1
|
Wanner IB, McCabe JT, Huie JR, Harris NG, Paydar A, McMann-Chapman C, Tobar A, Korotcov A, Burns MP, Koehler RC, Wan J, Allende Labastida J, Tong J, Zhou J, Davis LM, Radabaugh HL, Ferguson AR, Van Meter TE, Febo M, Bose P, Wang KK, Kobeissy F, Apiliogullari S, Zhu J, Rubenstein R, Awwad HO. Prospective Harmonization, Common Data Elements, and Sharing Strategies for Multicenter Pre-Clinical Traumatic Brain Injury Research in the Translational Outcomes Project in Neurotrauma Consortium. J Neurotrauma 2025; 42:877-897. [PMID: 39831841 DOI: 10.1089/neu.2023.0653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Effective team science requires procedural harmonization for rigor and reproducibility. Multicenter studies across experimental modalities (domains) can help accelerate translation. The Translational Outcomes Project in NeuroTrauma (TOP-NT) is a pre-clinical traumatic brain injury (TBI) consortium charged with establishing and validating noninvasive TBI assessment tools through team science. Here, we present practical approaches for harmonization of TBI research across five centers providing needed vocabulary and structure to achieve centralized data organization and use. This includes data sharing as an essential step that enables validating data between domains, evaluating reproducibility between sites, and performing multimodal analyses. As part of this process, TOP-NT (1) produced a library of TBI-relevant standard operating procedures to coordinate workflow, (2) aligned 481 pre-clinical and clinical common data elements (CDEs), and (3) generated 272 new pre-clinical TBI CDEs. This consortium then (4) connected diverse data types to validate assessments across domains and to allow multivariable TBI phenotyping. Lastly, TOP-NT (5) specified technical quality controls for pre-clinical studies. These harmonization tools can facilitate reproducibility in team science, help distinguish a wide injury spectrum from technical variability, apply quality-controls, and ease higher level data analyses. TOP-NT uses three rat TBI models across four sites. Each site collects primary outcome measures, including magnetic resonance imaging (MRI) protocols and blood biomarkers of neuronal and glial injury, validated by histopathology and behavioral outcomes. Collected data are organized using the 481 TOP-NT pre-clinical CDEs, covering surgical, behavioral, biomarker, MRI, and quantitative histopathological methods. We report data curation steps suited for data storage using the Open Data Commons for TBI as a centralized data repository, allowing unbiased cross-site analysis. This approach leads to introducing a higher level, syndromic understanding of TBI signatures. TOP-NT authors outline a semantic and structural framework suggesting strategies for robust pre-clinical research in multicenter trials to improve translatability for TBI assessments. [Figure: see text].
Collapse
Affiliation(s)
- Ina-Beate Wanner
- Intellectual and Developmental Disability Center (IDDRC), David Geffen School of Medicine, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, California, USA
| | - Joseph T McCabe
- Department of Anatomy, Physiology & Genetics, School of Medicine, Uniformed Services University, Bethesda, Maryland, USA
| | - J Russell Huie
- Brain and Spinal Injury Center (BASIC), Weill Institute for Neurosciences, University of California, San Francisco (UCSF), San Francisco, California, USA
- Principal Investigator, Veterans Affairs Healthcare System, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
| | - Neil G Harris
- Department of Neurosurgery, Brain Research Injury Center (BIRC), Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Afshin Paydar
- Department of Neurosurgery, Brain Research Injury Center (BIRC), Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Chloe McMann-Chapman
- Intellectual and Developmental Disability Center (IDDRC), David Geffen School of Medicine, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, California, USA
| | - Anthony Tobar
- Semel Institute for Neuroscience and Human Behavior, IDDRC, Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Alexandru Korotcov
- Department of Radiology & Radiological Sciences, Uniformed Services University, Bethesda, Maryland, USA
| | - Mark P Burns
- Georgetown University Medical Center, Center for Neural Injury and Repair, Washington, District of Columbia, USA
| | - Raymond C Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jieru Wan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Javier Allende Labastida
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jonathan Tong
- Semel Institute for Neuroscience and Human Behavior, IDDRC, Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Jinyuan Zhou
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Lex Maliga Davis
- Brain and Spinal Injury Center, University of California, San Francisco, California, USA
| | - Hannah L Radabaugh
- Brain and Spinal Injury Center, University of California, San Francisco, California, USA
| | - Adam R Ferguson
- Brain and Spinal Injury Center (BASIC), Weill Institute for Neurosciences, University of California, San Francisco (UCSF), San Francisco, California, USA
- Principal Investigator, Veterans Affairs Healthcare System, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
| | | | - Marcelo Febo
- Departmet Psychiatry, University of Florida, Gainesville, Florida, USA
- Department of Psychiatry, Advanced Magnetic Resonance Imaging and Spectroscopy Facility, University of Florida, Gainesville, Florida, USA
- Department of Psychiatry (Room L4-100F), McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Prodip Bose
- Department of Anesthesiology, and Department of Neurology at the College of Medicine, University of Florida, Gainesville, Florida, USA
- Brain Rehabilitation Research (Center), Malcom Randall VAMC, Gainesville, Florida, USA
| | - Kevin K Wang
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Firas Kobeissy
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Seza Apiliogullari
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Jiepei Zhu
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Richard Rubenstein
- Department of Neurology, SUNY Downstate Health Sciences University, Brooklyn, New York, USA
| | - Hibah O Awwad
- Division of Neuroscience, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
2
|
Smith G, Santana-Gomez C, Staba RJ, Harris NG. Unbiased Population-Based Statistics to Obtain Pathologic Burden of Injury after Experimental TBI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.03.647083. [PMID: 40236158 PMCID: PMC11996580 DOI: 10.1101/2025.04.03.647083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Reproducibility of scientific data is a current concern throughout the neuroscience field. There are multiple on-going efforts to help resolve this problem. Within the preclinical neuroimaging field, the continued use of a region-of interest (ROI) type approaches combined with the well-known spatial heterogeneity of traumatic brain injury pathology is a barrier to the replicability and repeatability of data. Here we propose the conjoint use of an unbiased analysis of the whole brain after injury together with a population-based statistical analysis of sham-control brains as one approach that has been used in clinical research to help resolve this issue. The approach produces two volumes of pathology that are outside the normal range of sham brains, and can be interpreted as whole brain burden of injury. Using diffusion weighted imaging derived scalars from a tensor analysis of data acquired from adult, male rats at 2, 9 days, 1 and 5 months after lateral fluid percussion injury (LFPI) and in shams (n=73 and 12, respectively), we compared a data-driven, z-score mapping method to a whole brain and white matter-specific analysis, as well as an ROI-based analysis with brain regions preselected by virtue of their large group effect sizes. We show that the data-driven approach is statistically robust, providing the advantage of a large group effect size typical of a ROI analysis of mean scalar values derived from the tensor in regions of gross injury, but without the large multi-region statistical correction required for interrogating multiple brain areas, and without the potential bias inherent with using preselected ROIs. We show that the technique correctly captures the expected longitudinal time-course of the diffusion scalar volumes based on the spatial extent of the pathology and the known temporal changes in scalar values in the LFPI model.
Collapse
|
3
|
Jafari N, He L, Khalil CB, Yeh HJ, Harris NG, Stern JM, Engel J, Bragin A, Li L. Intrinsic brain network stability during kainic acid-induced epileptogenesis. Epilepsia Open 2025; 10:508-520. [PMID: 39976075 PMCID: PMC12014918 DOI: 10.1002/epi4.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/21/2025] [Accepted: 01/29/2025] [Indexed: 02/21/2025] Open
Abstract
OBJECTIVE Altered intrinsic brain networks have been revealed in patients with epilepsy and are strongly associated with network reorganization in the latent period. However, the development and reliability of intrinsic brain networks in the early period of epileptogenesis are not well understood. The current study aims to fill this gap by investigating the test-retest reliability of intrinsic brain networks in the early stage of epileptogenesis. METHODS We used the rat intrahippocampal kainic acid model of mesial temporal lobe epilepsy. Three sessions of resting-state functional magnetic resonance imaging (rs-fMRI) data were acquired over a 2-week period from 9 sham control rats and 12 rats that later developed spontaneous epilepsy (KA). A group independent component analysis (GICA) approach was used to identify the intrinsic brain networks. Both within and between networks were identified, and test-retest reliability was assessed using the intraclass correlation coefficient (ICC). RESULTS Our results showed good-to-excellent within-network stability of resting-state functional brain connectivity in most intrinsic brain networks in sham control rats and in the KA group, except for frontal cortex (FCN) and hippocampal networks (HPN). Further analysis of the between networks showed an increase in variation in the KA brain compared to the sham controls. SIGNIFICANCE Overall, our study demonstrated a "moderately stable" phase of the intrinsic brain network in a 2-week latent period window, with an altered between- and within-network connectome feature. PLAIN LANGUAGE SUMMARY This fMRI study explored how brain connectivity changes in healthy animals compared to animals in the latent period of epilepsy. We found that functional connectivity increased during the latent period compared to the control group, and this increase persisted across all tested sessions. Additionally, brain networks became less stable in the epilepsy group, particularly in the frontal cortex and hippocampus. These observations provide further insight into how brain networks change and persist during the early stages of epileptogenesis.
Collapse
Affiliation(s)
- Nastaran Jafari
- Department of Biomedical EngineeringUniversity of North TexasDentonTexasUSA
| | - Lingna He
- Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
- Department of Computer ScienceZhejiang University of TechnologyZhejiangChina
| | - Charbel Bou Khalil
- Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Hsiang J. Yeh
- Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Neil G. Harris
- Brain Research InstituteUniversity of California Los AngelesLos AngelesCaliforniaUSA
- Department of NeurosurgeryUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - John M. Stern
- Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Jerome Engel
- Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
- Brain Research InstituteUniversity of California Los AngelesLos AngelesCaliforniaUSA
- Department of Neurobiology and PsychiatryUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Anatol Bragin
- Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
- Brain Research InstituteUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Lin Li
- Department of Biomedical EngineeringUniversity of North TexasDentonTexasUSA
- Department of NeurologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
4
|
Rayfield AC, Wu T, Rifkin JA, Meaney DF. Individualized mouse brain network models produce asymmetric patterns of functional connectivity after simulated traumatic injury. Netw Neurosci 2025; 9:326-351. [PMID: 40161980 PMCID: PMC11949614 DOI: 10.1162/netn_a_00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/17/2024] [Indexed: 04/02/2025] Open
Abstract
The functional and cognitive effects of traumatic brain injury (TBI) are poorly understood, as even mild injuries (concussion) can lead to long-lasting, untreatable symptoms. Simplified brain dynamics models may help researchers better understand the relationship between brain injury patterns and functional outcomes. Properly developed, these computational models provide an approach to investigate the effects of both computational and in vivo injury on simulated dynamics and cognitive function, respectively, for model organisms. In this study, we apply the Kuramoto model and an existing mesoscale mouse brain structural network to develop a simplified computational model of mouse brain dynamics. We explore how to optimize our initial model to predict existing mouse brain functional connectivity collected from mice under various anesthetic protocols. Finally, to determine how strongly the changes in our optimized models' dynamics can predict the extent of a brain injury, we investigate how our simulations respond to varying levels of structural network damage. Results predict a mixture of hypo- and hyperconnectivity after experimental TBI, similar to results in TBI survivors, and also suggest a compensatory remodeling of connections that may have an impact on functional outcomes after TBI.
Collapse
Affiliation(s)
- Adam C. Rayfield
- University of Pennsylvania Departments of Bioengineering and Neurosurgery
| | - Taotao Wu
- University of Pennsylvania Departments of Bioengineering and Neurosurgery
- University of Georgia School of Chemical, Material, and Biomedical Engineering
| | - Jared A. Rifkin
- University of Virginia Department of Mechanical and Aerospace Engineering
| | - David F. Meaney
- University of Pennsylvania Departments of Bioengineering and Neurosurgery
| |
Collapse
|
5
|
Bibineyshvili Y, Vajtay TJ, Salsabilian S, Fliss N, Suvarnakar A, Fang J, Teng S, Alder J, Najafizadeh L, Margolis DJ. Imaging the large-scale and cellular response to focal traumatic brain injury in mouse neocortex. Exp Physiol 2025; 110:321-344. [PMID: 39576175 PMCID: PMC11782206 DOI: 10.1113/ep092219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/14/2024] [Indexed: 11/27/2024]
Abstract
Traumatic brain injury (TBI) affects neural function at the local injury site and also at distant, connected brain areas. However, the real-time neural dynamics in response to injury and subsequent effects on sensory processing and behaviour are not fully resolved, especially across a range of spatial scales. We used in vivo calcium imaging in awake, head-restrained male and female mice to measure large-scale and cellular resolution neuronal activation, respectively, in response to a mild/moderate TBI induced by focal controlled cortical impact (CCI) injury of the motor cortex (M1). Widefield imaging revealed an immediate CCI-induced activation at the injury site, followed by a massive slow wave of calcium signal activation that travelled across the majority of the dorsal cortex within approximately 30 s. Correspondingly, two-photon calcium imaging in the primary somatosensory cortex (S1) found strong activation of neuropil and neuronal populations during the CCI-induced travelling wave. A depression of calcium signals followed the wave, during which we observed the atypical activity of a sparse population of S1 neurons. Longitudinal imaging in the hours and days after CCI revealed increases in the area of whisker-evoked sensory maps at early time points, in parallel to decreases in cortical functional connectivity and behavioural measures. Neural and behavioural changes mostly recovered over hours to days in our M1-TBI model, with a more lasting decrease in the number of active S1 neurons. Our results in unanaesthetized mice describe novel spatial and temporal neural adaptations that occur at cortical sites remote to a focal brain injury.
