1
|
Cattaneo A, Begni V, Zonca V, Riva MA. Early life adversities, psychopathologies and novel pharmacological strategies. Pharmacol Ther 2024; 260:108686. [PMID: 38969307 DOI: 10.1016/j.pharmthera.2024.108686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/05/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Exposure to adversities during early life stages (early life adversities - ELA), ranging from pregnancy to adolescence, represents a major risk factor for the vulnerability to mental disorders. Hence, it is important to understand the molecular and functional underpinning of such relationship, in order to develop strategies aimed at reducing the psychopathologic burden associated with ELA, which may eventually lead to a significant improvement in clinical practice. In this review, we will initially recapitulate clinical and preclinical evidence supporting the link between ELA and psychopathology and we will primarily discuss the main biological mechanisms that have been described as potential mediators of the effects of ELA on the psychopathologic risk, including the role for genetic factors as well as sex differences. The knowledge emerging from these studies may be instrumental for the development of novel therapeutic strategies aimed not only at correcting the deficits that emerge from ELA exposure, but also in preventing the manifestation of a full-blown psychopathologic condition. With this respect, we will specifically focus on adolescence as a key time frame for disease onset as well as for early therapeutic intervention. We believe that incorporating clinical and preclinical research data in the context of early life adversities can be instrumental to elucidate the mechanisms contributing to the risk for psychopathology or that may promote resilience. This will ultimately allow the identification of 'at risk' individuals who may benefit from specific forms of interventions that, by interfering with disease trajectories, could result in more benign clinical outcomes.
Collapse
Affiliation(s)
- Annamaria Cattaneo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Valentina Zonca
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| |
Collapse
|
2
|
Charrier M, Lumineau S, George I, Meurisse M, Georgelin M, Palme R, Angelier F, Coustham V, Nicolle C, Bertin A, Darmaillacq AS, Dickel L, Guémené D, Calandreau L, Houdelier C. Maternal stress effects across generations in a precocial bird. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231826. [PMID: 39205998 PMCID: PMC11349446 DOI: 10.1098/rsos.231826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/24/2024] [Indexed: 09/04/2024]
Abstract
Prenatal maternal stress (PMS) is known to shape the phenotype of the first generation offspring (F1) but according to some studies, it could also shape the phenotype of the offspring of the following generations. We previously showed in the Japanese quail that PMS increased the emotional reactivity of F1 offspring in relation to (i) a variation in the levels of some histone post-translational modification (H3K27me3) in their brains and (ii) a modulation of the hormonal composition of the eggs from which they hatched. Here, we wondered whether PMS could also influence the behaviour of the second (F2) and third (F3) generation offspring due to the persistence of the specific marks we identified. Using a principal component analysis, we found that PMS influenced F2 and F3 quail profiles with subtle differences between generations. It increased F2 neophobia, F3 fearfulness and F3 neophobia but only in females. Interestingly, we did not find any variations in the level of histone post-translational modification in F3 brains and we observed inconsistent modulations of androstenedione levels in F1 and F2 eggs. Although they may vary over generations, our results demonstrate that PMS can have phenotypical effects into the third generation.
Collapse
Affiliation(s)
- Marion Charrier
- Univ Rennes, CNRS, Normandie Univ, EthoS (Éthologie animale et humaine), UMR 6552, Rennes, France
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France
- SYSAAF, Centre INRAE Val de Loire, 37380 Nouzilly, France
| | - Sophie Lumineau
- Univ Rennes, CNRS, Normandie Univ, EthoS (Éthologie animale et humaine), UMR 6552, Rennes, France
| | - Isabelle George
- Univ Rennes, CNRS, Normandie Univ, EthoS (Éthologie animale et humaine), UMR 6552, Rennes, France
| | - Maryse Meurisse
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France
| | - Marion Georgelin
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France
| | - Rupert Palme
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, CNRS-LRU, UMR 7372, 79360 Villiers en Bois, France
| | - Vincent Coustham
- INRAE, Université de Tours, BOA, 37380 Nouzilly, France
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, NUMEA, 64310 Saint-Pée-sur-Nivelle, France
| | - Céline Nicolle
- Univ Rennes, CNRS, Normandie Univ, EthoS (Éthologie animale et humaine), UMR 6552, Rennes, France
| | - Aline Bertin
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France
| | - Anne-Sophie Darmaillacq
- Normandie University, UNICAEN, University of Rennes, CNRS, EthoS (Éthologie animale et humaine), UMR 6552, 14000 Caen, France
| | - Ludovic Dickel
- Normandie University, UNICAEN, University of Rennes, CNRS, EthoS (Éthologie animale et humaine), UMR 6552, 14000 Caen, France
| | - Daniel Guémené
- SYSAAF, Centre INRAE Val de Loire, 37380 Nouzilly, France
- INRAE, Université de Tours, BOA, 37380 Nouzilly, France
| | | | - Cécilia Houdelier
- Univ Rennes, CNRS, Normandie Univ, EthoS (Éthologie animale et humaine), UMR 6552, Rennes, France
