these proteins and RyRs, elucidating their crucial role in regulating synaptic function.
Collapse
Affiliation(s)
- Zhao-Wen Wang
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA.
| | - Longgang Niu
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Sadaf Riaz
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
3
|
Jyoti Dutta B, Singh S, Seksaria S, Das Gupta G, Bodakhe SH, Singh A. Potential role of IP3/Ca 2+ signaling and phosphodiesterases: Relevance to neurodegeneration in Alzheimer's disease and possible therapeutic strategies. Biochem Pharmacol 2022; 201:115071. [PMID: 35525328 DOI: 10.1016/j.bcp.2022.115071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/02/2022]
Abstract
Despite large investments by industry and governments, no disease-modifying medications for the treatment of patients with Alzheimer's disease (AD) have been found. The failures of various clinical trials indicate the need for a more in-depth understanding of the pathophysiology of AD and for innovative therapeutic strategies for its treatment. Here, we review the rational for targeting IP3 signaling, cytosolic calcium dysregulation, phosphodiesterases (PDEs), and secondary messengers like cGMP and cAMP, as well as their correlations with the pathophysiology of AD. Various drugs targeting these signaling cascades are still in pre-clinical and clinical trials which support the ideas presented in this article. Further, we describe different molecular mechanisms and medications currently being used in various pre-clinical and clinical trials involving IP3/Ca+2 signaling. We also highlight various isoforms, as well as the functions and pharmacology of the PDEs broadly expressed in different parts of the brain and attempt to unravel the potential benefits of PDE inhibitors for use as novel medications to alleviate the pathogenesis of AD.
Collapse
Affiliation(s)
- Bhaskar Jyoti Dutta
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Shamsher Singh
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Sanket Seksaria
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| | - Surendra H Bodakhe
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur - 495009, Chhattisgarh, India
| | - Amrita Singh
- Department of Pharmacology, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India.
| |
Collapse
|
4
|
Huang DX, Yu X, Yu WJ, Zhang XM, Liu C, Liu HP, Sun Y, Jiang ZP. Calcium Signaling Regulated by Cellular Membrane Systems and Calcium Homeostasis Perturbed in Alzheimer’s Disease. Front Cell Dev Biol 2022; 10:834962. [PMID: 35281104 PMCID: PMC8913592 DOI: 10.3389/fcell.2022.834962] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Although anything that changes spatiotemporally could be a signal, cells, particularly neurons, precisely manipulate calcium ion (Ca2+) to transmit information. Ca2+ homeostasis is indispensable for neuronal functions and survival. The cytosolic Ca2+ concentration ([Ca2+]CYT) is regulated by channels, pumps, and exchangers on cellular membrane systems. Under physiological conditions, both endoplasmic reticulum (ER) and mitochondria function as intracellular Ca2+ buffers. Furthermore, efficient and effective Ca2+ flux is observed at the ER-mitochondria membrane contact site (ERMCS), an intracellular membrane juxtaposition, where Ca2+ is released from the ER followed by mitochondrial Ca2+ uptake in sequence. Hence, the ER intraluminal Ca2+ concentration ([Ca2+]ER), the mitochondrial matrix Ca2+ concentration ([Ca2+]MT), and the [Ca2+]CYT are related to each other. Ca2+ signaling dysregulation and Ca2+ dyshomeostasis are associated with Alzheimer’s disease (AD), an irreversible neurodegenerative disease. The present review summarizes the cellular and molecular mechanism underlying Ca2+ signaling regulation and Ca2+ homeostasis maintenance at ER and mitochondria levels, focusing on AD. Integrating the amyloid hypothesis and the calcium hypothesis of AD may further our understanding of pathogenesis in neurodegeneration, provide therapeutic targets for chronic neurodegenerative disease in the central nervous system.
Collapse
Affiliation(s)
- Dong-Xu Huang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Xin Yu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Wen-Jun Yu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Xin-Min Zhang
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Chang Liu
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Hong-Ping Liu
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yue Sun
- Deparment of The First Operating Room, The First Hospital of Jilin University, Changchun, China
| | - Zi-Ping Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Zi-Ping Jiang,
| |
Collapse
|
5
|
Martinez-Banaclocha M. N-Acetyl-Cysteine: Modulating the Cysteine Redox Proteome in Neurodegenerative Diseases. Antioxidants (Basel) 2022; 11:antiox11020416. [PMID: 35204298 PMCID: PMC8869501 DOI: 10.3390/antiox11020416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
In the last twenty years, significant progress in understanding the pathophysiology of age-associated neurodegenerative diseases has been made. However, the prevention and treatment of these diseases remain without clinically significant therapeutic advancement. While we still hope for some potential genetic therapeutic approaches, the current reality is far from substantial progress. With this state of the issue, emphasis should be placed on early diagnosis and prompt intervention in patients with increased risk of neurodegenerative diseases to slow down their progression, poor prognosis, and decreasing quality of life. Accordingly, it is urgent to implement interventions addressing the psychosocial and biochemical disturbances we know are central in managing the evolution of these disorders. Genomic and proteomic studies have shown the high molecular intricacy in neurodegenerative diseases, involving a broad spectrum of cellular pathways underlying disease progression. Recent investigations indicate that the dysregulation of the sensitive-cysteine proteome may be a concurrent pathogenic mechanism contributing to the pathophysiology of major neurodegenerative diseases, opening new therapeutic opportunities. Considering the incidence and prevalence of these disorders and their already significant burden in Western societies, they will become a real pandemic in the following decades. Therefore, we propose large-scale investigations, in selected groups of people over 40 years of age with decreased blood glutathione levels, comorbidities, and/or mild cognitive impairment, to evaluate supplementation of the diet with low doses of N-acetyl-cysteine, a promising and well-tolerated therapeutic agent suitable for long-term use.