Collapse
Affiliation(s)
- Yelena Bibineyshvili
- Department of Cell Biology and NeuroscienceRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Thomas J. Vajtay
- Department of Cell Biology and NeuroscienceRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Shiva Salsabilian
- Department of Electrical and Computer EngineeringRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Nicholas Fliss
- Department of Cell Biology and NeuroscienceRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Aastha Suvarnakar
- Department of Cell Biology and NeuroscienceRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Jennifer Fang
- Department of Cell Biology and NeuroscienceRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Shavonne Teng
- Department of Neuroscience and Cell BiologyRutgers Robert Wood Johnson Medical SchoolPiscatawayNew JerseyUSA
| | - Janet Alder
- Department of Neuroscience and Cell BiologyRutgers Robert Wood Johnson Medical SchoolPiscatawayNew JerseyUSA
| | - Laleh Najafizadeh
- Department of Electrical and Computer EngineeringRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - David J. Margolis
- Department of Cell Biology and NeuroscienceRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| |
Collapse
|
6
|
Kommireddy RS, Mehra S, Pompilus M, Arja RD, Zhu T, Yang Z, Fu Y, Zhu J, Kobeissy F, Wang KKW, Febo M. Functional connectivity, tissue microstructure and T2 at 11.1 Tesla distinguishes neuroadaptive differences in two traumatic brain injury models in rats: A Translational Outcomes Project in NeuroTrauma (TOP-NT) UG3 phase study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.12.10.570975. [PMID: 38168381 PMCID: PMC10760004 DOI: 10.1101/2023.12.10.570975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Traumatic brain injuries (TBIs), particularly contusive types, are associated with disruptions in neuronal communication due to focal and diffuse axonal injury, as well as alterations in the neuronal chemical environment. These changes can negatively impact neuronal networks beyond the primary injury site. In this Translational Outcomes Project in NeuroTrauma (TOP-NT) UG3 phase study, we sought to use multimodal neuroimaging biomarker approach to assess functional connectivity and brain tissue microstructure, along with T2 relaxometry, in two experimental rat models of TBI: controlled cortical impact (CCI) and lateral fluid percussive injury (LFPI). Rats underwent imaging using an 11.1 Tesla scanner at 2 and 30 days post-injury. Naive controls were scanned once to establish baseline comparisons for both TBI groups. Imaging modalities included functional magnetic resonance imaging (fMRI), diffusion-weighted imaging (DWI), and multi-echo T2 imaging. fMRI data were analyzed to evaluate functional connectivity across lateral and medial regions of interest (ROIs) in the cortical mantle, hippocampus, and dorsal striatum. DWI scans were used to generate maps of fractional anisotropy (FA) and mean, axial, and radial diffusivities (MD, AD, RD), focusing on cortical and white matter (WM) regions near the injury epicenter. Our findings revealed significantly increased contralateral intra-cortical connectivity at 2 days post-injury in both CCI and LFPI models, localized to similar cortical areas. This increased connectivity persisted at day 30 in the CCI model but not in LFPI. Changes in WM and cortical FA and diffusivities were observed in both models, with WM alterations predominating in CCI and cortical changes being more pronounced in LFPI. These results highlight the utility of multimodal MR imaging for characterizing distinct injury mechanisms in contusive and skull-penetrating TBI models.
Collapse
|
7
|
Bowen RM, Lee J, Wang B, Lohse KR, Miao H, Padawer-Curry JA, Albertson AJ, Landsness EC, Bauer AQ, Lee JM. Early changes in spatiotemporal dynamics of remapped circuits and global networks predict functional recovery after stroke in mice. NEUROPHOTONICS 2025; 12:S14604. [PMID: 39711648 PMCID: PMC11661640 DOI: 10.1117/1.nph.12.s1.s14604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 12/24/2024]
Abstract
Significance Stroke is the leading cause of chronic disability in the United States. How stroke size affects post-stroke repair and recovery is poorly understood. Aim We aim to investigate the effects of stroke size on early repair patterns and determine how early changes in neuronal circuits and networks predict functional outcomes after stroke. Approach We used wide-field optical imaging, photothrombosis, and the cylinder-rearing assay to examine changes in neuronal circuit and network activity in the context of functional recovery after stroke. Results Larger strokes ablating S 1 FP caused diffuse and widespread forepaw stimulus-evoked cortical activation, including contralesional regions evolving within 4 weeks post-stroke; smaller strokes resulted in more focused ipsilesional activation. Larger strokes decreased neuronal fidelity and bilateral coherence during stimulation of either the affected or unaffected forepaw within this 4-week period. Mice in the larger lesion group demonstrated hyperconnectivity within the contralesional hemisphere at the resting state. Greater degrees of remapping diffusivity, neuronal fidelity degradation, and hyperconnectivity predicted worse 8-week recovery after statistically controlling for the effect of infarct size. Conclusions These results suggest that diffuse patterns of remapping, and desynchronization and hyperconnectivity of cortical networks, evolving early after stroke may reflect maladaptive plasticity, predicting poor long-term functional recovery.
Collapse
Affiliation(s)
- Ryan M. Bowen
- Washington University in St. Louis, Department of Neurology, St. Louis, Missouri, United States
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
| | - Jake Lee
- Washington University in St. Louis, Department of Neurology, St. Louis, Missouri, United States
| | - Brendon Wang
- Washington University in St. Louis, Department of Neurology, St. Louis, Missouri, United States
| | - Keith R. Lohse
- Washington University in St. Louis, Department of Neurology, St. Louis, Missouri, United States
- Washington University in St. Louis, Department of Physical Therapy, St. Louis, Missouri, United States
| | - Hanyang Miao
- Washington University in St. Louis, Department of Neurology, St. Louis, Missouri, United States
| | - Jonah A. Padawer-Curry
- Washington University in St. Louis, Imaging Sciences PhD Program, St. Louis, Missouri, United States
- Washington University in St. Louis, Department of Radiology, St. Louis, Missouri, United States
| | - Asher J. Albertson
- Washington University in St. Louis, Department of Neurology, St. Louis, Missouri, United States
| | - Eric C. Landsness
- Washington University in St. Louis, Department of Neurology, St. Louis, Missouri, United States
| | - Adam Q. Bauer
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
- Washington University in St. Louis, Department of Radiology, St. Louis, Missouri, United States
| | - Jin-Moo Lee
- Washington University in St. Louis, Department of Neurology, St. Louis, Missouri, United States
- Washington University in St. Louis, Department of Biomedical Engineering, St. Louis, Missouri, United States
| |
Collapse
|
8
|
Markicevic M, Mandino F, Toyonaga T, Cai Z, Fesharaki-Zadeh A, Shen X, Strittmatter SM, Lake EM. Repetitive Mild Closed-Head Injury Induced Synapse Loss and Increased Local BOLD-fMRI Signal Homogeneity. J Neurotrauma 2024; 41:2528-2544. [PMID: 39096127 PMCID: PMC11698675 DOI: 10.1089/neu.2024.0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Repeated mild head injuries due to sports, or domestic violence and military service are increasingly linked to debilitating symptoms in the long term. Although symptoms may take decades to manifest, potentially treatable neurobiological alterations must begin shortly after injury. Better means to diagnose and treat traumatic brain injuries requires an improved understanding of the mechanisms underlying progression and means through which they can be measured. Here, we employ a repetitive mild traumatic brain injury (rmTBI) and chronic variable stress mouse model to investigate emergent structural and functional brain abnormalities. Brain imaging is achieved with [18F]SynVesT-1 positron emission tomography, with the synaptic vesicle glycoprotein 2A ligand marking synapse density and BOLD (blood-oxygen-level-dependent) functional magnetic resonance imaging (fMRI). Animals were scanned six weeks after concluding rmTBI/Stress procedures. Injured mice showed widespread decreases in synaptic density coupled with an increase in local BOLD-fMRI synchrony detected as regional homogeneity. Injury-affected regions with higher synapse density showed a greater increase in fMRI regional homogeneity. Taken together, these observations may reflect compensatory mechanisms following injury. Multimodal studies are needed to provide deeper insights into these observations.
Collapse
Affiliation(s)
- Marija Markicevic
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Francesca Mandino
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Zhengxin Cai
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Arman Fesharaki-Zadeh
- Department of Neurology, School of Medicine, Yale University, New Haven, Connecticut, USA
- Department of Psychiatry, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Xilin Shen
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Stephen M. Strittmatter
- Department of Neurology, School of Medicine, Yale University, New Haven, Connecticut, USA
- Department of Neuroscience, School of Medicine, Yale University, New Haven, Connecticut, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, Connecticut, USA
| | - Evelyn M.R. Lake
- Department of Radiology and Biomedical Imaging, School of Medicine, Yale University, New Haven, Connecticut, USA
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
9
|
Everson CA, Szabo A, Plyer C, Hammeke TA, Stemper BD, Budde MD. Subclinical brain manifestations of repeated mild traumatic brain injury are changed by chronic exposure to sleep loss, caffeine, and sleep aids. Exp Neurol 2024; 381:114928. [PMID: 39168169 DOI: 10.1016/j.expneurol.2024.114928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/30/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
INTRODUCTION After mild traumatic brain injury (mTBI), the brain is labile for weeks and months and vulnerable to repeated concussions. During this time, patients are exposed to everyday circumstances that, in themselves, affect brain metabolism and blood flow and neural processing. How commonplace activities interact with the injured brain is unknown. The present study in an animal model investigated the extent to which three commonly experienced exposures-daily caffeine usage, chronic sleep loss, and chronic sleep aid medication-affect the injured brain in the chronic phase. METHODS Subclinical trauma by repeated mTBIs was produced by our head rotational acceleration injury model, which causes brain injury consistent with the mechanism of concussion in humans. Forty-eight hours after a third mTBI, chronic administrations of caffeine, sleep restriction, or zolpidem (sedative hypnotic) began and were continued for 70 days. On Days 30 and 60 post injury, resting state functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) were performed. RESULTS Chronic caffeine, sleep restriction, and zolpidem each changed the subclinical brain characteristics of mTBI at both 30 and 60 days post injury, detected by different MRI modalities. Each treatment caused microstructural alterations in DTI metrics in the insular cortex and retrosplenial cortex compared with mTBI, but also uniquely affected other gray and white matter regions. Zolpidem administration affected the largest number of individual structures in mTBI at both 30 and 60 days, and not necessarily toward normalization (sham treatment). Chronic sleep restriction changed local functional connectivity at 30 days in diametrical opposition to chronic caffeine ingestion, and both treatment outcomes were different from sham, mTBI-only and zolpidem comparisons. The results indicate that commonly encountered exposures modify subclinical brain activity and structure long after healing is expected to be complete. CONCLUSIONS Changes in activity and structure detected by fMRI are widely understood to reflect changes in the functions of the affected region which conceivably underlie mTBI neuropathology and symptomatology in the chronic phase after injury.
Collapse
Affiliation(s)
- Carol A Everson
- Department of Medicine (Endocrinology and Molecular Medicine) and Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Aniko Szabo
- Division of Biostatistics, Institute for Health & Equity, Medical College of Wisconsin, Milwaukee, WI, USA,.
| | - Cade Plyer
- Neurology Residency Program, Department of Neurology, University of Iowa Hospitals and Clinics, Iowa, USA.
| | - Thomas A Hammeke
- Department of Psychiatry and Behavioral Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian D Stemper
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA; Neuroscience Research, Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA; Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Matthew D Budde
- Neuroscience Research, Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA; Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
10
|
Bibineyshvili Y, Vajtay TJ, Salsabilian S, Fliss N, Suvarnakar A, Fang J, Teng S, Alder J, Najafizadeh L, Margolis DJ. Imaging the large-scale and cellular response to focal traumatic brain injury in mouse neocortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590835. [PMID: 38712183 PMCID: PMC11071467 DOI: 10.1101/2024.04.24.590835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Traumatic brain injury (TBI) affects neural function at the local injury site and also at distant, connected brain areas. However, the real-time neural dynamics in response to injury and subsequent effects on sensory processing and behavior are not fully resolved, especially across a range of spatial scales. We used in vivo calcium imaging in awake, head-restrained male and female mice to measure large-scale and cellular resolution neuronal activation, respectively, in response to a mild/moderate TBI induced by focal controlled cortical impact (CCI) injury of the motor cortex (M1). Widefield imaging revealed an immediate CCI-induced activation at the injury site, followed by a massive slow wave of calcium signal activation that traveled across the majority of the dorsal cortex within approximately 30 s. Correspondingly, two-photon calcium imaging in primary somatosensory cortex (S1) found strong activation of neuropil and neuronal populations during the CCI-induced traveling wave. A depression of calcium signals followed the wave, during which we observed atypical activity of a sparse population of S1 neurons. Longitudinal imaging in the hours and days after CCI revealed increases in the area of whisker-evoked sensory maps at early time points, in parallel to decreases in cortical functional connectivity and behavioral measures. Neural and behavioral changes mostly recovered over hours to days in our M1-TBI model, with a more lasting decrease in the number of active S1 neurons. Our results in unanesthetized mice describe novel spatial and temporal neural adaptations that occur at cortical sites remote to a focal brain injury.
Collapse
Affiliation(s)
- Yelena Bibineyshvili
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway NJ, USA
| | - Thomas J. Vajtay
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway NJ, USA
| | - Shiva Salsabilian
- Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Nicholas Fliss
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway NJ, USA
| | - Aastha Suvarnakar
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway NJ, USA
| | - Jennifer Fang
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway NJ, USA
| | - Shavonne Teng
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Janet Alder
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Laleh Najafizadeh
- Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - David J. Margolis
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway NJ, USA
| |
Collapse
|
11
|
Singh A, Gong S, Vu A, Li S, Obenaus A. Social deficits mirror delayed cerebrovascular dysfunction after traumatic brain injury. Acta Neuropathol Commun 2024; 12:126. [PMID: 39107831 PMCID: PMC11304659 DOI: 10.1186/s40478-024-01840-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/28/2024] [Indexed: 08/10/2024] Open
Abstract
Traumatic brain injury (TBI) survivors face debilitating long-term psychosocial consequences, including social isolation and depression. TBI modifies neurovascular physiology and behavior but the chronic physiological implications of altered brain perfusion on social interactions are unknown. Adult C57/BL6 male mice received a moderate cortical TBI, and social behaviors were assessed at baseline, 3-, 7-, 14-, 30-, and 60-days post injury (dpi). Magnetic resonance imaging (MRI, 9.4T) using dynamic susceptibility contrast perfusion weighted MRI were acquired. At 60dpi mice underwent histological angioarchitectural mapping. Analysis utilized standardized protocols followed by cross-correlation metrics. Social behavior deficits at 60dpi emerged as reduced interactions with a familiar cage-mate (partner) that mirrored significant reductions in cerebral blood flow (CBF) at 60dpi. CBF perturbations were dynamic temporally and across brain regions including regions known to regulate social behavior such as hippocampus, hypothalamus, and rhinal cortex. Social isolation in TBI-mice emerged with a significant decline in preference to spend time with a cage mate. Cortical vascular density was also reduced corroborating the decline in brain perfusion and social interactions. Thus, the late emergence of social interaction deficits mirrored the reduced vascular density and CBF in regions known to be involved in social behaviors. Vascular morphology and function improved prior to the late decrements in social function and our correlations strongly implicate a linkage between vascular density, cerebral perfusion, and social interactions. Our study provides a clinically relevant timeline of alterations in social deficits alongside functional vascular recovery that can guide future therapeutics.
