1
|
Zhan Z, Chen Z, Zheng X, Xie X, Li G, Chen H. Mouse Bladder Smooth Muscle Lack the Functional Active NMDAR. Neurourol Urodyn 2025; 44:480-488. [PMID: 39552551 DOI: 10.1002/nau.25631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/17/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024]
Abstract
AIMS This study aimed to investigate the role of N-methyl-D-aspartate receptors (NMDARs) in bladder smooth muscle (BSM) function and their potential as therapeutic targets for overactive bladder conditions. METHODS We employed a multi-faceted approach to assess NMDAR activity in BSM. Myography was used to evaluate the effects of NMDAR antagonists and agonists on BSM contraction. Calcium imaging was conducted to determine changes in intracellular calcium ions. We also analyzed single-cell RNA sequencing data to examine NMDAR subunit expression in bladder cell subpopulations from both human and mouse tissues. Immunofluorescence staining was performed to localize the obligate NMDAR subunit, GluN1, in mouse BSM. RESULTS NMDAR agonists did not modulate BSM contractile force. NMDAR antagonists had varied effects: D-AP5 showed no impact, CGS-19755 significantly inhibited contraction at the highest concentration, and MK-801 enhanced contractile force in a concentration-dependent manner at EFS frequencies of 1, 2, and 5 Hz. Neither agonists nor antagonists, including MK-801, induced calcium ion shifts in BSM cells. Single-cell RNA sequencing revealed no NMDAR subunit expression in BSM cells from human or mouse tissues. Immunofluorescence confirmed GluN1 expression in pulmonary artery smooth muscle but not in BSM. CONCLUSIONS Our findings indicate the absence of functional active NMDARs in BSM, suggesting that the therapeutic benefits of NMDAR inhibition observed in vivo for treating overactive bladder are unlikely to be directly mediated through effects on the BSM itself. This highlights the need to explore alternative mechanisms or targets for therapeutic interventions in overactive bladder conditions.
Collapse
MESH Headings
- Animals
- Receptors, N-Methyl-D-Aspartate/agonists
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/metabolism
- Receptors, N-Methyl-D-Aspartate/physiology
- Receptors, N-Methyl-D-Aspartate/genetics
- Urinary Bladder/drug effects
- Urinary Bladder/metabolism
- Urinary Bladder/physiology
- Mice
- Muscle, Smooth/drug effects
- Muscle, Smooth/metabolism
- Muscle, Smooth/physiology
- Humans
- Muscle Contraction/drug effects
- Male
- Female
- Mice, Inbred C57BL
- Urinary Bladder, Overactive/physiopathology
- Urinary Bladder, Overactive/metabolism
- Calcium/metabolism
Collapse
Affiliation(s)
- Zhean Zhan
- The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan, China
- Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
| | - Zhibin Chen
- Department of Urology, Neijiang First People's Hospital, Neijiang, Sichuan, China
| | - Xiaoli Zheng
- The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiang Xie
- The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan, China
- Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
| | - Guang Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Huan Chen
- The School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan, China
- Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
- Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
2
|
Tasma Z, Rees TA, Guo S, Tan S, O'Carroll SJ, Faull RLM, Curtis MA, Christensen SL, Hay DL, Walker CS. Pharmacology of PACAP and VIP receptors in the spinal cord highlights the importance of the PAC 1 receptor. Br J Pharmacol 2024; 181:2655-2675. [PMID: 38616050 DOI: 10.1111/bph.16376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/18/2023] [Accepted: 01/20/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND AND PURPOSE The spinal cord is a key structure involved in the transmission and modulation of pain. Pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP), are expressed in the spinal cord. These peptides activate G protein-coupled receptors (PAC1, VPAC1 and VPAC2) that could provide targets for the development of novel pain treatments. However, it is not clear which of these receptors are expressed within the spinal cord and how these receptors signal. EXPERIMENTAL APPROACH Dissociated rat spinal cord cultures were used to examine agonist and antagonist receptor pharmacology. Signalling profiles were determined for five signalling pathways. The expression of different PACAP and VIP receptors was then investigated in mouse, rat and human spinal cords using immunoblotting and immunofluorescence. KEY RESULTS PACAP, but not VIP, potently stimulated cAMP, IP1 accumulation and ERK and cAMP response element-binding protein (CREB) but not Akt phosphorylation in spinal cord cultures. Signalling was antagonised by M65 and PACAP6-38. PACAP-27 was more effectively antagonised than either PACAP-38 or VIP. The patterns of PAC1 and VPAC2 receptor-like immunoreactivity appeared to be distinct in the spinal cord. CONCLUSIONS AND IMPLICATIONS The pharmacological profile in the spinal cord suggested that a PAC1 receptor is the major functional receptor subtype present and thus likely mediates the nociceptive effects of the PACAP family of peptides in the spinal cord. However, the potential expression of both PAC1 and VPAC2 receptors in the spinal cord highlights that these receptors may play differential roles and are both possible therapeutic targets.
Collapse
MESH Headings
- Animals
- Spinal Cord/metabolism
- Spinal Cord/drug effects
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/metabolism
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/agonists
- Humans
- Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology
- Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism
- Vasoactive Intestinal Peptide/metabolism
- Vasoactive Intestinal Peptide/pharmacology
- Mice
- Rats
- Signal Transduction/drug effects
- Receptors, Vasoactive Intestinal Peptide/metabolism
- Receptors, Vasoactive Intestinal Peptide/antagonists & inhibitors
- Cells, Cultured
- Rats, Sprague-Dawley
- Male
- Mice, Inbred C57BL
- Cyclic AMP/metabolism
- Receptors, Vasoactive Intestinal Peptide, Type II/metabolism
- Receptors, Vasoactive Intestinal Peptide, Type II/agonists
Collapse
Affiliation(s)
- Zoe Tasma
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Tayla A Rees
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Song Guo
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Odontology, Panum Institute, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Sheryl Tan
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand
| | - Simon J O'Carroll
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand
| | - Maurice A Curtis
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, The University of Auckland, Auckland, New Zealand
| | - Sarah L Christensen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Debbie L Hay
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- Department of Pharmacology and Toxicology, The University of Otago, Dunedin, New Zealand
| | - Christopher S Walker
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Qiao LY. Satellite Glial Cells Bridge Sensory Neuron Crosstalk in Visceral Pain and Cross-Organ Sensitization. J Pharmacol Exp Ther 2024; 390:213-221. [PMID: 38777604 PMCID: PMC11264254 DOI: 10.1124/jpet.123.002061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Following colonic inflammation, the uninjured bladder afferent neurons are also activated. The mechanisms and pathways underlying this sensory neuron cross-activation (from injured neurons to uninjured neurons) are not fully understood. Colonic and bladder afferent neurons reside in the same spinal segments and are separated by satellite glial cells (SGCs) and extracellular matrix in dorsal root ganglia (DRG). SGCs communicate with sensory neurons in a bidirectional fashion. This review summarizes the differentially regulated genes/proteins in the injured and uninjured DRG neurons and explores the role of SGCs in regulation of sensory neuron crosstalk in visceral cross-organ sensitization. The review also highlights the paracrine pathways in mediating neuron-SGC and SGC-neuron coupling with an emphasis on the neurotrophins and purinergic systems. Finally, I discuss the results from recent RNAseq profiling of SGCs to reveal useful molecular markers for characterization, functional study, and therapeutic targets of SGCs. SIGNIFICANCE STATEMENT: Satellite glial cells (SGCs) are the largest glial subtypes in sensory ganglia and play a critical role in mediating sensory neuron crosstalk, an underlying mechanism in colon-bladder cross-sensitization. Identification of novel and unique molecular markers of SGCs can advance the discovery of therapeutic targets in treatment of chronic pain including visceral pain comorbidity.
Collapse
Affiliation(s)
- Liya Y Qiao
- Department of Physiology and Biophysics, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
4
|
Tiwari N, Smith C, Sharma D, Shen S, Mehta P, Qiao LY. Plp1-expresssing perineuronal DRG cells facilitate colonic and somatic chronic mechanical pain involving Piezo2 upregulation in DRG neurons. Cell Rep 2024; 43:114230. [PMID: 38743566 PMCID: PMC11234328 DOI: 10.1016/j.celrep.2024.114230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/06/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Satellite glial cells (SGCs) of dorsal root ganglia (DRGs) are activated in a variety of chronic pain conditions; however, their mediation roles in pain remain elusive. Here, we take advantage of proteolipid protein (PLP)/creERT-driven recombination in the periphery mainly occurring in SGCs of DRGs to assess the role of SGCs in the regulation of chronic mechanical hypersensitivity and pain-like responses in two organs, the distal colon and hindpaw, to test generality. We show that PLP/creERT-driven hM3Dq activation increases, and PLP/creERT-driven TrkB.T1 deletion attenuates, colon and hindpaw chronic mechanical hypersensitivity, positively associating with calcitonin gene-related peptide (CGRP) expression in DRGs and phospho-cAMP response element-binding protein (CREB) expression in the dorsal horn of the spinal cord. Activation of Plp1+ DRG cells also increases the number of small DRG neurons expressing Piezo2 and acquiring mechanosensitivity and leads to peripheral organ neurogenic inflammation. These findings unravel a role and mechanism of Plp1+ cells, mainly SGCs, in the facilitation of chronic mechanical pain and suggest therapeutic targets for pain mitigation.
Collapse
Affiliation(s)
- Namrata Tiwari
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0551, USA
| | - Cristina Smith
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0551, USA
| | - Divya Sharma
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0551, USA
| | - Shanwei Shen
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0551, USA
| | - Parshva Mehta
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0551, USA
| | - Liya Y Qiao
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0551, USA.
| |
Collapse
|
5
|
Tiwari N, Qiao LY. Sex Differences in Visceral Pain and Comorbidities: Clinical Outcomes, Preclinical Models, and Cellular and Molecular Mechanisms. Cells 2024; 13:834. [PMID: 38786056 PMCID: PMC11119472 DOI: 10.3390/cells13100834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Sexual dimorphism of visceral pain has been documented in clinics and experimental animal models. Aside from hormones, emerging evidence suggests the sex-differential intrinsic neural regulation of pain generation and maintenance. According to the International Association for the Study of Pain (IASP) and the American College of Gastroenterology (ACG), up to 25% of the population have visceral pain at any one time, and in the United States 10-15 percent of adults suffer from irritable bowel syndrome (IBS). Here we examine the preclinical and clinical evidence of sex differences in visceral pain focusing on IBS, other forms of bowel dysfunction and IBS-associated comorbidities. We summarize preclinical animal models that provide a means to investigate the underlying molecular mechanisms in the sexual dimorphism of visceral pain. Neurons and nonneuronal cells (glia and immune cells) in the peripheral and central nervous systems, and the communication of gut microbiota and neural systems all contribute to sex-dependent nociception and nociplasticity in visceral painful signal processing. Emotion is another factor in pain perception and appears to have sexual dimorphism.