Collapse
|
6
|
Wang K, Zhang W. Mitochondria-associated endoplasmic reticulum membranes: At the crossroad between familiar and sporadic Alzheimer's disease. Synapse 2021; 75:e22196. [PMID: 33559220 DOI: 10.1002/syn.22196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia and is incurable. The widely accepted amyloid hypothesis failed to produce efficient clinical therapies. In contrast, there is increasing evidence suggesting that the disruption of mitochondria-associated endoplasmic reticulum (ER) membranes (MAM) is a critical upstream event of AD pathogenesis. Here, we review MAM's role in some AD symptoms such as plaque formation, tau hyperphosphorylation, synaptic loss, aberrant lipid synthesis, disturbed calcium homeostasis, and abnormal autophagy. At last, we proposed that MAM plays a central role in familial AD (FAD) and sporadic AD (SAD).
Collapse
Affiliation(s)
- Kangrun Wang
- Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Wenling Zhang
- The Third Xiangya Hospital, Central South University, Changsha, P.R. China
| |
Collapse
|
7
|
Ca 2+ Dyshomeostasis Disrupts Neuronal and Synaptic Function in Alzheimer's Disease. Cells 2020; 9:cells9122655. [PMID: 33321866 PMCID: PMC7763805 DOI: 10.3390/cells9122655] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
Ca2+ homeostasis is essential for multiple neuronal functions and thus, Ca2+ dyshomeostasis can lead to widespread impairment of cellular and synaptic signaling, subsequently contributing to dementia and Alzheimer's disease (AD). While numerous studies implicate Ca2+ mishandling in AD, the cellular basis for loss of cognitive function remains under investigation. The process of synaptic degradation and degeneration in AD is slow, and constitutes a series of maladaptive processes each contributing to a further destabilization of the Ca2+ homeostatic machinery. Ca2+ homeostasis involves precise maintenance of cytosolic Ca2+ levels, despite extracellular influx via multiple synaptic Ca2+ channels, and intracellular release via organelles such as the endoplasmic reticulum (ER) via ryanodine receptor (RyRs) and IP3R, lysosomes via transient receptor potential mucolipin channel (TRPML) and two pore channel (TPC), and mitochondria via the permeability transition pore (PTP). Furthermore, functioning of these organelles relies upon regulated inter-organelle Ca2+ handling, with aberrant signaling resulting in synaptic dysfunction, protein mishandling, oxidative stress and defective bioenergetics, among other consequences consistent with AD. With few effective treatments currently available to mitigate AD, the past few years have seen a significant increase in the study of synaptic and cellular mechanisms as drivers of AD, including Ca2+ dyshomeostasis. Here, we detail some key findings and discuss implications for future AD treatments.
Collapse
|
8
|
Beckman M, Knox K, Koneval Z, Smith C, Jayadev S, Barker-Haliski M. Loss of presenilin 2 age-dependently alters susceptibility to acute seizures and kindling acquisition. Neurobiol Dis 2019; 136:104719. [PMID: 31862541 DOI: 10.1016/j.nbd.2019.104719] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/17/2019] [Accepted: 12/16/2019] [Indexed: 01/15/2023] Open
Abstract
Patients with Alzheimer's disease (AD) experience seizures at higher rates than the general population of that age, suggesting an underexplored role of hyperexcitability in AD. Genetic variants in presenilin (PSEN) 1 and 2 genes lead to autosomal dominant early-onset AD (ADAD); patients with PSEN gene variants also report seizures. Pharmacological control of seizures in AD may be disease-modifying. Preclinical efficacy of FDA-approved antiseizure drugs (ASDs) is well defined in young adult rodents; however, the efficacy of ASDs in aged rodents with chronic seizures is less clear. The mechanism by which ADAD genes lead to AD remains unclear, and even less studied is the pathogenesis of epilepsy in AD. PSEN variants generally all result in a biochemical loss of function (De Strooper, 2007). We herein determined whether well-established models of acute and chronic seizure could be used to explore the relationship between AD genes and seizures through investigating whether loss of normal PSEN2 function age-dependently influenced susceptibility to seizures and/or corneal kindling acquisition. PSEN2 knockout (KO) and age-matched wild-type (WT) mice were screened from 2- to 10-months-old to establish age-dependent focal seizure threshold. Additionally, PSEN2 KO and WT mice aged 2- and 8-months-old underwent corneal kindling such that mice were aged 3- and 9-months old at the beginning of ASD efficacy testing. We then defined the dose-dependent efficacy of mechanistically distinct ASDs on kindled seizures of young versus aged mice to better understand the applicability of corneal kindling to real-world use for geriatric patients. PSEN2 KO mice demonstrated early-life reductions in seizure threshold. However, kindling acquisition was delayed in 2-month-old PSEN2 KO versus WT mice. Young male WT mice took 24.3 ± 1.3 (S.E.M.) stimulations to achieve kindling criterion, whereas age-matched PSEN2 KO male mice took 41.2 ± 1.1 stimulations (p < .0001). The rate of kindling acquisition of 8-month-old mice was no longer different from WT. This study demonstrates that loss of normal PSEN2 function is associated with age-dependent changes in the in vivo susceptibility to acute seizures and kindling. Loss of normal PSEN2 function may be an underexplored molecular contributor to seizures. The use of validated models of chronic seizures in aged rodents may uncover age-related changes in susceptibility to epileptogenesis and/or ASD efficacy in mice with AD-associated genotypes, which may benefit the management of seizures in AD.