| |
Collapse
|
3
|
Rubinstein MR, Burgueño AL, Quiroga S, Wald MR, Genaro AM. Current Understanding of the Roles of Gut-Brain Axis in the Cognitive Deficits Caused by Perinatal Stress Exposure. Cells 2023; 12:1735. [PMID: 37443769 PMCID: PMC10340286 DOI: 10.3390/cells12131735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
The term 'perinatal environment' refers to the period surrounding birth, which plays a crucial role in brain development. It has been suggested that dynamic communication between the neuro-immune system and gut microbiota is essential in maintaining adequate brain function. This interaction depends on the mother's status during pregnancy and/or the newborn environment. Here, we show experimental and clinical evidence that indicates that the perinatal period is a critical window in which stress-induced immune activation and altered microbiota compositions produce lasting behavioral consequences, although a clear causative relationship has not yet been established. In addition, we discuss potential early treatments for preventing the deleterious effect of perinatal stress exposure. In this sense, early environmental enrichment exposure (including exercise) and melatonin use in the perinatal period could be valuable in improving the negative consequences of early adversities. The evidence presented in this review encourages the realization of studies investigating the beneficial role of melatonin administration and environmental enrichment exposure in mitigating cognitive alteration in offspring under perinatal stress exposure. On the other hand, direct evidence of microbiota restoration as the main mechanism behind the beneficial effects of this treatment has not been fully demonstrated and should be explored in future studies.
Collapse
Affiliation(s)
- Mara Roxana Rubinstein
- Laboratorio de Psiconeuroendocrinoinmunologia, Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Pontificia Universidad Católica Argentina, Buenos Aires C1107AFF, Argentina; (A.L.B.); (S.Q.); (M.R.W.)
| | | | | | | | - Ana María Genaro
- Laboratorio de Psiconeuroendocrinoinmunologia, Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Pontificia Universidad Católica Argentina, Buenos Aires C1107AFF, Argentina; (A.L.B.); (S.Q.); (M.R.W.)
| |
Collapse
|
4
|
Huang M, Qi Q, Xu T. Targeting Shank3 deficiency and paresthesia in autism spectrum disorder: A brief review. Front Mol Neurosci 2023; 16:1128974. [PMID: 36846568 PMCID: PMC9948097 DOI: 10.3389/fnmol.2023.1128974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
Autism spectrum disorder (ASD) includes a group of multifactorial neurodevelopmental disorders characterized by impaired social communication, social interaction, and repetitive behaviors. Several studies have shown an association between cases of ASD and mutations in the genes of SH3 and multiple ankyrin repeat domain protein 3 (SHANK3). These genes encode many cell adhesion molecules, scaffold proteins, and proteins involved in synaptic transcription, protein synthesis, and degradation. They have a profound impact on all aspects of synaptic transmission and plasticity, including synapse formation and degeneration, suggesting that the pathogenesis of ASD may be partially attributable to synaptic dysfunction. In this review, we summarize the mechanism of synapses related to Shank3 in ASD. We also discuss the molecular, cellular, and functional studies of experimental models of ASD and current autism treatment methods targeting related proteins.
Collapse
Affiliation(s)
- Min Huang
- Department of Anesthesiology, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,Department of Anesthesiology, Suzhou Hospital of Anhui Medical University, Suzhou, China
| | - Qi Qi
- Department of Anesthesiology, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,Department of Anesthesiology, Suzhou Hospital of Anhui Medical University, Suzhou, China
| | - Tao Xu
- Department of Anesthesiology, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,Department of Anesthesiology, Suzhou Hospital of Anhui Medical University, Suzhou, China,*Correspondence: Tao Xu,
| |
Collapse
|
5
|
Soti M, Ranjbar H, Kohlmeier KA, Shabani M. Sex differences in the vulnerability of the hippocampus to prenatal stress. Dev Psychobiol 2022; 64:e22305. [PMID: 36282753 DOI: 10.1002/dev.22305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/21/2022] [Accepted: 05/28/2022] [Indexed: 01/27/2023]
Abstract
Distressing events during pregnancy that engage activity of the body's endocrine stress response have been linked with later life cognitive deficits in offspring and associated with developmental changes in cognitive-controlling neural regions. Interestingly, prenatal stress (PS)-induced alterations have shown some sex specificity. Here, we review the literature of animal studies examining sex-specific effect of physical PS on the function and structure of the hippocampus as hippocampal impairments likely underlie PS-associated deficits in learning and memory. Furthermore, the connectivity between the hypothalamic-pituitary-adrenal (HPA) axis and the hippocampus as well as the heavy presence of glucocorticoid receptors (GRs) in the hippocampus suggests this structure plays an important role in modulation of activity within stress circuitry in a sex-specific pattern. We hope that better understanding of sex-specific, PS-related hippocampal impairment will assist in uncovering the molecular mechanisms behind sex-based risk factors in PS populations across development, and perhaps contribute to greater precision in management of cognitive disturbances in this vulnerable population.