Collapse
Affiliation(s)
- Namrata Tiwari
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Liya Y. Qiao
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| |
Collapse
|
6
|
Palasz E, Wilkaniec A, Stanaszek L, Andrzejewska A, Adamczyk A. Glia-Neurotrophic Factor Relationships: Possible Role in Pathobiology of Neuroinflammation-Related Brain Disorders. Int J Mol Sci 2023; 24:ijms24076321. [PMID: 37047292 PMCID: PMC10094105 DOI: 10.3390/ijms24076321] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Neurotrophic factors (NTFs) play an important role in maintaining homeostasis of the central nervous system (CNS) by regulating the survival, differentiation, maturation, and development of neurons and by participating in the regeneration of damaged tissues. Disturbances in the level and functioning of NTFs can lead to many diseases of the nervous system, including degenerative diseases, mental diseases, and neurodevelopmental disorders. Each CNS disease is characterized by a unique pathomechanism, however, the involvement of certain processes in its etiology is common, such as neuroinflammation, dysregulation of NTFs levels, or mitochondrial dysfunction. It has been shown that NTFs can control the activation of glial cells by directing them toward a neuroprotective and anti-inflammatory phenotype and activating signaling pathways responsible for neuronal survival. In this review, our goal is to outline the current state of knowledge about the processes affected by NTFs, the crosstalk between NTFs, mitochondria, and the nervous and immune systems, leading to the inhibition of neuroinflammation and oxidative stress, and thus the inhibition of the development and progression of CNS disorders.
Collapse
Affiliation(s)
- Ewelina Palasz
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Correspondence: (E.P.); (A.A.)
| | - Anna Wilkaniec
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Luiza Stanaszek
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Anna Andrzejewska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Agata Adamczyk
- Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Correspondence: (E.P.); (A.A.)
| |
Collapse
|
7
|
Lu Y, Chai Y, Qiu J, Zhang J, Wu M, Fu Z, Wang Y, Qin C. Integrated omics analysis reveals the epigenetic mechanism of visceral hypersensitivity in IBS-D. Front Pharmacol 2023; 14:1062630. [PMID: 37007011 PMCID: PMC10064328 DOI: 10.3389/fphar.2023.1062630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Background and objective: IBS-D is a common functional bowel disease with complex etiology and without biomarker. The pathological and physiological basis of IBS-D focuses on visceral hypersensitivity. However, its epigenetic mechanism remains elusive. Our study aimed to integrate the relationship between differentially expressed miRNAs, mRNAs and proteins in IBS-D patients in order to reveal epigenetic mechanism of visceral hypersensitivity from transcription and protein levels and provide the molecular basis for discovering biomarkers of IBS-D.Methods: The intestinal biopsies from IBS-D patients and healthy volunteers were obtained for high-throughput sequencing of miRNAs and mRNAs. The differential miRNAs were selected and verified by q-PCR experiment followed by target mRNA prediction. Biological functions were respectively analyzed for target mRNAs, differential mRNAs and the previously identified differential proteins in order to explore the characteristic involved visceral hypersensitivity. At last, interaction analysis of miRNAs, mRNAs and proteins was performed for the epigenetic regulation mechanism from transcription and protein levels.Results: Thirty-three miRNAs were found to be differentially expressed in IBS-D and five of them were further confirmed, including upregulated hsa-miR-641, hsa-miR-1843, hsa-let-7d-3p and downregulated hsa-miR-219a-5p, hsa-miR-19b-1-5p. In addition, 3,812 differential mRNAs were identified. Thirty intersecting molecules were found from the analysis on the target mRNAs of miRNAs and mRNAs. Fourteen intersecting molecules were obtained from the analysis on the target mRNAs and proteins, and thirty-six intersecting molecules were identified from analysis on the proteins and different mRNAs. According to the integrated analysis of miRNA-mRNA-protein, we noticed two new molecules COPS2 regulated by hsa-miR-19b-1-5p and MARCKS regulated by hsa-miR-641. Meanwhile some critical signaling pathways in IBS-D were found such as MAPK, GABAergic synapse, Glutamatergic synapse, and Adherens junction.Conclusion: The expressions of hsa-miR-641, hsa-miR-1843, hsa-let-7d-3p, hsa-miR-219a-5p, and hsa-miR-19b-1-5p in the intestinal tissues of IBS-D patients were significantly different. Moreover, they could regulate a variety of molecules and signaling pathways, which were involved in the multifaceted and multilevel mechanism of visceral hypersensitivity of IBS-D.
Collapse
Affiliation(s)
- Yaoyao Lu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuna Chai
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Yuna Chai, ; Yongfu Wang, ; Chongzhen Qin,
| | - Jianli Qiu
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jingmin Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Menglin Wu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhe Fu
- Department of General Pediatric Surgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yongfu Wang
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Yuna Chai, ; Yongfu Wang, ; Chongzhen Qin,
| | - Chongzhen Qin
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Yuna Chai, ; Yongfu Wang, ; Chongzhen Qin,
| |
Collapse
|
8
|
Choi T, Lee DG. Cystitis Induces Altered CREB Expression Related with Micturition Reflex. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58091210. [PMID: 36143887 PMCID: PMC9500846 DOI: 10.3390/medicina58091210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022]
Abstract
Background and objectives: Bladder stimulation upregulates neurotrophins associated with voiding reflex. Bacterial cystitis can be a stimulant that activates this system, resulting in a pathological state. Phosphorylated responsive element of binding protein (p-CREB) is a pivotal transcriptional factor in the neurotrophin signaling cascade. The goal of our study was to examine the change in expression of p-CREB in dorsal root ganglia (DRG) of rats after uropathogenic Escherichia coli infection of the bladder. Materials and methods: A total of 19 adult female Sprague−Dawley rats were induced with acute E. coli infection (n = 7), chronic E. coli infection (n = 6), or served as controls (n = 6). In each group, the profiles of p-CREB cell were counted in 6−10 sections of each of the DRG collected. DRG cells exhibiting intense nuclear staining were considered to be positive for p-CREB immunoreactivity (p-CREB-IR). Results: Overall, the immunoreactivity of p-CREB was examined in smaller cell profiles with nuclear staining or nuclear and cytoplasmic staining in the DRGs (L1−L6, S1). In the chronic cystitis group, p-CREB-IR in the L1−L6 and S1 DRG was significantly higher than the control group (p < 0.05). Further, p-CREB-IR in the L3−L6 and S1 DRG of the chronic cystitis group was significantly greater than that in the acute cystitis group (p < 0.05). In the control and acute cystitis groups, p-CREB-IR in the L4−L5 DRG was significantly lower than that found in the other DRG sections (p < 0.05). Conclusions: Altogether, acute or chronic E.coli cystitis changed the immunoreactivity of p-CREB in lumbosacral DRG cells. In particular, chronic E. coli infection triggered p-CREB overexpression in L1−L6 and S1 DRG, indicating subsequent pathologic changes.
Collapse
Affiliation(s)
| | - Dong-Gi Lee
- Correspondence: ; Tel.: +82-2-440-7735; Fax: +82-2-440-7744
| |
Collapse
|
9
|
Wu Q, Xu X, Zhai C, Zhao Z, Dai W, Wang T, Shen Y. High-frequency repetitive transcranial magnetic stimulation improves spatial episodic learning and memory performance by regulating brain plasticity in healthy rats. Front Neurosci 2022; 16:974940. [PMID: 35992904 PMCID: PMC9389218 DOI: 10.3389/fnins.2022.974940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
Background Repetitive transcranial magnetic stimulation (rTMS) is an effective way to stimulate changes in structural and functional plasticity, which is a part of learning and memory. However, to our knowledge, rTMS-induced specific activity and neural plasticity in different brain regions that affect cognition are not fully understood; nor are its mechanisms. Therefore, we aimed to investigate rTMS-induced cognition-related neural plasticity changes and their mechanisms in different brain regions. Methods A total of 30 healthy adult rats were randomly divided into the control group and the rTMS group (n = 15 rats per group). The rats in the control and the rTMS group received either 4 weeks of sham or high-frequency rTMS (HF-rTMS) over the prefrontal cortex (PFC). Cognitive function was detected by Morris water maze. Functional imaging was acquired by resting-state functional magnetic resonance imaging (rs-fMRI) before and after rTMS. The protein expressions of BDNF, TrkB, p-Akt, Akt, NR1, NR2A, and NR2B in the PFC, hippocampus, and primary motor cortex (M1) were detected by Western blot following rTMS. Results After 4 weeks of rTMS, the cognitive ability of healthy rats who underwent rTMS showed a small but significant behavioral improvement in spatial episodic learning and memory performance. Compared with the pre-rTMS or the control group, rats in the rTMS group showed increased regional homogeneity (ReHo) in multiple brain regions in the interoceptive/default mode network (DMN) and cortico-striatal-thalamic network, specifically the bilateral PFC, bilateral hippocampus, and the left M1. Western blot analyses showed that rTMS led to a significant increase in the expressions of N-methyl-D-aspartic acid (NMDA) receptors, including NR1, NR2A, and NR2B in the PFC, hippocampus, and M1, as well as an upregulation of BDNF, TrkB, and p-Akt in these three brain regions. In addition, the expression of NR1 in these three brain regions correlated with rTMS-induced cognitive improvement. Conclusion Overall, these data suggested that HF-rTMS can enhance cognitive performance through modulation of NMDA receptor-dependent brain plasticity.