Collapse
Affiliation(s)
- Megan Beckman
- Department of Pharmacy, School of Pharmacy, University of Washington, United States of America
| | - Kevin Knox
- Department of Pharmacy, School of Pharmacy, University of Washington, United States of America
| | - Zachery Koneval
- Department of Pharmacy, School of Pharmacy, University of Washington, United States of America
| | - Carole Smith
- Department of Neurology, School of Medicine, University of Washington, United States of America
| | - Suman Jayadev
- Department of Neurology, School of Medicine, University of Washington, United States of America
| | - Melissa Barker-Haliski
- Department of Pharmacy, School of Pharmacy, University of Washington, United States of America.
| |
Collapse
|
9
|
Sushma, Mondal AC. Role of GPCR signaling and calcium dysregulation in Alzheimer's disease. Mol Cell Neurosci 2019; 101:103414. [PMID: 31655116 DOI: 10.1016/j.mcn.2019.103414] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/17/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD), a late onset neurodegenerative disorder is characterized by the loss of memory, disordered cognitive function, caused by accumulation of amyloid-β (Aβ) peptide and neurofibrillary tangles (NFTs) in the neocortex and hippocampal brain area. Extensive research has been done on the findings of the disease etiology or pathological causes of aggregation of Aβ and hyperphosphorylation of tau protein without much promising results. Recently, calcium dysregulation has been reported to play an important role in the pathophysiology of AD. Calcium ion acts as one of the major secondary messengers, regulates many signaling pathways involved in cell survival, proliferation, differentiation, transcription and apoptosis. Calcium signaling is one of the major signaling pathways involved in the formation of memory, generation of energy and other physiological functions. It also can modulate function of many proteins upon binding. Dysregulation in calcium homeostasis leads to many physiological changes leading to neurodegenerative diseases including AD. In AD, GPCRs generate secondary messengers which regulate calcium homeostasis inside the cell and is reported to be disturbed in the pathological condition. Calcium channels and receptors present on the plasma membrane and intracellular organelle maintain calcium homeostasis through different signaling mechanisms. In this review, we have summarized the different calcium channels and receptors involved in calcium dysregulation which in turn play a critical role in the pathogenesis of AD. Understanding the role of calcium channels and GPCRs to maintain calcium homeostasis is an attempt to develop effective AD treatments.
Collapse
Affiliation(s)
- Sushma
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Amal Chandra Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India.
| |
Collapse
|
10
|
Abstract
Kv channel-interacting proteins (KChIPs) belong to the neuronal calcium sensor (NCS) family of Ca2+-binding EF-hand proteins. KChIPs constitute a group of specific auxiliary β-subunits for Kv4 channels, the molecular substrate of transient potassium currents in both neuronal and non-neuronal tissues. Moreover, KChIPs can interact with presenilins to control ER calcium signaling and apoptosis, and with DNA to control gene transcription. Ca2+ binding via their EF-hands, with the consequence of conformational changes, is well documented for KChIPs. Moreover, the Ca2+ dependence of the presenilin/KChIP complex may be related to Alzheimer’s disease and the Ca2+ dependence of the DNA/KChIP complex to pain sensing. However, only in few cases could the Ca2+ binding to KChIPs be directly linked to the control of excitability in nerve and muscle cells known to express Kv4/KChIP channel complexes. This review summarizes current knowledge about the Ca2+ binding properties of KChIPs and the Ca2+ dependencies of macromolecular complexes containing KChIPs, including those with presenilins, DNA and especially Kv4 channels. The respective physiological or pathophysiolgical roles of Ca2+ binding to KChIPs are discussed.