Collapse
Affiliation(s)
- Aditya Singh
- Department of Pediatrics, School of Medicine, University of California Irvine, Hewitt Hall Rm. 2066, Irvine, CA, 92697, USA
- Department of Neurology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA, 120 Walter P Martin Research Center, Torrance, California, 90502, USA
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, California, 90095, USA
| | - Steven Gong
- Department of Pediatrics, School of Medicine, University of California Irvine, Hewitt Hall Rm. 2066, Irvine, CA, 92697, USA
| | - Anh Vu
- Department of Pediatrics, School of Medicine, University of California Irvine, Hewitt Hall Rm. 2066, Irvine, CA, 92697, USA
| | - Scott Li
- Department of Pediatrics, School of Medicine, University of California Irvine, Hewitt Hall Rm. 2066, Irvine, CA, 92697, USA
| | - Andre Obenaus
- Department of Pediatrics, School of Medicine, University of California Irvine, Hewitt Hall Rm. 2066, Irvine, CA, 92697, USA.
- Division of Biomedical Sciences, 206 SOM Research Bldg, University of California Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
12
|
Paydar A, Khorasani L, Harris NG. Constraint Induced Movement Therapy Confers only a Transient Behavioral Benefit but Enduring Functional Circuit-Level Changes after Experimental TBI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606449. [PMID: 39149371 PMCID: PMC11326145 DOI: 10.1101/2024.08.02.606449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Although the behavioral outcome of Constraint-Induced Movement Therapy (CIMT) is well known, and that a combination of CIMT and arm use training potentiates the effect, there has been limited study of the brain circuits involved that respond to therapy. An understanding of CIMT from a brain network level would be useful for guiding the duration of effective therapy, the type of training regime to potentiate the outcome, as well as brain regional targets that might be amenable for direct neuromodulation. Here we investigated the effect of CIMT therapy alone unconfounded by additional rehabilitation training in order to determine the impact of intervention at the circuit level. Adult rats were injured by controlled cortical impact injury and studied before and then after 2wks of CIMT or noCIMT at 1-3wks post-injury using a combination of forelimb behavioral tasks and task-based and resting state functional magnetic resonance imaging at 3 and 7wks post-injury and compared to sham rats. There was no difference in behavior or functional imaging between CIMT and noCIMT after injury before intervention so that data are unlikely to be confounded by differences in injury severity. CIMT produced only a transient reduction in limb deficits compared to noCIMT immediately after the intervention, but no difference thereafter. However, CIMT resulted in a persistent reduction in contralesional limb-evoked activation and a corresponding ipsilesional cortical plasticity compared to noCIMT that endured 4wks after intervention. This was associated with a significant amelioration of intra and inter-hemispheric connectivity present in the noCIMT group at 7wks post-injury.
Collapse
Affiliation(s)
- Afshin Paydar
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Laila Khorasani
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Neil G Harris
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, University of California at Los Angeles, Los Angeles, CA, 90095, USA
- Intellectual Development and Disabilities Research Center, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
13
|
Fox R, Santana-Gomez C, Shamas M, Pavade A, Staba R, Harris NG. Different Trajectories of Functional Connectivity Captured with Gamma-Event Coupling and Broadband Measures of EEG in the Rat Fluid Percussion Injury Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.02.597056. [PMID: 38895342 PMCID: PMC11185526 DOI: 10.1101/2024.06.02.597056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Functional connectivity (FC) after TBI is affected by an altered excitatory-inhibitory balance due to neuronal dysfunction, and the mechanistic changes observed could be reflected differently by contrasting methods. Local gamma event coupling FC (GEC-FC) is believed to represent multiunit fluctuations due to inhibitory dysfunction, and we hypothesized that FC derived from widespread, broadband amplitude signal (BBA-FC) would be different, reflecting broader mechanisms of functional disconnection. We tested this during sleep and active periods defined by high delta and theta EEG activity, respectively, at 1,7 and 28d after rat fluid-percussion-injury (FPI) or sham injury (n=6/group) using 10 indwelling, bilateral cortical and hippocampal electrodes. We also measured seizure and high-frequency oscillatory activity (HFOs) as markers of electrophysiological burden. BBA-FC analysis showed early hyperconnectivity constrained to ipsilateral sensory-cortex-to-CA1-hippocampus that transformed to mainly ipsilateral FC deficits by 28d compared to shams. These changes were conserved over active epochs, except at 28d when there were no differences to shams. In comparison, GEC-FC analysis showed large regions of hyperconnectivity early after injury within similar ipsilateral and intrahemispheric networks. GEC-FC weakened with time, but hyperconnectivity persisted at 28d compared to sham. Edge- and global connectivity measures revealed injury-related differences across time in GEC-FC as compared to BBA-FC, demonstrating greater sensitivity to FC changes post-injury. There was no significant association between sleep fragmentation, HFOs, or seizures with FC changes. The within-animal, spatial-temporal differences in BBA-FC and GEC-FC after injury may represent different mechanisms driving FC changes as a result of primary disconnection and interneuron loss. Significance statement The present study adds to the understanding of functional connectivity changes in preclinical models of traumatic brain injury. In previously reported literature, there is heterogeneity in the directionality of connectivity changes after injury, resulting from factors such as severity of injury, frequency band studied, and methodology used to calculate FC. This study aims to further clarify differential mechanisms that result in altered network topography after injury, by using Broadband Amplitude-Derived FC and Gamma Event Coupling-Derived FC in EEG. We found post-injury changes that differ in complexity and directionality between measures at and across timepoints. In conjunction with known results and future studies identifying different neural drivers underlying these changes, measures derived from this study could provide useful means from which to minimally-invasively study temporally-evolving pathology after TBI.
Collapse
|
14
|
Markicevic M, Mandino F, Toyonaga T, Cai Z, Fesharaki-Zadeh A, Shen X, Strittmatter SM, Lake E. Repetitive mild closed-head injury induced synapse loss and increased local BOLD-fMRI signal homogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595651. [PMID: 38826468 PMCID: PMC11142233 DOI: 10.1101/2024.05.24.595651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Repeated mild head injuries due to sports, or domestic violence and military service are increasingly linked to debilitating symptoms in the long term. Although symptoms may take decades to manifest, potentially treatable neurobiological alterations must begin shortly after injury. Better means to diagnose and treat traumatic brain injuries, requires an improved understanding of the mechanisms underlying progression and means through which they can be measured. Here, we employ a repetitive mild closed-head injury (rmTBI) and chronic variable stress (CVS) mouse model to investigate emergent structural and functional brain abnormalities. Brain imaging is achieved with [ 18 F]SynVesT-1 positron emission tomography, with the synaptic vesicle glycoprotein 2A ligand marking synapse density and BOLD (blood-oxygen-level-dependent) functional magnetic resonance imaging (fMRI). Animals were scanned six weeks after concluding rmTBI/Stress procedures. Injured mice showed widespread decreases in synaptic density coupled with an i ncrease in local BOLD-fMRI synchrony detected as regional homogeneity. Injury-affected regions with higher synapse density showed a greater increase in fMRI regional homogeneity. Taken together, these observations may reflect compensatory mechanisms following injury. Multimodal studies are needed to provide deeper insights into these observations.
Collapse
|
15
|
Everson CA, Szabo A, Plyer C, Hammeke TA, Stemper BD, Budde MD. Sleep loss, caffeine, sleep aids and sedation modify brain abnormalities of mild traumatic brain injury. Exp Neurol 2024; 372:114620. [PMID: 38029810 DOI: 10.1016/j.expneurol.2023.114620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
Little evidence exists about how mild traumatic brain injury (mTBI) is affected by commonly encountered exposures of sleep loss, sleep aids, and caffeine that might be potential therapeutic opportunities. In addition, while propofol sedation is administered in severe TBI, its potential utility in mild TBI is unclear. Each of these exposures is known to have pronounced effects on cerebral metabolism and blood flow and neurochemistry. We hypothesized that they each interact with cerebral metabolic dynamics post-injury and change the subclinical characteristics of mTBI. MTBI in rats was produced by head rotational acceleration injury that mimics the biomechanics of human mTBI. Three mTBIs spaced 48 h apart were used to increase the likelihood that vulnerabilities induced by repeated mTBI would be manifested without clinically relevant structural damage. After the third mTBI, rats were immediately sleep deprived or administered caffeine or suvorexant (an orexin antagonist and sleep aid) for the next 24 h or administered propofol for 5 h. Resting state functional magnetic resonance imaging (rs-fMRI) and diffusion tensor imaging (DTI) were performed 24 h after the third mTBI and again after 30 days to determine changes to the brain mTBI phenotype. Multi-modal analyses on brain regions of interest included measures of functional connectivity and regional homogeneity from rs-fMRI, and mean diffusivity (MD) and fractional anisotropy (FA) from DTI. Each intervention changed the mTBI profile of subclinical effects that presumably underlie healing, compensation, damage, and plasticity. Sleep loss during the acute post-injury period resulted in dramatic changes to functional connectivity. Caffeine, propofol sedation and suvorexant were especially noteworthy for differential effects on microstructure in gray and white matter regions after mTBI. The present results indicate that commonplace exposures and short-term sedation alter the subclinical manifestations of repeated mTBI and therefore likely play roles in symptomatology and vulnerability to damage by repeated mTBI.
Collapse
Affiliation(s)
- Carol A Everson
- Department of Medicine (Endocrinology and Molecular Medicine) and Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Aniko Szabo
- Division of Biostatistics, Institute for Health & Equity, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Cade Plyer
- Neurology Residency Program, Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA.
| | - Thomas A Hammeke
- Department of Psychiatry and Behavioral Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian D Stemper
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA; Neuroscience Research, Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA.
| | - Mathew D Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
16
|
Bottom-Tanzer S, Corella S, Meyer J, Sommer M, Bolaños L, Murphy T, Quiñones S, Heiney S, Shtrahman M, Whalen M, Oren R, Higley MJ, Cardin JA, Noubary F, Armbruster M, Dulla C. Traumatic brain injury disrupts state-dependent functional cortical connectivity in a mouse model. Cereb Cortex 2024; 34:bhae038. [PMID: 38365273 PMCID: PMC11486687 DOI: 10.1093/cercor/bhae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/18/2024] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of death in young people and can cause cognitive and motor dysfunction and disruptions in functional connectivity between brain regions. In human TBI patients and rodent models of TBI, functional connectivity is decreased after injury. Recovery of connectivity after TBI is associated with improved cognition and memory, suggesting an important link between connectivity and functional outcome. We examined widespread alterations in functional connectivity following TBI using simultaneous widefield mesoscale GCaMP7c calcium imaging and electrocorticography (ECoG) in mice injured using the controlled cortical impact (CCI) model of TBI. Combining CCI with widefield cortical imaging provides us with unprecedented access to characterize network connectivity changes throughout the entire injured cortex over time. Our data demonstrate that CCI profoundly disrupts functional connectivity immediately after injury, followed by partial recovery over 3 weeks. Examining discrete periods of locomotion and stillness reveals that CCI alters functional connectivity and reduces theta power only during periods of behavioral stillness. Together, these findings demonstrate that TBI causes dynamic, behavioral state-dependent changes in functional connectivity and ECoG activity across the cortex.
Collapse
Affiliation(s)
- Samantha Bottom-Tanzer
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, United States
- MD/PhD Program, Tufts University School of Medicine, Boston, MA 02111, United States
- Neuroscience Program, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, United States
| | - Sofia Corella
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
- MD/PhD Program, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
| | - Jochen Meyer
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Mary Sommer
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, United States
| | - Luis Bolaños
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Timothy Murphy
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Sadi Quiñones
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, United States
- Neuroscience Program, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, United States
| | - Shane Heiney
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| | - Matthew Shtrahman
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, United States
| | - Michael Whalen
- Department of Pediatrics, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02115, United States
| | - Rachel Oren
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, United States
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, United States
| | - Michael J Higley
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, United States
| | - Jessica A Cardin
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, United States
| | - Farzad Noubary
- Department of Health Sciences, Northeastern University, Boston, MA 02115, United States
| | - Moritz Armbruster
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, United States
| | - Chris Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, United States
| |
Collapse
|
17
|
Hackett EP, Chen J, Ingle L, Nemri SA, Barshikar S, da Cunha Pinho M, Plautz EJ, Bartnik-Olson BL, Park JM. Longitudinal assessment of mitochondrial dysfunction in acute traumatic brain injury using hyperpolarized [1- 13 C]pyruvate. Magn Reson Med 2023; 90:2432-2442. [PMID: 37427535 PMCID: PMC10543630 DOI: 10.1002/mrm.29794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/11/2023]
Abstract
PURPOSE [13 C]Bicarbonate formation from hyperpolarized [1-13 C]pyruvate via pyruvate dehydrogenase, a key regulatory enzyme, represents the cerebral oxidation of pyruvate and the integrity of mitochondrial function. The present study is to characterize the chronology of cerebral mitochondrial metabolism during secondary injury associated with acute traumatic brain injury (TBI) by longitudinally monitoring [13 C]bicarbonate production from hyperpolarized [1-13 C]pyruvate in rodents. METHODS Male Wistar rats were randomly assigned to undergo a controlled-cortical impact (CCI, n = 31) or sham surgery (n = 22). Seventeen of the CCI and 9 of the sham rats longitudinally underwent a 1 H/13 C-integrated MR protocol that includes a bolus injection of hyperpolarized [1-13 C]pyruvate at 0 (2 h), 1, 2, 5, and 10 days post-surgery. Separate CCI and sham rats were used for histological validation and enzyme assays. RESULTS In addition to elevated lactate, we observed significantly reduced bicarbonate production in the injured site. Unlike the immediate appearance of hyperintensity on T2 -weighted MRI, the contrast of bicarbonate signals between the injured region and the contralateral brain peaked at 24 h post-injury, then fully recovered to the normal level at day 10. A subset of TBI rats demonstrated markedly increased bicarbonate in normal-appearing contralateral brain regions post-injury. CONCLUSION This study demonstrates that aberrant mitochondrial metabolism occurring in acute TBI can be monitored by detecting [13 C]bicarbonate production from hyperpolarized [1-13 C]pyruvate, suggesting that [13 C]bicarbonate is a sensitive in-vivo biomarker of the secondary injury processes.