Collapse
Affiliation(s)
- Qi Wu
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Rehabilitation, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Xingjun Xu
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chenyuan Zhai
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiyong Zhao
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Wenjun Dai
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tong Wang
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Tong Wang,
| | - Ying Shen
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Ying Shen,
| |
Collapse
|
10
|
Mocci E, Goto T, Chen J, Ament S, Traub RJ, Dorsey SG. Early and Late Transcriptional Changes in Blood, Neural, and Colon Tissues in Rat Models of Stress-Induced and Comorbid Pain Hypersensitivity Reveal Regulatory Roles in Neurological Disease. FRONTIERS IN PAIN RESEARCH 2022; 3:886042. [PMID: 35655748 PMCID: PMC9152010 DOI: 10.3389/fpain.2022.886042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/07/2022] [Indexed: 11/18/2022] Open
Abstract
Background Irritable bowel syndrome (IBS) and temporomandibular disorder (TMD) are two chronic pain conditions that frequently overlap in the same individual, more commonly in women. Stress is a significant risk factor, exacerbating or triggering one or both conditions. However, the mechanisms underlying IBS–TMD co-morbidity are mostly unknown. Aim To detect both specific and common stress-induced visceral hypersensitivity (SIH) and comorbid TMD–IBS pain hypersensitivity (CPH) genetic signatures over time. Method Twenty-four female rats were randomly assigned to one of three experimental groups: naïve, SIH, and CPH (orofacial pain plus stress). RNA was extracted from blood, colon, spinal cord, and dorsal root ganglion 1 or 7 weeks after the stress paradigm. We combined differential gene expression and co-expression network analyses to define both SIH and CPH expression profiles across tissues and time. Results The transcriptomic profile in blood and colon showed increased expression of genes enriched in inflammatory and neurological biological processes in CPH compared to SIH rats, both at 1 and 7 weeks after stress. In lumbosacral spinal tissue, both SIH and CPH rats compared to naïve revealed decreased expression of genes related to synaptic activity and increased expression of genes enriched in “angiogenesis,” “Neurotrophin,” and “PI3K-Akt” pathways. Compared to SIH, CPH rats showed increased expression of angiogenesis-related genes 1 week after exposure to stress, while 7 weeks post-stress the expression of these genes was higher in SIH rats. In dorsal root ganglia (DRG), CPH rats showed decreased expression of immune response genes at week 1 and inhibition of nerve myelination genes at 7 weeks compared to naïve. For all tissues, we observed higher expression of genes involved in ATP production in SIH compared to CPH at 1 week and this was reversed 7 weeks after the induction of stress. Conclusion Our study highlights an increased inflammatory response in CPH compared to SIH rats in the blood and colon. DRG and spinal transcriptomic profiles of both CPH and SIH rats showed inhibition of synaptic activity along with activation of angiogenesis. Targeting these biological processes may lead to a more profound understanding of the mechanisms underlying IBS–TMD comorbidities and new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Evelina Mocci
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, University of Maryland Baltimore, Baltimore, MD, United States
- Institute for Genome Sciences, University of Maryland School of Medicine, University of Maryland Baltimore, Baltimore, MD, United States
| | - Taichi Goto
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, University of Maryland Baltimore, Baltimore, MD, United States
| | - Jie Chen
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, University of Maryland Baltimore, Baltimore, MD, United States
| | - Seth Ament
- Institute for Genome Sciences, University of Maryland School of Medicine, University of Maryland Baltimore, Baltimore, MD, United States
| | - Richard J. Traub
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, University of Maryland Baltimore, Baltimore, MD, United States
- Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, United States
| | - Susan G. Dorsey
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, University of Maryland Baltimore, Baltimore, MD, United States
- Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, United States
- *Correspondence: Susan G. Dorsey
| |
Collapse
|
11
|
Abstract
N-methyl-d-aspartate receptors (NMDARs) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) are excitatory neurotransmission receptors of the central nervous system and play vital roles in synaptic plasticity. Although not fully elucidated, visceral hypersensitivity is one of the most well-characterized pathophysiologic abnormalities of functional gastrointestinal diseases and appears to be associated with increased synaptic plasticity. In this study, we review the updated findings on the physiology of NMDARs and AMPARs and their relation to visceral hypersensitivity, which propose directions for future research in this field with evolving importance.
Collapse
|
12
|
Perkins M, Girard BM, Campbell SE, Hennig GW, Vizzard MA. Imatinib Mesylate Reduces Neurotrophic Factors and pERK and pAKT Expression in Urinary Bladder of Female Mice With Cyclophosphamide-Induced Cystitis. Front Syst Neurosci 2022; 16:884260. [PMID: 35528149 PMCID: PMC9072830 DOI: 10.3389/fnsys.2022.884260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/28/2022] [Indexed: 01/28/2023] Open
Abstract
Imatinib mesylate is a tyrosine kinase inhibitor that inhibits platelet-derived growth factor receptor (PDGFR)-α, -β, stem cell factor receptor (c-KIT), and BCR-ABL. PDGFRα is expressed in a subset of interstitial cells in the lamina propria (LP) and detrusor muscle of the urinary bladder. PDGFRα + interstitial cells may contribute to bladder dysfunction conditions such as interstitial cystitis/bladder pain syndrome (IC/BPS) or overactive bladder (OAB). We have previously demonstrated that imatinib prevention via oral gavage or treatment via intravesical infusion improves urinary bladder function in mice with acute (4 hour, h) cyclophosphamide (CYP)-induced cystitis. Here, we investigate potential underlying mechanisms mediating the bladder functional improvement by imatinib using a prevention or treatment experimental design. Using qRT-PCR and ELISAs, we examined inflammatory mediators (NGF, VEGF, BDNF, CCL2, IL-6) previously shown to affect bladder function in CYP-induced cystitis. We also examined the distribution of phosphorylated (p) ERK and pAKT expression in the LP with immunohistochemistry. Imatinib prevention significantly (0.0001 ≤ p ≤ 0.05) reduced expression for all mediators examined except NGF, whereas imatinib treatment was without effect. Imatinib prevention and treatment significantly (0.0001 ≤ p ≤ 0.05) reduced pERK and pAKT expression in the upper LP (U. LP) and deeper LP (D. LP) in female mice with 4 h CYP-induced cystitis. Although we have previously demonstrated that imatinib prevention or treatment improves bladder function in mice with cystitis, the current studies suggest that reductions in inflammatory mediators contribute to prevention benefits of imatinib but not the treatment benefits of imatinib. Differential effects of imatinib prevention or treatment on inflammatory mediators may be influenced by the route and frequency of imatinib administration and may also suggest other mechanisms (e.g., changes in transepithelial resistance of the urothelium) through which imatinib may affect urinary bladder function following CYP-induced cystitis.
Collapse
Affiliation(s)
- Megan Perkins
- Department of Neurological Sciences, The Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Beatrice M. Girard
- Department of Neurological Sciences, The Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Susan E. Campbell
- Department of Neurological Sciences, The Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Grant W. Hennig
- Department of Pharmacology, The Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Margaret A. Vizzard
- Department of Neurological Sciences, The Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| |
Collapse
|
13
|
Shen S, Tiwari N, Madar J, Mehta P, Qiao LY. Beta 2-adrenergic receptor mediates noradrenergic action to induce cyclic adenosine monophosphate response element-binding protein phosphorylation in satellite glial cells of dorsal root ganglia to regulate visceral hypersensitivity. Pain 2022; 163:180-192. [PMID: 33941754 PMCID: PMC8556417 DOI: 10.1097/j.pain.0000000000002330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/28/2021] [Indexed: 01/03/2023]
Abstract
ABSTRACT Sympathoneuronal outflow into dorsal root ganglia (DRG) is suggested to be involved in sympathetically maintained chronic pain, which is mediated by norepinephrine (NE) action on DRG cells. This study combined in vitro and in vivo approaches to identify the cell types of DRG that received NE action and examined cell type-specific expression of adrenergic receptors (ARs) in DRG. Using DRG explants, we identified that NE acted on satellite glial cells (SGCs) to induce the phosphorylation of cAMP response element-binding protein (CREB). Using primarily cultured SGCs, we identified that beta (β)2-adrenergic receptor but not alpha (α)adrenergic receptor nor other βAR isoforms mediated NE-induced CREB phosphorylation and CRE-promoted luciferase transcriptional activity. Using fluorescence in situ hybridization and affinity purification of mRNA from specific cell types, we identified that β2AR was expressed by SGCs but not DRG neurons. We further examined β2AR expression and CREB phosphorylation in vivo in a model of colitis in which sympathetic nerve sprouting in DRG was observed. We found that β2AR expression and CREB phosphorylation were increased in SGCs of thoracolumbar DRG on day 7 after colitis induction. Inhibition but not augmentation of β2AR reduced colitis-induced calcitonin gene-related peptide release into the spinal cord dorsal horn and colonic pain responses to colorectal distention. Prolonged activation of β2AR in naive DRG increased calcitonin gene-related peptide expression in DRG neurons. These findings provide molecular basis of sympathetic modulation of sensory activity and chronic pain that involves β2AR-mediated signaling in SGCs of DRG.
Collapse
Affiliation(s)
- Shanwei Shen
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | | | | | | | | |
Collapse
|
14
|
Guo S, Song Z, He J, Yin G, Zhu J, Liu H, Yang L, Ji X, Xu X, Liu Z, Liu J. Akt/Aquaporin-4 Signaling Aggravates Neuropathic Pain by Activating Astrocytes after Spinal Nerve Ligation in Rats. Neuroscience 2021; 482:116-131. [PMID: 34942314 DOI: 10.1016/j.neuroscience.2021.12.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022]
Abstract
Aquaporins (AQPs) play critical physiological roles in water balance in the central nervous system (CNS). Aquaporin-4 (AQP4), the principal aquaporin expressed in the CNS, has been implicated in the processing of sensory and pain transmission. Akt signaling is also involved in pain mediation, such as neuroinflammatory pain and bone cancer pain. Previously, we found that expression of AQP4 and p-Akt was altered in the rat spinal cord after spinal nerve ligation (SNL). Here, we further investigated the effects of the AQP4 and Akt pathways in the spinal dorsal horn (SDH) on the pathogenesis of neuropathic pain (NP). Spinal AQP4 was significantly upregulated after SNL and was primarily expressed in astrocytes in the SDH. Inhibition of AQP4 with TGN-020 attenuated the development and maintenance of NP by inhibiting glial activation and anti-neuroinflammatory mechanisms. Moreover, inhibition of AQP4 suppressed astrocyte activation both in the SDH and in primary cultures. Similar to AQP4, we found that p-Akt was also significantly elevated after SNL. Inhibition of Akt with MK2206 suppressed AQP4 upregulation and astrocyte activation both in vivo and in vitro. Furthermore, Akt blockade with MK2206 alleviated NP in the early and late phases after SNL. These results elucidate the mechanisms involved in the roles of Akt/AQP4 signaling in the development and maintenance of NP. AQP4 is likely to be a novel therapeutic target for NP management.