Collapse
Affiliation(s)
- Robert Bähring
- a Institut für Zelluläre und Integrative Physiologie, Zentrum für Experimentelle Medizin , Universitätsklinikum Hamburg-Eppendorf , Hamburg , Germany
| |
Collapse
|
11
|
Wang X, Zheng W. Ca 2+ homeostasis dysregulation in Alzheimer's disease: a focus on plasma membrane and cell organelles. FASEB J 2019; 33:6697-6712. [PMID: 30848934 DOI: 10.1096/fj.201801751r] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Emerging evidence indicates that Ca2+ is a vital factor in modulating the pathogenesis of Alzheimer's disease (AD). In healthy neurons, Ca2+ concentration is balanced to maintain a lower level in the cytosol than in the extracellular space or certain intracellular compartments such as endoplasmic reticulum (ER) and the lysosome, whereas this homeostasis is broken in AD. On the plasma membrane, the AD hallmarks amyloid-β (Aβ) and tau interact with ligand-gated or voltage-gated Ca2+-influx channels and inhibit the Ca2+-efflux ATPase or exchangers, leading to an elevated intracellular Ca2+ level and disrupted Ca2+ signal. In the ER, the disabled presenilin "Ca2+ leak" function and the direct implications of Aβ and presenilin mutants contribute to Ca2+-signal disorder. The enhanced ryanodine receptor (RyR)-mediated and inositol 1,4,5-trisphosphate receptor (IP3R)-mediated Ca2+ release from the ER aggravates cytosolic Ca2+ disorder and triggers apoptosis; the down-regulated ER Ca2+ sensor, stromal interaction molecule (STIM), alleviates store-operated Ca2+ entry in plasma membrane, leading to spine loss. The increased transfer of Ca2+ from ER to mitochondria through mitochondria-associated ER membrane (MAM) causes Ca2+ overload in the mitochondrial matrix and consequently opens the cellular damage-related channel, mitochondrial permeability transition pore (mPTP). In this review, we discuss the effects of Aβ, tau and presenilin on neuronal Ca2+ signal, focusing on the receptors and regulators in plasma membrane and ER; we briefly introduce the involvement of MAM-mediated Ca2+ transfer and mPTP opening in AD pathogenesis.-Wang, X., Zheng, W. Ca2+ homeostasis dysregulation in Alzheimer's disease: a focus on plasma membrane and cell organelles.
Collapse
Affiliation(s)
- Xingjian Wang
- Department of Histology and Embryology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Wei Zheng
- Department of Histology and Embryology, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
12
|
Non-linear calcium signalling and synaptic plasticity in interneurons. Curr Opin Neurobiol 2019; 54:98-103. [DOI: 10.1016/j.conb.2018.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 01/24/2023]
|
13
|
Shi Y, Wang Y, Wei H. Dantrolene : From Malignant Hyperthermia to Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2019; 18:668-676. [PMID: 29921212 PMCID: PMC7754833 DOI: 10.2174/1871527317666180619162649] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 05/07/2018] [Accepted: 06/13/2018] [Indexed: 12/12/2022]
Abstract
Dantrolene, a ryanodine receptor antagonist, is primarily known as the only clinically acceptable and effective treatment for Malignant Hyperthermia (MH). Inhibition of Ryanodine Receptor (RyR) by dantrolene decreases the abnormal calcium release from the Sarcoplasmic Reticulum (SR) or Endoplasmic Reticulum (ER), where RyR is located. Recently, emerging researches on dissociated cells, brains slices, live animal models and patients have demonstrated that altered RyR expression and function can also play a vital role in the pathogenesis of Alzheimer's Disease (AD). Therefore, dantrolene is now widely studied as a novel treatment for AD, targeting the blockade of RyR channels or another alternative pathway, such as the inhibitory effects of NMDA glutamate receptors and the effects of ER-mitochondria connection. However, the therapeutic effects are not consistent. In this review, we focus on the relationship between the altered RyR expression and function and the pathogenesis of AD, and the potential application of dantrolene as a novel treatment for the disease.
Collapse
Affiliation(s)
- Yun Shi
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104, USA
- Department of Anesthesiology, Children’s Hospital of Fudan University, Shanghai, China
| | - Yong Wang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104, USA
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Huafeng Wei
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Presenilins as Drug Targets for Alzheimer's Disease-Recent Insights from Cell Biology and Electrophysiology as Novel Opportunities in Drug Development. Int J Mol Sci 2018; 19:ijms19061621. [PMID: 29857474 PMCID: PMC6032171 DOI: 10.3390/ijms19061621] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/26/2018] [Accepted: 05/28/2018] [Indexed: 01/24/2023] Open
Abstract
A major cause underlying familial Alzheimer's disease (AD) are mutations in presenilin proteins, presenilin 1 (PS1) and presenilin 2 (PS2). Presenilins are components of the γ-secretase complex which, when mutated, can affect amyloid precursor protein (APP) processing to toxic forms of amyloid beta (Aβ). Consequently, presenilins have been the target of numerous and varied research efforts to develop therapeutic strategies for AD. The presenilin 1 gene harbors the largest number of AD-causing mutations resulting in the late onset familial form of AD. As a result, the majority of efforts for drug development focused on PS1 and Aβ. Soon after the discovery of the major involvement of PS1 and PS2 in γ-secretase activity, it became clear that neuronal signaling, particularly calcium ion (Ca2+) signaling, is regulated by presenilins and impacted by mutations in presenilin genes. Intracellular Ca2+ signaling not only controls the activity of neurons, but also gene expression patterns, structural functionality of the cytoskeleton, synaptic connectivity and viability. Here, we will briefly review the role of presenilins in γ-secretase activity, then focus on the regulation of Ca2+ signaling, oxidative stress, and cellular viability by presenilins within the context of AD and discuss the relevance of presenilins in AD drug development efforts.
