1
|
Kawakita S, Naito K, Kubota D, Ueno Y, Negishi-Koga T, Yamamoto Y, Suzuki T, Imazu N, Kawamura K, Hattori N, Ishijima M. Glycoprotein 130 improves repressor element‑1 silencing transcription factor‑related axon regenerative capacity in peripheral nerves with aging. Mol Med Rep 2025; 31:121. [PMID: 40052576 PMCID: PMC11920774 DOI: 10.3892/mmr.2025.13486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/09/2025] [Indexed: 03/21/2025] Open
Abstract
Axon regenerative capacity diminishes with aging and differences in the condition of peripheral nerves between young and elderly individuals have been reported. However, the underlying pathology remains unclear. The expression of repressor element‑1 silencing transcription factor (REST) increases with age and is reported to suppress axon regeneration. The present study investigated the pathology and potential treatment of reduced axon regenerative capacity using REST‑regulated cells and a mouse model. This study examined the molecular expression of the janus kinase 1 (JAK1)/signal transducer and activator of transcription 3 (STAT3) pathway, which is involved in growth‑associated protein 43 (GAP43) expression. In REST‑overexpressed (REST‑OE), glycoprotein 130 (GP130), JAK1 and phosphorylated STAT3 (p‑STAT3) expression was decreased compared with the control (GP130, P=0.004; JAK1, P=0.038; pSTAT3, P=0.015). On the other hand, in REST‑low expressed (siREST), GP130, JAK1 and pSTAT3 expression was increased compared with the control (GP130, P=0.004; JAK1, P=0.003; pSTAT3, P=0.033). It suggested that GP130 plays an important role. Therefore, GP130 agonist was administered to REST‑OE and aged mice and resulted in a significant increase in GAP43 expression (REST‑OE: Protein P=0.018, mRNA P=0.040; aged mice: Protein P=0.016, mRNA P=0.013). The results of this study suggest that the pathology of reduction in peripheral nerve axon regenerative capacity is inhibited by age‑related increase in REST expression, which leads to decreased GP130 expression and inhibition of JAK1/STAT3 pathway activity. These findings suggest that regulating GP130 expression may improve axon regenerative capacity by aging.
Collapse
Affiliation(s)
- So Kawakita
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo 113‑8421, Japan
| | - Kiyohito Naito
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo 113‑8421, Japan
| | - Daisuke Kubota
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo 113‑8421, Japan
| | - Yuji Ueno
- Department of Neurology, Graduate School of Medical Sciences, University of Yamanashi, Chuo, Yamanashi 409‑3898, Japan
| | - Takako Negishi-Koga
- Department of Orthopedics, Juntendo University Faculty of Medicine, Tokyo 113‑8421, Japan
| | - Yasuhiro Yamamoto
- Department of Orthopedics, Juntendo University Faculty of Medicine, Tokyo 113‑8421, Japan
| | - Takamaru Suzuki
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo 113‑8421, Japan
| | - Norizumi Imazu
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo 113‑8421, Japan
| | - Kenjiro Kawamura
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo 113‑8421, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo 113‑8421, Japan
| | - Muneaki Ishijima
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo 113‑8421, Japan
| |
Collapse
|
2
|
Protzuk OA, Samuel MA, Seward KR, Keshishian CA, Bendale GS, Isaacs JE. Induced Pseudomembrane Enrichment in Long Nerve Allograft Reconstruction. Muscle Nerve 2025; 71:662-669. [PMID: 40052754 PMCID: PMC11887527 DOI: 10.1002/mus.28362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 03/10/2025]
Abstract
INTRODUCTION/AIMS Long nerve defects are typically reconstructed with autograft or processed acellular nerve allograft (PNA). PNA is convenient and avoids donor morbidity but lacks the neurotrophic environment of autograft. Increased levels of neurotrophic factors have been identified in pseudomembranes induced around silicone implanted between nerve ends. This study aimed to determine if pseudomembrane can be reliably induced around silicone implanted between nerve ends, and if this enhances regeneration of PNA inset within using a staged technique. METHODS Lewis rats (n = 24) underwent resection of a 15-mm sciatic nerve. The defect was filled with a silicone tube (n = 12) (MA) or the nerve ends were secured to a muscle bed (n = 12) (NMA). After 4 weeks, the silicone was replaced with PNA threaded within the pseudomembrane tunnel. In both groups, PNA was used to reconstruct the nerve defect. Weekly neuromotor assessment was performed with sciatic function index (SFI). At 16 weeks, muscle recovery was assessed, and nerve samples were obtained for histomorphometry. RESULTS The MA group's average normalized muscle weight was 46.25% versus the NMA group's 33.19% (p < 0.05). The MA group's average normalized muscle girth was 78.25% versus the NMA group's 60.73% (p < 0.05). Axon counts, g-ratio, and muscle force were not statistically different. At Week 15, the MA group had a significantly higher average SFI: -82.25 versus the NMA group -95.03 (p < 0.05). DISCUSSION PNA inset within induced pseudomembrane sheath enhanced muscle reinnervation. A staged membrane enhancement technique may be effective for improving PNA efficacy in peripheral nerve injury reconstruction.
Collapse
Affiliation(s)
- Omar A. Protzuk
- Department of Orthopaedic SurgeryHarvard Medical School, Mass General Brigham, Brigham & Women's HospitalBostonMassachusettsUSA
| | - Mariam A. Samuel
- Division of Hand Surgery, Department of Orthopaedic SurgeryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Kriston R. Seward
- Division of Hand Surgery, Department of Orthopaedic SurgeryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Christopher A. Keshishian
- Division of Hand Surgery, Department of Orthopaedic SurgeryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Geetanjali S. Bendale
- Division of Hand Surgery, Department of Orthopaedic SurgeryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Jonathan E. Isaacs
- Division of Hand Surgery, Department of Orthopaedic SurgeryVirginia Commonwealth UniversityRichmondVirginiaUSA
| |
Collapse
|
3
|
Wu H, Saini C, Medina R, Hsieh SL, Meshkati A, Sung K. Pain without presence: a narrative review of the pathophysiological landscape of phantom limb pain. FRONTIERS IN PAIN RESEARCH 2025; 6:1419762. [PMID: 40041552 PMCID: PMC11876430 DOI: 10.3389/fpain.2025.1419762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 01/17/2025] [Indexed: 03/06/2025] Open
Abstract
Phantom limb pain (PLP) is defined as the perception of pain in a limb that has been amputated. In the United States, approximately 30,000-40,000 amputations are performed annually with an estimated 2.3 million people living with amputations. The prevalence of PLP among amputees is approximately 64%. Over the years, various theories regarding the etiology of PLP have been proposed, with some gaining more prominence than others. Yet, there is a lack of consensus on PLP mechanisms as the current literature exploring the pathophysiology of PLP is multifactorial, involving complex interactions between the central and peripheral nervous systems, psychosocial factors, and genetic influences. This review seeks to enhance the understanding of PLP by exploring its multifaceted pathophysiology, including genetic predispositions. We highlight historical aspects of pain theories and PLP, examining how these theories have expanded to include psychosocial dimensions associated with chronic pain in amputees. Additionally, we present significant findings from both human and animal studies focused on neuroaxial systems and recent advances in molecular research to further elucidate the complex and multifactorial nature of PLP. Ultimately, we hope that the integration of current theoretical frameworks and findings will lay a more robust foundation for future research on PLP.
Collapse
Affiliation(s)
- Hong Wu
- Department of Physical Medicine and Rehabilitation, Rush University Medical Center, Chicago, IL, United States
| | - Chandan Saini
- Department of Physical Medicine and Rehabilitation, Rush University Medical Center, Chicago, IL, United States
| | - Roi Medina
- Department of Physical Medicine and Rehabilitation, Rush University Medical Center, Chicago, IL, United States
| | - Sharon L. Hsieh
- Department of PhysicalMedicine and Rehabilitation, Emory University School of Medicine, Atlanta, GA, United States
| | - Aria Meshkati
- Rush University Medical College, Chicago, IL, United States
| | - Kerry Sung
- Rush University Medical College, Chicago, IL, United States
| |
Collapse
|
4
|
Azad A, Birnbaum A, Roller R, Kingery MT, Chen J, Hacquebord JH. The Effect of Surgical Timing on Upper Extremity Nerve Repair. Hand (N Y) 2025; 20:92-97. [PMID: 37706461 PMCID: PMC11653275 DOI: 10.1177/15589447231198125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
BACKGROUND The purpose of this study was to evaluate the association between timing of nerve repair and the ability to perform a primary nerve repair versus a bridge repair requiring the use of allograft, autograft, or a conduit in lacerated upper extremity peripheral nerve injuries. METHODS This is a retrospective case-control study of patients who underwent upper extremity nerve repair for lacerated peripheral nerves identified by Current Procedural Terminology codes. Timing of injury and surgery, as well as other information such as demographic information, mechanism of injury, site of injury, and type of nerve repair, was recorded. The odds of a patient requiring bridge repair based on the duration of time between injury and surgery was evaluated using logistic regression. RESULTS A total of 403 nerves in 335 patients (mean age 35.87 ± 15.33 years) were included. In all, 241 nerves were primarily repaired and 162 required bridge repair. Patients requiring bridge repair had a greater duration between injury and surgery compared with patients who underwent primary repair. Furthermore, the nerves requiring bridge repair were associated with a greater gap compared with the nerves repaired primarily. Based on logistic regression, each 1-day increase in duration between injury and surgery was associated with a 3% increase in the odds of requiring bridge repair. CONCLUSIONS There is no defined critical window to achieve a primary nerve repair following injury. This study demonstrated that nerve injuries requiring bridge repair were associated with a significantly greater delay to surgery.
Collapse
Affiliation(s)
- Ali Azad
- NYU Langone Orthopedic Hospital, New York City, USA
| | - Amy Birnbaum
- NYU Langone Orthopedic Hospital, New York City, USA
| | | | | | - Jeffrey Chen
- NYU Langone Orthopedic Hospital, New York City, USA
| | | |
Collapse
|
5
|
Zhang S, Chen J, Cheng F, Zheng F. The Emerging Role of Schwann Cells in the Tumor Immune Microenvironment and Its Potential Clinical Application. Int J Mol Sci 2024; 25:13722. [PMID: 39769484 PMCID: PMC11679251 DOI: 10.3390/ijms252413722] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
As the primary glial cells in the peripheral nervous system (PNS), Schwann cells (SCs) have been proven to influence the behavior of cancer cells profoundly and are involved in cancer progression through extensive interactions with cancer cells and other stromal cells. Indeed, the tumor microenvironment (TME) is a critical factor that can significantly limit the efficacy of immunotherapeutic approaches. The TME promotes tumor progression in part by reshaping an immunosuppressive state. The immunosuppressive TME is the result of the crosstalk between the tumor cells and the different immune cell subsets, including macrophages, natural killer (NK) cells, dendritic cells (DCs), lymphocytes, myeloid-derived suppressor cells (MDSCs), etc. They are closely related to the anti-tumor immune status and the clinical prognosis of cancer patients. Increasing research demonstrates that SCs influence these immune cells and reshape the formation of the immunosuppressive TME via the secretion of various cytokines, chemokines, and other effector molecules, eventually facilitating immune evasion and tumor progression. In this review, we summarize the SC reprogramming in TME, the emerging role of SCs in tumor immune microenvironment, and the underlying mechanisms involved. We also discuss the possible therapeutic strategies to selectively target SCs, providing insights and perspectives for future research and clinical studies involving SC-targeted treatment.