Collapse
Affiliation(s)
- Shiwu Guo
- Department of Spinal Surgery, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Zhiwen Song
- Department of Spinal Surgery, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Junsheng He
- Department of Spinal Surgery, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Gang Yin
- Department of Orthopedics, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213003, China
| | - Jianguo Zhu
- Department of Orthopedics, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213003, China
| | - Haifeng Liu
- Department of Orthopedics, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213003, China
| | - Lei Yang
- Department of Orthopedics, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213003, China
| | - Xubiao Ji
- Department of Orthopedics, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213003, China
| | - Xu Xu
- Department of Spinal Surgery, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Zhiyuan Liu
- Department of Orthopedics, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213003, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China.
| | - Jinbo Liu
- Department of Spinal Surgery, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China.
| |
Collapse
|
15
|
Qiao LY, Madar J. An objective approach to assess colonic pain in mice using colonometry. PLoS One 2021; 16:e0245410. [PMID: 33711031 PMCID: PMC7954293 DOI: 10.1371/journal.pone.0245410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/01/2021] [Indexed: 12/24/2022] Open
Abstract
The present study presents a non-surgical approach to assess colonic mechanical sensitivity in mice using colonometry, a technique in which colonic stretch-reflex contractions are measured by recording intracolonic pressures during saline infusion into the distal colon in a constant rate. Colonometrical recording has been used to assess colonic function in healthy individuals and patients with neurological disorders. Here we found that colonometry can also be implemented in mice, with an optimal saline infusion rate of 1.2 mL/h. Colonometrograms showed intermittent pressure rises that was caused by periodical colonic contractions. In the sceneries of colonic hypersensitivity that was generated post 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colonic inflammation, following chemogenetic activation of primary afferent neurons, or immediately after noxious stimulation of the colon by colorectal distension (CRD), the amplitude of intracolonic pressure (AICP) was markedly elevated which was accompanied by a faster pressure rising (ΔP/Δt). Colonic hypersensitivity-associated AICP elevation was a result of the enhanced strength of colonic stretch-reflex contraction which reflected the heightened activity of the colonic sensory reflex pathways. The increased value of ΔP/Δt in colonic hypersensitivity indicated a lower threshold of colonic mechanical sensation by which colonic stretch-reflex contraction was elicited by a smaller saline infusion volume during a shorter period of infusion time. Chemogenetic inhibition of primary afferent pathway that was governed by Nav1.8-expressing cells attenuated TNBS-induced up-regulations of AICP, ΔP/Δt, and colonic pain behavior in response to CRD. These findings support that colonometrograms can be used for analysis of colonic pain in mice.
Collapse
Affiliation(s)
- Liya Y. Qiao
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
- Department of Internal Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
- * E-mail:
| | - Jonathan Madar
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States of America
| |
Collapse
|
16
|
Qiao LY, Tiwari N. Spinal neuron-glia-immune interaction in cross-organ sensitization. Am J Physiol Gastrointest Liver Physiol 2020; 319:G748-G760. [PMID: 33084399 PMCID: PMC7792669 DOI: 10.1152/ajpgi.00323.2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS), historically considered as regional gastrointestinal disorders with heightened colonic sensitivity, are increasingly recognized to have concurrent dysfunction of other visceral and somatic organs, such as urinary bladder hyperactivity, leg pain, and skin hypersensitivity. The interorgan sensory cross talk is, at large, termed "cross-organ sensitization." These organs, anatomically distant from one another, physiologically interlock through projecting their sensory information into dorsal root ganglia (DRG) and then the spinal cord for integrative processing. The fundamental question of how sensitization of colonic afferent neurons conveys nociceptive information to activate primary afferents that innervate distant organs remains ambiguous. In DRG, primary afferent neurons are surrounded by satellite glial cells (SGCs) and macrophage accumulation in response to signals of injury to form a neuron-glia-macrophage triad. Astrocytes and microglia are major resident nonneuronal cells in the spinal cord to interact, physically and chemically, with sensory synapses. Cumulative evidence gathered so far indicate the indispensable roles of paracrine/autocrine interactions among neurons, glial cells, and immune cells in sensory cross-activation. Dichotomizing afferents, sensory convergency in the spinal cord, spinal nerve comingling, and extensive sprouting of central axons of primary afferents each has significant roles in the process of cross-organ sensitization; however, more results are required to explain their functional contributions. DRG that are located outside the blood-brain barrier and reside upstream in the cascade of sensory flow from one organ to the other in cross-organ sensitization could be safer therapeutic targets to produce less central adverse effects.
Collapse
Affiliation(s)
- Liya Y. Qiao
- 1Department of Physiology and Biophysics, Commonwealth University School of Medicine, Richmond, Virginia,2Department of Internal Medicine, Commonwealth University School of Medicine, Richmond, Virginia
| | - Namrata Tiwari
- 1Department of Physiology and Biophysics, Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
17
|
Xu B, Liu SS, Wei J, Jiao ZY, Mo C, Lv CM, Huang AL, Chen QB, Ma L, Guan XH. Role of Spinal Cord Akt-mTOR Signaling Pathways in Postoperative Hyperalgesia Induced by Plantar Incision in Mice. Front Neurosci 2020; 14:766. [PMID: 32848550 PMCID: PMC7396510 DOI: 10.3389/fnins.2020.00766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/29/2020] [Indexed: 12/29/2022] Open
Abstract
Poor postoperative pain (POP) control increases perioperative morbidity, prolongs hospitalization days, and causes chronic pain. However, the specific mechanism(s) underlying POP is unclear and the identification of optimal perioperative treatment remains elusive. Akt and mammalian target of rapamycin (mTOR) are expressed in the spinal cord, dorsal root ganglion, and sensory axons. In this study, we explored the role of Akt and mTOR in pain-related behaviors induced by plantar incision in mice. Plantar incision activated spinal Akt and mTOR in a dose-dependent manner. Pre-treatment with Akt inhibitors intrathecally prevented the activation of mTOR dose-dependently. In addition, blocking the Akt-mTOR signaling cascade attenuated pain-related behaviors and spinal Fos protein expression induced by plantar incision. Our observations demonstrate that Akt-mTOR might be a potential therapeutic target for the treatment of POP.
Collapse
Affiliation(s)
- Bing Xu
- Department of Rehabilitation, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Su-Su Liu
- Department of Anesthesiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jin Wei
- Department of Anesthesiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zi-Yin Jiao
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Cheng Mo
- Department of Anesthesiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Cheng-Mei Lv
- Department of Anesthesiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Ai-Lan Huang
- Department of Anesthesiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qi-Bo Chen
- Department of Rehabilitation, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Li Ma
- Department of Anesthesiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xue-Hai Guan
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
18
|
Palasz E, Wysocka A, Gasiorowska A, Chalimoniuk M, Niewiadomski W, Niewiadomska G. BDNF as a Promising Therapeutic Agent in Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21031170. [PMID: 32050617 PMCID: PMC7037114 DOI: 10.3390/ijms21031170] [Citation(s) in RCA: 297] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/17/2020] [Accepted: 02/06/2020] [Indexed: 12/14/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) promotes neuroprotection and neuroregeneration. In animal models of Parkinson’s disease (PD), BDNF enhances the survival of dopaminergic neurons, improves dopaminergic neurotransmission and motor performance. Pharmacological therapies of PD are symptom-targeting, and their effectiveness decreases with the progression of the disease; therefore, new therapeutical approaches are needed. Since, in both PD patients and animal PD models, decreased level of BDNF was found in the nigrostriatal pathway, it has been hypothesized that BDNF may serve as a therapeutic agent. Direct delivery of exogenous BDNF into the patient’s brain did not relieve the symptoms of disease, nor did attempts to enhance BDNF expression with gene therapy. Physical training was neuroprotective in animal models of PD. This effect is mediated, at least partly, by BDNF. Animal studies revealed that physical activity increases BDNF and tropomyosin receptor kinase B (TrkB) expression, leading to inhibition of neurodegeneration through induction of transcription factors and expression of genes related to neuronal proliferation, survival, and inflammatory response. This review focuses on the evidence that increasing BDNF level due to gene modulation or physical exercise has a neuroprotective effect and could be considered as adjunctive therapy in PD.
Collapse
Affiliation(s)
- Ewelina Palasz
- Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Adrianna Wysocka
- Nencki Institute of Experimental Biology Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Anna Gasiorowska
- Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Malgorzata Chalimoniuk
- Faculty in Biala Podlaska, Jozef Pilsudski University of Physical Education in Warsaw, 21-500 Warszawa, Poland
| | - Wiktor Niewiadomski
- Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Grazyna Niewiadomska
- Nencki Institute of Experimental Biology Polish Academy of Sciences, 02-093 Warsaw, Poland
- Correspondence: ; Tel.: +48-225892409
| |
Collapse
|
19
|
Chen J, Zhang L, Liu L, Yang X, Wu F, Gan X, Zhang R, He Y, Lv Q, Fu H, Zhou L, Zhang J, Liu A, Liu X, Miao L. Acupuncture Treatment Reverses Retinal Gene Expression Induced by Optic Nerve Injury via RNA Sequencing Analysis. Front Integr Neurosci 2019; 13:59. [PMID: 31680887 PMCID: PMC6808026 DOI: 10.3389/fnint.2019.00059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/24/2019] [Indexed: 12/02/2022] Open
Abstract
Glaucoma and traumatic optic nerve crush (ONC) injury result in progressive loss of retinal ganglion cells (RGCs) and defects in visual function. In clinical trials of Traditional Chinese Medicine, acupuncture has been widely used for the treatment of ocular diseases. However, the molecular mechanisms of acupuncture treatment are still unclear. In this study, we used technique of RNA sequencing (RNA-seq) to study the effects of acupuncture treatment on retinal transcriptome after axotomy injury. RNA-seq results revealed that 436 genes including 31 transcription factors (TFs) were changed after injury, among them were many well-known neural degeneration related TFs such as Jun, Ddit3, Atf3, and Atf4. Interestingly, acupuncture treatment at acupoint GB20 (Fengchi) significantly reversed a series of differential expressed genes (DEGs) induced by optic nerve injury. While treatments at BL1 (Jingming) or GB20 sham control acupoint-GV16 (Fengfu), led to limited DEG reversal. In contrast, treatments at these two sites further enhanced the trend of DEG expression induced by axotomy injury. At last, retina immunostaining results revealed that only GB20 acupoint treatment increased RGC survival, in consistent with RNA-seq results. Therefore, our study first reported that acupuncture treatment regulated retinal transcriptome and reversed the gene expression induced by axotomy injury, and GB20 acupoint treatment increased RGC survival, which will provide novel therapeutic targets for treatment of ocular diseases.