Collapse
|
15
|
Vervliet T. Ryanodine Receptors in Autophagy: Implications for Neurodegenerative Diseases? Front Cell Neurosci 2018; 12:89. [PMID: 29636667 PMCID: PMC5880912 DOI: 10.3389/fncel.2018.00089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/13/2018] [Indexed: 12/18/2022] Open
Abstract
Intracellular Ca2+ signaling is important in the regulation of several cellular processes including autophagy. The endoplasmic reticulum (ER) is the main and largest intracellular Ca2+ store. At the ER two protein families of Ca2+ release channels, inositol 1,4,5-trisphosphate receptors (IP3Rs) and ryanodine receptors (RyRs), are expressed. Several studies have reported roles in the regulation of autophagy for the ubiquitously expressed IP3R. For instance, IP3R-mediated Ca2+ release supresses basal autophagic flux by promoting mitochondrial metabolism, while also promoting the rapid initial increase in autophagic flux in response to nutrient starvation. Insights into the contribution of RyRs in autophagy have been lagging significantly compared to the advances made for IP3Rs. This is rather surprising considering that RyRs are predominantly expressed in long-lived cells with specialized metabolic needs, such as neurons and muscle cells, in which autophagy plays important roles. In this review article, recent studies revealing roles for RyRs in the regulation of autophagy will be discussed. Several RyR-interacting proteins that have been established to modulate both RyR function and autophagy will also be highlighted. Finally, the involvement of RyRs in neurodegenerative diseases will be addressed. Inhibition of RyR channels has not only been shown to be beneficial for treating several of these diseases but also regulates autophagy.
Collapse
Affiliation(s)
- Tim Vervliet
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Li T, Shen Y, Su L, Fan X, Lin F, Ye X, Ding D, Tang Y, Yang Y, Lei C, Hu S. Cardiac adenovirus-associated viral Presenilin 1 gene delivery protects the left ventricular function of the heart via regulating RyR2 function in post-ischaemic heart failure. J Drug Target 2018. [PMID: 29521549 DOI: 10.1080/1061186x.2018.1450412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Post-ischaemic heart failure is a major cause of death worldwide. Reperfusion of infarcted heart tissue after myocardial infarction has been an important medical intervention to improve outcomes. However, disturbances in Ca2+ and redox homeostasis at the cellular level caused by ischaemia/reperfusion remain major clinical challenges. In this study, we investigated the potential of adeno-associated virus (AAV)-9-mediated cardiac expression of a Type-2 ryanodine receptor (RyR2) degradation-associated gene, Presenilin 1 (PSEN1), to combat post-ischaemic heart failure. Adeno-associated viral PSEN1 gene delivery elevated PSEN1 protein expression in a post-infarction rat heart failure model, and this administration normalised the contractile dysfunction of the failing myocardium in vivo and in vitro by reversing myocardial Ca2+ handling and function. Moreover, PSEN1 gene transfer to failing cardiomyocytes reduced sarcoplasmic reticulum (SR) Ca2+ leak, thereby restoring the diminished intracellular Ca2+ transients and SR Ca2+ load. Moreover, PSEN1 gene transfer reversed the phosphorylation of RyR2 in failing cardiomyocytes. However, selective autophagy inhibition did not prevent the PSEN1-induced blockade of RyR2 degradation, making the participation of autophagy in PSEN1-associated RyR2 degradation unlikely. Our results established a role of the cardiac expression of PSEN1 with AAV9 vectors as a promising therapeutic approach for post-ischaemic heart failure.