Collapse
Affiliation(s)
- Edward P. Hackett
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas TX USA 75390
| | - Jun Chen
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas TX USA 75390
| | - Laura Ingle
- Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas TX USA 75390
| | - Sarah Al Nemri
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas TX USA 75390
| | - Surendra Barshikar
- Department of Physical Medicine and Rehabilitation, The University of Texas Southwestern Medical Center, Dallas TX USA 75390
| | - Marco da Cunha Pinho
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas TX USA 75390
| | - Erik J. Plautz
- Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas TX USA 75390
| | | | - Jae Mo Park
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas TX USA 75390
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas TX USA 75390
- Department of Biomedical Engineering, The University of Texas Southwestern Medical Center, Dallas TX USA 75390
| |
Collapse
|
18
|
Oujamaa L, Delon-Martin C, Jaroszynski C, Termenon M, Silva S, Payen JF, Achard S. Functional hub disruption emphasizes consciousness recovery in severe traumatic brain injury. Brain Commun 2023; 5:fcad319. [PMID: 38757093 PMCID: PMC11098044 DOI: 10.1093/braincomms/fcad319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 08/20/2023] [Accepted: 11/21/2023] [Indexed: 05/18/2024] Open
Abstract
Severe traumatic brain injury can lead to transient or even chronic disorder of consciousness. To increase diagnosis and prognosis accuracy of disorder of consciousness, functional neuroimaging is recommended 1 month post-injury. Here, we investigated brain networks remodelling on longitudinal data between 1 and 3 months post severe traumatic brain injury related to change of consciousness. Thirty-four severe traumatic brain-injured patients were included in a cross-sectional and longitudinal clinical study, and their MRI data were compared to those of 20 healthy subjects. Long duration resting-state functional MRI were acquired in minimally conscious and conscious patients at two time points after their brain injury. The first time corresponds to the exit from intensive care unit and the second one to the discharge from post-intensive care rehabilitation ward. Brain networks data were extracted using graph analysis and metrics at each node quantifying local (clustering) and global (degree) connectivity characteristics. Comparison with brain networks of healthy subjects revealed patterns of hyper- and hypo-connectivity that characterize brain networks reorganization through the hub disruption index, a value quantifying the functional disruption in each individual severe traumatic brain injury graph. At discharge from intensive care unit, 24 patients' graphs (9 minimally conscious and 15 conscious) were fully analysed and demonstrated significant network disruption. Clustering and degree nodal metrics, respectively, related to segregation and integration properties of the network, were relevant to distinguish minimally conscious and conscious groups. At discharge from post-intensive care rehabilitation unit, 15 patients' graphs (2 minimally conscious, 13 conscious) were fully analysed. The conscious group still presented a significant difference with healthy subjects. Using mixed effects models, we showed that consciousness state, rather than time, explained the hub disruption index differences between minimally conscious and conscious groups. While severe traumatic brain-injured patients recovered full consciousness, regional functional connectivity evolved towards a healthy pattern. More specifically, the restoration of a healthy brain functional segregation could be necessary for consciousness recovery after severe traumatic brain injury. For the first time, extracting the hub disruption index directly from each patient's graph, we were able to track the clinical alteration and subsequent recovery of consciousness during the first 3 months following a severe traumatic brain injury.
Collapse
Affiliation(s)
- Lydia Oujamaa
- University Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Chantal Delon-Martin
- University Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Chloé Jaroszynski
- University Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Maite Termenon
- Faculty of Engineering, Biomedical Engineering Department, Mondragon Unibertsitatea (MU-ENG), 20500 Mondragon, Spain
| | - Stein Silva
- Toulouse NeuroImaging Center, Toulouse III Paul Sabatier University, Inserm, 31062 Toulouse, France
- Critical Care Unit, University Teaching Hospital of Purpan, 31059 Toulouse, France
| | - Jean-François Payen
- University Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, CHU Grenoble Alpes, 38000 Grenoble, France
| | - Sophie Achard
- University Grenoble Alpes, CNRS, Inria, Grenoble INP, LJK, 38000 Grenoble, France
| |
Collapse
|
19
|
Thapak P, Smith G, Ying Z, Paydar A, Harris N, Gomez-Pinilla F. The BDNF mimetic R-13 attenuates TBI pathogenesis using TrkB-related pathways and bioenergetics. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166781. [PMID: 37286142 PMCID: PMC10619508 DOI: 10.1016/j.bbadis.2023.166781] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
Traumatic brain injury (TBI) is major neurological burden globally, and effective treatments are urgently needed. TBI is characterized by a reduction in energy metabolism and synaptic function that seems a primary cause of neuronal dysfunction. R13, a small drug and BDNF mimetic showed promising results in improving spatial memory and anxiety-like behavior after TBI. Additionally, R13 was found to counteract reductions in molecules associated with BDNF signaling (p-TrkB, p-PI3K, p-AKT), synaptic plasticity (GluR2, PSD95, Synapsin I) as well as bioenergetic components such as mitophagy (SOD, PGC-1α, PINK1, Parkin, BNIP3, and LC3) and real-time mitochondrial respiratory capacity. Behavioral and molecular changes were accompanied by adaptations in functional connectivity assessed using MRI. Results highlight the potential of R13 as a therapeutic agent for TBI and provide valuable insights into the molecular and functional changes associated with this condition.
Collapse
Affiliation(s)
- Pavan Thapak
- Dept. Integrative Biology and Physiology, UCLA, Los Angeles, CA, United States of America
| | - Gregory Smith
- Department of Neurosurgery, UCLA David Geffen School of Medicine, Los Angeles, CA, United States of America; UCLA Brain Injury Research Center, Los Angeles, CA, United States of America
| | - Zhe Ying
- Dept. Integrative Biology and Physiology, UCLA, Los Angeles, CA, United States of America
| | - Afshin Paydar
- Department of Neurosurgery, UCLA David Geffen School of Medicine, Los Angeles, CA, United States of America; UCLA Brain Injury Research Center, Los Angeles, CA, United States of America
| | - Neil Harris
- Department of Neurosurgery, UCLA David Geffen School of Medicine, Los Angeles, CA, United States of America; UCLA Brain Injury Research Center, Los Angeles, CA, United States of America; Intellectual Development and Disabilities Research Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Fernando Gomez-Pinilla
- Dept. Integrative Biology and Physiology, UCLA, Los Angeles, CA, United States of America; Department of Neurosurgery, UCLA David Geffen School of Medicine, Los Angeles, CA, United States of America; UCLA Brain Injury Research Center, Los Angeles, CA, United States of America.
| |
Collapse
|
20
|
Smith G, Thapak P, Paydar A, Ying Z, Gomez-Pinilla F, Harris NG. Altering the Trajectory of Perfusion-Diffusion Deficits Using A BDNF Mimetic Acutely After TBI is Associated with Improved Functional Connectivity. PROGRESS IN NEUROBIOLOGY (DOVER, DEL.) 2023; 10:10.60124/j.pneuro.2023.10.07. [PMID: 38037566 PMCID: PMC10689006 DOI: 10.60124/j.pneuro.2023.10.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Traumatic brain injury (TBI) results in metabolic deficits and functionally compromised tissue. The BDNF mimetic R13 has a significant positive effect on both tissue metabolism and behavioral outcome after TBI, indicating a promising therapeutic. To understand the mechanism of action for this intervention, we determined whether there was any association between the underlying metabolic insult and any improvement in resting state functional connectivity (FC) with MRI, or whether R13 acts through mechanisms unrelated to metabolic recovery. We found perfusion deficits could be reasonably approximated by reductions in mean diffusivity (MD) acutely after injury, because a majority of regions with low perfusion matched to regions of low MD, indicative of cell swelling. Injury alone resulted in reduced cross-brain FC and contralateral hyperconnectivity at 1d compared to sham and these were spatially coincident with regions of low MD. R13 intervention at 1-7d altered the tissue trajectory of MD pathology away from pseudo-normalization so that a greater volume of tissue remained with low MD at 7d. These same regions were associated with significant changes in cross-brain and contralateral FC in R13 treated rats compared to injured vehicle-treated rats. These data indicate a likely metabolic effect of R13 acutely after injury.
Collapse
Affiliation(s)
- Gregory Smith
- Department of Neurosurgery, UCLA David Geffen School. of Medicine, Los Angeles, California, USA
- UCLA Brain Injury Research Center, Los Angeles, California, USA
| | - Pavan Thapak
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, California, USA
| | - Afshin Paydar
- Department of Neurosurgery, UCLA David Geffen School. of Medicine, Los Angeles, California, USA
- UCLA Brain Injury Research Center, Los Angeles, California, USA
| | - Zhe Ying
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, California, USA
| | - Fernando Gomez-Pinilla
- UCLA Brain Injury Research Center, Los Angeles, California, USA
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, California, USA
| | - Neil G. Harris
- Department of Neurosurgery, UCLA David Geffen School. of Medicine, Los Angeles, California, USA
- UCLA Brain Injury Research Center, Los Angeles, California, USA
- Intellectual and Developmental Disabilities Research Center, UCLA, Los Angeles, California, USA
| |
Collapse
|
21
|
Aswendt M, Hoehn M. Functional hyperconnectivity related to brain disease: maladaptive process or element of resilience? Neural Regen Res 2023; 18:1489-1490. [PMID: 36571347 PMCID: PMC10075104 DOI: 10.4103/1673-5374.361541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Markus Aswendt
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, Juelich, Germany
| | - Mathias Hoehn
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, Juelich, Germany
| |
Collapse
|
22
|
Lee D, Lee Y, Lee Y, Kim K. Functional Connectivity in the Mouse Brainstem Represents Signs of Recovery from Concussion. J Neurotrauma 2023; 40:240-249. [PMID: 36103389 DOI: 10.1089/neu.2022.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mild traumatic brain injury (mTBI) is one of the most frequent neurological disorders. Diagnostic criteria for mTBI are based on cognitive or neurological symptoms without fully understanding the neuropathological basis for explaining behaviors. From the neuropathological perspective of mTBI, recent neuroimaging studies have focused on structural or functional differences in motor-related cortical regions but did not compare topological network properties between the post-concussion days in the brainstem. We investigated temporal changes in functional connectivity and evaluated network properties of functional networks in the mouse brainstem. We observed a significantly decreased functional connectivity and global and local network properties on post-concussion day 7, which normalized on post-concussion day 14. Functional connectivity and local network properties on post-concussion day 2 were also significantly decreased compared with those on post-concussion day 14, but there were no significant group differences in global network properties between days 2 and 14. We also observed that the local efficiency and clustering coefficient of the brainstem network were significantly correlated with anxiety-like behaviors on post-concussion days 7 and 14. This study suggests that functional connectivity in the mouse brainstem provides vital recovery signs from concussion through functional reorganization.
Collapse
Affiliation(s)
- Dongha Lee
- Cognitive Science Research Group and Korea Brain Research Institute, Daegu, Republic of Korea
| | - Yujeong Lee
- Cognitive Science Research Group and Korea Brain Research Institute, Daegu, Republic of Korea
| | - Yoonsang Lee
- Cognitive Science Research Group and Korea Brain Research Institute, Daegu, Republic of Korea
| | - Kipom Kim
- Research Strategy Office, Korea Brain Research Institute, Daegu, Republic of Korea
| |
Collapse
|
23
|
Mortazavi M, Lucini FA, Joffe D, Oakley DS. Electrophysiological trajectories of concussion recovery: From acute to prolonged stages in late teenagers. J Pediatr Rehabil Med 2023; 16:287-299. [PMID: 36710690 PMCID: PMC10894572 DOI: 10.3233/prm-210114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 10/17/2022] [Indexed: 01/25/2023] Open
Abstract
PURPOSE Numerous studies have reported electrophysiological differences between concussed and non-concussed groups, but few studies have systematically explored recovery trajectories from acute concussion to symptom recovery and the transition from acute concussion to prolonged phases. Questions remain about recovery prognosis and the extent to which symptom resolution coincides with injury resolution. This study therefore investigated the electrophysiological differences in recoveries between simple and complex concussion. METHODS Student athletes with acute concussion from a previous study (19(2) years old) were tracked from pre-injury baseline, 24-48 hours after concussion, and through in-season recovery. The electroencephalography (EEG) with P300 evoked response trajectories from this acute study were compared to an age-matched population of 71 patients (18(2) years old) with prolonged post-concussive symptoms (PPCS), 61 (SD 31) days after concussion. RESULTS Acute, return-to-play, and PPCS groups all experienced a significant deficit in P300 amplitude compared to the pre-injury baseline group. The PPCS group, however, had significantly different EEG spectral and coherence patterns from every other group. CONCLUSION These data suggest that while the evoked response potentials deficits of simple concussion may persist in more prolonged stages, there are certain EEG measures unique to PPCS. These metrics are readily accessible to clinicians and may provide useful parameters to help predict trajectories, characterize injury (phenotype), and track the course of injury.
Collapse
Affiliation(s)
- Mo Mortazavi
- SPARCC Sports Medicine, Rehabilitation, and Concussion Center, Tucson, AZ, USA
- Department of Pediatrics, Tucson Medical Center, Tucson, AZ, USA
| | | | | | | |
Collapse
|
24
|
Cramer SW, Haley SP, Popa LS, Carter RE, Scott E, Flaherty EB, Dominguez J, Aronson JD, Sabal L, Surinach D, Chen CC, Kodandaramaiah SB, Ebner TJ. Wide-field calcium imaging reveals widespread changes in cortical functional connectivity following mild traumatic brain injury in the mouse. Neurobiol Dis 2023; 176:105943. [PMID: 36476979 PMCID: PMC9972226 DOI: 10.1016/j.nbd.2022.105943] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
>2.5 million individuals in the United States suffer mild traumatic brain injuries (mTBI) annually. Mild TBI is characterized by a brief period of altered consciousness, without objective findings of anatomic injury on clinical imaging or physical deficit on examination. Nevertheless, a subset of mTBI patients experience persistent subjective symptoms and repeated mTBI can lead to quantifiable neurological deficits, suggesting that each mTBI alters neurophysiology in a deleterious manner not detected using current clinical methods. To better understand these effects, we performed mesoscopic Ca2+ imaging in mice to evaluate how mTBI alters patterns of neuronal interactions across the dorsal cerebral cortex. Spatial Independent Component Analysis (sICA) and Localized semi-Nonnegative Matrix Factorization (LocaNMF) were used to quantify changes in cerebral functional connectivity (FC). Repetitive, mild, controlled cortical impacts induce temporary neuroinflammatory responses, characterized by increased density of microglia exhibiting de-ramified morphology. These temporary neuro-inflammatory changes were not associated with compromised cognitive performance in the Barnes maze or motor function as assessed by rotarod. However, long-term alterations in functional connectivity (FC) were observed. Widespread, bilateral changes in FC occurred immediately following impact and persisted for up to 7 weeks, the duration of the experiment. Network alterations include decreases in global efficiency, clustering coefficient, and nodal strength, thereby disrupting functional interactions and information flow throughout the dorsal cerebral cortex. A subnetwork analysis shows the largest disruptions in FC were concentrated near the impact site. Therefore, mTBI induces a transient neuroinflammation, without alterations in cognitive or motor behavior, and a reorganized cortical network evidenced by the widespread, chronic alterations in cortical FC.