Collapse
Affiliation(s)
- Shan Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fanjun Cheng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fang Zheng
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
6
|
Xu J, Ruan X. Schwann cell autotransplantation for the treatment of peripheral nerve injury. Life Sci 2024; 358:123129. [PMID: 39393574 DOI: 10.1016/j.lfs.2024.123129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Peripheral nerve injury occurs in a relatively large proportion of trauma patients, in whom it generally results in severe functional impairment and permanent disability. At present, however, there are no effective treatments available. Studies have shown that Schwann cells play an indispensable role in removing myelin debris and guiding axonal regeneration, and transplantation using autologous Schwann cells has shown good efficacy for patients with peripheral nerve injury. In recent years, Schwann cell autologous transplantation therapy has become an area of intensive research and is anticipated to provide a new strategy for the clinical treatment of peripheral nerve injury. In this article, we review the rationale for selecting Schwann cell autotransplantation therapy and the latest progress in key aspects of cell transplantation and clinical efficacy, and also summarize the future directions of research on this therapy. All of the above provide a strong basis for the further improvement and clinical promotion of this therapy.
Collapse
Affiliation(s)
- Jialiang Xu
- China Medical University, Shenyang, Liaoning 110122, People's Republic of China.
| | - Xuelei Ruan
- Department of Neurobiology, China Medical University, Shenyang, Liaoning 110122, People's Republic of China.
| |
Collapse
|
7
|
Qin F, Luo X, Lu Q, Cai B, Xiao F, Cai G. Spatial pattern and differential expression analysis with spatial transcriptomic data. Nucleic Acids Res 2024; 52:e101. [PMID: 39470725 PMCID: PMC11602167 DOI: 10.1093/nar/gkae962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
The emergence of spatial transcriptomic technologies has opened new avenues for investigating gene activities while preserving the spatial context of tissues. Utilizing data generated by such technologies, the identification of spatially variable (SV) genes is an essential step in exploring tissue landscapes and biological processes. Particularly in typical experimental designs, such as case-control or longitudinal studies, identifying SV genes between groups is crucial for discovering significant biomarkers or developing targeted therapies for diseases. However, current methods available for analyzing spatial transcriptomic data are still in their infancy, and none of the existing methods are capable of identifying SV genes between groups. To overcome this challenge, we developed SPADE for spatial pattern and differential expression analysis to identify SV genes in spatial transcriptomic data. SPADE is based on a machine learning model of Gaussian process regression with a gene-specific Gaussian kernel, enabling the detection of SV genes both within and between groups. Through benchmarking against existing methods in extensive simulations and real data analyses, we demonstrated the preferred performance of SPADE in detecting SV genes within and between groups. The SPADE source code and documentation are publicly available at https://github.com/thecailab/SPADE.
Collapse
Affiliation(s)
- Fei Qin
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 921 Assembly Street, Columbia, SC, 29208, USA
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD, 20850, USA
| | - Xizhi Luo
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 921 Assembly Street, Columbia, SC, 29208, USA
- Data and Statistical Sciences, AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL, 60064, USA
| | - Qing Lu
- Department of Biostatistics, College of Public Health and Health Professions and College of Medicine, University of Florida, 2004 Mowry Rd., Gainesville, FL, 32608, USA
| | - Bo Cai
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, 921 Assembly Street, Columbia, SC, 29208, USA
| | - Feifei Xiao
- Department of Biostatistics, College of Public Health and Health Professions and College of Medicine, University of Florida, 2004 Mowry Rd., Gainesville, FL, 32608, USA
| | - Guoshuai Cai
- Department of Biostatistics, College of Public Health and Health Professions and College of Medicine, University of Florida, 2004 Mowry Rd., Gainesville, FL, 32608, USA
- Department of Surgery, College of Medicine, University of Florida, 1600 SW Archer Rd., Gainesville, FL, 32610, USA
| |
Collapse
|
8
|
Gao R, Song SJ, Tian MY, Wang LB, Zhang Y, Li X. Myelin debris phagocytosis in demyelinating disease. Glia 2024; 72:1934-1954. [PMID: 39073200 DOI: 10.1002/glia.24602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Demyelinating diseases are often caused by a variety of triggers, including immune responses, viral infections, malnutrition, hypoxia, or genetic factors, all of which result in the loss of myelin in the nervous system. The accumulation of myelin debris at the lesion site leads to neuroinflammation and inhibits remyelination; therefore, it is crucial to promptly remove the myelin debris. Initially, Fc and complement receptors on cellular surfaces were the primary clearance receptors responsible for removing myelin debris. However, subsequent studies have unveiled the involvement of additional receptors, including Mac-2, TAM receptors, and the low-density lipoprotein receptor-related protein 1, in facilitating the removal process. In addition to microglia and macrophages, which serve as the primary effector cells in the disease phase, a variety of other cell types such as astrocytes, Schwann cells, and vascular endothelial cells have been demonstrated to engage in the phagocytosis of myelin debris. Furthermore, we have concluded that oligodendrocyte precursor cells, as myelination precursor cells, also exhibit this phagocytic capability. Moreover, our research group has innovatively identified the low-density lipoprotein receptor as a potential phagocytic receptor for myelin debris. In this article, we discuss the functional processes of various phagocytes in demyelinating diseases. We also highlight the alterations in signaling pathways triggered by phagocytosis, and provide a comprehensive overview of the various phagocytic receptors involved. Such insights are invaluable for pinpointing potential therapeutic strategies for the treatment of demyelinating diseases by targeting phagocytosis.
Collapse
Affiliation(s)
- Rui Gao
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Sheng-Jiao Song
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Meng-Yuan Tian
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Li-Bin Wang
- Neurosurgery Department, Huazhong University of Science and Technology Union Shenzhen Hospital/Shenzhen Nanshan Hospital, Shenzhen, Guangdong, China
| | - Yuan Zhang
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xing Li
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| |
Collapse
|
9
|
Abd Razak NH, Idris J, Hassan NH, Zaini F, Muhamad N, Daud MF. Unveiling the Role of Schwann Cell Plasticity in the Pathogenesis of Diabetic Peripheral Neuropathy. Int J Mol Sci 2024; 25:10785. [PMID: 39409114 PMCID: PMC11476695 DOI: 10.3390/ijms251910785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 10/20/2024] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a prevalent complication of diabetes that affects a significant proportion of diabetic patients worldwide. Although the pathogenesis of DPN involves axonal atrophy and demyelination, the exact mechanisms remain elusive. Current research has predominantly focused on neuronal damage, overlooking the potential contributions of Schwann cells, which are the predominant glial cells in the peripheral nervous system. Schwann cells play a critical role in neurodevelopment, neurophysiology, and nerve regeneration. This review highlights the emerging understanding of the involvement of Schwann cells in DPN pathogenesis. This review explores the potential role of Schwann cell plasticity as an underlying cellular and molecular mechanism in the development of DPN. Understanding the interplay between Schwann cell plasticity and diabetes could reveal novel strategies for the treatment and management of DPN.
Collapse
Affiliation(s)
- Nurul Husna Abd Razak
- Institute of Medical Science Technology, Universiti Kuala Lumpur (UniKL), A1-1, Jalan TKS 1, Taman Kajang Sentral, Kajang 43000, Selangor, Malaysia; (N.H.A.R.); (J.I.); (N.H.H.)
| | - Jalilah Idris
- Institute of Medical Science Technology, Universiti Kuala Lumpur (UniKL), A1-1, Jalan TKS 1, Taman Kajang Sentral, Kajang 43000, Selangor, Malaysia; (N.H.A.R.); (J.I.); (N.H.H.)
| | - Nur Hidayah Hassan
- Institute of Medical Science Technology, Universiti Kuala Lumpur (UniKL), A1-1, Jalan TKS 1, Taman Kajang Sentral, Kajang 43000, Selangor, Malaysia; (N.H.A.R.); (J.I.); (N.H.H.)
| | - Fazlin Zaini
- Royal College of Medicine Perak, Universiti Kuala Lumpur (UniKL), No. 3, Jalan Greentown, Ipoh 30450, Perak, Malaysia; (F.Z.); (N.M.)
| | - Noorzaid Muhamad
- Royal College of Medicine Perak, Universiti Kuala Lumpur (UniKL), No. 3, Jalan Greentown, Ipoh 30450, Perak, Malaysia; (F.Z.); (N.M.)
| | - Muhammad Fauzi Daud
- Institute of Medical Science Technology, Universiti Kuala Lumpur (UniKL), A1-1, Jalan TKS 1, Taman Kajang Sentral, Kajang 43000, Selangor, Malaysia; (N.H.A.R.); (J.I.); (N.H.H.)
| |
Collapse
|
10
|
Oshima E, Hayashi Y, Xie Z, Sato H, Hitomi S, Shibuta I, Urata K, Ni J, Iwata K, Shirota T, Shinoda M. M2 macrophage-derived cathepsin S promotes peripheral nerve regeneration via fibroblast-Schwann cell-signaling relay. J Neuroinflammation 2023; 20:258. [PMID: 37946211 PMCID: PMC10636844 DOI: 10.1186/s12974-023-02943-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Although peripheral nerves have an intrinsic self-repair capacity following damage, functional recovery is limited in patients. It is a well-established fact that macrophages accumulate at the site of injury. Numerous studies indicate that the phenotypic shift from M1 macrophage to M2 macrophage plays a crucial role in the process of axon regeneration. This polarity change is observed exclusively in peripheral macrophages but not in microglia and CNS macrophages. However, the molecular basis of axonal regeneration by M2 macrophage is not yet fully understood. Herein, we aimed to identify the M2 macrophage-derived axon regeneration factor. METHODS We established a peripheral nerve injury model by transection of the inferior alveolar nerve (IANX) in Sprague-Dawley rats. Transcriptome analysis was performed on the injured nerve. Recovery from sensory deficits in the mandibular region and histological reconnection of IAN after IANX were assessed in rats with macrophage depletion by clodronate. We investigated the effects of adoptive transfer of M2 macrophages or M2-derived cathepsin S (CTSS) on the sensory deficit. CTSS initiating signaling was explored by western blot analysis in IANX rats and immunohistochemistry in co-culture of primary fibroblasts and Schwann cells (SCs). RESULTS Transcriptome analysis revealed that CTSS, a macrophage-selective lysosomal protease, was upregulated in the IAN after its injury. Spontaneous but partial recovery from a sensory deficit in the mandibular region after IANX was abrogated by macrophage ablation at the injured site. In addition, a robust induction of c-Jun, a marker of the repair-supportive phenotype of SCs, after IANX was abolished by macrophage ablation. As in transcriptome analysis, CTSS was upregulated at the injured IAN than in the intact IAN. Endogenous recovery from hypoesthesia was facilitated by supplementation of CTSS but delayed by pharmacological inhibition or genetic silencing of CTSS at the injured site. Adoptive transfer of M2-polarized macrophages at this site facilitated sensory recovery dependent on CTSS in macrophages. Post-IANX, CTSS caused the cleavage of Ephrin-B2 in fibroblasts, which, in turn, bound EphB2 in SCs. CTSS-induced Ephrin-B2 cleavage was also observed in human sensory nerves. Inhibition of CTSS-induced Ephrin-B2 signaling suppressed c-Jun induction in SCs and sensory recovery. CONCLUSIONS These results suggest that M2 macrophage-derived CTSS contributes to axon regeneration by activating SCs via Ephrin-B2 shedding from fibroblasts.