Collapse
Affiliation(s)
- Tian Li
- a Department of Biophysics, College of Basic Medical Sciences , Second Military Medical University , Shanghai , China
| | - Yafeng Shen
- a Department of Biophysics, College of Basic Medical Sciences , Second Military Medical University , Shanghai , China
| | - Li Su
- b School of Pharmacy , Second Military Medical University , Shanghai , China
| | - Xiaoyan Fan
- a Department of Biophysics, College of Basic Medical Sciences , Second Military Medical University , Shanghai , China
| | - Fangxing Lin
- a Department of Biophysics, College of Basic Medical Sciences , Second Military Medical University , Shanghai , China
| | - Xuting Ye
- a Department of Biophysics, College of Basic Medical Sciences , Second Military Medical University , Shanghai , China
| | - Dianer Ding
- c Pharchoice Therapeutics Inc , Shanghai , China
| | - Ying Tang
- a Department of Biophysics, College of Basic Medical Sciences , Second Military Medical University , Shanghai , China
| | - Yongji Yang
- a Department of Biophysics, College of Basic Medical Sciences , Second Military Medical University , Shanghai , China
| | - Changhai Lei
- a Department of Biophysics, College of Basic Medical Sciences , Second Military Medical University , Shanghai , China
| | - Shi Hu
- a Department of Biophysics, College of Basic Medical Sciences , Second Military Medical University , Shanghai , China
| |
Collapse
|
17
|
Toussay X, Morel JL, Biendon N, Rotureau L, Legeron FP, Boutonnet MC, Cho YH, Macrez N. Presenilin 1 mutation decreases both calcium and contractile responses in cerebral arteries. Neurobiol Aging 2017; 58:201-212. [PMID: 28753475 DOI: 10.1016/j.neurobiolaging.2017.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 06/09/2017] [Accepted: 06/19/2017] [Indexed: 12/26/2022]
Abstract
Mutations or upregulation in presenilin 1 (PS1) gene are found in familial early-onset Alzheimer's disease or sporadic late-onset Alzheimer's disease, respectively. PS1 has been essentially studied in neurons and its mutation was shown to alter intracellular calcium (Ca2+) signals. Here, we showed that PS1 is expressed in smooth muscle cells (SMCs) of mouse cerebral arteries, and we assessed the effects of the deletion of exon 9 of PS1 (PS1dE9) on Ca2+ signals and contractile responses of vascular SMC. Agonist-induced contraction of cerebral vessels was significantly decreased in PS1dE9 both in vivo and ex vivo. Spontaneous activity of Ca2+ sparks through ryanodine-sensitive channels (RyR) was unchanged, whereas the RyR-mediated Ca2+-release activated by caffeine was shorter in PS1dE9 SMC when compared with control. Moreover, PS1dE9 mutation decreased the caffeine-activated capacitive Ca2+ entry, and inhibitors of SERCA pumps reversed the effects of PS1dE9 on Ca2+ signals. PS1dE9 mutation also leads to the increased expression of SERCA3, phospholamban, and RyR3. These results show that PS1 plays a crucial role in the cerebrovascular system and the vascular reactivity is decreased through altered Ca2+ signals in PS1dE9 mutant mice.
Collapse
Affiliation(s)
- Xavier Toussay
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Centre de Neurosciences Intégratives et Cognitives, UMR 5228, Bordeaux, France
| | - Jean-Luc Morel
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Nathalie Biendon
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Lolita Rotureau
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Centre de Neurosciences Intégratives et Cognitives, UMR 5228, Bordeaux, France
| | - François-Pierre Legeron
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Marie-Charlotte Boutonnet
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Yoon H Cho
- CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Nathalie Macrez
- University Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.
| |
Collapse
|
18
|
Nassal DM, Wan X, Liu H, Laurita KR, Deschênes I. KChIP2 regulates the cardiac Ca2+ transient and myocyte contractility by targeting ryanodine receptor activity. PLoS One 2017; 12:e0175221. [PMID: 28384221 PMCID: PMC5383259 DOI: 10.1371/journal.pone.0175221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/22/2017] [Indexed: 12/20/2022] Open
Abstract
Pathologic electrical remodeling and attenuated cardiac contractility are featured characteristics of heart failure. Coinciding with these remodeling events is a loss of the K+ channel interacting protein, KChIP2. While, KChIP2 enhances the expression and stability of the Kv4 family of potassium channels, leading to a more pronounced transient outward K+ current, Ito,f, the guinea pig myocardium is unique in that Kv4 expression is absent, while KChIP2 expression is preserved, suggesting alternative consequences to KChIP2 loss. Therefore, KChIP2 was acutely silenced in isolated guinea pig myocytes, which led to significant reductions in the Ca2+ transient amplitude and prolongation of the transient duration. This change was reinforced by a decline in sarcomeric shortening. Notably, these results were unexpected when considering previous observations showing enhanced ICa,L and prolonged action potential duration following KChIP2 loss, suggesting a disruption of fundamental Ca2+ handling proteins. Evaluation of SERCA2a, phospholamban, RyR, and sodium calcium exchanger identified no change in protein expression. However, assessment of Ca2+ spark activity showed reduced spark frequency and prolonged Ca2+ decay following KChIP2 loss, suggesting an altered state of RyR activity. These changes were associated with a delocalization of the ryanodine receptor activator, presenilin, away from sarcomeric banding to more diffuse distribution, suggesting that RyR open probability are a target of KChIP2 loss mediated by a dissociation of presenilin. Typically, prolonged action potential duration and enhanced Ca2+ entry would augment cardiac contractility, but here we see KChIP2 fundamentally disrupts Ca2+ release events and compromises myocyte contraction. This novel role targeting presenilin localization and RyR activity reveals a significance for KChIP2 loss that reflects adverse remodeling observed in cardiac disease settings.