Collapse
Affiliation(s)
- Samuel W Cramer
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Samuel P Haley
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Laurentiu S Popa
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Russell E Carter
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Earl Scott
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Evelyn B Flaherty
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Judith Dominguez
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Justin D Aronson
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Luke Sabal
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel Surinach
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Timothy J Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
25
|
The pericontused cortex can support function early after TBI but it remains functionally isolated from normal afferent input. Exp Neurol 2023; 359:114260. [PMID: 36404463 DOI: 10.1016/j.expneurol.2022.114260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/01/2022] [Accepted: 10/25/2022] [Indexed: 12/30/2022]
Abstract
Traumatically injured brain functional connectivity (FC) is altered in a region-dependent manner with some regions functionally disconnected while others are hyperconnected after experimental TBI. Remote, homotopic cortical regions become hyperexcitable after injury, and we hypothesize that this results in increased trans-hemispheric cortical inhibition, preventing reorganization of the primary injured hemisphere. Previously we have shown that temporary silencing the contralesional cortex at 1wk normalizes affected forelimb behavioral use, but not at 4wks. To investigate the potential mechanism for this and to determine whether this occurs due to restoration of afferent pathway FC, and/or reorganization of brain circuits, we probed forelimb circuit function with sensorimotor task-evoked-fMRI, resting state fMRI seed-based analysis, and exploratory structural equation modelling (SEM) of directed causal connections due to forelimb task at 1 and 4wks post-injury after temporary, contralateral silencing with intraparenchymal injection of muscimol versus vehicle, as well as from sham rats. As predicted, silencing at 1wk and 4wks post-injury decimated the contralesional cortical forelimb map evoked by stimulation of the opposite, unaffected forelimb compared to vehicle-injected injured rats indicating the success of the intervention. Surprisingly however, this also resulted in activation of the pericontused cortex ipsilateral to the stimulated forelimb at 1wk, yet this same region could not be activated by directly stimulating the opposite, injury-affected forelimb. Underpinning this were significant increases in interhemispheric FC at the level of the cortex but decreases within subcortical regions. Causal SEM analysis confirmed increased corticothalamic connectivity and suggested changes from and to bilateral thalamus are important for the effect. At 4wks post-injury only cortical increases in FC were found in response to silencing indicating a less flexible brain, and ipsilesional cortex evoked activity was mostly absent. The absence of a reinstatement of ipsilesional evoked activity through normal pathways by temporary neuromodulation despite prior data showing behavioral improvements under the same conditions, indicates that while the pericontused cortex does retain function initially after injury, it is too functionally disconnected to be controlled by normal afferent input. More significant alterations in cross-brain FC during neuromodulation at 1wk compared to 4wk post-injury, suggest that more distributed brain activity accounts for prior behavior improvements in sensorimotor function, and that hemispheric imbalance in function is causally involved in early loss of sensorimotor function in this TBI model.
Collapse
|
26
|
Nakuci J, McGuire M, Schweser F, Poulsen D, Muldoon SF. Differential Patterns of Change in Brain Connectivity Resulting from Severe Traumatic Brain Injury. Brain Connect 2022; 12:799-811. [PMID: 35302399 PMCID: PMC9805864 DOI: 10.1089/brain.2021.0168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background: Traumatic brain injury (TBI) damages white matter tracts, disrupting brain network structure and communication. There exists a wide heterogeneity in the pattern of structural damage associated with injury, as well as a large heterogeneity in behavioral outcomes. However, little is known about the relationship between changes in network connectivity and clinical outcomes. Materials and Methods: We utilize the rat lateral fluid-percussion injury model of severe TBI to study differences in brain connectivity in 8 animals that received the insult and 11 animals that received only a craniectomy. Diffusion tensor imaging is performed 5 weeks after the injury and network theory is used to investigate changes in white matter connectivity. Results: We find that (1) global network measures are not able to distinguish between healthy and injured animals; (2) injury induced alterations predominantly exist in a subset of connections (subnetworks) distributed throughout the brain; and (3) injured animals can be divided into subgroups based on changes in network motifs-measures of local structural connectivity. In addition, alterations in predicted functional connectivity indicate that the subgroups have different propensities to synchronize brain activity, which could relate to the heterogeneity of clinical outcomes. Discussion: These results suggest that network measures can be used to quantify progressive changes in brain connectivity due to injury and differentiate among subpopulations with similar injuries, but different pathological trajectories.
Collapse
Affiliation(s)
- Johan Nakuci
- Neuroscience Program, University at Buffalo, SUNY, Buffalo, New York, USA
| | - Matthew McGuire
- Neuroscience Program, University at Buffalo, SUNY, Buffalo, New York, USA
- Department of Neurosurgery, University at Buffalo, SUNY, Buffalo, New York, USA
| | - Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, New York, USA
- Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, SUNY, Buffalo, New York, USA
| | - David Poulsen
- Department of Neurosurgery, University at Buffalo, SUNY, Buffalo, New York, USA
| | - Sarah F. Muldoon
- Neuroscience Program, University at Buffalo, SUNY, Buffalo, New York, USA
- Department of Mathematics and CDSE Program, University at Buffalo, SUNY, Buffalo, New York, USA
| |
Collapse
|
27
|
Understanding, detecting, and stimulating consciousness recovery in the ICU. Acta Neurochir (Wien) 2022; 165:809-828. [PMID: 36242637 DOI: 10.1007/s00701-022-05378-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/07/2022] [Indexed: 11/01/2022]
Abstract
Coma is a medical and socioeconomic emergency. Although underfunded, research on coma and disorders of consciousness has made impressive progress. Lesion-network-mapping studies have delineated the precise brainstem regions that consistently produce coma when damaged. Functional neuroimaging has revealed how mechanisms like "communication through coherence" and "inhibition by gating" work in synergy to enable cortico-cortical processing and how this information transfer is disrupted in brain injury. On the cellular level, break-down of intracellular communication between the layer 5 pyramidal cell soma and the apical dendritic part impairs dendritic information integration, with up-stream effects on microcircuits in local neuronal populations and on large-scale fronto-parietal networks, which correlates with loss of consciousness. A breakthrough in clinical concepts occurred when fMRI, and later EEG, studies revealed that 15% of clinically unresponsive patients in acute and chronic settings are in fact awake and aware, as shown by their command following abilities revealed by brain activation during motor and locomotion imagery tasks. This condition is now termed "cognitive motor dissociation." Furthermore, epidemiological data on coma were literally non-existent until recently because of difficulties related to case ascertainment with traditional methods, but crowdsourcing of family observations enabled the first estimates of how frequent coma is in the general population (pooled annual incidence of 201 coma cases per 100,000 population in the UK and the USA). Diagnostic guidelines on coma and disorders of consciousness by the American Academy of Neurology and the European Academy of Neurology provide ambitious clinical frameworks to accommodate these achievements. As for therapy, a broad range of medical and non-medical treatment options is now being tested in increasingly larger trials; in particular, amantadine and transcranial direct current stimulation appear promising in this regard. Major international initiatives like the Curing Coma Campaign aim to raise awareness for coma and disorders of consciousness in the public, with the ultimate goal to make more brain-injured patients recover consciousness after a coma. To highlight all these accomplishments, this paper provides a comprehensive overview of recent progress and future challenges related to understanding, detecting, and stimulating consciousness recovery in the ICU.
Collapse
|
28
|
Rajtmajer SM, Errington TM, Hillary FG. How failure to falsify in high-volume science contributes to the replication crisis. eLife 2022; 11:e78830. [PMID: 35939392 PMCID: PMC9398444 DOI: 10.7554/elife.78830] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022] Open
Abstract
The number of scientific papers published every year continues to increase, but scientific knowledge is not progressing at the same rate. Here we argue that a greater emphasis on falsification - the direct testing of strong hypotheses - would lead to faster progress by allowing well-specified hypotheses to be eliminated. We describe an example from neuroscience where there has been little work to directly test two prominent but incompatible hypotheses related to traumatic brain injury. Based on this example, we discuss how building strong hypotheses and then setting out to falsify them can bring greater precision to the clinical neurosciences, and argue that this approach could be beneficial to all areas of science.
Collapse
Affiliation(s)
- Sarah M Rajtmajer
- College of Information Sciences and Technology, The Pennsylvania State UniversityUniversity ParkUnited States
| | | | - Frank G Hillary
- Department of Psychology and the Social Life and Engineering Sciences Imaging Center, The Pennsylvania State UniversityUniversity ParkUnited States
| |
Collapse
|
29
|
Frankowski JC, Tierno A, Pavani S, Cao Q, Lyon DC, Hunt RF. Brain-wide reconstruction of inhibitory circuits after traumatic brain injury. Nat Commun 2022; 13:3417. [PMID: 35701434 PMCID: PMC9197933 DOI: 10.1038/s41467-022-31072-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/31/2022] [Indexed: 11/09/2022] Open
Abstract
Despite the fundamental importance of understanding the brain's wiring diagram, our knowledge of how neuronal connectivity is rewired by traumatic brain injury remains remarkably incomplete. Here we use cellular resolution whole-brain imaging to generate brain-wide maps of the input to inhibitory neurons in a mouse model of traumatic brain injury. We find that somatostatin interneurons are converted into hyperconnected hubs in multiple brain regions, with rich local network connections but diminished long-range inputs, even at areas not directly damaged. The loss of long-range input does not correlate with cell loss in distant brain regions. Interneurons transplanted into the injury site receive orthotopic local and long-range input, suggesting the machinery for establishing distant connections remains intact even after a severe injury. Our results uncover a potential strategy to sustain and optimize inhibition after traumatic brain injury that involves spatial reorganization of the direct inputs to inhibitory neurons across the brain.
Collapse
Affiliation(s)
- Jan C Frankowski
- Department of Anatomy & Neurobiology, University of California, Irvine, CA, 92697, USA
| | - Alexa Tierno
- Department of Anatomy & Neurobiology, University of California, Irvine, CA, 92697, USA.
| | - Shreya Pavani
- Department of Anatomy & Neurobiology, University of California, Irvine, CA, 92697, USA
| | - Quincy Cao
- Department of Anatomy & Neurobiology, University of California, Irvine, CA, 92697, USA
| | - David C Lyon
- Department of Anatomy & Neurobiology, University of California, Irvine, CA, 92697, USA
| | - Robert F Hunt
- Department of Anatomy & Neurobiology, University of California, Irvine, CA, 92697, USA. .,Epilepsy Research Center, University of California, Irvine, CA, 92697, USA. .,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA, 92697, USA. .,Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, 92697, USA. .,Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
30
|
Vinh To X, Soni N, Medeiros R, Alateeq K, Nasrallah FA. Traumatic brain injury alterations in the functional connectome are associated with neuroinflammation but not tau in a P30IL tauopathy mouse model. Brain Res 2022; 1789:147955. [PMID: 35636493 DOI: 10.1016/j.brainres.2022.147955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/19/2022] [Accepted: 05/25/2022] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Traumatic Brain Injury (TBI) is often associated with long-term cognitive deficits and altered brain networks which have been linked with accumulation of neurofibrillary tau tangles and neuroinflammation. In this work, we investigated the changes in the brain post-TBI in an Alzheimer's disease pR5 tauopathy model and evaluated the contribution of tauopathy and neuroinflammation to connectivity alterations using resting-state functional Magnetic Resonance Imaging (rs-fMRI). METHOD 26 P301L tau transgenic mice of 8-9 months of age (21-35 g) expressing the human tau isoform carrying the pathogenic P301L mutation were used for the study. Animals were assessed at day 1 and 7 post-injury/craniotomy and were randomly divided into four groups. All animals underwent an MRI scan on a 9.4 T Bruker system where rsfMRI was acquired. Following imaging, brains were stained with pSer (396 + 404), glial fibrillary acidic protein (GFAP), and ionised calcium-binding adaptor molecule-1 (Iba-1). Group-information-guided Independent Component Analysis (GIG-ICA) and region-of-interest (ROI)-based network connectivity approaches were applied. Principal Component Regression was applied to predict connectivity network strength from the corresponding ROIs. RESULTS TBI mice showed decreased functional connectivity in the dentate gyrus, thalamus, and other areas compared to sham animals at day 1 post-injury with the majority of changes resolving at day 7. Principal Component Regression showed only the contralateral CA1 network strength was correlated with the CA1's astrocyte and microglia cell density and the ipsilateral thalamus network strength was correlated with the ipsilateral thalamus' astrocyte and microglia cell density. CONCLUSION We present the first report on the temporal alterations in functional connectivity in a P30IL mouse model following TBI. Connectivity between key regions known to be affected in Alzheimer's disease were short-term and reversible following injury. Connectivity strength in CA1 and thalamus showed significant correlation with astrocyte and microglial cell density but not tau density.
Collapse
Affiliation(s)
- Xuan Vinh To
- The Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Neha Soni
- The Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Rodrigo Medeiros
- The Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Khawlah Alateeq
- The Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Fatima A Nasrallah
- The Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia; The University of California, Irvine, The United States of America.
| |
Collapse
|
31
|
Motanis H, Khorasani LN, Giza CC, Harris NG. Peering into the Brain through the Retrosplenial Cortex to Assess Cognitive Function of the Injured Brain. Neurotrauma Rep 2021; 2:564-580. [PMID: 34901949 PMCID: PMC8655812 DOI: 10.1089/neur.2021.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The retrosplenial cortex (RSC) is a posterior cortical area that has been drawing increasing interest in recent years, with a growing number of studies studying its contribution to cognitive and sensory functions. From an anatomical perspective, it has been established that the RSC is extensively and often reciprocally connected with the hippocampus, neocortex, and many midbrain regions. Functionally, the RSC is an important hub of the default-mode network. This endowment, with vast anatomical and functional connections, positions the RSC to play an important role in episodic memory, spatial and contextual learning, sensory-cognitive activities, and multi-modal sensory information processing and integration. Additionally, RSC dysfunction has been reported in cases of cognitive decline, particularly in Alzheimer's disease and stroke. We review the literature to examine whether the RSC can act as a cortical marker of persistent cognitive dysfunction after traumatic brain injury (TBI). Because the RSC is easily accessible at the brain's surface using in vivo techniques, we argue that studying RSC network activity post-TBI can shed light into the mechanisms of less-accessible brain regions, such as the hippocampus. There is a fundamental gap in the TBI field about the microscale alterations occurring post-trauma, and by studying the RSC's neuronal activity at the cellular level we will be able to design better therapeutic tools. Understanding how neuronal activity and interactions produce normal and abnormal activity in the injured brain is crucial to understanding cognitive dysfunction. By using this approach, we expect to gain valuable insights to better understand brain disorders like TBI.