Collapse
Affiliation(s)
- Monavareh Soti
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Hoda Ranjbar
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
6
|
Effect of early-life stress or fluoxetine exposure on later-life conditioned taste aversion learning in Sprague-Dawley rats. Neurosci Lett 2022; 787:136818. [PMID: 35931277 DOI: 10.1016/j.neulet.2022.136818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/12/2022] [Accepted: 07/23/2022] [Indexed: 01/06/2023]
Abstract
In rodents, early-life exposure to environmental stress or antidepressant medication treatment has been shown to induce similar long-term consequences on memory- and depression-related behavior in adulthood. To expand on this line of work, we evaluated how juvenile exposure to chronic variable stress (CVS) or the selective serotonin reuptake inhibitor fluoxetine (FLX) influences conditioned taste aversion (CTA) learning in adulthood. To do this, in Experiment 1, we examined how adolescent CVS alone (postnatal day [PND] 35-48), or with prenatal stress (PNS) history (PNS + CVS), influenced the acquisition and extinction of CTA in adult male Sprague Dawley rats. Specifically, at PND70+ (adulthood), rats were presented with 0.15 % saccharin followed by an intraperitoneal (i.p.) injection of lithium chloride (LiCl) to induce visceral malaise. A total of four saccharin (conditioned stimulus) and LiCl (unconditioned stimulus) pairings occurred across the CTA acquisition phase. Next, saccharin was presented without aversive consequences, and intake was measured across consecutive days of the extinction phase. No differences in body weight gain across the experimental days, rate of CTA acquisition, or extinction of CTA, were observed among the experimental groups (control, n = 7; CVS, n = 12; PNS + CVS, n = 9). In Experiment 2, we evaluated if early-life FLX exposure alters CTA learning in adulthood. Specifically, adolescent stress naïve male and female rats received FLX (0 or 20 mg/kg/i.p) once daily for 15 consecutive days (PND35-49). During antidepressant exposure, FLX decreased body weight gain in both male (n = 7) and female rats (n = 7), when compared to respective controls (male control, n = 8; female control, n = 8). However, juvenile FLX exposure decreased body weight-gain in adult male, but not female, rats. Lastly, adolescent FLX history had no effect on CTA acquisition or extinction in adulthood (PND70), in neither male nor female rats. Together, the data indicate that juvenile FLX exposure results in a long-term decrease of body weight-gain in a male-specific manner. Yet, independent of sex, neither early-life stress nor FLX exposure alters CTA learning in adulthood.
Collapse
|
7
|
Reemst K, Ruigrok SR, Bleker L, Naninck EFG, Ernst T, Kotah JM, Lucassen PJ, Roseboom TJ, Pollux BJA, de Rooij SR, Korosi A. Sex-dependence and comorbidities of the early-life adversity induced mental and metabolic disease risks: Where are we at? Neurosci Biobehav Rev 2022; 138:104627. [PMID: 35339483 DOI: 10.1016/j.neubiorev.2022.104627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/15/2022] [Accepted: 03/13/2022] [Indexed: 01/02/2023]
Abstract
Early-life adversity (ELA) is a major risk factor for developing later-life mental and metabolic disorders. However, if and to what extent ELA contributes to the comorbidity and sex-dependent prevalence/presentation of these disorders remains unclear. We here comprehensively review and integrate human and rodent ELA (pre- and postnatal) studies examining mental or metabolic health in both sexes and discuss the role of the placenta and maternal milk, key in transferring maternal effects to the offspring. We conclude that ELA impacts mental and metabolic health with sex-specific presentations that depend on timing of exposure, and that human and rodent studies largely converge in their findings. ELA is more often reported to impact cognitive and externalizing domains in males, internalizing behaviors in both sexes and concerning the metabolic dimension, adiposity in females and insulin sensitivity in males. Thus, ELA seems to be involved in the origin of the comorbidity and sex-specific prevalence/presentation of some of the most common disorders in our society. Therefore, ELA-induced disease states deserve specific preventive and intervention strategies.