Collapse
Affiliation(s)
- Drew M. Nassal
- Heart and Vascular Research Center, Department of Medicine, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Xiaoping Wan
- Heart and Vascular Research Center, Department of Medicine, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Haiyan Liu
- Heart and Vascular Research Center, Department of Medicine, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Kenneth R. Laurita
- Heart and Vascular Research Center, Department of Medicine, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Isabelle Deschênes
- Heart and Vascular Research Center, Department of Medicine, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
19
|
Abu-Omar N, Das J, Szeto V, Feng ZP. Neuronal Ryanodine Receptors in Development and Aging. Mol Neurobiol 2017; 55:1183-1192. [DOI: 10.1007/s12035-016-0375-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 12/28/2016] [Indexed: 01/09/2023]
|
20
|
Ryazantseva M, Skobeleva K, Glushankova L, Kaznacheyeva E. Attenuated presenilin-1 endoproteolysis enhances store-operated calcium currents in neuronal cells. J Neurochem 2016; 136:1085-95. [DOI: 10.1111/jnc.13495] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 11/07/2015] [Accepted: 12/02/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Maria Ryazantseva
- Institute of Cytology; Russian Academy of Sciences; St. Petersburg Russia
| | - Ksenia Skobeleva
- Institute of Cytology; Russian Academy of Sciences; St. Petersburg Russia
| | - Lyubov Glushankova
- Institute of Cytology; Russian Academy of Sciences; St. Petersburg Russia
| | - Elena Kaznacheyeva
- Institute of Cytology; Russian Academy of Sciences; St. Petersburg Russia
| |
Collapse
|
21
|
Kaja S, Sumien N, Shah VV, Puthawala I, Maynard AN, Khullar N, Payne AJ, Forster MJ, Koulen P. Loss of Spatial Memory, Learning, and Motor Function During Normal Aging Is Accompanied by Changes in Brain Presenilin 1 and 2 Expression Levels. Mol Neurobiol 2015; 52:545-54. [PMID: 25204494 PMCID: PMC4362879 DOI: 10.1007/s12035-014-8877-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/25/2014] [Indexed: 10/24/2022]
Abstract
Mutations in presenilin (PS) proteins cause familial Alzheimer's disease. We herein tested the hypothesis that the expression levels of PS proteins are differentially affected during healthy aging, in the absence of pathological mutations. We used a preclinical model for aging to identify associations between PS expression and quantitative behavioral parameters for spatial memory and learning and motor function. We identified significant changes of PS protein expression in both cerebellum and forebrain that correlated with the performance in behavioral paradigms for motor function and memory and learning. Overall, PS1 levels were decreased, while PS2 levels were increased in aged mice compared with young controls. Our study presents novel evidence for the differential expression of PS proteins in a nongenetic model for aging, resulting in an overall increase of the PS2 to PS1 ratio. Our findings provide a novel mechanistic basis for molecular and functional changes during normal aging.
Collapse
Affiliation(s)
- Simon Kaja
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri – Kansas City, 2411 Holmes St., Kansas City, MO 64108
| | - Natalie Sumien
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107
| | - Vidhi V. Shah
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri – Kansas City, 2411 Holmes St., Kansas City, MO 64108
| | - Imran Puthawala
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri – Kansas City, 2411 Holmes St., Kansas City, MO 64108
| | - Alexandra N. Maynard
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri – Kansas City, 2411 Holmes St., Kansas City, MO 64108
| | - Nitasha Khullar
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri – Kansas City, 2411 Holmes St., Kansas City, MO 64108
| | - Andrew J. Payne
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri – Kansas City, 2411 Holmes St., Kansas City, MO 64108
| | - Michael J. Forster
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107
| | - Peter Koulen
- Vision Research Center, Department of Ophthalmology, School of Medicine, University of Missouri – Kansas City, 2411 Holmes St., Kansas City, MO 64108
- Department of Basic Medical Science, School of Medicine, University of Missouri – Kansas City, 2411 Holmes St., Kansas City, MO 64108
| |
Collapse
|
22
|
Payne AJ, Kaja S, Koulen P. Regulation of ryanodine receptor-mediated calcium signaling by presenilins. ACTA ACUST UNITED AC 2015; 2:e449. [PMID: 25646163 DOI: 10.14800/rci.449] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Andrew J Payne
- Vision Research Center, Department of Ophthalmology, University of Missouri - Kansas City, School of Medicine, 2411 Holmes St., Kansas City, MO 64108, USA
| | - Simon Kaja
- Vision Research Center, Department of Ophthalmology, University of Missouri - Kansas City, School of Medicine, 2411 Holmes St., Kansas City, MO 64108, USA
| | - Peter Koulen
- Vision Research Center, Department of Ophthalmology, University of Missouri - Kansas City, School of Medicine, 2411 Holmes St., Kansas City, MO 64108, USA
| |
Collapse
|
23
|
Kaja S, Payne AJ, Patel KR, Naumchuk Y, Koulen P. Differential subcellular Ca2+ signaling in a highly specialized subpopulation of astrocytes. Exp Neurol 2014; 265:59-68. [PMID: 25542978 DOI: 10.1016/j.expneurol.2014.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/26/2014] [Accepted: 12/12/2014] [Indexed: 11/24/2022]
Abstract
Recent evidence suggests that astrocytes do not serve a mere buffering function, but exhibit complex signaling pathways, disturbance of which contributes significantly to the pathophysiology of CNS diseases. Little is known regarding the intracellular signaling pathways in the specialized optic nerve head astrocytes (ONHAs), the major glia cell type in non-myelinated optic nerve head. Here we show the differential subcellular expression of intracellular Ca(2+) channels in ONHAs. Expression of type 1 and type 3 inositol-1-4-5,-trisphosphate receptors (IP3Rs) in the endoplasmic reticulum and type 2 IP3Rs in the nuclear envelope causes differential Ca(2+) release from intracellular stores in nuclear vs. cytosolic compartments. Our study identifies differential distribution and activity of Ca(2+) channels as molecular substrate and mechanism by which astrocytes independently regulate Ca(2+) transients in both cytoplasm and nucleoplasm, thereby controlling genomic and non-genomic cellular signaling, respectively. This provides excellent targets for therapeutics restoring pathological disturbances of intracellular Ca(2+) signaling present in glaucoma and other neurodegenerative disorders with astrocyte involvement.