Collapse
Affiliation(s)
- Helen Motanis
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
| | - Laila N. Khorasani
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
| | - Christopher C. Giza
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
- Department of Pediatrics, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
| | - Neil G. Harris
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
- Intellectual Development and Disabilities Research Center, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
- *Address correspondence to: Neil G. Harris, PhD, Department of Neurosurgery, University of California at Los Angeles, Wasserman Building, 300 Stein Plaza, Room 551, Los Angeles, CA 90095, USA;
| |
Collapse
|
32
|
Huang S, Shen Q, Watts LT, Long JA, O'Boyle M, Nguyen T, Muir E, Duong TQ. Resting-State Functional Magnetic Resonance Imaging of Interhemispheric Functional Connectivity in Experimental Traumatic Brain Injury. Neurotrauma Rep 2021; 2:526-540. [PMID: 34901946 PMCID: PMC8655818 DOI: 10.1089/neur.2021.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although resting-state functional magnetic resonance imaging (rsfMRI) has the potential to offer insights into changes in functional connectivity networks after traumatic brain injury (TBI), there are few studies that examine the effects of moderate TBI for monitoring functional recovery in experimental TBI, and thus the neural correlates of brain recovery from moderate TBI remain incompletely understood. Non-invasive rsfMRI was used to longitudinally investigate changes in interhemispheric functional connectivity (IFC) after a moderate TBI to the unilateral sensorimotor cortex in rats (n = 9) up to 14 days. Independent component analysis of the rsfMRI data was performed. Correlations of rsfMRI sensorimotor networks were made with changes in behavioral scores, lesion volume, and T2- and diffusion-weighted images across time. TBI animals showed less localized rsfMRI patterns in the sensorimotor network compared to sham (n = 6) and normal (n = 5) animals. rsfMRI clusters in the sensorimotor network showed less bilateral symmetry compared to sham and normal animals, indicative of IFC disruption. With time after injury, many of the rsfMRI patterns in the sensorimotor network showed more bilateral symmetry, indicative of IFC recovery. The disrupted IFC in the sensorimotor and subsequent partial recovery showed a positive correlation with changes in behavioral scores. Overall, rsfMRI detected widespread disruption and subsequent recovery of IFC within the sensorimotor networks post-TBI, which correlated with behavioral changes. Therefore, rsfMRI offers the means to probe functional brain reorganization and thus has the potential to serve as an imaging marker to longitudinally stage TBI and monitor for novel treatments.
Collapse
Affiliation(s)
- Shiliang Huang
- Research Imaging Institute, UT Health San Antonio, San Antonio, Texas, USA
| | - Qiang Shen
- Research Imaging Institute, UT Health San Antonio, San Antonio, Texas, USA.,Department of Radiology, UT Health San Antonio, San Antonio, Texas, USA
| | - Lora Talley Watts
- Department of Clinical and Applied Science Education, University of the Incarnate Word School of Osteopathic Medicine, San Antonio, Texas, USA
| | - Justin A Long
- Research Imaging Institute, UT Health San Antonio, San Antonio, Texas, USA
| | - Michael O'Boyle
- Research Imaging Institute, UT Health San Antonio, San Antonio, Texas, USA
| | - Tony Nguyen
- Department of Radiology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York, New York, USA
| | - Eric Muir
- Department of Radiology, Stony Brook Medicine, Stony Brook, New York, USA
| | - Timothy Q Duong
- Department of Radiology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York, New York, USA
| |
Collapse
|
33
|
Traumatic brain injury augurs ill for prolonged deficits in the brain's structural and functional integrity following controlled cortical impact injury. Sci Rep 2021; 11:21559. [PMID: 34732737 PMCID: PMC8566513 DOI: 10.1038/s41598-021-00660-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/06/2021] [Indexed: 12/02/2022] Open
Abstract
Previous neuroimaging studies in rodents investigated effects of the controlled cortical impact (CCI) model of traumatic brain injury (TBI) within one-month post-TBI. This study extends this temporal window to monitor the structural–functional alterations from two hours to six months post-injury. Thirty-seven male Sprague–Dawley rats were randomly assigned to TBI and sham groups, which were scanned at two hours, 1, 3, 7, 14, 30, 60 days, and six months following CCI or sham surgery. Structural MRI, diffusion tensor imaging, and resting-state functional magnetic resonance imaging were acquired to assess the dynamic structural, microstructural, and functional connectivity alterations post-TBI. There was a progressive increase in lesion size associated with brain volume loss post-TBI. Furthermore, we observed reduced fractional anisotropy within 24 h and persisted to six months post-TBI, associated with acutely reduced axial diffusivity, and chronic increases in radial diffusivity post-TBI. Moreover, a time-dependent pattern of altered functional connectivity evolved over the six months’ follow-up post-TBI. This study extends the current understanding of the CCI model by confirming the long-term persistence of the altered microstructure and functional connectivity, which may hold a strong translational potential for understanding the long-term sequelae of TBI in humans.
Collapse
|
34
|
Yang Z, Zhu T, Pompilus M, Fu Y, Zhu J, Arjona K, Arja RD, Grudny MM, Plant HD, Bose P, Wang KK, Febo M. Compensatory functional connectome changes in a rat model of traumatic brain injury. Brain Commun 2021; 3:fcab244. [PMID: 34729482 PMCID: PMC8557657 DOI: 10.1093/braincomms/fcab244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022] Open
Abstract
Penetrating cortical impact injuries alter neuronal communication beyond the injury epicentre, across regions involved in affective, sensorimotor and cognitive processing. Understanding how traumatic brain injury reorganizes local and brain wide nodal interactions may provide valuable quantitative parameters for monitoring pathological progression and recovery. To this end, we investigated spontaneous fluctuations in the functional MRI signal obtained at 11.1 T in rats sustaining controlled cortical impact and imaged at 2- and 30-days post-injury. Graph theory-based calculations were applied to weighted undirected matrices constructed from 12 879 pairwise correlations between functional MRI signals from 162 regions. Our data indicate that on Days 2 and 30 post-controlled cortical impact there is a significant increase in connectivity strength in nodes located in contralesional cortical, thalamic and basal forebrain areas. Rats imaged on Day 2 post-injury had significantly greater network modularity than controls, with influential nodes (with high eigenvector centrality) contained within the contralesional module and participating less in cross-modular interactions. By Day 30, modularity and cross-modular interactions recover, although a cluster of nodes with low strength and low eigenvector centrality remain in the ipsilateral cortex. Our results suggest that changes in node strength, modularity, eigenvector centrality and participation coefficient track early and late traumatic brain injury effects on brain functional connectivity. We propose that the observed compensatory functional connectivity reorganization in response to controlled cortical impact may be unfavourable to brain wide communication in the early post-injury period.
Collapse
Affiliation(s)
- Zhihui Yang
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Tian Zhu
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Marjory Pompilus
- Department of Psychiatry, University of Florida, Gainesville, FL 32611, USA
| | - Yueqiang Fu
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Jiepei Zhu
- Department of Anesthesiology, University of Florida, Gainesville, FL 32611, USA
| | - Kefren Arjona
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Rawad Daniel Arja
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Matteo M Grudny
- Department of Psychiatry, University of Florida, Gainesville, FL 32611, USA
| | - H Daniel Plant
- VA Research Service, Malcom Randall VA Medical Center, Gainesville, FL 32611, USA
| | - Prodip Bose
- Department of Anesthesiology, University of Florida, Gainesville, FL 32611, USA
- VA Research Service, Malcom Randall VA Medical Center, Gainesville, FL 32611, USA
- Department of Neurology, University of Florida, Gainesville, FL 32611, USA
| | - Kevin K Wang
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
- VA Research Service, Malcom Randall VA Medical Center, Gainesville, FL 32611, USA
| | - Marcelo Febo
- Department of Psychiatry, University of Florida, Gainesville, FL 32611, USA
- Advanced Magnetic Resonance Imaging and Spectroscopy Facility (AMRIS), University of Florida, Gainesville, FL 32611, USA
- Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
35
|
Keute M, Gharabaghi A. Brain plasticity and vagus nerve stimulation. Auton Neurosci 2021; 236:102876. [PMID: 34537681 DOI: 10.1016/j.autneu.2021.102876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/01/2021] [Accepted: 08/29/2021] [Indexed: 01/01/2023]
Abstract
After damage to the central nervous system, caused by traumatic injury or ischemia, plasticity becomes critically important for functional recovery. When this inherent capacity to adapt is limited despite training, external stimulation may support this process. Vagus nerve stimulation (VNS) is an effective method to enhance the effect of motor rehabilitation training on functional recovery. However, the mechanisms by which VNS exerts beneficial effects on cortical plasticity are not completely understood. Experimental work suggests that VNS fosters a neurochemical milieu that facilitates synaptic plasticity and supports reinforcement mechanisms. Animal studies, furthermore, suggest that VNS delivery is time-critical and that optima in the parameter space need to be titrated for effect maximization. Human studies suggest that VNS modifies corticospinal excitability. First studies in stroke patients show positive results for invasive, and also promising findings for non-invasive VNS.
Collapse
Affiliation(s)
- Marius Keute
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, University of Tuebingen, Tuebingen, Germany.
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
36
|
Faillot M, Chaillet A, Palfi S, Senova S. Rodent models used in preclinical studies of deep brain stimulation to rescue memory deficits. Neurosci Biobehav Rev 2021; 130:410-432. [PMID: 34437937 DOI: 10.1016/j.neubiorev.2021.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 11/28/2022]
Abstract
Deep brain stimulation paradigms might be used to treat memory disorders in patients with stroke or traumatic brain injury. However, proof of concept studies in animal models are needed before clinical translation. We propose here a comprehensive review of rodent models for Traumatic Brain Injury and Stroke. We systematically review the histological, behavioral and electrophysiological features of each model and identify those that are the most relevant for translational research.
Collapse
Affiliation(s)
- Matthieu Faillot
- Neurosurgery department, Henri Mondor University Hospital, APHP, DMU CARE, Université Paris Est Créteil, Mondor Institute for Biomedical Research, INSERM U955, Team 15, Translational Neuropsychiatry, France
| | - Antoine Chaillet
- Laboratoire des Signaux et Systèmes (L2S-UMR8506) - CentraleSupélec, Université Paris Saclay, Institut Universitaire de France, France
| | - Stéphane Palfi
- Neurosurgery department, Henri Mondor University Hospital, APHP, DMU CARE, Université Paris Est Créteil, Mondor Institute for Biomedical Research, INSERM U955, Team 15, Translational Neuropsychiatry, France
| | - Suhan Senova
- Neurosurgery department, Henri Mondor University Hospital, APHP, DMU CARE, Université Paris Est Créteil, Mondor Institute for Biomedical Research, INSERM U955, Team 15, Translational Neuropsychiatry, France.
| |
Collapse
|
37
|
Zorzi G, Thiebaut de Schotten M, Manara R, Bussè C, Corbetta M, Cagnin A. White matter abnormalities of right hemisphere attention networks contribute to visual hallucinations in dementia with Lewy bodies. Cortex 2021; 139:86-98. [PMID: 33848693 DOI: 10.1016/j.cortex.2021.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/16/2021] [Accepted: 03/04/2021] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Functional alterations of the visual attention networks in a setting of impaired visual information processing have a role in the genesis of visual hallucinations (VH) in dementia with Lewy bodies (DLB). This multimodal MRI study aims at exploring structural and functional basis of VH. METHODS 23 DLB patients (10 with and 13 without VH) and 13 healthy controls were studied. They underwent MRI with T1-w sequences to measure cortical thickness, DTI for whole-brain and single tract microstructural properties and rs-fMRI of the default mode, dorsal and ventral attention, and visual networks. RESULTS In DLB with VH, whole-brain DTI revealed a lower fractional anisotropy and a greater mean diffusivity in the right frontal and temporo-parietal white matter tracts. Tracts dissection showed lower fractional anisotropy in the right inferior and superior (ventral part) longitudinal fasciculi (ILF and SLF) (p < .05, corrected), and greater mean diffusivity (p < .05). The extent of white matter microstructural alterations involving the right ILF and SLF correlated with the severity of VH (r = .55, p < .01; r = .42, p < .05, respectively), and with performance in the visual attention task (r = -.56 and r = -.61; p < .01, respectively). Cortical thickness in the projection areas of the right SLF was significantly reduced (p < .05). Patients with VH also showed an altered functional connectivity in the ventral attention network, connected by the ventral portion of the SLF (p < .05). CONCLUSIONS Our findings suggest that a combination of microstructural and functional alterations involving the attention networks in the right hemisphere may be important in the genesis of VH.
Collapse
Affiliation(s)
- Giovanni Zorzi
- Department of Neuroscience, University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy.
| | - Michel Thiebaut de Schotten
- Padova Neuroscience Center, University of Padova, Padova, Italy; Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France
| | - Renzo Manara
- Department of Neuroscience, University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Cinzia Bussè
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Maurizio Corbetta
- Department of Neuroscience, University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy; Department of Neurology, Radiology, Neuroscience, Washington University School of Medicine, St.Louis, MO, USA
| | - Annachiara Cagnin
- Department of Neuroscience, University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy
| |
Collapse
|
38
|
Li Y, Liu K, Li C, Guo Y, Fang J, Tong H, Tang Y, Zhang J, Sun J, Jiao F, Zhang Q, Jin R, Xiong K, Chen X. 18F-FDG PET Combined With MR Spectroscopy Elucidates the Progressive Metabolic Cerebral Alterations After Blast-Induced Mild Traumatic Brain Injury in Rats. Front Neurosci 2021; 15:593723. [PMID: 33815036 PMCID: PMC8012735 DOI: 10.3389/fnins.2021.593723] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/19/2021] [Indexed: 11/21/2022] Open
Abstract
A majority of blast-induced mild traumatic brain injury (mTBI) patients experience persistent neurological dysfunction with no findings on conventional structural MR imaging. It is urgent to develop advanced imaging modalities to detect and understand the pathophysiology of blast-induced mTBI. Fluorine-18 fluorodeoxyglucose positron emission tomography (18F-FDG PET) could detect neuronal function and activity of the injured brain, while MR spectroscopy provides complementary information and assesses metabolic irregularities following injury. This study aims to investigate the effectiveness of combining 18F-FDG PET with MR spectroscopy to evaluate acute and subacute metabolic cerebral alterations caused by blast-induced mTBI. Thirty-two adult male Sprague–Dawley rats were exposed to a single blast (mTBI group) and 32 rats were not exposed to the blast (sham group), followed by 18F-FDG PET, MRI, and histological evaluation at baseline, 1–3 h, 1 day, and 7 days post-injury in three separate cohorts. 18F-FDG uptake showed a transient increase in the amygdala and somatosensory cortex, followed by a gradual return to baseline from day 1 to 7 days post-injury and a continuous rise in the motor cortex. In contrast, decreased 18F-FDG uptake was seen in the midbrain structures (inferior and superior colliculus). Analysis of MR spectroscopy showed that inflammation marker myo-inositol (Ins), oxidative stress marker glutamine + glutamate (Glx), and hypoxia marker lactate (Lac) levels markedly elevated over time in the somatosensory cortex, while the major osmolyte taurine (Tau) level immediately increased at 1–3 h and 1 day, and then returned to sham level on 7 days post-injury, which could be due to the disruption of the blood–brain barrier. Increased 18F-FDG uptake and elevated Ins and Glx levels over time were confirmed by histology analysis which showed increased microglial activation and gliosis in the frontal cortex. These results suggest that 18F-FDG PET and MR spectroscopy can be used together to reflect more comprehensive neuropathological alterations in vivo, which could improve our understanding of the complex alterations in the brain after blast-induced mTBI.