Collapse
Affiliation(s)
- Eri Oshima
- Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo, 142-8515, Japan
- Department of Physiology, Nihon University School of Dentistry, 1-8-13, Kandasurugadai, Chiyoda-Ku, Tokyo, 101-8310, Japan
| | - Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, 1-8-13, Kandasurugadai, Chiyoda-Ku, Tokyo, 101-8310, Japan.
| | - Zhen Xie
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Hitoshi Sato
- Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo, 142-8515, Japan
| | - Suzuro Hitomi
- Department of Physiology, Nihon University School of Dentistry, 1-8-13, Kandasurugadai, Chiyoda-Ku, Tokyo, 101-8310, Japan
| | - Ikuko Shibuta
- Department of Physiology, Nihon University School of Dentistry, 1-8-13, Kandasurugadai, Chiyoda-Ku, Tokyo, 101-8310, Japan
| | - Kentaro Urata
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, 1-8-13, Kandasurugadai, Chiyoda-Ku, Tokyo, 101-8310, Japan
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, 1-8-13, Kandasurugadai, Chiyoda-Ku, Tokyo, 101-8310, Japan
| | - Tatsuo Shirota
- Department of Oral and Maxillofacial Surgery, Showa University School of Dentistry, 2-1-1 Kitasenzoku, Ota-ku, Tokyo, 142-8515, Japan
| | - Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry, 1-8-13, Kandasurugadai, Chiyoda-Ku, Tokyo, 101-8310, Japan
| |
Collapse
|
11
|
Bayezid KC, Joukal M, Karabulut E, Macek J, Moravcová L, Streit L. Donor nerve selection in free gracilis muscle transfer for facial reanimation. A systematic review and meta-analysis of clinical outcomes. J Plast Reconstr Aesthet Surg 2023; 82:31-47. [PMID: 37148809 DOI: 10.1016/j.bjps.2023.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND One of the critical factors in facial reanimation is selecting the donor nerve. The most favored neurotizers are the contralateral facial nerve with a cross-face nerve graft (CFNG) and motor nerve to the masseter (MNM). A relatively new dual innervation (DI) method has shown successful results. This study aimed to compare the clinical outcomes of different neurotization strategies for free gracilis muscle transfer (FGMT). METHODS The Scopus and WoS databases were queried with 21 keywords. Three-stage article selection was performed for the systematic review. Articles presenting quantitative data for commissure excursion and facial symmetry were included in meta-analysis, using random-effects model. ROBINS-I tool and Newcastle-Ottawa scale were used to assess bias and study quality. RESULTS One hundred forty-seven articles containing FGMT were systematically reviewed. Most studies indicated CFNG as the first choice. MNM was primarily indicated in bilateral palsy and in elderly. Clinical outcomes of DI studies were promising. 13 studies including 435 observations (179 CFNG, 182 MNM, 74 DI) were eligible for meta-analysis. The mean change in commissure excursion was 7.15 mm (95% CI: 4.57-9.72) for CFNG, 8.46 mm (95% CI: 6.86-10.06) for MNM, and 5.18 mm (95% CI: 4.01-6.34) for DI. In pairwise comparisons, a significant difference was found between MNM and DI (p = 0.0011), despite the superior outcomes described in DI studies. No statistically significant difference was found in resting and smile symmetry (p = 0.625, p = 0.780). CONCLUSIONS CFNG is the most preferred neurotizer, and MNM is a reliable second option. Outcomes of DI studies are promising, but more comparison studies are needed to draw conclusions. Our meta-analysis was limited by incompatibility of the assessment scales. Consensus on a standardized assessment system would add value to future studies.
Collapse
Affiliation(s)
- K Can Bayezid
- Department of Plastic and Aesthetic Surgery, St. Anne's University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Erdem Karabulut
- Department of Biostatistics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Jan Macek
- Department of Plastic and Aesthetic Surgery, St. Anne's University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ludmila Moravcová
- Masaryk University Campus Library, Masaryk University, Brno, Czech Republic
| | - Libor Streit
- Department of Plastic and Aesthetic Surgery, St. Anne's University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
12
|
García-García ÓD, El Soury M, Campos F, Sánchez-Porras D, Geuna S, Alaminos M, Gambarotta G, Chato-Astrain J, Raimondo S, Carriel V. Comprehensive ex vivo and in vivo preclinical evaluation of novel chemo enzymatic decellularized peripheral nerve allografts. Front Bioeng Biotechnol 2023; 11:1162684. [PMID: 37082209 PMCID: PMC10111265 DOI: 10.3389/fbioe.2023.1162684] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
As a reliable alternative to autografts, decellularized peripheral nerve allografts (DPNAs) should mimic the complex microstructure of native nerves and be immunogenically compatible. Nevertheless, there is a current lack of decellularization methods able to remove peripheral nerve cells without significantly altering the nerve extracellular matrix (ECM). The aims of this study are firstly to characterize ex vivo, in a histological, biochemical, biomechanical and ultrastructural way, three novel chemical-enzymatic decellularization protocols (P1, P2 and P3) in rat sciatic nerves and compared with the Sondell classic decellularization method and then, to select the most promising DPNAs to be tested in vivo. All the DPNAs generated present an efficient removal of the cellular material and myelin, while preserving the laminin and collagen network of the ECM (except P3) and were free from any significant alterations in the biomechanical parameters and biocompatibility properties. Then, P1 and P2 were selected to evaluate their regenerative effectivity and were compared with Sondell and autograft techniques in an in vivo model of sciatic defect with a 10-mm gap, after 15 weeks of follow-up. All study groups showed a partial motor and sensory recovery that were in correlation with the histological, histomorphometrical and ultrastructural analyses of nerve regeneration, being P2 the protocol showing the most similar results to the autograft control group.
Collapse
Affiliation(s)
- Óscar Darío García-García
- Tissue Engineering Group, Department of Histology, University of Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Doctoral Program in Biomedicine, University of Granada, Granada, Spain
- Department of Clinical and Biological Sciences and Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano, Italy
| | - Marwa El Soury
- Tissue Engineering Group, Department of Histology, University of Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Department of Clinical and Biological Sciences and Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano, Italy
| | - Fernando Campos
- Tissue Engineering Group, Department of Histology, University of Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - David Sánchez-Porras
- Tissue Engineering Group, Department of Histology, University of Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Stefano Geuna
- Department of Clinical and Biological Sciences and Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano, Italy
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, University of Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences and Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano, Italy
| | - Jesús Chato-Astrain
- Tissue Engineering Group, Department of Histology, University of Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- *Correspondence: Jesús Chato-Astrain, ; Víctor Carriel,
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences and Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Orbassano, Italy
| | - Víctor Carriel
- Tissue Engineering Group, Department of Histology, University of Granada and Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- *Correspondence: Jesús Chato-Astrain, ; Víctor Carriel,
| |
Collapse
|
13
|
Effects of Semaphorin3A on the growth of sensory and motor neurons. Exp Cell Res 2023; 424:113506. [PMID: 36764590 DOI: 10.1016/j.yexcr.2023.113506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
After peripheral nerve injury, motor and sensory axons can regenerate, but the inaccurate reinnervation of the target leads to poor functional recovery. Schwann cells (SCs) express sensory and motor phenotypes associated with selective regeneration. Semaphorin 3A (Sema3A) is an axonal chemorepellent that plays an essential role in axon growth. SCs can secret Sema3A, and Sema3A presents a different expression pattern at the proximal and distal ends of injured sensory and motor nerves. Hence, in our study, the protein expression and secretion of Sema3A in sensory and motor SCs and the expression of its receptor Neuropilin-1 (Nrp1) in dorsal root ganglia (DRG) sensory neurons (SNs) and spinal cord motor neurons (MNs) were detected by Western blot and ELISA. The effect of Sema3A at different concentrations on neurite growth of sensory and motor neurons was observed by immunostaining. Also, by blocking the Nrp1 receptor on neurons, the effect of Sema3A on neurite growth was observed. Finally, we observed the neurite growth of sensory and motor neurons cocultured with Sema3A siRNA transfected SCs by immunostaining. The results suggested that the expression and secretion of Sema3A in sensory SCs are more significant than that in motor SCs, and the expression of its receptor Nrp1 in SNs is higher than in MNs. Sema3A could inhibit the neurite growth of sensory and motor neurons via Nrp1, and Sema3A has a more substantial effect on the neurite growth of SNs. These data provide evidence that SC-secreted Sema3A might play a role in selective regeneration by a preferential effect on SNs.
Collapse
|
14
|
Al-Arbeed TA, Renno WM, Al-Hassan JM. Neuroregeneration of injured peripheral nerve by fraction B of catfish epidermal secretions through the reversal of the apoptotic pathway and DNA damage. Front Pharmacol 2023; 14:1085314. [PMID: 36726586 PMCID: PMC9885176 DOI: 10.3389/fphar.2023.1085314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/03/2023] [Indexed: 01/17/2023] Open
Abstract
Introduction: Crush injuries occur from acute traumatic nerve compression resulting in different degrees of neural damage leading to permanent functional deficits. Recently, we have shown that administration of Fraction B (FB) derived from catfish epidermal secretions accelerates healing of damaged nerve in a sciatic nerve crush injury, as it ameliorates the neurobehavioral deficits and enhances axonal regeneration, as well as protects spinal neurons and increases astrocytic activity and decreasing GAP-43 expression. The present study aimed to investigate the role of FB treatment on the apoptotic pathway in the neuroregeneration of the sciatic nerve crush injury. Methods: Male Wistar rats were randomly assigned into five groups: (I) SHAM, (II) CRUSH, (III) CRUSH + (1.5 mg/kg) FB, (IV) CRUSH + (3 mg/kg) FB, and (V) CRUSH + (4.5 mg/kg) FB. Rats underwent sciatic nerve crush surgery, followed by treatment with FB administered intraperitoneally (IP) daily for two weeks and then sacrificed at the end of the fourth week. Results: FB improved the recovery of neurobehavioral functions with a concomitant increase in axonal regeneration and neuroprotective effects on spinal cord neurons following crush injury. Further, FB enhanced Schwann cells (SCs) proliferation with a significant increase in myelin basic protein expression. FB-treated animals demonstrated higher numbers of neurons in the spinal cord, possibly through ameliorating oxidative DNA damage and alleviating the mitochondrial-dependent apoptotic pathway by inhibiting the release of cytochrome c and the activation of caspase-3 in the spinal cord neurons. Conclusion: FB alleviates the neurodegenerative changes in the lumbar spinal cord neurons and recovers the decrease in the neuronal count through its anti-apoptotic and DNA antioxidative properties.
Collapse
Affiliation(s)
- Taiba A. Al-Arbeed
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Waleed M. Renno
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait,*Correspondence: Waleed M. Renno,
| | - Jassim M. Al-Hassan
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
15
|
Yang H, Dong Y, Wang Z, Lai J, Yao C, Zhou H, Alhaskawi A, Hasan Abdullah Ezzi S, Kota VG, Hasan Abdulla Hasan Abdulla M, Lu H. Traumatic neuromas of peripheral nerves: Diagnosis, management and future perspectives. Front Neurol 2023; 13:1039529. [PMID: 36712443 PMCID: PMC9875025 DOI: 10.3389/fneur.2022.1039529] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Traumatic neuromas are infrequent in clinical settings but are prevalent following trauma or surgery. A traumatic neuroma is not a true malignancy, rather, it is a hyperplastic, reparative nerve reaction after injury and typically manifests as a nodular mass. The most common clinical manifestations include painful hypersensitivity and the presence of a trigger point that causes neuralgic pain, which could seriously decrease the living standards of patients. While various studies are conducted aiming to improve current diagnosis and management strategies via the induction of emerging imaging tools and surgical or conservative treatment. However, researchers and clinicians have yet to reach a consensus regarding traumatic neuromas. In this review, we aim to start with the possible underlying mechanisms of traumatic neuromas, elaborate on the diagnosis, treatment, and prevention schemes, and discuss the current experiment models and advances in research for the future management of traumatic neuromas.