Collapse
Affiliation(s)
- Jie Chen
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Li Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Lanying Liu
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xueqin Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fengzhi Wu
- Journal Center, Beijing University of Chinese Medicine, Beijing, China
| | - Xiulun Gan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Rong Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Yinjia He
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Qiuyi Lv
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Haonan Fu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Ling Zhou
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaxi Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Anming Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaodong Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Linqing Miao
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
20
|
Yu G, Guan Y, Liu L, Xing J, Li J, Cheng Q, Liu Z, Bai Z. The protective effect of low-energy shock wave on testicular ischemia-reperfusion injury is mediated by the PI3K/AKT/NRF2 pathway. Life Sci 2018; 213:142-148. [PMID: 30321543 DOI: 10.1016/j.lfs.2018.10.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/07/2018] [Accepted: 10/11/2018] [Indexed: 12/14/2022]
Abstract
AIMS Testicular ischemia-reperfusion (IR) injury is the primary pathophysiological consequence of testicular torsion. Low-energy shock wave (LESW) is an effective treatment for certain diseases. The present study investigated whether LESW could improve on testicular IR injury in rats and examined the involved mechanism. MAIN METHODS Testicular reperfusion was induced in rats after 1-h ischemia. The first LESW treatment was performed 30 min prior to testicular reperfusion, and then every other day for another 3 applications. LY294002 was applied to investigate the involved mechanism. Testicular morphological changes and malonaldehyde (MDA) level were respectively assessed by hematoxylin-eosin staining. Western blot and thiobarbituric acid method. Western blot, real-time quantitative PCR and immunohistochemistry were performed to assess the apoptosis, the activation of phosphatidylinositol-4,5-bisphosphate 3-kinase/protein kinase B (PI3K/AKT) pathway the nuclear factor erythroid 2-related factor 2 (NRF2) and vascular endothelial growth factor A (VEGF-A) level in the testis of rats. KEY FINDINGS LESW improved testicular IR injury in rats. Moreover, LESW upregulated the phosphorylation levels of AKT and glycogen synthase kinase 3β (GSK-3β). Also, it upregulated the levels of nuclear NRF2, heme oxygenase 1 (HO-1) and NAD(P)H quinone dehydrogenase 1 (NQO-1) in these rats. Nevertheless, LY294002 blocked these protective effects. LESW also upregulated VEGF-A level in rats with testicular IR injury. SIGNIFICANCE This study demonstrated that LESW could ameliorate testicular IR injury in rats, which might be attributed to the activation of PI3K/AKT/NRF2 pathway. These findings suggested the potential of LESW in the treatment of testicular torsion.
Collapse
Affiliation(s)
- Gang Yu
- Department of Urology, Affiliated Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou 570208, Hainan Province, China; Haikou Center for Medical Synchrotron Radiation Research, Haikou People's Hospital, Haikou 570208, Hainan Province, China
| | - Yupeng Guan
- Department of Urology, Affiliated Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou 570208, Hainan Province, China; Haikou Center for Medical Synchrotron Radiation Research, Haikou People's Hospital, Haikou 570208, Hainan Province, China
| | - Lin Liu
- Emergency and Critical Care Center, Shiyan People's Hospital, Shiyan 442000, Hubei Province, China
| | - Jiansheng Xing
- Department of Urology, Affiliated Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou 570208, Hainan Province, China
| | - Jindong Li
- Department of Urology, Affiliated Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou 570208, Hainan Province, China
| | - Qing Cheng
- Department of Urology, Affiliated Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou 570208, Hainan Province, China
| | - Zhenxiang Liu
- Department of Urology, Affiliated Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou 570208, Hainan Province, China
| | - Zhiming Bai
- Department of Urology, Affiliated Haikou Hospital of Xiangya School of Medicine, Central South University, Haikou 570208, Hainan Province, China; Haikou Center for Medical Synchrotron Radiation Research, Haikou People's Hospital, Haikou 570208, Hainan Province, China.
| |
Collapse
|
21
|
Wan J, Ding Y, Tahir AH, Shah MK, Janyaro H, Li X, Zhong J, Vodyanoy V, Ding M. Electroacupuncture Attenuates Visceral Hypersensitivity by Inhibiting JAK2/STAT3 Signaling Pathway in the Descending Pain Modulation System. Front Neurosci 2017; 11:644. [PMID: 29209161 PMCID: PMC5701938 DOI: 10.3389/fnins.2017.00644] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/06/2017] [Indexed: 12/12/2022] Open
Abstract
Electroacupuncture (EA) has been used for treating visceral hypersensitivity (VH). However, the underlying molecular mechanism remains unclear. This study was aim to testify the effect of EA on ileitis-provoked VH, and to confirm whether EA attenuates VH through Janus kinase 2 (JAK2)/signal transducers and activators of transcription 3 (STAT3) signaling pathway in the periaqueductal gray (PAG)-the rostral ventromedial medulla (RVM)-the spinal cord dorsal horn (SCDH) axis. Methods: Goats were anesthetized and laparotomized for injecting 2,4,6-trinitro-benzene-sulfonic acid (TNBS)-ethanol solution (30mg TNBS dissolved in 40% ethanol) into the ileal wall to induce VH. EA was treated for 30min from day 7, then every 3 days for six times. VH was assessed by visceromotor response (VMR) and pain behavior response to 20, 40, 60, 80, and 100 mmHg colorectal distension pressures at day 7, 10, 13, 16, 19, and 22. The spinal cord in the eleventh thoracic vertebra and the brain were collected at day 22. The protein and mRNA levels of IL-6, JAK2, and STAT3 in the SCDH were detected with western blot and qPCR, respectively. The distribution of these substances was observed with immunohistochemistry in the ventrolateral PAG (vlPAG), RVM (mainly the nucleus raphe magnus, NRM), SCDH, the nucleus tractus solitaries (NTS) and the dorsal motor nucleus of vagi (DMV). Results: Goats administered with TNBS-ethanol solution showed diarrhea, enhanced VMR and pain behavior response, and increased IL-6, phosphorylated JAK2 and STAT3 (pJAK2 and pSTAT3) in the vlPAG, NRM, NTS and DMV, and their protein and mRNA levels in the SCDH. EA relieved diarrhea, VMR and pain behavior response, decreased IL-6, pJAK2 and pSTAT3 levels in the vlPAG, NRM, SCDH, NTS, and DMV except for pSTAT3 in the DMV, but did not affect mRNA level of these three substances in the SCDH. Conclusion: EA attenuates VH probably through inhibiting JAK2/STAT3 signaling pathway in the PAG-RVM-SCDH axis.
Collapse
Affiliation(s)
- Juan Wan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yi Ding
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Adnan H Tahir
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Manoj K Shah
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Habibullah Janyaro
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaojing Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Juming Zhong
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL, United States
| | - Vitaly Vodyanoy
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL, United States
| | - Mingxing Ding
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
22
|
Shen S, Al-Thumairy HW, Hashmi F, Qiao LY. Regulation of transient receptor potential cation channel subfamily V1 protein synthesis by the phosphoinositide 3-kinase/Akt pathway in colonic hypersensitivity. Exp Neurol 2017; 295:104-115. [PMID: 28587873 DOI: 10.1016/j.expneurol.2017.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/22/2017] [Accepted: 06/02/2017] [Indexed: 02/08/2023]
Abstract
The transient receptor potential cation channel subfamily V member 1 (TRPV1), also known as the capsaicin receptor or vanilloid receptor 1 (VR1), is expressed in nociceptive neurons in the dorsal root ganglia (DRG) and participates in the transmission of pain. The present study investigated the underlying molecular mechanisms by which TRPV1 was regulated by nerve growth factor (NGF) signaling pathways in colonic hypersensitivity in response to colitis. We found that during colitis TRPV1 protein levels were significantly increased in specifically labeled colonic afferent neurons in both L1 and S1 DRGs. TRPV1 protein up-regulation in DRG was also enhanced by NGF treatment. We then found that TRPV1 protein up-regulation in DRG was regulated by activation of the phosphoinositide 3-kinase (PI3K)/Akt pathway both in vivo and in vitro. Suppression of endogenous PI3K/Akt activity during colitis or NGF treatment with a specific PI3K inhibitor LY294002 reduced TRPV1 protein production in DRG neurons, and also reduced colitis-evoked TRPV1-mediated visceral hypersensitivity tested by hyper-responsiveness to colorectal distention (CRD) and von Frey filament stimulation of abdomen. Further studies showed that TRPV1 mRNA levels in the DRG were not regulated by either colitis or NGF. We then found that an up-regulation of the protein synthesis pathway was involved by which both colitis and NGF caused a PI3K-dependent increase in the phosphorylation level of eukaryotic translation initiation factor 4E-binding protein (4E-BP)1. These results suggest a novel mechanism in colonic hypersensitivity which involves PI3K/Akt-mediated TRPV1 protein, not mRNA, up-regulation in primary afferent neurons, likely through activation of the protein synthesis pathways.
Collapse
Affiliation(s)
- Shanwei Shen
- Departments of Physiology and Biophysics, Internal Medicine Gastroenterology, Virginia Commonwealth University, Richmond, VA, USA
| | - Hamad W Al-Thumairy
- Departments of Physiology and Biophysics, Internal Medicine Gastroenterology, Virginia Commonwealth University, Richmond, VA, USA
| | - Fiza Hashmi
- Departments of Physiology and Biophysics, Internal Medicine Gastroenterology, Virginia Commonwealth University, Richmond, VA, USA
| | - Li-Ya Qiao
- Departments of Physiology and Biophysics, Internal Medicine Gastroenterology, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
23
|
Lin CC, Yang AH, Lin ATL. Activation of the mTOR dependent signaling pathway underlies ketamine-induced uropathy. Neurourol Urodyn 2017; 36:1988-1995. [PMID: 28220552 DOI: 10.1002/nau.23234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/16/2016] [Accepted: 01/20/2017] [Indexed: 02/06/2023]
Abstract
AIMS To investigate the pathogenic role of activation of the mammalian target of the rapamycin (mTOR) in the ketamine induced microvascular injury. METHODS Twenty-three patients with ketamine-induced cystitis (KC) and 16 control volunteers were recruited. Bladder tissues were obtained from both groups by cystoscopic biopsies. Phospho-S6 ribosomal protein (p-S6RP), an end product of the mTOR pathway, was stained in the urinary bladder from both groups. Endothelial cells of the urinary bladder (HBdMECs) were examined to investigate the in vitro activation of the mTOR pathway and the co-expression of the endothelial marker (cluster of differentiation 31 [CD31]) and the mesenchymal marker (fibroblast-specific protein 1 [FSP-1]). RESULTS Expression of p-S6RP increased significantly after ketamine exposure, especially in the vesical microvessels of KC patients. In HBdMECs treated with 100 µM Ketamine, time-dependent activation of the mTOR pathway occurred, with significantly increased levels of the phosphorylated forms of mTOR at 30 min and of S6RP and p70S6 kinase (p70S6K) at 6 h. The increased level of p-S6RP returned to baseline within 2 days after ketamine exposure. The co-expression of CD31 and FSP-1 implied that EndMT was present in HBdMECs at 7 days after ketamine treatment, while TGF-β1 facilitated significant up-regulation of FSP-1 at 1 day after treatment. Furthermore, when the mTOR inhibitor rapamycin was administered with ketamine to the HBdMECs, the expression of FSP-1 decreased significantly. CONCLUSIONS Ketamine induces activation of the mTOR pathway and subsequent mesenchymal phenotypic expression (FSP1) in HBdMECs.