Collapse
Affiliation(s)
- Yang Li
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, China.,Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China.,Department of Medical Imaging, Air Force Hospital of Western Theater Command, Chengdu, China
| | - Kaijun Liu
- Department of Gastroenterology, Daping Hospital, Army Medical University, Chongqing, China
| | - Chang Li
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yu Guo
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jingqin Fang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Haipeng Tong
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yi Tang
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Junfeng Zhang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jinju Sun
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Fangyang Jiao
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Qianhui Zhang
- Department of Foreign Language, Army Medical University, Chongqing, China
| | - Rongbing Jin
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, China.,Chongqing Clinical Research Center for Imaging and Nuclear Medicine, Chongqing, China
| | - Kunlin Xiong
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China.,Chongqing Clinical Research Center for Imaging and Nuclear Medicine, Chongqing, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, China.,Chongqing Clinical Research Center for Imaging and Nuclear Medicine, Chongqing, China
| |
Collapse
|
39
|
Srinivas S, Retson T, Simon A, Hattangadi-Gluth J, Hsiao A, Farid N. Quantification of hemodynamics of cerebral arteriovenous malformations after stereotactic radiosurgery using 4D flow magnetic resonance imaging. J Magn Reson Imaging 2020; 53:1841-1850. [PMID: 33354852 DOI: 10.1002/jmri.27490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/26/2022] Open
Abstract
Stereotactic radiosurgery (SRS) is used to treat cerebral arteriovenous malformations (AVMs). However, early evaluation of efficacy is difficult as structural magnetic resonance imaging (MRI)/magnetic resonance angiography (MRA) often does not demonstrate appreciable changes within the first 6 months. The aim of this study was to evaluate the use of four-dimensional (4D) flow MRI to quantify hemodynamic changes after SRS as early as 2 months. This was a retrospective observational study, which included 14 patients with both pre-SRS and post-SRS imaging obtained at multiple time points from 1 to 27 months after SRS. A 3T MRI Scanner was used to obtain T2 single-shot fast spin echo, time-of-flight MRA, and postcontrast 4D flow with three-dimensional velocity encoding between 150 and 200 cm/s. Post-hoc two-dimensional cross-sectional flow was measured for the dominant feeding artery, the draining vein, and the corresponding contralateral artery as a control. Measurements were performed by two independent observers, and reproducibility was assessed. Wilcoxon signed-rank tests were used to compare differences in flow, circumference, and pulsatility between the feeding artery and the contralateral artery both before and after SRS; and differences in nidus size and flow and circumference of the feeding artery and draining vein before and after SRS. Arterial flow (L/min) decreased in the primary feeding artery (mean: 0.1 ± 0.07 vs. 0.3 ± 0.2; p < 0.05) and normalized in comparison to the contralateral artery (mean: 0.1 ± 0.07 vs. 0.1 ± 0.07; p = 0.068). Flow decreased in the draining vein (mean: 0.1 ± 0.2 vs. 0.2 ± 0.2; p < 0.05), and the circumference of the draining vein also decreased (mean: 16.1 ± 8.3 vs. 15.7 ± 6.7; p < 0.05). AVM volume decreased after SRS (mean: 45.3 ± 84.8 vs. 38.1 ± 78.7; p < 0.05). However, circumference (mm) of the primary feeding artery remained similar after SRS (mean: 15.7 ± 2.7 vs. 16.1 ± 3.1; p = 0.600). 4D flow may be able to demonstrate early hemodynamic changes in AVMs treated with radiosurgery, and these changes appear to be more pronounced and occur earlier than the structural changes on standard MRI/MRA. Level of Evidence: 4 Technical Efficacy Stage: 1.
Collapse
Affiliation(s)
- Shanmukha Srinivas
- Department of Radiology, University of California-San Diego, San Diego, California, USA
| | - Tara Retson
- Department of Radiology, University of California-San Diego, San Diego, California, USA
| | - Aaron Simon
- Department of Radiation Medicine and Applied Sciences, University of California-San Diego, San Diego, California, USA
| | - Jona Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, University of California-San Diego, San Diego, California, USA
| | - Albert Hsiao
- Department of Radiology, University of California-San Diego, San Diego, California, USA
| | - Nikdokht Farid
- Department of Radiology, University of California-San Diego, San Diego, California, USA
| |
Collapse
|
40
|
Ondek K, Pevzner A, Tercovich K, Schedlbauer AM, Izadi A, Ekstrom AD, Cowen SL, Shahlaie K, Gurkoff GG. Recovery of Theta Frequency Oscillations in Rats Following Lateral Fluid Percussion Corresponds With a Mild Cognitive Phenotype. Front Neurol 2020; 11:600171. [PMID: 33343499 PMCID: PMC7746872 DOI: 10.3389/fneur.2020.600171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/21/2020] [Indexed: 01/31/2023] Open
Abstract
Whether from a fall, sports concussion, or even combat injury, there is a critical need to identify when an individual is able to return to play or work following traumatic brain injury (TBI). Electroencephalogram (EEG) and local field potentials (LFP) represent potential tools to monitor circuit-level abnormalities related to learning and memory: specifically, theta oscillations can be readily observed and play a critical role in cognition. Following moderate traumatic brain injury in the rat, lasting changes in theta oscillations coincide with deficits in spatial learning. We hypothesized, therefore, that theta oscillations can be used as an objective biomarker of recovery, with a return of oscillatory activity corresponding with improved spatial learning. In the current study, LFP were recorded from dorsal hippocampus and anterior cingulate in awake, behaving adult Sprague Dawley rats in both a novel environment on post-injury days 3 and 7, and Barnes maze spatial navigation on post-injury days 8–11. Theta oscillations, as measured by power, theta-delta ratio, peak theta frequency, and phase coherence, were significantly altered on day 3, but had largely recovered by day 7 post-injury. Injured rats had a mild behavioral phenotype and were not different from shams on the Barnes maze, as measured by escape latency. Injured rats did use suboptimal search strategies. Combined with our previous findings that demonstrated a correlation between persistent alterations in theta oscillations and spatial learning deficits, these new data suggest that neural oscillations, and particularly theta oscillations, have potential as a biomarker to monitor recovery of brain function following TBI. Specifically, we now demonstrate that oscillations are depressed following injury, but as oscillations recover, so does behavior.
Collapse
Affiliation(s)
- Katelynn Ondek
- Department of Neurological Surgery, University of California, Davis, Davis, CA, United States.,Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Aleksandr Pevzner
- Department of Neurological Surgery, University of California, Davis, Davis, CA, United States
| | - Kayleen Tercovich
- Department of Neurological Surgery, University of California, Davis, Davis, CA, United States.,Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Amber M Schedlbauer
- Department of Neurological Surgery, University of California, Davis, Davis, CA, United States.,Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Ali Izadi
- Department of Neurological Surgery, University of California, Davis, Davis, CA, United States.,Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Arne D Ekstrom
- Department of Psychology, The University of Arizona, Tucson, AZ, United States.,McKnight Brain Institute, The University of Arizona, Tucson, AZ, United States
| | - Stephen L Cowen
- Department of Psychology, The University of Arizona, Tucson, AZ, United States.,McKnight Brain Institute, The University of Arizona, Tucson, AZ, United States
| | - Kiarash Shahlaie
- Department of Neurological Surgery, University of California, Davis, Davis, CA, United States
| | - Gene G Gurkoff
- Department of Neurological Surgery, University of California, Davis, Davis, CA, United States.,Center for Neuroscience, University of California, Davis, Davis, CA, United States
| |
Collapse
|
41
|
Wang Z, Zhang M, Sun C, Wang S, Cao J, Wang KKW, Gan S, Huang W, Niu X, Zhu Y, Sun Y, Bai L. Single Mild Traumatic Brain Injury Deteriorates Progressive Interhemispheric Functional and Structural Connectivity. J Neurotrauma 2020; 38:464-473. [PMID: 30931824 DOI: 10.1089/neu.2018.6196] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The present study examined dynamic interhemispheric structural and functional connectivity in mild traumatic brain injury (mTBI) patients with longitudinal observations from early subacute to chronic stages within 1 year of injury. Forty-two mTBI patients and 42 matched healthy controls underwent clinical and neuropsychological evaluations, diffusion tensor imaging, and resting-state functional magnetic resonance imaging. All mTBI patients were initially evaluated within 14 d post-injury (T-1) and at 3 months (T-2) and 6-12 months (T-3) follow-ups. Separate transcallosal fiber tracts in the corpus callosum (CC) with respect to their specific interhemispheric cortical projections were derived with fiber tracking and voxel-mirrored homotopic connectivity analyses. With diffusion tensor imaging-based tractography, five vertical segments of the CC (I-V) were distinguished. Correlation analyses were performed to evaluate relationships between structural and functional imaging measures as well as imaging indices and neuropsychological measures. The loss of integrity in the CC demonstrated saliently persistent and time-dependent regional specificity after mTBI. The impairment spanned multiple segments from CC II at T-1 and CC I, II, VI, and V at T-2 to all subregions at T-3. Moreover, loss of interhemispheric structural connectivity through the CC corresponded well to regions presenting altered interhemispheric functional connectivity. Decreased functional connectivity in the dorsolateral prefrontal cortex thereafter contributed to poor executive function in mTBI patients. The current study provides further evidence that the CC is a sign to interhemispheric highways underpinning the widespread cerebral pathology typifying mTBI syndrome.
Collapse
Affiliation(s)
- Zhuonan Wang
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ming Zhang
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chuanzhu Sun
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Shan Wang
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jieli Cao
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Kevin K W Wang
- Program for Neurotrauma, Neuroproteomics, and Biomarker Research, Departments of Emergency Medicine, Psychiatry, and Neuroscience, University of Florida, Gainesville, Florida, USA
| | - Shuoqiu Gan
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wenmin Huang
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xuan Niu
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.,Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yanan Zhu
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yingxiang Sun
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lijun Bai
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
42
|
Kim SY, Liu M, Hong SJ, Toga AW, Barkovich AJ, Xu D, Kim H. Disruption and Compensation of Sulcation-based Covariance Networks in Neonatal Brain Growth after Perinatal Injury. Cereb Cortex 2020; 30:6238-6253. [PMID: 32656563 DOI: 10.1093/cercor/bhaa181] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/05/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
Perinatal brain injuries in preterm neonates are associated with alterations in structural neurodevelopment, leading to impaired cognition, motor coordination, and behavior. However, it remains unknown how such injuries affect postnatal cortical folding and structural covariance networks, which indicate functional parcellation and reciprocal brain connectivity. Studying 229 magnetic resonance scans from 158 preterm neonates (n = 158, mean age = 28.2), we found that severe injuries including intraventricular hemorrhage, periventricular leukomalacia, and ventriculomegaly lead to significantly reduced cortical folding and increased covariance (hyper-covariance) in only the early (<31 weeks) but not middle (31-35 weeks) or late stage (>35 weeks) of the third trimester. The aberrant hyper-covariance may drive acceleration of cortical folding as a compensatory mechanism to "catch-up" with normal development. By 40 weeks, preterm neonates with/without severe brain injuries exhibited no difference in cortical folding and covariance compared with healthy term neonates. However, graph theory-based analysis showed that even after recovery, severely injured brains exhibit a more segregated, less integrated, and overall inefficient network system with reduced integration strength in the dorsal attention, frontoparietal, limbic, and visual network systems. Ultimately, severe perinatal injuries cause network-level deviations that persist until the late stage of the third trimester and may contribute to neurofunctional impairment.
Collapse
Affiliation(s)
- Sharon Y Kim
- Laboratory of Neuro Imaging at USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, 2025 Zonal Ave, Los Angeles, CA 90033, USA
| | - Mengting Liu
- Laboratory of Neuro Imaging at USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, 2025 Zonal Ave, Los Angeles, CA 90033, USA
| | - Seok-Jun Hong
- Center for the Developing Brain, Child Mind Institute, New York, NY 10022, USA
| | - Arthur W Toga
- Laboratory of Neuro Imaging at USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, 2025 Zonal Ave, Los Angeles, CA 90033, USA
| | - A James Barkovich
- Department of Radiology, School of Medicine, University of California San Francisco, 1 Irving St., San Francisco, CA 94143, USA
| | - Duan Xu
- Department of Radiology, School of Medicine, University of California San Francisco, 1 Irving St., San Francisco, CA 94143, USA
| | - Hosung Kim
- Laboratory of Neuro Imaging at USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, 2025 Zonal Ave, Los Angeles, CA 90033, USA
| |
Collapse
|
43
|
Tang S, Xu S, Zhu W, Gullapalli RP, Mooney SM. Alterations in the whole brain network organization after prenatal ethanol exposure. Eur J Neurosci 2020; 51:2110-2118. [PMID: 31855302 PMCID: PMC7211128 DOI: 10.1111/ejn.14653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/20/2019] [Accepted: 12/12/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND People with fetal alcohol spectrum disorder (FASD) often have structural or functional alterations of the central nervous system, including changes in brain network organization. These have been associated with neuropsychological deficits, but outcomes are not consistent across studies. We used a rat model of FASD to assess brain network alterations in males and females following ethanol exposure during a prenatal period similar to the first half of gestation in humans. METHODS Pregnant Long Evans rats were given an ethanol-containing or isocaloric non-ethanol diet from gestation day 6 to 20. Resting-state functional magnetic resonance imaging was performed on offspring in young adulthood. Graph theoretical analysis was used to assess properties associated with the whole brain network organization, with a focus on segregation, integration, and small-world organization-a feature which allows specialized local information processing (segregation) and simultaneously efficient global information sharing (integration). RESULTS Ethanol-exposed females showed a significant decrease in small-worldness compared with control females or with ethanol-exposed males. Compared to control females, the proportion of animals with atypically high path length (1 standard deviation higher than the grand average) was significantly higher in ethanol-exposed females, indicating that the alteration in small-world organization is driven by decreased network integration. No significant effects were seen in males. CONCLUSION The results revealed that prenatal ethanol exposure disrupts the balance between network segregation and integration in young adult female rats. The whole brain network is less integrated after ethanol exposure in the females, suggesting wide-spread reduction of long-range regional communication.