Collapse
Affiliation(s)
- Hu Yang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanzhao Dong
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zewei Wang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingtian Lai
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chenjun Yao
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haiying Zhou
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ahmad Alhaskawi
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | | | | | | | - Hui Lu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
- Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
Marsh EB, Schellhardt L, Hunter DA, Mackinnon SE, Snyder-Warwick AK, Wood MD. Electrical stimulation or tacrolimus (FK506) alone enhances nerve regeneration and recovery after nerve surgery, while dual use reduces variance and combines strengths of each in promoting enhanced outcomes. Muscle Nerve 2023; 67:78-87. [PMID: 36333946 DOI: 10.1002/mus.27748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/24/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION/AIMS Repaired nerve injuries can fail to achieve functional recovery. Therapeutic options beyond surgery, such as systemic tacrolimus (FK506) and electrical stimulation (E-stim), can improve recovery. We tested whether dual administration of FK506 and E-stim enhances regeneration and recovery more than either therapeutic alone. METHODS Rats were randomized to four groups: E-stim, FK506, FK506 + E-stim, and repair alone. All groups underwent tibial nerve transection and repair. Two sets of animals were created to measure outcomes of early nerve regeneration using nerve histology (n = 36) and functional recovery (n = 42) (21- and 42-day endpoints, respectively). Functional recovery was measured by behavioral analyses (walking track and grid walk) and, at the endpoint, muscle mass and force. RESULTS Dual E-stim and FK506 administration produced histomorphometric measurements of nerve regeneration no different than either therapeutic alone. All treatments were superior to repair alone (FK506, P < .0001; E-stim, P < .05; FK506 + E-stim, P < .05). The E-stim and FK506 + E-stim groups had improved behavioral recovery compared with repair alone (at 6 weeks: E-stim, P < .05; FK506 + E-stim, P < .01). The FK506 group had improved recovery based on walking-track analysis (at 6 weeks: P < .001) and muscle force and mass (P < .05). The concurrent use of both therapies ensured earlier functional recovery and decreased variability in functional outcomes compared with either therapy alone, suggesting a moderate benefit. DISCUSSION Dual administration of FK506 and E-stim showed minimal additive effects to further improve regeneration or recovery compared with either therapy alone. The data suggest the combination of FK506 and E-stim appears to combine the relative strengths of each therapeutic.
Collapse
Affiliation(s)
- Evan B Marsh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Lauren Schellhardt
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Daniel A Hunter
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Susan E Mackinnon
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Alison K Snyder-Warwick
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Matthew D Wood
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
17
|
Rao Z, Lin Z, Song P, Quan D, Bai Y. Biomaterial-Based Schwann Cell Transplantation and Schwann Cell-Derived Biomaterials for Nerve Regeneration. Front Cell Neurosci 2022; 16:926222. [PMID: 35836742 PMCID: PMC9273721 DOI: 10.3389/fncel.2022.926222] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/31/2022] [Indexed: 12/13/2022] Open
Abstract
Schwann cells (SCs) dominate the regenerative behaviors after peripheral nerve injury by supporting axonal regrowth and remyelination. Previous reports also demonstrated that the existence of SCs is beneficial for nerve regeneration after traumatic injuries in central nervous system. Therefore, the transplantation of SCs/SC-like cells serves as a feasible cell therapy to reconstruct the microenvironment and promote nerve functional recovery for both peripheral and central nerve injury repair. However, direct cell transplantation often leads to low efficacy, due to injection induced cell damage and rapid loss in the circulatory system. In recent years, biomaterials have received great attention as functional carriers for effective cell transplantation. To better mimic the extracellular matrix (ECM), many biodegradable materials have been engineered with compositional and/or topological cues to maintain the biological properties of the SCs/SCs-like cells. In addition, ECM components or factors secreted by SCs also actively contribute to nerve regeneration. Such cell-free transplantation approaches may provide great promise in clinical translation. In this review, we first present the current bio-scaffolds engineered for SC transplantation and their achievement in animal models and clinical applications. To this end, we focus on the physical and biological properties of different biomaterials and highlight how these properties affect the biological behaviors of the SCs/SC-like cells. Second, the SC-derived biomaterials are also reviewed and discussed. Finally, the relationship between SCs and functional biomaterials is summarized, and the trends of their future development are predicted toward clinical applications.
Collapse
Affiliation(s)
- Zilong Rao
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Zudong Lin
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Panpan Song
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Daping Quan
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Ying Bai
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
18
|
León-Andrino A, Noriega DC, Lapuente JP, Pérez-Valdecantos D, Caballero-García A, Herrero AJ, Córdova A. Biological Approach in the Treatment of External Popliteal Sciatic Nerve (Epsn) Neurological Injury: Review. J Clin Med 2022; 11:2804. [PMID: 35628928 PMCID: PMC9144828 DOI: 10.3390/jcm11102804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
The external popliteal sciatic nerve (EPSN) is the nerve of the lower extremity most frequently affected by compressive etiology. Its superficial and sinuous anatomical course is closely related to other rigid anatomical structures and has an important dynamic neural component. Therefore, this circumstance means that this nerve is exposed to multiple causes of compressive etiology. Despite this fact, there are few publications with extensive case studies dealing with treatment. In this review, we propose to carry out a narrative review of the neuropathy of the EPSN, including an anatomical reminder, its clinical presentation and diagnosis, as well as its surgical and biological approach. The most novel aspect we propose is the review of the possible role of biological factors in the reversal of this situation.
Collapse
Affiliation(s)
- Alejandro León-Andrino
- Department of Orthopedic Surgery, Clinic University Hospital of Valladolid, 47005 Valladolid, Spain;
| | - David C. Noriega
- Department of Orthopedic Surgery, Clinic University Hospital of Valladolid, 47005 Valladolid, Spain;
- Department of Surgery, Ophthalmology, Otorhinolaryngology and Physiotherapy, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| | - Juan P. Lapuente
- SCO (Scientific Chief Officer) Laboratorio de Biología Molecular y Celular R4T, University Hospital of Fuenlabrada, 28942 Fuenlabrada, Spain;
| | - Daniel Pérez-Valdecantos
- Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, University of Valladolid, Campus Duques de Soria, 42004 Soria, Spain; (D.P.-V.); (A.C.)
| | - Alberto Caballero-García
- Department of Anatomy and Radiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, University of Valladolid, Campus Duques de Soria, 42004 Soria, Spain;
| | - Azael J. Herrero
- Department of Health Sciences, Miguel de Cervantes European University, 47012 Valladolid, Spain;
| | - Alfredo Córdova
- Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, University of Valladolid, Campus Duques de Soria, 42004 Soria, Spain; (D.P.-V.); (A.C.)
| |
Collapse
|
19
|
Keane GC, Pan D, Roh J, Larson EL, Schellhardt L, Hunter DA, Snyder-Warwick AK, Moore AM, Mackinnon SE, Wood MD. The Effects of Intraoperative Electrical Stimulation on Regeneration and Recovery After Nerve Isograft Repair in a Rat Model. Hand (N Y) 2022; 17:540-548. [PMID: 32666827 PMCID: PMC9112755 DOI: 10.1177/1558944720939200] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background: Therapeutic electrical stimulation (ES) applied to repaired nerve is a promising treatment option to improve regeneration. However, few studies address the impact of ES following nerve graft reconstruction. The purpose of this study was to determine if ES applied to a nerve repair using nerve isograft in a rodent model could improve nerve regeneration and functional recovery. Methods: Adult rats were randomized to 2 groups: "ES" and "Control." Rats received a tibial nerve transection that was repaired using a tibial nerve isograft (1.0 cm length), where ES was applied immediately after repair in the applicable group. Nerve was harvested 2 weeks postrepair for immunohistochemical analysis of axon growth and macrophage accumulation. Independently, rats were assessed using walking track and grid-walk analysis for up to 21 weeks. Results: At 2 weeks, more robust axon regeneration and greater macrophage accumulation was observed within the isografts for the ES compared to Control groups. Both walking track and grid-walk analysis revealed that return of functional recovery was accelerated by ES. The ES group demonstrated improved functional recovery over time, as well as improved recovery compared to the Control group at 21 weeks. Conclusions: ES improved early axon regeneration into a nerve isograft and was associated with increased macrophage and beneficial M2 macrophage accumulation within the isograft. ES ultimately improved functional recovery compared to isograft repair alone. This study supports the clinical potential of ES to improve the management of nerve injuries requiring a nerve graft repair.
Collapse
Affiliation(s)
| | - Deng Pan
- Washington University in St. Louis, MO, USA
| | - Joseph Roh
- Washington University in St. Louis, MO, USA
| | | | | | | | | | | | | | - Matthew D. Wood
- Washington University in St. Louis, MO, USA,Matthew D. Wood, Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, Washington University in St. Louis, Campus Box 8238, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
20
|
Richards JT, Baird MD, Tintle SM, Souza JM, Renninger CH, Potter BK. Peripheral Nerve Management in Extremity Amputations. Orthop Clin North Am 2022; 53:155-166. [PMID: 35365260 DOI: 10.1016/j.ocl.2022.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effective management of peripheral nerves in amputation surgery is critical to optimizing patient outcomes. Nerve-related pain after amputation is common, maybe a source of dissatisfaction and functional impairment, and should be considered in all amputees presenting with pain and dysfunction. While traction neurectomy or transposition has long been the standard of care, both regenerative peripheral nerve interface (RPNI) and targeted muscle reinnervation (TMR) have emerged as promising techniques to improve neuroma-related and phantom pain. A multi-disciplinary and multi-modal approach is essential for the optimal management of amputees both acutely and in the delayed or chronic setting.
Collapse
Affiliation(s)
- John T Richards
- Department of Orthopaedic Surgery, Uniformed Services University-Walter Reed Department of Surgery, Walter Reed National Military Medical Center, Bethesda, MD, USA; Department of Orthopaedics, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Michael D Baird
- Department of Orthopaedic Surgery, Uniformed Services University-Walter Reed Department of Surgery, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Scott M Tintle
- Department of Orthopaedic Surgery, Uniformed Services University-Walter Reed Department of Surgery, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Jason M Souza
- Department of Plastic and Reconstructive Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Christopher H Renninger
- Department of Orthopaedic Surgery, Uniformed Services University-Walter Reed Department of Surgery, Walter Reed National Military Medical Center, Bethesda, MD, USA; Department of Orthopaedics, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Benjamin K Potter
- Department of Orthopaedic Surgery, Uniformed Services University-Walter Reed Department of Surgery, Walter Reed National Military Medical Center, Bethesda, MD, USA
| |
Collapse
|
21
|
Xue W, Kong Y, Abu R, Roy P, Huh SH, Kuss M, Kumar V, Duan B. Regulation of Schwann Cell and DRG Neurite Behaviors within Decellularized Peripheral Nerve Matrix. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8693-8704. [PMID: 35148064 DOI: 10.1021/acsami.1c20320] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Decellularized nerve hydrogels (dNHs) containing bioactive molecules are promising biomaterials for peripheral nerve injury (PNI) treatment and have been extensively applied in clinical and preclinical practice. However, most previous research projects studied their influences on nerve-related cellular behaviors in two dimensions (2D) without taking hydrogel biomechanics into consideration. The molecular mechanisms underlying the beneficial microenvironment provided by dNHs also remain unclear. In this study, dNHs from rat sciatic nerves were prepared, and their effects on Schwann cell (SC) and dorsal root ganglion (DRG) neurite behaviors were evaluated and compared to commercial rat tail type I collagen (Col) hydrogels in three-dimensional (3D) environments. We found that dNHs could promote SC proliferation and neurite outgrowth, and both the hydrogel mechanics and components contributed to the dNH functionalization. Through proteomics analysis, we found that laminin (LAM) and type V collagen (COLV) exclusively and abundantly existed in dNHs. By adding exogenous LAM and COLV into Col hydrogels, we demonstrated that they regulated SC gene expression and that LAM could promote SC spreading and neurite outgrowth, while COLV improved SC proliferation. Lastly, dNHs were fabricated into paper-like, aligned nerve scaffolds through unidirectional freezing to expand the dNH applications in PNI treatment.