Collapse
Affiliation(s)
- Chih-Chieh Lin
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Urology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Urology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - An-Hang Yang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Pathology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Alex Tong-Long Lin
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Urology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Urology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
24
|
Liao HY, Hsieh CL, Huang CP, Lin YW. Electroacupuncture Attenuates CFA-induced Inflammatory Pain by suppressing Nav1.8 through S100B, TRPV1, Opioid, and Adenosine Pathways in Mice. Sci Rep 2017; 7:42531. [PMID: 28211895 PMCID: PMC5304170 DOI: 10.1038/srep42531] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/11/2017] [Indexed: 12/14/2022] Open
Abstract
Pain is associated with several conditions, such as inflammation, that result from altered peripheral nerve properties. Electroacupuncture (EA) is a common Chinese clinical medical technology used for pain management. Using an inflammatory pain mouse model, we investigated the effects of EA on the regulation of neurons, microglia, and related molecules. Complete Freund’s adjuvant (CFA) injections produced a significant mechanical and thermal hyperalgesia that was reversed by EA or a transient receptor potential V1 (TRPV1) gene deletion. The expression of the astrocytic marker glial fibrillary acidic protein (GFAP), the microglial marker Iba-1, S100B, receptor for advanced glycation end-products (RAGE), TRPV1, and other related molecules was dramatically increased in the dorsal root ganglion (DRG) and spinal cord dorsal horn (SCDH) of CFA-treated mice. This effect was reversed by EA and TRPV1 gene deletion. In addition, endomorphin (EM) and N6-cyclopentyladenosine (CPA) administration reliably reduced mechanical and thermal hyperalgesia, thereby suggesting the involvement of opioid and adenosine receptors. Furthermore, blocking of opioid and adenosine A1 receptors reversed the analgesic effects of EA. Our study illustrates the substantial therapeutic effects of EA against inflammatory pain and provides a novel and detailed mechanism underlying EA-mediated analgesia via neuronal and non-neuronal pathways.
Collapse
Affiliation(s)
- Hsien-Yin Liao
- College of Chinese Medicine, Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan.,Department of Acupuncture, China Medical University Hospital, Taichung 40402, Taiwan
| | - Ching-Liang Hsieh
- College of Chinese Medicine, Graduate Institute of Integrated Medicine, China Medical University, Taichung 40402, Taiwan.,Department of Chinese Medicine, China Medical University Hospital, Taichung 40402, Taiwan.,Research Center for Chinese Medicine &Acupuncture, China Medical University, Taichung 40402, Taiwan
| | - Chun-Ping Huang
- Department of Life Sciences, National Chung Hsing University, Taichung 40401, Taiwan
| | - Yi-Wen Lin
- College of Chinese Medicine, Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan.,Research Center for Chinese Medicine &Acupuncture, China Medical University, Taichung 40402, Taiwan.,College of Chinese Medicine, School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung 40402, Taiwan.,College of Chinese Medicine, Master's Program for Traditional Chinese Veterinary Medicine, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
25
|
Lai H, Yan Q, Cao H, Chen P, Xu Y, Jiang W, Wu Q, Huang P, Tan B. Effect of SQW on the bladder function of mice lacking TRPV1. Altern Ther Health Med 2016; 16:465. [PMID: 27842583 PMCID: PMC5109765 DOI: 10.1186/s12906-016-1420-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/20/2016] [Indexed: 12/18/2022]
Abstract
Background Suo Quan Wan (SQW) is an effective traditional Chinese prescription on treated lower urinary tract symptoms (LUTS), and has been proved have modulation effect on the expression of transient receptor potential vanilloid 1 (TRPV1) in accordance with the recovery of bladder function of overactive bladder rat. This study further investigated the mechanism of SQW modulated TRPV1 signaling and bladder function using TRPV1 knockout (KO) mice. Methods Study was conducted using wild type and TRPV1 KO mice. The KO animals were grouped into KO group and SQW treated group. We applied in vivo cystometrogram recording techniques to analyze voiding control of the urinary bladder, as well as in vitro organ bath to study bladder distension response to various compounds, which subsequently elicited normal smooth muscle excitation. Real-time polymerase chain reaction and western blot analysis were performed to quantify the expression of TRPV1 and P2X3 in the bladder. ATP released from bladder strips was measured using the luciferin–luciferase ATP bioluminescence assay kit. Results KO preparation inhibited decrease micturition times, while micturition interval and volume were increased. Results of urodynamic record of the TRPV1−/− mice during NS infusion showed reduced bladder pressure and contraction which exhibited decreased response to α, β-me ATP, KCl, and carbachol and no response to CAP. The ATP released by the TRPV1−/− mice from strips of bladder smooth muscles was significantly reduced, along with no TRPV1 expression and reduced expression level of P2X3 in the bladder. SQW could increase ATP release in some degree, while had no effect on TRPV1 and P2X3 expression. SQW could improve bladder pressure slightly, while make no significantly effects on the force response to α,β-meATP, CAP, carbachol in gradient concentration, and KCl, as well as MBC and voiding activities. Conclusions TRPV1 plays an important role in urinary bladder mechanosensitivity. The effective SQW is hard to play its proper role on bladder function of mice without TRPV1. Electronic supplementary material The online version of this article (doi:10.1186/s12906-016-1420-6) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
Hashmi F, Liu M, Shen S, Qiao LY. EXPRESS: Phospholipase C gamma mediates endogenous brain-derived neurotrophic factor - regulated calcitonin gene-related peptide expression in colitis - induced visceral pain. Mol Pain 2016; 12:12/0/1744806916657088. [PMID: 27306412 PMCID: PMC4955977 DOI: 10.1177/1744806916657088] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Visceral hypersensitivity is a complex pathophysiological paradigm with unclear mechanisms. Primary afferent neuronal plasticity marked by alterations in neuroactive compounds such as calcitonin gene-related peptide is suggested to underlie the heightened sensory responses. Signal transduction that leads to calcitonin gene-related peptide expression thereby sensory neuroplasticity during colitis remains to be elucidated. RESULTS In a rat model with colitis induced by 2,4,6-trinitrobenzene sulfonic acid, we found that endogenously elevated brain-derived neurotrophic factor elicited an up-regulation of calcitonin gene-related peptide in the lumbar L1 dorsal root ganglia. At seven days of colitis, neutralization of brain-derived neurotrophic factor with a specific brain-derived neurotrophic factor antibody reversed calcitonin gene-related peptide up-regulation in the dorsal root ganglia. Colitis-induced calcitonin gene-related peptide transcription was also inhibited by brain-derived neurotrophic factor antibody treatment. Signal transduction studies with dorsal root ganglia explants showed that brain-derived neurotrophic factor-induced calcitonin generelated peptide expression was mediated by the phospholipase C gamma, but not the phosphatidylinositol 3-kinase/Akt or the mitogen-activated protein kinase/extracellular signal-regulated protein kinase pathway. Application of PLC inhibitor U73122 in vivo confirmed that colitis-induced and brain-derived neurotrophic factor-mediated calcitonin gene-related peptide up-regulation in the dorsal root ganglia was regulated by the phospholipase C gamma pathway. In contrast, suppression of the phosphatidylinositol 3-kinase activity in vivo had no effect on colitis-induced calcitonin gene-related peptide expression. During colitis, calcitonin gene-related peptide also co-expressed with phospholipase C gamma but not with p-Akt. Calcitonin gene-related peptide up-regulation during colitis correlated to the activation of cAMP-responsive element binding protein in the same neurons. Consistently, colitis-induced cAMP-responsive element binding protein activation in the dorsal root ganglia was attenuated by brain-derived neurotrophic factor antibody treatment. CONCLUSION These results suggest that colitis-induced and brain-derived neurotrophic factor-mediated calcitonin generelated peptide expression in sensory activation is regulated by a unique pathway involving brain-derived neurotrophic factorphospholipase C gamma-cAMP-responsive element binding protein axis.
Collapse
Affiliation(s)
- Fiza Hashmi
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Miao Liu
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Shanwei Shen
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Li-Ya Qiao
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Internal Medicine, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Li-Ya Qiao, Department of Physiology and Biophysics, PO Box 980551, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298–0551, USA.
| |
Collapse
|
27
|
Watanabe S, Uchida K, Nakajima H, Matsuo H, Sugita D, Yoshida A, Honjoh K, Johnson WEB, Baba H. Early transplantation of mesenchymal stem cells after spinal cord injury relieves pain hypersensitivity through suppression of pain-related signaling cascades and reduced inflammatory cell recruitment. Stem Cells 2016; 33:1902-14. [PMID: 25809552 DOI: 10.1002/stem.2006] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 02/23/2015] [Accepted: 03/11/2015] [Indexed: 12/16/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSC) modulate inflammatory/immune responses and promote motor functional recovery after spinal cord injury (SCI). However, the effects of BMSC transplantation on central neuropathic pain and neuronal hyperexcitability after SCI remain elusive. This is of importance because BMSC-based therapies have been proposed for clinical treatment. We investigated the effects of BMSC transplantation on pain hypersensitivity in green fluorescent protein (GFP)-positive bone marrow-chimeric mice subjected to a contusion SCI, and the mechanisms of such effects. BMSC transplantation at day 3 post-SCI improved motor function and relieved SCI-induced hypersensitivities to mechanical and thermal stimulation. The pain improvements were mediated by suppression of protein kinase C-γ and phosphocyclic AMP response element binding protein expression in dorsal horn neurons. BMSC transplants significantly reduced levels of p-p38 mitogen-activated protein kinase and extracellular signal-regulated kinase (p-ERK1/2) in both hematogenous macrophages and resident microglia and significantly reduced the infiltration of CD11b and GFP double-positive hematogenous macrophages without decreasing the CD11b-positive and GFP-negative activated spinal-microglia population. BMSC transplants prevented hematogenous macrophages recruitment by restoration of the blood-spinal cord barrier (BSCB), which was associated with decreased levels of (a) inflammatory cytokines (tumor necrosis factor-α, interleukin-6); (b) mediators of early secondary vascular pathogenesis (matrix metallopeptidase 9); (c) macrophage recruiting factors (CCL2, CCL5, and CXCL10), but increased levels of a microglial stimulating factor (granulocyte-macrophage colony-stimulating factor). These findings support the use of BMSC transplants for SCI treatment. Furthermore, they suggest that BMSC reduce neuropathic pain through a variety of related mechanisms that include neuronal sparing and restoration of the disturbed BSCB, mediated through modulation of the activity of spinal-resident microglia and the activity and recruitment of hematogenous macrophages.