Collapse
Affiliation(s)
- Simon Kaja
- Vision Research Center, Department of Ophthalmology, University of Missouri - Kansas City, School of Medicine, 2411 Holmes St., Kansas City, MO 64108, USA
| | - Andrew J Payne
- Vision Research Center, Department of Ophthalmology, University of Missouri - Kansas City, School of Medicine, 2411 Holmes St., Kansas City, MO 64108, USA
| | - Krupa R Patel
- Vision Research Center, Department of Ophthalmology, University of Missouri - Kansas City, School of Medicine, 2411 Holmes St., Kansas City, MO 64108, USA
| | - Yuliya Naumchuk
- Vision Research Center, Department of Ophthalmology, University of Missouri - Kansas City, School of Medicine, 2411 Holmes St., Kansas City, MO 64108, USA
| | - Peter Koulen
- Vision Research Center, Department of Ophthalmology, University of Missouri - Kansas City, School of Medicine, 2411 Holmes St., Kansas City, MO 64108, USA.
| |
Collapse
|
24
|
Payne AJ, Gerdes BC, Kaja S, Koulen P. Insert sequence length determines transfection efficiency and gene expression levels in bicistronic mammalian expression vectors. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 4:201-208. [PMID: 24380024 PMCID: PMC3867706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 12/01/2013] [Indexed: 06/03/2023]
Abstract
Bicistronic expression vectors have been widely used for co-expression studies since the initial discovery of the internal ribosome entry site (IRES) about 25 years ago. IRES sequences allow the 5' cap-independent initiation of translation of multiple genes on a single messenger RNA strand. Using a commercially available mammalian expression vector containing an IRES sequence with a 3' green fluorescent protein fluorescent marker, we found that sequence length of the gene of interest expressed 5' of the IRES site influences both expression of the 3' fluorescent marker and overall transfection efficiency of the vector construct. Furthermore, we generated a novel construct expressing two distinct fluorescent markers and found that high expression of one gene can lower expression of the other. Observations from this study indicate that caution is warranted in the design of experiments utilizing an IRES system with a short 5' gene of interest sequence (<300 bp), selection of single cells based on the expression profile of the 3' optogenetic fluorescent marker, and assumptions made during data analysis.
Collapse
Affiliation(s)
- Andrew J Payne
- Vision Research Center, Department of Ophthalmology, University of Missouri School of Medicine2411 Holmes St, Kansas City, MO 64108, USA
| | - Bryan C Gerdes
- Vision Research Center, Department of Ophthalmology, University of Missouri School of Medicine2411 Holmes St, Kansas City, MO 64108, USA
| | - Simon Kaja
- Vision Research Center, Department of Ophthalmology, University of Missouri School of Medicine2411 Holmes St, Kansas City, MO 64108, USA
| | - Peter Koulen
- Vision Research Center, Department of Ophthalmology, University of Missouri School of Medicine2411 Holmes St, Kansas City, MO 64108, USA
- Department of Basic Medical Science, University of Missouri School of Medicine2411 Holmes St, Kansas City, MO 64108, USA
| |
Collapse
|
25
|
Chakroborty S, Stutzmann GE. Calcium channelopathies and Alzheimer's disease: insight into therapeutic success and failures. Eur J Pharmacol 2013; 739:83-95. [PMID: 24316360 DOI: 10.1016/j.ejphar.2013.11.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 10/22/2013] [Accepted: 11/07/2013] [Indexed: 01/06/2023]
Abstract
Calcium ions are versatile and universal biological signaling factors that regulate numerous cellular processes ranging from cell fertilization, to neuronal plasticity that underlies learning and memory, to cell death. For these functions to be properly executed, calcium signaling requires precise regulation, and failure of this regulation may tip the scales from a signal for life to a signal for death. Disruptions in calcium channel function can generate complex multi-system disorders collectively referred to as "calciumopathies" that can target essentially any cell type or organ. In this review, we focus on the multifaceted involvement of calcium signaling in the pathophysiology of Alzheimer's disease (AD), and summarize the various therapeutic options currently available to combat this disease. Detailing the series of disappointing AD clinical trial results on cognitive outcomes, we emphasize the urgency to design alternative therapeutic strategies if synaptic and memory functions are to be preserved. One such approach is to target early calcium channelopathies centrally linked to AD pathogenesis.
Collapse
Affiliation(s)
- Shreaya Chakroborty
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Grace E Stutzmann
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA.
| |
Collapse
|