Collapse
Affiliation(s)
- Wen Xue
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Yunfan Kong
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Rafay Abu
- Mass Spectrometry & Proteomics Core, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Pooja Roy
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Sung-Ho Huh
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Mitchell Kuss
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Vikas Kumar
- Mass Spectrometry & Proteomics Core, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Department of Mechanical and Materials Engineering, University of Nebraska─Lincoln, Lincoln, Nebraska 68588, United States
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
22
|
DHI Increases the Proliferation and Migration of Schwann Cells Through the PI3K/AKT Pathway and the Expression of CXCL12 and GDNF to Promote Facial Nerve Function Repair. Neurochem Res 2022; 47:1329-1340. [PMID: 35080688 DOI: 10.1007/s11064-022-03532-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 12/23/2021] [Accepted: 01/17/2022] [Indexed: 10/19/2022]
Abstract
The facial nerve is one of the vulnerable nerves in otolaryngology. Repair and recovery of facial nerve injury have a high priority in clinical practice. The proliferation and migration of Schwann cells are considered of great significance in the process of nerve injury repair. Danhong injection (DHI), as a common drug for cardiovascular and cerebrovascular diseases, has been fully certified in neuroprotection research, but its role in facial nerve injury is still not clear. Our study found that DHI can promote the proliferation and migration of RSC96 cells, a Schwann cell line, and this effect is related to the activation of the PI3K/AKT pathway. LY294002, an inhibitor of PI3K, inhibits the proliferation and migration of RSC96 cells. Further studies have found that DHI can also promote the expression of CXCL12 and GDNF at gene and protein levels, and CXCL12 is, while GDNF is not, PI3K/AKT pathway-dependent. Animal experiments also confirmed that DHI could promote CXCL12 and GDNF expression and promote facial nerve function recovery and myelin regeneration. In conclusion, our in vitro and in vivo experiments demonstrated that DHI could promote the proliferation and migration of Schwann cells through the PI3K/AKT pathway and increase the expression of CXCL12 and GDNF to promote facial nerve function repair.
Collapse
|
23
|
Wang WJ, Zhu WD, Tremp M, Chen G, Wang ZY, Wu H, Wang W. Facial reanimation with interposition nerve graft or masseter nerve transfer: a comparative retrospective study. Neural Regen Res 2021; 17:1125-1130. [PMID: 34558541 PMCID: PMC8552848 DOI: 10.4103/1673-5374.324862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Both interposition nerve grafts and masseter nerve transfers have been successfully used for facial reanimation after irreversible injuries to the cranial portion of the facial nerve. However, no comparative study of these two procedures has yet been reported. In this two-site, two-arm, retrospective case review study, 32 patients were included. Of these, 17 patients (eight men and nine women, mean age 42.1 years) underwent interposition nerve graft after tumor extirpation or trauma between 2003 and 2006 in the Ear Institute, School of Medicine, Shanghai Jiao Tong University, China, and 15 patients (six men and nine women, mean age 40.6 years) underwent masseter-to-facial nerve transfer after tumor extirpation or trauma between November 2010 and February 2016 in Shanghai Ninth People's Hospital, China. More patients achieved House-Brackmann III recovery after masseter nerve repair than interposition nerve graft repair (15/15 vs. 12/17). The mean oral commissure excursion ratio was also higher in patients who underwent masseter nerve transfer than in patients subjected to an interposition nerve graft. These findings suggest that masseter nerve transfer results in strong oral commissure excursion, avoiding obvious synkinesis, while an interposition nerve graft provides better resting symmetry. This study was approved by the Institutional Ethics Committee, Shanghai Ninth People's Hospital, China (approval No. SH9H-2019-T332-1) on December 12, 2019.
Collapse
Affiliation(s)
- Wen-Jin Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Dong Zhu
- Department of Otolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mathias Tremp
- Department of Plastic, Reconstructive, Aesthetic and Handsurgery, University Hospital Basel, Basel, Switzerland
| | - Gang Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhao-Yan Wang
- Department of Otolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Wu
- Department of Otolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Wong FC, Ye L, Demir IE, Kahlert C. Schwann cell-derived exosomes: Janus-faced mediators of regeneration and disease. Glia 2021; 70:20-34. [PMID: 34519370 DOI: 10.1002/glia.24087] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/20/2022]
Abstract
The phenotypic plasticity of Schwann cells (SCs) has contributed to the regenerative potential of the peripheral nervous system (PNS), but also pathological processes. This double-sided effect has led to an increasing attention to the role of extracellular vesicles (EVs) or exosomes in SCs to examine the intercellular communication between SCs and their surroundings. Here, we first describe the current knowledge of SC and EV biology, which forms the basis for the updates on advances in SC-derived exosomes research. We seek to explore in-depth the exosome-mediated molecular mechanisms involved in the regulation of SCs and their microenvironment. This review concludes with potential applications of SC-derived exosomes as delivery vehicles for therapeutics and biomarkers. The goal of this review is to emphasize the crucial role of SC-derived exosomes in the functional integration of the PNS, highlighting an emerging area in which there is much to explore and re-explore.
Collapse
Affiliation(s)
- Fang Cheng Wong
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Linhan Ye
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany.,Germany German Cancer Consortium (DKTK), Partner Site, Munich, Germany.,CRC 1321 Modelling and Targeting Pancreatic Cancer, Munich, Germany
| | - Ihsan Ekin Demir
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany.,Germany German Cancer Consortium (DKTK), Partner Site, Munich, Germany.,Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.,CRC 1321 Modelling and Targeting Pancreatic Cancer, Munich, Germany.,Else Kröner Clinician Scientist Professor for "Translational Pancreatic Surgery
| | - Christoph Kahlert
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
| |
Collapse
|
25
|
Repurposing Small Molecules to Target PPAR-γ as New Therapies for Peripheral Nerve Injuries. Biomolecules 2021; 11:biom11091301. [PMID: 34572514 PMCID: PMC8465622 DOI: 10.3390/biom11091301] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/08/2021] [Accepted: 08/14/2021] [Indexed: 12/21/2022] Open
Abstract
The slow rate of neuronal regeneration that follows peripheral nerve repair results in poor recovery, particularly where reinnervation of muscles is delayed, leading to atrophy and permanent loss of function. There is a clear clinical need to develop drug treatments that can accelerate nerve regeneration safely, restoring connections before the target tissues deteriorate irreversibly. The identification that the Rho/Rho-associated kinase (ROCK) pathway acts to limit neuronal growth rate is a promising advancement towards the development of drugs. Targeting Rho or ROCK directly can act to suppress the activity of this pathway; however, the pathway can also be modulated through the activation of upstream receptors; one of particular interest being peroxisome proliferator-activated receptor gamma (PPAR-γ). The connection between the PPAR-γ receptor and the Rho/ROCK pathway is the suppression of the conversion of inactive guanosine diphosphate (GDP)-Rho to active guanosine triphosphate GTP-Rho, resulting in the suppression of Rho/ROCK activity. PPAR-γ is known for its role in cellular metabolism that leads to cell growth and differentiation. However, more recently there has been a growing interest in targeting PPAR-γ in peripheral nerve injury (PNI). The localisation and expression of PPAR-γ in neural cells following a PNI has been reported and further in vitro and in vivo studies have shown that delivering PPAR-γ agonists following injury promotes nerve regeneration, leading to improvements in functional recovery. This review explores the potential of repurposing PPAR-γ agonists to treat PNI and their prospective translation to the clinic.
Collapse
|
26
|
Ganesh Kumar N, Kung TA. Regenerative Peripheral Nerve Interfaces for the Treatment and Prevention of Neuromas and Neuroma Pain. Hand Clin 2021; 37:361-371. [PMID: 34253309 DOI: 10.1016/j.hcl.2021.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A neuroma occurs when a regenerating transected peripheral nerve has no distal target to reinnervate. This situation can result in a hypersensitive free nerve ending that causes debilitating pain to affected patients. No techniques to treat symptomatic neuromas have shown consistent results. One novel physiologic solution is the regenerative peripheral nerve interface (RPNI). RPNI consists of a transected peripheral nerve that is implanted into an autologous free skeletal muscle graft. Early clinical studies have shown promising results in the use of RPNIs to treat and prevent symptomatic neuromas. This review article describes the rationale behind the success of RPNIs and its clinical applications.
Collapse
Affiliation(s)
- Nishant Ganesh Kumar
- Section of Plastic Surgery, Department of Surgery, University of Michigan, 1500 East Medical Center Drive, 2130 Taubman Center, Ann Arbor, MI 48109-5231, USA
| | - Theodore A Kung
- Section of Plastic Surgery, Department of Surgery, University of Michigan, 1500 East Medical Center Drive, 2130 Taubman Center, Ann Arbor, MI 48109-5231, USA.
| |
Collapse
|
27
|
Koizumi Y, Mizutari K, Kawauchi S, Sato S, Shiotani A, Kakehata S. Y-27632, a ROCK inhibitor, improved laser-induced shock wave (LISW)-induced cochlear synaptopathy in mice. Mol Brain 2021; 14:105. [PMID: 34217338 PMCID: PMC8254252 DOI: 10.1186/s13041-021-00819-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/28/2021] [Indexed: 11/10/2022] Open
Abstract
Recently, a pathological condition called cochlear synaptopathy has been clarified, and as a disorder of the auditory nerve synapses that occurs prior to failure of hair cells, it has been recognized as a major cause of sensorineural hearing loss. However, cochlear synaptopathy is untreatable. Inhibition of rho-associated coiled-coil containing protein kinase (ROCK), a serine-threonine protein kinase, has been reported to have neuroprotective and regenerative effects on synaptic pathways in the nervous system, including those in the inner ear. We previously demonstrated the regenerative effect of the ROCK inhibitor, Y-27632, on an excitotoxic cochlear nerve damage model in vitro. In this study, we aimed to validate the effect of ROCK inhibition on mice with cochlear synaptopathy induced by laser-induced shock wave (LISW) in vivo. After the elevation of ROCK1/2 expression in the damaged cochlea was confirmed, we administered Y-27632 locally via the middle ear. The amplitude of wave I in the auditory brainstem response and the number of synapses in the Y-27632-treated cochlea increased significantly. These results clearly demonstrate that ROCK inhibition has a promising clinical application in the treatment of cochlear synaptopathy, which is the major pathology of sensorineural hearing loss.
Collapse
Affiliation(s)
- Yutaka Koizumi
- Department of Otolaryngology-Head and Neck Surgery, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Kunio Mizutari
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Satoko Kawauchi
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, Saitama, 359-8513, Japan
| | - Shunichi Sato
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, Saitama, 359-8513, Japan
| | - Akihiro Shiotani
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Seiji Kakehata
- Department of Otolaryngology-Head and Neck Surgery, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan.
| |
Collapse
|
28
|
Echternacht SR, Chacon MA, Leckenby JI. Central versus peripheral nervous system regeneration: is there an exception for cranial nerves? Regen Med 2021; 16:567-579. [PMID: 34075805 DOI: 10.2217/rme-2020-0096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
There exists a dichotomy in regenerative capacity between the PNS and CNS, which poses the question - where do cranial nerves fall? Through the discussion of the various cells and processes involved in axonal regeneration, we will evaluate whether the assumption that cranial nerve regeneration is analogous to peripheral nerve regeneration is valid. It is evident from this review that much remains to be clarified regarding both PNS and CNS regeneration. Furthermore, it is not clear if cranial nerves follow the PNS model, CNS model or possess an alternative novel regenerative process altogether. Future research should continue to focus on elucidating how cranial nerves regenerate; and the various cellular interactions, molecules and pathways involved.