Collapse
Affiliation(s)
- Shuji Watanabe
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki, Eiheiji, Fukui, Japan
| | - Kenzo Uchida
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki, Eiheiji, Fukui, Japan
| | - Hideaki Nakajima
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki, Eiheiji, Fukui, Japan
| | - Hideaki Matsuo
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki, Eiheiji, Fukui, Japan
| | - Daisuke Sugita
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki, Eiheiji, Fukui, Japan
| | - Ai Yoshida
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki, Eiheiji, Fukui, Japan
| | - Kazuya Honjoh
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki, Eiheiji, Fukui, Japan
| | - William E B Johnson
- Life and Health Sciences, Aston University, Aston Triangle, Birmingham, United Kingdom
| | - Hisatoshi Baba
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, Matsuoka Shimoaizuki, Eiheiji, Fukui, Japan
| |
Collapse
|
28
|
Li D, Chen H, Luo XH, Sun Y, Xia W, Xiong YC. CX3CR1-Mediated Akt1 Activation Contributes to the Paclitaxel-Induced Painful Peripheral Neuropathy in Rats. Neurochem Res 2016; 41:1305-14. [PMID: 26961886 DOI: 10.1007/s11064-016-1827-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/03/2015] [Accepted: 01/04/2016] [Indexed: 12/11/2022]
Abstract
Painful peripheral neuropathy is a serious dose-limiting side effect of paclitaxel therapy, which unfortunately often happens during the optimal clinical management of chemotherapy in cancer patients. Currently the underlying mechanisms of the painful peripheral neuropathy remain largely unknown. Here, we found that paclitaxel treatment (3 × 8 mg/kg, cumulative dose 24 mg/kg) upregulated the expression of CX3CR1 and phosphorylated Akt1 in DRG and spinal dorsal horn. Blocking of Akt1 pathway activation with different inhibitor (MK-2206 or LY294002) significantly attenuated mechanical allodynia and thermal hyperalgesia induced by paclitaxel. Furthermore, inhibition of CX3CR1 by using neutralizing antibody not only prevented Akt1 activation in DRG and spinal dorsal horn but also alleviated pain-related behavior induced by paclitaxel treatment. This study suggested that CX3CR1/Akt1 signaling pathway may be a potential target for prevention and reversion of the painful peripheral neuropathy induced by paclitaxel.
Collapse
Affiliation(s)
- Dai Li
- Department of Anesthesiology and Critical Care, The First Affiliated Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Hui Chen
- Department of Anesthesiology and Critical Care, The First Affiliated Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China
| | - Xiao-Huan Luo
- Center For Reproductive Medicine, Guangzhou First People's Hospital, Guangzhou Medical University, No.1 Panfu Road, Guangzhou, 510180, People's Republic of China
| | - Yang Sun
- Department of Pain, Branch of The First Affiliate Hospital of Xinjiang Medical University, Changji, People's Republic of China
| | - Wei Xia
- Center For Reproductive Medicine, Guangzhou First People's Hospital, Guangzhou Medical University, No.1 Panfu Road, Guangzhou, 510180, People's Republic of China.
| | - Yuan-Chang Xiong
- Department of Anesthesiology and Critical Care, The First Affiliated Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
29
|
Qiao LY, Shen S, Liu M, Xia C, Kay JC, Zhang QL. Inflammation and activity augment brain-derived neurotrophic factor peripheral release. Neuroscience 2016; 318:114-21. [PMID: 26794594 DOI: 10.1016/j.neuroscience.2016.01.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 12/21/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) release to nerve terminals in the central nervous system is crucial in synaptic transmission and neuronal plasticity. However, BDNF release peripherally from primary afferent neurons has not been investigated. In the present study, we show that BDNF is synthesized by primary afferent neurons located in the dorsal root ganglia (DRG) in rat, and releases to spinal nerve terminals in response to depolarization or visceral inflammation. In two-compartmented culture that separates DRG neuronal cell bodies and spinal nerve terminals, application of 50mM K(+) to either the nerve terminal or the cell body evokes BDNF release to the terminal compartment. Inflammatory stimulation of the visceral organ (e.g. the urinary bladder) also facilitates an increase in spontaneous BDNF release from the primary afferent neurons to the axonal terminals. In the inflamed viscera, we show that BDNF immunoreactivity is increased in nerve fibers that are immuno-positive to the neuronal marker PGP9.5. Both BDNF and pro-BDNF levels are increased, however, pro-BDNF immunoreactivity is not expressed in PGP9.5-positive nerve-fiber-like structures. Determination of receptor profiles in the inflamed bladder demonstrates that BDNF high affinity receptor TrkB and general receptor p75 expression levels are elevated, with an increased level of TrkB tyrosine phosphorylation/activity. These results suggest a possibility of pro-proliferative effect in the inflamed bladder. Consistently we show that the proliferation marker Ki67 expression levels are enhanced in the inflamed organ. Our results imply that in vivo BDNF release to the peripheral organ is an important event in neurogenic inflammatory state.
Collapse
Affiliation(s)
- L Y Qiao
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| | - S Shen
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - M Liu
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - C Xia
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - J C Kay
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Q L Zhang
- Department of Physiology and Biophysics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| |
Collapse
|
30
|
Lai H, Tan B, Liang Z, Yan Q, Lian Q, Wu Q, Huang P, Cao H. Effect of the Chinese traditional prescription Suo Quan Wan on TRPV1 expression in the bladder of rats with bladder outlet obstruction. Altern Ther Health Med 2015; 15:424. [PMID: 26627190 PMCID: PMC4666052 DOI: 10.1186/s12906-015-0898-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 10/05/2015] [Indexed: 12/16/2022]
Abstract
Background Suo Quan Wan (SQW) is a Chinese traditional prescription that has been used in clinical treatment of lower urinary tract symptoms for centuries. However, scientific basis of SQW efficacy and mechanism is still needed. This study investigated the effect of SQW on bladder function and transient receptor potential vanilloid 1 (TRPV1) expression in the bladder of rats with bladder outlet obstruction (BOO). The induced changes in bladder function in overactive bladder (OAB) rat model were observed following different periods of outlet obstruction to obtain an appropriate rat model. Methods This study was carried out in two parts. In the first part, female Sprague–Dawley rats received sham operations or partial BOO operations. Two, four, and six weeks later, the OAB model groups and control were subjected to urodynamic tests to measure differences in bladder functions. Once the appropriate rat model was obtained, the second part of the experiment was performed. The rat model was recreated and treated with SQW. Urodynamic assessment was conducted, and the bladders of the rats were then removed. Immunofluorescence staining, real-time PCR, and Western blot were performed to localize and quantify the expression of TRPV1 in the bladder. Results Results of the first part indicated that at 2 and 4 weeks, the OAB model group exhibited significant differences in urodynamic parameters, including bladder pressure, maximum voiding pressure, and maximum bladder capacity, compared with the sham group. At 4 and 6 weeks, the OAB model group exhibited significant differences in residual volume (RV) and non-voiding contraction frequency. Six-week OAB model group showed much more RV but less voiding efficiency when compared with 6-week sham group or 2—and 4-week OAB model group. Rats that underwent BOO exhibited similarities with the compensated state before four weeks and may have entered decompensated state at six weeks. Studies conducted with 4-week OAB model were appropriate. In part two of the experiment, unstable bladder in the OAB model group recovered bladder stability after SQW treatment, accompanied by improved bladder hypertrophy, as well as corrected urodynamic parameters. Expression of TRPV1 mRNA and proteins in the bladder was significantly greater in the OAB model group than that in the control group, which subsequently decreased significantly with SQW treatment in BOO-induced rats. Conclusions SQW can modulate the expression of TRPV1 in accordance with the recovery of bladder function. Electronic supplementary material The online version of this article (doi:10.1186/s12906-015-0898-7) contains supplementary material, which is available to authorized users.
Collapse
|
31
|
Liu M, Kay JC, Shen S, Qiao LY. Endogenous BDNF augments NMDA receptor phosphorylation in the spinal cord via PLCγ, PKC, and PI3K/Akt pathways during colitis. J Neuroinflammation 2015; 12:151. [PMID: 26289587 PMCID: PMC4545933 DOI: 10.1186/s12974-015-0371-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/06/2015] [Indexed: 12/18/2022] Open
Abstract
Background Spinal central sensitization is an important process in the generation and maintenance of visceral hypersensitivity. The release of brain-derived neurotrophic factor (BDNF) from the primary afferent neurons to the spinal cord contributes to spinal neuronal plasticity and increases neuronal activity and synaptic efficacy. The N-Methyl-D-aspartic acid (NMDA) receptor possesses ion channel properties, and its activity is modulated by phosphorylation of its subunits including the NMDA receptor 1 (NR1). Methods Colonic inflammation was induced by a single dose of intracolonic instillation of tri-nitrobenzene sulfonic acid (TNBS). NR1 phosphorylation by BDNF in vivo and in culture was examined by western blot and immunohistochemistry. Signal transduction was studied by direct examination and use of specific inhibitors. Results During colitis, the level of NR1 phospho-Ser896 was increased in the dorsal horn region of the L1 and S1 spinal cord; this increase was attenuated by injection of BDNF neutralizing antibody to colitic animals (36 μg/kg, intravenous (i.v.)) and was also reduced in BDNF+/− rat treated with TNBS. Signal transduction examination showed that the extracellular signal-regulated kinase (ERK) activation was not involved in BDNF-induced NR1 phosphorylation. In contrast, the phosphatidylinositol 3-kinase (PI3K)/Akt pathway mediated BDNF-induced NR1 phosphorylation in vivo and in culture; this is an additional pathway to the phospholipase C-gamma (PLCγ) and the protein kinase C (PKC) that was widely considered to phosphorylate NR1 at Ser896. In spinal cord culture, the inhibitors to PLC (U73122), PKC (bisindolylmaleimide I), and PI3K (LY294002), but not MEK (PD98059) blocked BDNF-induced NR1 phosphorylation. In animals with colitis, treatment with LY294002 (50 μg/kg, i.v.) blocked the Akt activity as well as NR1 phosphorylation at Ser896 in the spinal cord. Conclusion BDNF participates in colitis-induced spinal central sensitization by up-regulating NR1 phosphorylation at Ser896. The PI3K/Akt pathway, in addition to PLCγ and PKC, mediates BDNF action in the spinal cord during colitis. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0371-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Miao Liu
- Department of Physiology and Biophysics, Internal Medicine Gastroenterology, Virginia Commonwealth University School of Medicine, 1220 East Broad Street MMRB 5046, Richmond, VA, 23298-0551, USA.
| | - Jarren C Kay
- Department of Physiology and Biophysics, Internal Medicine Gastroenterology, Virginia Commonwealth University School of Medicine, 1220 East Broad Street MMRB 5046, Richmond, VA, 23298-0551, USA.
| | - Shanwei Shen
- Department of Physiology and Biophysics, Internal Medicine Gastroenterology, Virginia Commonwealth University School of Medicine, 1220 East Broad Street MMRB 5046, Richmond, VA, 23298-0551, USA.
| | - Li-Ya Qiao
- Department of Physiology and Biophysics, Internal Medicine Gastroenterology, Virginia Commonwealth University School of Medicine, 1220 East Broad Street MMRB 5046, Richmond, VA, 23298-0551, USA.
| |
Collapse
|
32
|
Greenwood-Van Meerveld B, Prusator DK, Johnson AC. Animal models of gastrointestinal and liver diseases. Animal models of visceral pain: pathophysiology, translational relevance, and challenges. Am J Physiol Gastrointest Liver Physiol 2015; 308:G885-903. [PMID: 25767262 DOI: 10.1152/ajpgi.00463.2014] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/11/2015] [Indexed: 02/08/2023]
Abstract
Visceral pain describes pain emanating from the thoracic, pelvic, or abdominal organs. In contrast to somatic pain, visceral pain is generally vague, poorly localized, and characterized by hypersensitivity to a stimulus such as organ distension. Animal models have played a pivotal role in our understanding of the mechanisms underlying the pathophysiology of visceral pain. This review focuses on animal models of visceral pain and their translational relevance. In addition, the challenges of using animal models to develop novel therapeutic approaches to treat visceral pain will be discussed.