Collapse
Affiliation(s)
- Shiyu Tang
- Department of Diagnostic Radiology and Nuclear Medicine,
University of Maryland School of Medicine, Baltimore MD 21201
- Center for Advanced Imaging Research (CAIR), University of
Maryland School of Medicine, Baltimore, MD 21201
| | - Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine,
University of Maryland School of Medicine, Baltimore MD 21201
- Center for Advanced Imaging Research (CAIR), University of
Maryland School of Medicine, Baltimore, MD 21201
| | - Wenjun Zhu
- Department of Diagnostic Radiology and Nuclear Medicine,
University of Maryland School of Medicine, Baltimore MD 21201
- Center for Advanced Imaging Research (CAIR), University of
Maryland School of Medicine, Baltimore, MD 21201
| | - Rao P. Gullapalli
- Department of Diagnostic Radiology and Nuclear Medicine,
University of Maryland School of Medicine, Baltimore MD 21201
- Center for Advanced Imaging Research (CAIR), University of
Maryland School of Medicine, Baltimore, MD 21201
| | - Sandra M. Mooney
- Department of Pediatrics, University of Maryland School of
Medicine, Baltimore, MD 21201, now at UNC Nutrition Research Institute, Department
of Nutrition, UNC Chapel Hill, Kannapolis, NC 28081
| |
Collapse
|
44
|
Monroe DC, Cecchi NJ, Gerges P, Phreaner J, Hicks JW, Small SL. A Dose Relationship Between Brain Functional Connectivity and Cumulative Head Impact Exposure in Collegiate Water Polo Players. Front Neurol 2020; 11:218. [PMID: 32300329 PMCID: PMC7145392 DOI: 10.3389/fneur.2020.00218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
A growing body of evidence suggests that chronic, sport-related head impact exposure can impair brain functional integration and brain structure and function. Evidence of a robust inverse relationship between the frequency and magnitude of repeated head impacts and disturbed brain network function is needed to strengthen an argument for causality. In pursuing such a relationship, we used cap-worn inertial sensors to measure the frequency and magnitude of head impacts sustained by eighteen intercollegiate water polo athletes monitored over a single season of play. Participants were evaluated before and after the season using computerized cognitive tests of inhibitory control and resting electroencephalography. Greater head impact exposure was associated with increased phase synchrony [r(16) > 0.626, p < 0.03 corrected], global efficiency [r(16) > 0.601, p < 0.04 corrected], and mean clustering coefficient [r(16) > 0.625, p < 0.03 corrected] in the functional networks formed by slow-wave (delta, theta) oscillations. Head impact exposure was not associated with changes in performance on the inhibitory control tasks. However, those with the greatest impact exposure showed an association between changes in resting-state connectivity and a dissociation between performance on the tasks after the season [r(16) = 0.481, p = 0.043] that could also be attributed to increased slow-wave synchrony [F(4, 135) = 113.546, p < 0.001]. Collectively, our results suggest that athletes sustaining the greatest head impact exposure exhibited changes in whole-brain functional connectivity that were associated with altered information processing and inhibitory control.
Collapse
Affiliation(s)
- Derek C Monroe
- Department of Neurology, University of California, Irvine, Irvine, CA, United States
| | - Nicholas J Cecchi
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, United States
| | - Paul Gerges
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, United States
| | - Jenna Phreaner
- Department of Psychological Science, University of California, Irvine, Irvine, CA, United States
| | - James W Hicks
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, United States
| | - Steven L Small
- Department of Neurology, University of California, Irvine, Irvine, CA, United States.,School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, United States
| |
Collapse
|
45
|
Minassian A, Green C, Diedenhofen M, Vogel S, Hess S, Stoeber M, Radmilovic MD, Wiedermann D, Kloppenburg P, Hoehn M. Human Neural Stem Cell Induced Functional Network Stabilization After Cortical Stroke: A Longitudinal Resting-State fMRI Study in Mice. Front Cell Neurosci 2020; 14:86. [PMID: 32317940 PMCID: PMC7155295 DOI: 10.3389/fncel.2020.00086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
Most stroke studies dealing with functional deficits and assessing stem cell therapy produce extensive hemispheric damage and can be seen as a model for severe clinical strokes. However, mild strokes have a better prospect for functional recovery. Recently, anatomic and behavioral changes have been reported for distal occlusion of the middle cerebral artery (MCA), generating a well-circumscribed and small cortical lesion, which can thus be proposed as mild to moderate cortical stroke. Using this cortical stroke model of moderate severity in the nude mouse, we have studied the functional networks with resting-state functional magnetic resonance imaging (fMRI) for 12 weeks following stroke induction. Further, human neural stem cells (hNSCs) were implanted adjacent to the ischemic lesion, and the stable graft vitality was monitored with bioluminescence imaging (BLI). Differentiation of the grafted neural stem cells was analyzed by immunohistochemistry and by patch-clamp electrophysiology. Following stroke induction, we found a pronounced and continuously rising hypersynchronicity of the sensorimotor networks including both hemispheres, in contrast to the severe stroke filament model where profound reduction of the functional connectivity had been reported by us earlier. The vitality of grafted neural stem cells remained stable throughout the whole 12 weeks observation period. In the stem cell treated animals, functional connectivity did not show hypersynchronicity but was globally slightly reduced below baseline at 2 weeks post-stroke, normalizing thereafter completely. Our resting-state fMRI (rsfMRI) studies on cortical stroke reveal for the first time a hypersynchronicity of the functional brain networks. This hypersynchronicity appears as a hallmark of mild cortical strokes, in contrast to severe strokes with striatal involvement where exclusively hyposynchronicity has been reported. The effect of the stem cell graft was an early and persistent normalization of the functional sensorimotor networks across the whole brain. These novel functional results may help interpret future outcome investigations after stroke and demonstrate the highly promising potential of stem cell treatment for functional outcome improvement after stroke.
Collapse
Affiliation(s)
- Anuka Minassian
- In-Vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Claudia Green
- In-Vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Michael Diedenhofen
- In-Vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Stefanie Vogel
- In-Vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Simon Hess
- Biocenter, Institute for Zoology, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Maren Stoeber
- In-Vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Marina Dobrivojevic Radmilovic
- In-Vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany.,Department of Histology and Embryology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Dirk Wiedermann
- In-Vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Peter Kloppenburg
- Biocenter, Institute for Zoology, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Mathias Hoehn
- In-Vivo-NMR Laboratory, Max Planck Institute for Metabolism Research, Cologne, Germany.,Department of Radiology, Leiden University Medical Center, Leiden University, Leiden, Netherlands
| |
Collapse
|
46
|
Modolo J, Hassan M, Wendling F, Benquet P. Decoding the circuitry of consciousness: From local microcircuits to brain-scale networks. Netw Neurosci 2020; 4:315-337. [PMID: 32537530 PMCID: PMC7286300 DOI: 10.1162/netn_a_00119] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/09/2019] [Indexed: 01/25/2023] Open
Abstract
Identifying the physiological processes underlying the emergence and maintenance of consciousness is one of the most fundamental problems of neuroscience, with implications ranging from fundamental neuroscience to the treatment of patients with disorders of consciousness (DOCs). One major challenge is to understand how cortical circuits at drastically different spatial scales, from local networks to brain-scale networks, operate in concert to enable consciousness, and how those processes are impaired in DOC patients. In this review, we attempt to relate available neurophysiological and clinical data with existing theoretical models of consciousness, while linking the micro- and macrocircuit levels. First, we address the relationships between awareness and wakefulness on the one hand, and cortico-cortical and thalamo-cortical connectivity on the other hand. Second, we discuss the role of three main types of GABAergic interneurons in specific circuits responsible for the dynamical reorganization of functional networks. Third, we explore advances in the functional role of nested oscillations for neural synchronization and communication, emphasizing the importance of the balance between local (high-frequency) and distant (low-frequency) activity for efficient information processing. The clinical implications of these theoretical considerations are presented. We propose that such cellular-scale mechanisms could extend current theories of consciousness.
Collapse
Affiliation(s)
- Julien Modolo
- University of Rennes, INSERM, LTSI-U1099, Rennes, France
| | - Mahmoud Hassan
- University of Rennes, INSERM, LTSI-U1099, Rennes, France
| | | | - Pascal Benquet
- University of Rennes, INSERM, LTSI-U1099, Rennes, France
| |
Collapse
|
47
|
Warnock A, Toomey LM, Wright AJ, Fisher K, Won Y, Anyaegbu C, Fitzgerald M. Damage Mechanisms to Oligodendrocytes and White Matter in Central Nervous System Injury: The Australian Context. J Neurotrauma 2020; 37:739-769. [DOI: 10.1089/neu.2019.6890] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Andrew Warnock
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Lillian M. Toomey
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| | - Alexander J. Wright
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Katherine Fisher
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Yerim Won
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Chidozie Anyaegbu
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| |
Collapse
|
48
|
Withaferin A alleviates traumatic brain injury induced secondary brain injury via suppressing apoptosis in endothelia cells and modulating activation in the microglia. Eur J Pharmacol 2020; 874:172988. [PMID: 32032599 DOI: 10.1016/j.ejphar.2020.172988] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 01/06/2023]
Abstract
Traumatic brain injury (TBI) is a major public health concern with high rates of morbidity and mortality worldwide. Currently used medications, though effective, are also associated with several adverse effects. Development of effective neuroprotective agents with fewer side-effects would be of clinical value. Previous studies have shown that withaferin compounds have a potential neuroprotective effect in nervous system disorders. However, the effect of withaferin compounds, especially withaferin A (WFA), on traumatic brain injury is unclear. In the present study, both in vivo and in vitro models were used to assess whether WFA could exert a neuroprotective effect after TBI and were used to explore the associated mechanisms. The results showed that WFA significantly improved neurobehavioral function in a dose-dependent fashion and alleviated histological alteration of injury to tissues in TBI mice. In vitro models of TBI revealed that dose-dependent WFA treatment increased the viability of SH-SY5Y cells. In addition, WFA treatment could attenuate blood-brain barrier disruption and brain edema via suppressing apoptosis in endothelial cells. Furthermore, both our in vivo and in vitro results reveal that WFA treatment could significantly reduce levels of several neuroinflammation cytokines (IL-1β, IL-6, and TNF-α), which correlate with an overall reduction in microglial activation. These data suggest that the neuroprotection by WFA is, at least in part, related to regulation of microglial activation and inhibition of vascular endothelial cell apoptosis. Taken together, these findings support further investigation of WFA as a promising therapeutic agent for promoting functional recovery after traumatic brain injury.
Collapse
|
49
|
Garner R, La Rocca M, Vespa P, Jones N, Monti MM, Toga AW, Duncan D. Imaging biomarkers of posttraumatic epileptogenesis. Epilepsia 2019; 60:2151-2162. [PMID: 31595501 PMCID: PMC6842410 DOI: 10.1111/epi.16357] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) affects 2.5 million people annually within the United States alone, with over 300 000 severe injuries resulting in emergency room visits and hospital admissions. Severe TBI can result in long-term disability. Posttraumatic epilepsy (PTE) is one of the most debilitating consequences of TBI, with an estimated incidence that ranges from 2% to 50% based on severity of injury. Conducting studies of PTE poses many challenges, because many subjects with TBI never develop epilepsy, and it can be more than 10 years after TBI before seizures begin. One of the unmet needs in the study of PTE is an accurate biomarker of epileptogenesis, or a panel of biomarkers, which could provide early insights into which TBI patients are most susceptible to PTE, providing an opportunity for prophylactic anticonvulsant therapy and enabling more efficient large-scale PTE studies. Several recent reviews have provided a comprehensive overview of this subject (Neurobiol Dis, 123, 2019, 3; Neurotherapeutics, 11, 2014, 231). In this review, we describe acute and chronic imaging methods that detect biomarkers for PTE and potential mechanisms of epileptogenesis. We also describe shortcomings in current acquisition methods, analysis, and interpretation that limit ongoing investigations that may be mitigated with advancements in imaging techniques and analysis.
Collapse
Affiliation(s)
- Rachael Garner
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Marianna La Rocca
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Paul Vespa
- Division of Neurosurgery, Department of Neurology, University of California Los Angeles School of Medicine, Los Angeles, CA, United States
| | - Nigel Jones
- Van Cleef Centre for Nervous Diseases, Department of Neuroscience, Monash University, Clayton, VIC, Australia
| | - Martin M. Monti
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, United States
| | - Arthur W. Toga
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Dominique Duncan
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
50
|
Sargolzaei S, Cai Y, Walker MJ, Hovda DA, Harris NG, Giza CC. Craniectomy Effects on Resting State Functional Connectivity and Cognitive Performance in Immature Rats. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:5414-5417. [PMID: 30441561 DOI: 10.1109/embc.2018.8513500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Experimental models have been proven to be valuable tools to understand downstream cellular mechanisms of Traumatic Brain Injury (TBI). The models allow for reduction of confounding variables and tighter control of varying parameters. It has been recently reported that craniectomy induces pro-inflammatory responses, which therefore needs to be properly addressed given the fact that craniectomy is often considered a control procedure for experimental TBI models. The current study aims to determine whether a craniectomy induces alterations in Resting State Network (RSN) in a developmental rodent model. Functional Magnetic Resonance Imaging (fMRI) data-driven RSN show clusters of peak differences (left caudate putamen, somatosensory cortex, amygdala and piriform cortex) between craniectomy and control group, four days post-craniectomy. In addition, the Novel Object Recognition (NOR) task revealed impaired working memory in the craniectomy group. This evidence supports craniectomy-induced neurological changes which need to be carefully addressed, considering the frequent use of craniectomy as a control procedure for experimental models of TBI.
Collapse
|