Collapse
Affiliation(s)
- Scott R Echternacht
- University of Rochester School of Medicine & Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA.,Division of Plastic Surgery, University of Rochester Medical Center, 601 Elmwood Avenue, Box 661, Rochester, NY 14642, USA
| | - Miranda A Chacon
- Division of Plastic Surgery, University of Rochester Medical Center, 601 Elmwood Avenue, Box 661, Rochester, NY 14642, USA.,Department of Surgery, University of Rochester Medical Center, 601 Elmwood Avenue, Box 661, Rochester, NY 14642, USA
| | - Jonathan I Leckenby
- Division of Plastic Surgery, University of Rochester Medical Center, 601 Elmwood Avenue, Box 661, Rochester, NY 14642, USA
| |
Collapse
|
29
|
Application of electrical stimulation for peripheral nerve regeneration: Stimulation parameters and future horizons. INTERDISCIPLINARY NEUROSURGERY 2021. [DOI: 10.1016/j.inat.2021.101117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
30
|
Daines JM, Schellhardt L, Wood MD. The Role of the IL-4 Signaling Pathway in Traumatic Nerve Injuries. Neurorehabil Neural Repair 2021; 35:431-443. [PMID: 33754913 DOI: 10.1177/15459683211001026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Following traumatic peripheral nerve injury, adequate restoration of function remains an elusive clinical goal. Recent research highlights the complex role that the immune system plays in both nerve injury and regeneration. Pro-regenerative processes in wounded soft tissues appear to be significantly mediated by cytokines of the type 2 immune response, notably interleukin (IL)-4. While IL-4 signaling has been firmly established as a critical element in general tissue regeneration during wound healing, it has also emerged as a critical process in nerve injury and regeneration. In this context of peripheral nerve injury, endogenous IL-4 signaling has recently been confirmed to influence more than leukocytes, but including also neurons, axons, and Schwann cells. Given the role IL-4 plays in nerve injury and regeneration, exogenous IL-4 and/or compounds targeting this signaling pathway have shown encouraging preliminary results to treat nerve injury or other neuropathy in rodent models. In particular, the exogenous stimulation of the IL-4 signaling pathway appears to promote postinjury neuron survival, axonal regeneration, remyelination, and thereby improved functional recovery. These preclinical data strongly suggest that targeting IL-4 signaling pathways is a promising translational therapy to augment treatment approaches of traumatic nerve injury. However, a better understanding of the type 2 immune response and associated signaling networks functioning within the nerve injury microenvironment is still needed to fully develop this promising therapeutic avenue.
Collapse
|
31
|
DeFrates KG, Franco D, Heber-Katz E, Messersmith PB. Unlocking mammalian regeneration through hypoxia inducible factor one alpha signaling. Biomaterials 2021; 269:120646. [PMID: 33493769 PMCID: PMC8279430 DOI: 10.1016/j.biomaterials.2020.120646] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/19/2020] [Accepted: 12/29/2020] [Indexed: 02/08/2023]
Abstract
Historically, the field of regenerative medicine has aimed to heal damaged tissue through the use of biomaterials scaffolds or delivery of foreign progenitor cells. Despite 30 years of research, however, translation and commercialization of these techniques has been limited. To enable mammalian regeneration, a more practical approach may instead be to develop therapies that evoke endogenous processes reminiscent of those seen in innate regenerators. Recently, investigations into tadpole tail regrowth, zebrafish limb restoration, and the super-healing Murphy Roths Large (MRL) mouse strain, have identified ancient oxygen-sensing pathways as a possible target to achieve this goal. Specifically, upregulation of the transcription factor, hypoxia-inducible factor one alpha (HIF-1α) has been shown to modulate cell metabolism and plasticity, as well as inflammation and tissue remodeling, possibly priming injuries for regeneration. Since HIF-1α signaling is conserved across species, environmental or pharmacological manipulation of oxygen-dependent pathways may elicit a regenerative response in non-healing mammals. In this review, we will explore the emerging role of HIF-1α in mammalian healing and regeneration, as well as attempts to modulate protein stability through hyperbaric oxygen treatment, intermittent hypoxia therapy, and pharmacological targeting. We believe that these therapies could breathe new life into the field of regenerative medicine.
Collapse
Affiliation(s)
- Kelsey G DeFrates
- Department of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, USA.
| | - Daniela Franco
- Department of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, USA.
| | - Ellen Heber-Katz
- Laboratory of Regenerative Medicine, Lankenau Institute for Medical Research, Wynnewood, PA, USA.
| | - Phillip B Messersmith
- Department of Bioengineering and Materials Science and Engineering, University of California, Berkeley, CA, USA; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
32
|
Qu WR, Zhu Z, Liu J, Song DB, Tian H, Chen BP, Li R, Deng LX. Interaction between Schwann cells and other cells during repair of peripheral nerve injury. Neural Regen Res 2021; 16:93-98. [PMID: 32788452 PMCID: PMC7818858 DOI: 10.4103/1673-5374.286956] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Peripheral nerve injury (PNI) is common and, unlike damage to the central nervous system injured nerves can effectively regenerate depending on the location and severity of injury. Peripheral myelinating glia, Schwann cells (SCs), interact with various cells in and around the injury site and are important for debris elimination, repair, and nerve regeneration. Following PNI, Wallerian degeneration of the distal stump is rapidly initiated by degeneration of damaged axons followed by morphologic changes in SCs and the recruitment of circulating macrophages. Interaction with fibroblasts from the injured nerve microenvironment also plays a role in nerve repair. The replication and migration of injury-induced dedifferentiated SCs are also important in repairing the nerve. In particular, SC migration stimulates axonal regeneration and subsequent myelination of regenerated nerve fibers. This mobility increases SC interactions with other cells in the nerve and the exogenous environment, which influence SC behavior post-injury. Following PNI, SCs directly and indirectly interact with other SCs, fibroblasts, and macrophages. In addition, the inter- and intracellular mechanisms that underlie morphological and functional changes in SCs following PNI still require further research to explain known phenomena and less understood cell-specific roles in the repair of the injured peripheral nerve. This review provides a basic assessment of SC function post-PNI, as well as a more comprehensive evaluation of the literature concerning the SC interactions with macrophages and fibroblasts that can influence SC behavior and, ultimately, repair of the injured nerve.
Collapse
Affiliation(s)
- Wen-Rui Qu
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhe Zhu
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jun Liu
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - De-Biao Song
- Department of Emergency and Critical Medicine, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Heng Tian
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Bing-Peng Chen
- Orthopedic Medical Center, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Rui Li
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Ling-Xiao Deng
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
33
|
Zhou HY, Jiang S, Ma FX, Lu H. Peripheral nerve tumors of the hand: Clinical features, diagnosis, and treatment. World J Clin Cases 2020; 8:5086-5098. [PMID: 33269245 PMCID: PMC7674743 DOI: 10.12998/wjcc.v8.i21.5086] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 02/05/2023] Open
Abstract
The majority of the tumors arising from the peripheral nerves of the hand are relatively benign. However, a tumor diagnosed as malignant peripheral nerve sheath tumor (MPNST) has destructive consequences. Clinical signs and symptoms are usually caused by direct and indirect effects of the tumor, such as nerve invasion or compression and infiltration of surrounding tissues. Definitive diagnosis is made by tumor biopsy. Complete surgical removal with maximum reservation of residual neurologic function is the most appropriate intervention for most symptomatic benign peripheral nerve tumors (PNTs) of the hand; however, MPNSTs require surgical resection with a sufficiently wide margin or even amputation to improve prognosis. In this article, we review the clinical presentation and radiographic features, summarize the evidence for an accurate diagnosis, and discuss the available treatment options for PNTs of the hand.
Collapse
Affiliation(s)
- Hai-Ying Zhou
- Department of Orthopedics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Shuai Jiang
- Department of Orthopedics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Fei-Xia Ma
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310000, Zhejiang Province, China
| | - Hui Lu
- Department of Orthopedics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
34
|
Tiong YL, Ng KY, Koh RY, Ponnudurai G, Chye SM. Melatonin promotes Schwann cell dedifferentiation and proliferation through the Ras/Raf/ERK and MAPK pathways, and glial cell-derived neurotrophic factor expression. Exp Ther Med 2020; 20:16. [PMID: 32934681 PMCID: PMC7471953 DOI: 10.3892/etm.2020.9143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/22/2019] [Indexed: 12/24/2022] Open
Abstract
Upon peripheral nerve injury (PNI), continuous proliferation of Schwann cells is critical for axon regeneration and tubular reconstruction for nerve regeneration. Melatonin is a hormone that is able to induce proliferation in various cell types. In the present study, the effects of melatonin on promoting Schwann cell proliferation and the molecular mechanism involved were investigated. The present results showed that melatonin enhanced the melatonin receptors (MT1 and MT2) expression in Schwann cells. Melatonin induced Schwann cell dedifferentiation into progenitor-like Schwann cells, as observed by immunofluorescence staining, which showed Sox2 marker expression. In addition, melatonin enhanced Schwann cell proliferation, mediated by the upregulation of glial cell-derived neurotropic factor (GNDF) and protein kinase C (PKC). Furthermore, the Ras/Raf/ERK and MAPK signaling pathways were also involved in Schwann cell dedifferentiation and proliferation. In conclusion, melatonin induced Schwann cell dedifferentiation and proliferation via the Ras/Raf/ERK, MAPK and GDNF/PKC pathways. The present results suggested that melatonin could be used to enhance the recovery of PNI.
Collapse
Affiliation(s)
- Yee Lian Tiong
- School of Postgraduate, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Selangor 47500, Malaysia
| | - Rhun Yian Koh
- School of Health Science, International Medical University, Kuala Lumpur 57000, Malaysia
| | | | - Soi Moi Chye
- School of Health Science, International Medical University, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
35
|
López-Leal R, Díaz-Viraqué F, Catalán RJ, Saquel C, Enright A, Iraola G, Court FA. Schwann cell reprogramming into repair cells increases miRNA-21 expression in exosomes promoting axonal growth. J Cell Sci 2020; 133:jcs.239004. [PMID: 32409566 DOI: 10.1242/jcs.239004] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 04/24/2020] [Indexed: 12/23/2022] Open
Abstract
Functional recovery after peripheral nerve damage is dependent on the reprogramming of differentiated Schwann cells (dSCs) into repair Schwann cells (rSCs), which promotes axonal regeneration and tissue homeostasis. Transition into a repair phenotype requires expression of c-Jun and Sox2, which transcriptionally mediates inhibition of the dSC program of myelination and activates a non-cell-autonomous repair program, characterized by the secretion of neuronal survival and regenerative molecules, formation of a cellular scaffold to guide regenerating axons and activation of an innate immune response. Moreover, rSCs release exosomes that are internalized by peripheral neurons, promoting axonal regeneration. Here, we demonstrate that reprogramming of Schwann cells (SCs) is accompanied by a shift in the capacity of their secreted exosomes to promote neurite growth, which is dependent on the expression of c-Jun (also known as Jun) and Sox2 by rSCs. Furthermore, increased expression of miRNA-21 is responsible for the pro-regenerative capacity of rSC exosomes, which is associated with PTEN downregulation and PI3-kinase activation in neurons. We propose that modification of exosomal cargo constitutes another important feature of the repair program of SCs, contributing to axonal regeneration and functional recovery after nerve injury.