Collapse
Affiliation(s)
- Beverley Greenwood-Van Meerveld
- Veterans Affairs Medical Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Dawn K Prusator
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Anthony C Johnson
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
33
|
Liu M, Shen S, Kendig DM, Mahavadi S, Murthy KS, Grider JR, Qiao LY. Inhibition of NMDAR reduces bladder hypertrophy and improves bladder function in cyclophosphamide induced cystitis. J Urol 2015; 193:1676-83. [PMID: 25572034 DOI: 10.1016/j.juro.2014.12.092] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2014] [Indexed: 01/28/2023]
Abstract
PURPOSE We examined the role of NMDAR in the regulation of bladder hypertrophy and function in a rat model of cyclophosphamide induced cystitis. MATERIALS AND METHODS Cystitis was induced by intraperitoneal injection of cyclophosphamide (150 mg/kg body weight). NMDAR phosphorylation (activity) and signal transduction pathways were examined by direct measurement and by specific inhibitors in vivo. Bladder hypertrophy was measured by bladder weight/body weight and type I collagen expression. Bladder function was examined by metabolic recording, conscious cystometry and detrusor muscle strip contractility in response to carbachol. RESULTS NMDAR activity measured by the phosphorylation level of the NMDAR1 (NR1) subunit was expressed in the spinal cord but not in the bladder at 48 hours of cystitis. NMDAR inhibition with dizocilpine (MK-801) reduced the cystitis induced increment of bladder weight and type I collagen up-regulation in the bladder. NMDAR regulated type I collagen up-regulation was mediated by the PI3K/Akt pathway. NMDAR inhibition also attenuated cystitis induced urinary frequency measured by metabolic cage and cystometry. Cystitis decreased the responsiveness of detrusor muscle strips to carbachol, which was reversed by MK-801 in vivo. Unlike MK-801 the NMDAR antagonist D-AP5, which could not block central NMDAR activity, had no effect on bladder hypertrophy, type I collagen up-regulation or Akt activation caused by cystitis in the bladder. CONCLUSIONS Findings suggest that NMDAR activity has a role in cystitis induced bladder hypertrophy and overactivity. NMDAR mediated Akt activation may underlie the mechanism of bladder dysfunction.
Collapse
Affiliation(s)
- Miao Liu
- Department of Physiology and Biophysics and Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Shanwei Shen
- Department of Physiology and Biophysics and Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Derek M Kendig
- Department of Physiology and Biophysics and Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Sunila Mahavadi
- Department of Physiology and Biophysics and Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Karnam S Murthy
- Department of Physiology and Biophysics and Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - John R Grider
- Department of Physiology and Biophysics and Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Li-Ya Qiao
- Department of Physiology and Biophysics and Internal Medicine, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|
34
|
Guan XH, Fu QC, Shi D, Bu HL, Song ZP, Xiong BR, Shu B, Xiang HB, Xu B, Manyande A, Cao F, Tian YK. Activation of spinal chemokine receptor CXCR3 mediates bone cancer pain through an Akt-ERK crosstalk pathway in rats. Exp Neurol 2015; 263:39-49. [DOI: 10.1016/j.expneurol.2014.09.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/30/2014] [Accepted: 09/12/2014] [Indexed: 12/29/2022]
|
35
|
Qiao Z, Xia C, Shen S, Corwin FD, Liu M, Guan R, Grider JR, Qiao LY. Suppression of the PI3K pathway in vivo reduces cystitis-induced bladder hypertrophy and restores bladder capacity examined by magnetic resonance imaging. PLoS One 2014; 9:e114536. [PMID: 25486122 PMCID: PMC4259345 DOI: 10.1371/journal.pone.0114536] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 11/10/2014] [Indexed: 11/18/2022] Open
Abstract
This study utilized magnetic resonance imaging (MRI) to monitor the real-time status of the urinary bladder in normal and diseased states following cyclophosphamide (CYP)-induced cystitis, and also examined the role of the phosphoinositide 3-kinase (PI3K) pathway in the regulation of urinary bladder hypertrophy in vivo. Our results showed that under MRI visualization the urinary bladder wall was significantly thickened at 8 h and 48 h post CYP injection. The intravesical volume of the urinary bladder was also markedly reduced. Treatment of the cystitis animals with a specific PI3K inhibitor LY294002 reduced cystitis-induced bladder wall thickening and enlarged the intravesical volumes. To confirm the MRI results, we performed H&E stain postmortem and examined the levels of type I collagen by real-time PCR and western blot. Inhibition of the PI3K in vivo reduced the levels of type I collagen mRNA and protein in the urinary bladder ultimately attenuating cystitis-induced bladder hypertrophy. The bladder mass calculated according to MRI data was consistent to the bladder weight measured ex vivo under each drug treatment. MRI results also showed that the urinary bladder from animals with cystitis demonstrated high magnetic signal intensity indicating considerable inflammation of the urinary bladder when compared to normal animals. This was confirmed by examination of the pro-inflammatory factors showing that interleukin (IL)-1α, IL-6 and tumor necrosis factor (TNF)α levels in the urinary bladder were increased with cystitis. Our results suggest that MRI can be a useful technique in tracing bladder anatomy and examining bladder hypertrophy in vivo during disease development and the PI3K pathway has a critical role in regulating bladder hypertrophy during cystitis.
Collapse
Affiliation(s)
- Zhongwei Qiao
- Children's Hospital of Fudan University, Division of Radiology, Shanghai, China
| | - Chunmei Xia
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - Shanwei Shen
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - Frank D. Corwin
- Department of Radiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - Miao Liu
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - Ruijuan Guan
- Department of Physiology and Pathophysiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - John R. Grider
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - Li-Ya Qiao
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
36
|
Tian Y, Voineagu I, Paşca SP, Won H, Chandran V, Horvath S, Dolmetsch RE, Geschwind DH. Alteration in basal and depolarization induced transcriptional network in iPSC derived neurons from Timothy syndrome. Genome Med 2014; 6:75. [PMID: 25360157 PMCID: PMC4213483 DOI: 10.1186/s13073-014-0075-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 09/15/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Common genetic variation and rare mutations in genes encoding calcium channel subunits have pleiotropic effects on risk for multiple neuropsychiatric disorders, including autism spectrum disorder (ASD) and schizophrenia. To gain further mechanistic insights by extending previous gene expression data, we constructed co-expression networks in Timothy syndrome (TS), a monogenic condition with high penetrance for ASD, caused by mutations in the L-type calcium channel, Cav1.2. METHODS To identify patient-specific alterations in transcriptome organization, we conducted a genome-wide weighted co-expression network analysis (WGCNA) on neural progenitors and neurons from multiple lines of induced pluripotent stem cells (iPSC) derived from normal and TS (G406R in CACNA1C) individuals. We employed transcription factor binding site enrichment analysis to assess whether TS associated co-expression changes reflect calcium-dependent co-regulation. RESULTS We identified reproducible developmental and activity-dependent gene co-expression modules conserved in patient and control cell lines. By comparing cell lines from case and control subjects, we also identified co-expression modules reflecting distinct aspects of TS, including intellectual disability and ASD-related phenotypes. Moreover, by integrating co-expression with transcription factor binding analysis, we showed the TS-associated transcriptional changes were predicted to be co-regulated by calcium-dependent transcriptional regulators, including NFAT, MEF2, CREB, and FOXO, thus providing a mechanism by which altered Ca(2+) signaling in TS patients leads to the observed molecular dysregulation. CONCLUSIONS We applied WGCNA to construct co-expression networks related to neural development and depolarization in iPSC-derived neural cells from TS and control individuals for the first time. These analyses illustrate how a systems biology approach based on gene networks can yield insights into the molecular mechanisms of neural development and function, and provide clues as to the functional impact of the downstream effects of Ca(2+) signaling dysregulation on transcription.
Collapse
Affiliation(s)
- Yuan Tian
- />Neurogenetics Program, Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA
- />Interdepartmental Ph.D. Program in Bioinformatics, University of California, Los Angeles, CA 90095 USA
| | - Irina Voineagu
- />School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| | - Sergiu P Paşca
- />Department of Psychiatry & Behavioral Sciences, Center for Sleep Sciences and Medicine, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Hyejung Won
- />Neurogenetics Program, Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA
| | - Vijayendran Chandran
- />Neurogenetics Program, Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA
| | - Steve Horvath
- />Department of Human Genetics, David Geffen Sch. of Medicine, UCLA, Los Angeles, CA USA
| | - Ricardo E Dolmetsch
- />Department of Neurobiology, Stanford University, Stanford, CA 94305-5345 USA
- />Novartis Institutes for Biomedical Research, Cambridge, MA 02139 USA
| | - Daniel H Geschwind
- />Neurogenetics Program, Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA
- />Interdepartmental Ph.D. Program in Bioinformatics, University of California, Los Angeles, CA 90095 USA
- />Department of Human Genetics, David Geffen Sch. of Medicine, UCLA, Los Angeles, CA USA
| |
Collapse
|
37
|
Abstract
Neurotrophin family are traditionally recognized for their nerve growth promoting function and are recently identified as crucial factors in regulating neuronal activity in the central and peripheral nervous systems. The family members including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) are reported to have distinct roles in the development and maintenance of sensory phenotypes in normal states and in the modulation of sensory activity in disease. This paper highlights receptor tyrosine kinase (Trk) -mediated signal transduction by which neurotrophins regulate neuronal activity in the visceral sensory reflex pathways with emphasis on the distinct roles of NGF and BDNF signaling in physiologic and pathophysiological processes. Viscero-visceral cross-organ sensitization exists widely in human diseases. The role of neurotrophins in mediating neural cross talk and interaction in primary afferent neurons in the dorsal root ganglia (DRG) and neurotrophin signal transduction in the context of cross-organ sensitization are also discussed.
Collapse
Affiliation(s)
- Li-Ya Qiao
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
38
|
Electro-Acupuncture Promotes the Survival and Differentiation of Transplanted Bone Marrow Mesenchymal Stem Cells Pre-Induced with Neurotrophin-3 and Retinoic Acid in Gelatin Sponge Scaffold after Rat Spinal Cord Transection. Stem Cell Rev Rep 2014; 10:612-25. [DOI: 10.1007/s12015-014-9513-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|