Collapse
Affiliation(s)
- Rodrigo López-Leal
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile.,Fondap Geroscience Center for Brain Health and Metabolism, Santiago 7800003, Chile
| | - Florencia Díaz-Viraqué
- Laboratorio de Interacciones Hospedero Patógeno - Unidad de Biología Molecular, Institut de Pasteur Montevideo, Mataojo 2020, Montevideo 11400, Uruguay
| | - Romina J Catalán
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile.,Fondap Geroscience Center for Brain Health and Metabolism, Santiago 7800003, Chile
| | - Cristian Saquel
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile.,Fondap Geroscience Center for Brain Health and Metabolism, Santiago 7800003, Chile
| | - Anton Enright
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Gregorio Iraola
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile.,Microbial Genomics Laboratory, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay
| | - Felipe A Court
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago 8580745, Chile .,Fondap Geroscience Center for Brain Health and Metabolism, Santiago 7800003, Chile.,Buck Institute for Research on Aging, Novato, CA 94945, USA
| |
Collapse
|
36
|
Novakova SS, Rodriguez BL, Vega-Soto EE, Nutter GP, Armstrong RE, Macpherson PCD, Larkin LM. Repairing Volumetric Muscle Loss in the Ovine Peroneus Tertius Following a 3-Month Recovery. Tissue Eng Part A 2020; 26:837-851. [PMID: 32013753 DOI: 10.1089/ten.tea.2019.0288] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Much effort has been made to fabricate engineered tissues on a scale that is clinically relevant to humans; however, scale-up remains one of the most significant technological challenges of tissue engineering to date. To address this limitation, our laboratory has developed tissue-engineered skeletal muscle units (SMUs) and engineered neural conduits (ENCs), and modularly scaled them to clinically relevant sizes for the treatment of volumetric muscle loss (VML). The goal of this study was to evaluate the SMUs and ENCs in vitro, and to test the efficacy of our SMUs and ENCs in restoring muscle function in a clinically relevant large animal (sheep) model. The animals received a 30% VML injury to the peroneus tertius muscle and were allowed to recover for 3 months. The animals were divided into three experimental groups: VML injury without a repair (VML only), repair with an SMU (VML+SMU), or repair with an SMU and ENC (VML+SMU+ENC). We evaluated the SMUs before implantation and found that our single scaled-up SMUs were characterized by the presence of contracting myotubes, linearly aligned extracellular matrix proteins, and Pax7+ satellite cells. Three months after implantation, we found that the repair groups (VML+SMU and VML+SMU+ENC) had restored muscle mass and tetanic force production to a level that was statistically indistinguishable from the uninjured contralateral muscle after 3 months in vivo. Furthermore, we demonstrated the ability of our ENCs to effectively bridge the gap between native nerve and the repair site by eliciting a muscle contraction through direct electrical stimulation of the re-routed nerve. Impact statement The fabrication of tissues of clinically relevant sizes is one of the largest obstacles preventing engineered tissues from achieving widespread use in the clinic. This study aimed to combat this limitation by developing a fabrication method to scale-up tissue-engineered skeletal muscle for the treatment of volumetric muscle loss in a large animal (sheep) model and evaluating the efficacy of the tissue-engineered constructs after a 3-month recovery.
Collapse
Affiliation(s)
- Stoyna S Novakova
- Department of Molecular and Integrative Physiology and University of Michigan, Ann Arbor, Michigan, USA
| | - Brittany L Rodriguez
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Emmanuel E Vega-Soto
- Department of Molecular and Integrative Physiology and University of Michigan, Ann Arbor, Michigan, USA
| | - Genevieve P Nutter
- Department of Molecular and Integrative Physiology and University of Michigan, Ann Arbor, Michigan, USA
| | - Rachel E Armstrong
- Department of Molecular and Integrative Physiology and University of Michigan, Ann Arbor, Michigan, USA
| | - Peter C D Macpherson
- Department of Molecular and Integrative Physiology and University of Michigan, Ann Arbor, Michigan, USA
| | - Lisa M Larkin
- Department of Molecular and Integrative Physiology and University of Michigan, Ann Arbor, Michigan, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
37
|
Pan D, Mackinnon SE, Wood MD. Advances in the repair of segmental nerve injuries and trends in reconstruction. Muscle Nerve 2020; 61:726-739. [PMID: 31883129 DOI: 10.1002/mus.26797] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/18/2022]
Abstract
Despite advances in surgery, the reconstruction of segmental nerve injuries continues to pose challenges. In this review, current neurobiology regarding regeneration across a nerve defect is discussed in detail. Recent findings include the complex roles of nonneuronal cells in nerve defect regeneration, such as the role of the innate immune system in angiogenesis and how Schwann cells migrate within the defect. Clinically, the repair of nerve defects is still best served by using nerve autografts with the exception of small, noncritical sensory nerve defects, which can be repaired using autograft alternatives, such as processed or acellular nerve allografts. Given current clinical limits for when alternatives can be used, advanced solutions to repair nerve defects demonstrated in animals are highlighted. These highlights include alternatives designed with novel topology and materials, delivery of drugs specifically known to accelerate axon growth, and greater attention to the role of the immune system.
Collapse
Affiliation(s)
- Deng Pan
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Susan E Mackinnon
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Matthew D Wood
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
38
|
Li R, Li D, Wu C, Ye L, Wu Y, Yuan Y, Yang S, Xie L, Mao Y, Jiang T, Li Y, Wang J, Zhang H, Li X, Xiao J. Nerve growth factor activates autophagy in Schwann cells to enhance myelin debris clearance and to expedite nerve regeneration. Theranostics 2020; 10:1649-1677. [PMID: 32042328 PMCID: PMC6993217 DOI: 10.7150/thno.40919] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 10/27/2019] [Indexed: 12/12/2022] Open
Abstract
Rationale: Autophagy in Schwann cells (SCs) is crucial for myelin debris degradation and clearance following peripheral nerve injury (PNI). Nerve growth factor (NGF) plays an important role in reconstructing peripheral nerve fibers and promoting axonal regeneration. However, it remains unclear if NGF effect in enhancing nerve regeneration is mediated through autophagic clearance of myelin debris in SCs. Methods: In vivo, free NGF solution plus with/without pharmacological inhibitors were administered to a rat sciatic nerve crush injury model. In vitro, the primary Schwann cells (SCs) and its cell line were cultured in normal medium containing NGF, their capable of swallowing or clearing degenerated myelin was evaluated through supplement of homogenized myelin fractions. Results: Administration of exogenous NGF could activate autophagy in dedifferentiated SCs, accelerate myelin debris clearance and phagocytosis, as well as promote axon and myelin regeneration at early stage of PNI. These NGF effects were effectively blocked by autophagy inhibitors. In addition, inhibition of the p75 kD neurotrophin receptor (p75NTR) signal or inactivation of the AMP-activated protein kinase (AMPK) also inhibited the NGF effect as well. Conclusions: NGF effect on promoting early nerve regeneration is closely associated with its accelerating autophagic clearance of myelin debris in SCs, which probably regulated by the p75NTR/AMPK/mTOR axis. Our studies thus provide strong support that NGF may serve as a powerful pharmacological therapy for peripheral nerve injuries.
Collapse
|
39
|
Luzhansky ID, Sudlow LC, Brogan DM, Wood MD, Berezin MY. Imaging in the repair of peripheral nerve injury. Nanomedicine (Lond) 2019; 14:2659-2677. [PMID: 31612779 PMCID: PMC6886568 DOI: 10.2217/nnm-2019-0115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/20/2019] [Indexed: 12/25/2022] Open
Abstract
Surgical intervention followed by physical therapy remains the major way to repair damaged nerves and restore function. Imaging constitutes promising, yet underutilized, approaches to improve surgical and postoperative techniques. Dedicated methods for imaging nerve regeneration will potentially provide surgical guidance, enable recovery monitoring and postrepair intervention, elucidate failure mechanisms and optimize preclinical procedures. Herein, we present an outline of promising innovations in imaging-based tracking of in vivo peripheral nerve regeneration. We emphasize optical imaging because of its cost, versatility, relatively low toxicity and sensitivity. We discuss the use of targeted probes and contrast agents (small molecules and nanoparticles) to facilitate nerve regeneration imaging and the engineering of grafts that could be used to track nerve repair. We also discuss how new imaging methods might overcome the most significant challenges in nerve injury treatment.
Collapse
Affiliation(s)
- Igor D Luzhansky
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
- The Institute of Materials Science & Engineering, Washington University, St Louis, MO 63130, USA
| | - Leland C Sudlow
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - David M Brogan
- Department of Orthopedic Surgery, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Matthew D Wood
- Department of Surgery, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Mikhail Y Berezin
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
- The Institute of Materials Science & Engineering, Washington University, St Louis, MO 63130, USA
| |
Collapse
|
40
|
Jo S, Pan D, Halevi AE, Roh J, Schellhardt L, Hunter Ra DA, Snyder-Warwick AK, Moore AM, Mackinnon SE, Wood MD. Comparing electrical stimulation and tacrolimus (FK506) to enhance treating nerve injuries. Muscle Nerve 2019; 60:629-636. [PMID: 31397919 DOI: 10.1002/mus.26659] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Neuroenhancing therapies are desired because repair of nerve injuries can fail to achieve recovery. We compared two neuroenhancing therapies, electrical stimulation (ES) and systemic tacrolimus (FK506), for their capabilities to enhance regeneration in the context of a rat model. METHODS Rats were randomized to four groups: ES 0.5 mA, ES 2.0 mA, FK506, and repair alone. All groups underwent tibial nerve transection and repair, and outcomes were assessed by using twice per week walking track analysis, cold allodynia response, relative muscle mass, and nerve histology. RESULTS Electrical stimulation and FK506 groups demonstrated improved functional recovery and myelinated axon counts distal to the repair compared with repair alone. Electrical stimulation provided improvements in nerve regeneration that were not different from optimized FK506 systemic administration. DISCUSSION Providing ES after nerve repair improved regeneration and recovery in rats, with minimal differences in therapeutic efficacy to FK506, further demonstrating its clinical potential to improve management of nerve injuries.
Collapse
Affiliation(s)
- Sally Jo
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Deng Pan
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Alexandra E Halevi
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Joseph Roh
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Lauren Schellhardt
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Daniel A Hunter Ra
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Alison K Snyder-Warwick
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Amy M Moore
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Susan E Mackinnon
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Matthew D Wood
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
41
|
Abstract
There is a striking difference in the potential for regeneration of injured axons in the central and peripheral nervous systems, which is important in neurotoxicologic studies. In contrast to the former, there is a ready mechanism for replacement of peripheral nerve axons that have degenerated following exposure to toxins, where long-distance axon regeneration and substantial functional recovery can occur. This relates at least in part to the nature of the glial and other supporting cells of the peripheral nerve. To provide background for these events, data on regeneration following traumatic injury to peripheral nerve are reviewed. This is followed by descriptions of nerve fiber regeneration after experimental exposure to 3 peripheral nerve axonopathic toxins, organophosphate tri-ortho-tolyl phosphate, the industrial chemical carbon disulfide, and the antituberculosis drug isoniazid.
Collapse
Affiliation(s)
- Bernard S Jortner
- Laboratory for Neurotoxicity Studies, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
42
|
Jessen KR, Arthur-Farraj P. Repair Schwann cell update: Adaptive reprogramming, EMT, and stemness in regenerating nerves. Glia 2019; 67:421-437. [PMID: 30632639 DOI: 10.1002/glia.23532] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/20/2018] [Accepted: 09/05/2018] [Indexed: 12/16/2022]
Abstract
Schwann cells respond to nerve injury by cellular reprogramming that generates cells specialized for promoting regeneration and repair. These repair cells clear redundant myelin, attract macrophages, support survival of damaged neurons, encourage axonal growth, and guide axons back to their targets. There are interesting parallels between this response and that found in other tissues. At the cellular level, many other tissues also react to injury by cellular reprogramming, generating cells specialized to promote tissue homeostasis and repair. And at the molecular level, a common feature possessed by Schwann cells and many other cells is the injury-induced activation of genes associated with epithelial-mesenchymal transitions and stemness, differentiation states that are linked to cellular plasticity and that help injury-induced tissue remodeling. The number of signaling systems regulating Schwann cell plasticity is rapidly increasing. Importantly, this includes mechanisms that are crucial for the generation of functional repair Schwann cells and nerve regeneration, although they have no or a minor role elsewhere in the Schwann cell lineage. This encourages the view that selective tools can be developed to control these particular cells, amplify their repair supportive functions and prevent their deterioration. In this review, we discuss the emerging similarities between the injury response seen in nerves and in other tissues and survey the transcription factors, epigenetic mechanisms, and signaling cascades that control repair Schwann cells, with emphasis on systems that selectively regulate the Schwann cell injury response.
Collapse
Affiliation(s)
- Kristjan R Jessen
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Peter Arthur-Farraj
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
43
|
Jessen KR, Mirsky R. The Success and Failure of the Schwann Cell Response to Nerve Injury. Front Cell Neurosci 2019; 13:33. [PMID: 30804758 PMCID: PMC6378273 DOI: 10.3389/fncel.2019.00033] [Citation(s) in RCA: 302] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/22/2019] [Indexed: 01/06/2023] Open
Abstract
The remarkable plasticity of Schwann cells allows them to adopt the Remak (non-myelin) and myelin phenotypes, which are specialized to meet the needs of small and large diameter axons, and differ markedly from each other. It also enables Schwann cells initially to mount a strikingly adaptive response to nerve injury and to promote regeneration by converting to a repair-promoting phenotype. These repair cells activate a sequence of supportive functions that engineer myelin clearance, prevent neuronal death, and help axon growth and guidance. Eventually, this response runs out of steam, however, because in the long run the phenotype of repair cells is unstable and their survival is compromised. The re-programming of Remak and myelin cells to repair cells, together with the injury-induced switch of peripheral neurons to a growth mode, gives peripheral nerves their strong regenerative potential. But it remains a challenge to harness this potential and devise effective treatments that maintain the initial repair capacity of peripheral nerves for the extended periods typically required for nerve repair in humans.
Collapse
Affiliation(s)
- Kristjan R. Jessen
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | | |
Collapse
|
44
|
Han GH, Peng J, Liu P, Ding X, Wei S, Lu S, Wang Y. Therapeutic strategies for peripheral nerve injury: decellularized nerve conduits and Schwann cell transplantation. Neural Regen Res 2019; 14:1343-1351. [PMID: 30964052 PMCID: PMC6524503 DOI: 10.4103/1673-5374.253511] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In recent years, the use of Schwann cell transplantation to repair peripheral nerve injury has attracted much attention. Animal-based studies show that the transplantation of Schwann cells in combination with nerve scaffolds promotes the repair of injured peripheral nerves. Autologous Schwann cell transplantation in humans has been reported recently. This article reviews current methods for removing the extracellular matrix and analyzes its composition and function. The development and secretory products of Schwann cells are also reviewed. The methods for the repair of peripheral nerve injuries that use myelin and Schwann cell transplantation are assessed. This survey of the literature data shows that using a decellularized nerve conduit combined with Schwann cells represents an effective strategy for the treatment of peripheral nerve injury. This analysis provides a comprehensive basis on which to make clinical decisions for the repair of peripheral nerve injury.
Collapse
Affiliation(s)
- Gong-Hai Han
- Kunming Medical University, Kunming, Yunnan Province; Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Ping Liu
- Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Xiao Ding
- Shihezi University Medical College, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Shuai Wei
- Shihezi University Medical College, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Sheng Lu
- 920th Hospital of Joint Service Support Force, Kunming, Yunnan Province, China
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
45
|
Colonna MR, Pino D, Battiston B, d'Alcontres FS, Natsis K, Bassetto F, Papadopulos NA, Tiengo C, Geuna S. Distal nerve transfer from the median nerve lumbrical fibers to the distal ulnar nerve motor branches in the palm: An anatomical cadaveric study. Microsurgery 2018; 39:434-440. [DOI: 10.1002/micr.30402] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 09/23/2018] [Accepted: 10/26/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Michele R. Colonna
- Department of Human Pathology of the Adult, The Child and the AdolescentUniversity of Messina Messina Italy
| | - Davide Pino
- Comprensorio Sanitario di BolzanoPlastic Surgery Bolzano Italy
| | - Bruno Battiston
- Department of TraumatologyAzienda Ospedaliero Universitaria Citta della Salute e della Scienza di Torino Turin Italy
| | | | - Konstantinos Natsis
- Department of Anatomy and Surgical AnatomyAristotle University of Thessaloniki, Faculty of Health Sciences, School of Medicine Thessaloniki Greece
| | - Franco Bassetto
- Padua University HospitalClinic of Plastic Surgery Padua Italy
| | - Nikolaos A. Papadopulos
- Alexandroupoli University General Hospital, Department of Plastic Surgery and BurnsDemocritus University of Thrace Alexandroupoli Greece
| | - Cesare Tiengo
- Padua University HospitalClinic of Plastic Surgery Padua Italy
| | - Stefano Geuna
- University of Turin School of MedicineClinical & Biological Sciences Turin Italy
| |
Collapse
|
46
|
Dolan CP, Yan M, Zimmel K, Yang TJ, Leininger E, Dawson LA, Muneoka K. Axonal regrowth is impaired during digit tip regeneration in mice. Dev Biol 2018; 445:237-244. [PMID: 30458171 DOI: 10.1016/j.ydbio.2018.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/12/2018] [Accepted: 11/15/2018] [Indexed: 12/16/2022]
Abstract
Mice are intrinsically capable of regenerating the tips of their digits after amputation. Mouse digit tip regeneration is reported to be a peripheral nerve-dependent event. However, it is presently unknown what types of nerves and Schwann cells innervate the digit tip, and to what extent these cells regenerate in association with the regenerative response. Given the necessity of peripheral nerves for mammalian regeneration, we investigated the neuroanatomy of the unamputated, regenerating, and regenerated mouse digit tip. Using immunohistochemistry for β-III-tubulin (β3T) or neurofilament H (NFH), substance P (SP), tyrosine hydroxylase (TH), myelin protein zero (P0), and glial fibrillary acidic protein (GFAP), we identified peripheral nerve axons (sensory and sympathetic), and myelinating- and non-myelinating-Schwann cells. Our findings show that the digit tip is innervated by two digital nerves that each bifurcate into a bone marrow (BM) and connective tissue (CT) branch. The BM branches are composed of sympathetic axons that are ensheathed by non-myelinating-Schwann cells whereas the CT branches are composed of sensory and sympathetic axons and are ensheathed by myelinating- and non-myelinating-Schwann cells. The regenerated digit neuroanatomy differs from unamputated digit in several key ways. First, there is 7.5 fold decrease in CT branch axons in the regenerated digit compared to the unampuated digit. Second, there is a 5.6 fold decrease in myelinating-Schwann cells in the regenerated digit compared to the unamputated digit that is consistent with the decrease in CT branch axons. Importantly, we also find that the central portion of the regenerating digit blastema is aneural, with axons and Schwann cells restricted to peripheral and distal blastema regions. Finally, we show that even with impaired innervation, digits maintain the ability to regenerate after re-amputation. Taken together, these data indicate that nerve regeneration is impaired in the context of mouse digit tip regeneration.
Collapse
Affiliation(s)
- Connor P Dolan
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Mingquan Yan
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Katherine Zimmel
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Tae-Jung Yang
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Eric Leininger
- Department of Cell and Molecular Biology, School of Science and Engineering, Tulane University, New Orleans, LA 70118, USA.
| | - Lindsay A Dawson
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Ken Muneoka
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; Department of Cell and Molecular Biology, School of Science and Engineering, Tulane University, New Orleans, LA 70118, USA.
| |
Collapse
|
47
|
Abstract
This study was designed to characterize morphologic stages during neuroma development post amputation with an eye toward developing better treatment strategies that intervene before neuromas are fully formed. Right forelimbs of 30 Sprague Dawley rats were amputated and limb stumps were collected at 3, 7, 28, 60 and 90 Days Post Amputation (DPA). Morphology of newly formed nerves and neuromas were assessed via general histology and neurofilament protein antibody staining. Analysis revealed six morphological characteristics during nerve and neuroma development; 1) normal nerve, 2) degenerating axons, 3) axonal sprouts, 4) unorganized bundles of axons, 5) unorganized axon growth into muscles, and 6) unorganized axon growth into fibrotic tissue (neuroma). At early stages (3 & 7 DPA) after amputation, normal nerves could be identified throughout the limb stump and small areas of axonal sprouts were present near the site of injury. Signs of degenerating axons were evident from 7 to 90 DPA. From day 28 on, variability of nerve characteristics with signs of unorganized axon growth into muscle and fibrotic tissue and neuroma formation became visible in multiple areas of stump tissue. These pathological features became more evident on days 60 and 90. At 90 DPA frank neuroma formation was present in all stump tissue. By following nerve regrowth and neuroma formation after amputation we were able to identify 6 separate histological stages of nerve regrowth and neuroma development. Axonal regrowth was observed as early as 3 DPA and signs of unorganized axonal growth and neuroma formation were evident by 28 DPA. Based on these observations we speculate that neuroma treatment and or prevention strategies might be more successful if targeted at the initial stages of development and not after 28 DPA.
Collapse
|
48
|
López-Cebral R, Silva-Correia J, Reis RL, Silva TH, Oliveira JM. Peripheral Nerve Injury: Current Challenges, Conventional Treatment Approaches, and New Trends in Biomaterials-Based Regenerative Strategies. ACS Biomater Sci Eng 2017; 3:3098-3122. [DOI: 10.1021/acsbiomaterials.7b00655] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- R. López-Cebral
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - J. Silva-Correia
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - R. L. Reis
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - T. H. Silva
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - J. M. Oliveira
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| |
Collapse
|
49
|
Assis AD, de Assis Araújo F, Dos Santos RAS, Andrade SP, Zanon RG. Pattern of Mas expression in acute and post-acute stage of nerve injury in mice. Peptides 2017; 96:15-19. [PMID: 28870798 DOI: 10.1016/j.peptides.2017.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/12/2017] [Accepted: 08/28/2017] [Indexed: 12/24/2022]
Abstract
Angiotensin-(1-7) (Ang [1-7]) and its receptor Mas are involved in a number of physiological processes, including control of arterial pressure and modulation of nervous system actions. However, the involvement of the Ang-(1-7)/Mas axis in peripheral nerve injury has not been investigated. Using a model of sciatic nerve injury in mice, we demonstrated opposing changes in Mas receptor expression at days 2 and 14 post-injury. Mas receptor expression was more intense 2days after the nerve lesion, compared with the intensity of the intact nerve. At this time point, the sciatic nerve functional index was -20. At day 14 after the lesion, the intensity of the immunostaining labeling in longitudinal sections of the nerve was reduced (∼30%) and the functional index increased +36 (gait improvement). In the axotomized group treated with A779 (a Mas receptor antagonist), the functional recovery index decreased in relation to the untreated axotomized group. The Mas receptor inhibitor also altered the intensity of labeling of S-100, GAP43, and IBA-1 (morphological features compatible with delayed axon growth). This study demonstrated that Ang-(1-7)/Mas axis activity was differentially modulated in the acute and post-acute stages of nerve injury.
Collapse
Affiliation(s)
- Alex Dias Assis
- Department of Human Anatomy, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlandia, MG, Brazil
| | - Fernanda de Assis Araújo
- Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlandia, MG, Brazil
| | | | - Silvia Passos Andrade
- Department of Physiology, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Renata Graciele Zanon
- Department of Human Anatomy, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlandia, MG, Brazil.
| |
Collapse
|
50
|
Functional and Molecular Characterization of a Novel Traumatic Peripheral Nerve–Muscle Injury Model. Neuromolecular Med 2017; 19:357-374. [DOI: 10.1007/s12017-017-8450-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/01/2017] [Indexed: 10/19/2022]
|