Collapse
Affiliation(s)
- Kitty Reemst
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands
| | - Silvie R Ruigrok
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands
| | - Laura Bleker
- Amsterdam University Medical Center, University of Amsterdam, Department of Epidemiology and Data Science, Amsterdam, The Netherlands
| | - Eva F G Naninck
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands
| | - Tiffany Ernst
- Wageningen University, Department of Animal Sciences, Experimental Zoology &Evolutionary Biology Group, Wageningen, The Netherlands
| | - Janssen M Kotah
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands
| | - Paul J Lucassen
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands; Centre for Urban Mental Health, University of Amsterdam, The Netherlands
| | - Tessa J Roseboom
- Amsterdam University Medical Center, University of Amsterdam, Department of Epidemiology and Data Science, Amsterdam, The Netherlands
| | - Bart J A Pollux
- Wageningen University, Department of Animal Sciences, Experimental Zoology &Evolutionary Biology Group, Wageningen, The Netherlands
| | - Susanne R de Rooij
- Amsterdam University Medical Center, University of Amsterdam, Department of Epidemiology and Data Science, Amsterdam, The Netherlands
| | - Aniko Korosi
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Marrocco J, Verhaeghe R, Bucci D, Di Menna L, Traficante A, Bouwalerh H, Van Camp G, Ghiglieri V, Picconi B, Calabresi P, Ravasi L, Cisani F, Bagheri F, Pittaluga A, Bruno V, Battaglia G, Morley-Fletcher S, Nicoletti F, Maccari S. Maternal stress programs accelerated aging of the basal ganglia motor system in offspring. Neurobiol Stress 2020; 13:100265. [PMID: 33344718 PMCID: PMC7739146 DOI: 10.1016/j.ynstr.2020.100265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/11/2020] [Accepted: 10/22/2020] [Indexed: 11/26/2022] Open
Abstract
Early-life stress involved in the programming of stress-related illnesses can have a toxic influence on the functioning of the nigrostriatal motor system during aging. We examined the effects of perinatal stress (PRS) on the neurochemical, electrophysiological, histological, neuroimaging, and behavioral correlates of striatal motor function in adult (4 months of age) and old (21 months of age) male rats. Adult PRS offspring rats showed reduced dopamine (DA) release in the striatum associated with reductions in tyrosine hydroxylase-positive (TH+) cells and DA transporter (DAT) levels, with no loss of striatal dopaminergic terminals as assessed by positron emission tomography analysis with fluorine-18-l-dihydroxyphenylalanine. Striatal levels of DA and its metabolites were increased in PRS rats. In contrast, D2 DA receptor signaling was reduced and A2A adenosine receptor signaling was increased in the striatum of adult PRS rats. This indicated enhanced activity of the indirect pathway of the basal ganglia motor circuit. Adult PRS rats also showed poorer performance in the grip strength test and motor learning tasks. The aged PRS rats also showed a persistent reduction in striatal DA release and defective motor skills in the pasta matrix and ladder rung walking tests. In addition, the old rats showed large increases in the levels of SNAP-25 and synaptophysin, which are synaptic vesicle-related proteins in the striatum, and in the PRS group only, reductions in Syntaxin-1 and Rab3a protein levels were observed. Our findings indicated that the age-dependent threshold for motor dysfunction was lowered in PRS rats. This area of research is underdeveloped, and our study suggests that early-life stress can contribute to an increased understanding of how aging diseases are programmed in early-life.
Collapse
Affiliation(s)
- Jordan Marrocco
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 10065, NY, USA
| | - Remy Verhaeghe
- IRCCS Neuromed, Località Camerelle, 86077, Pozzilli, Italy
| | - Domenico Bucci
- IRCCS Neuromed, Località Camerelle, 86077, Pozzilli, Italy
| | - Luisa Di Menna
- IRCCS Neuromed, Località Camerelle, 86077, Pozzilli, Italy
| | | | - Hammou Bouwalerh
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France.,International Associated Laboratory (LIA) "Perinatal Stress and Neurodegenerative Diseases": University of Lille - CNRS, UMR 8576, Sapienza University of Rome and IRCCS Neuromed, Italy
| | - Gilles Van Camp
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France.,International Associated Laboratory (LIA) "Perinatal Stress and Neurodegenerative Diseases": University of Lille - CNRS, UMR 8576, Sapienza University of Rome and IRCCS Neuromed, Italy
| | - Veronica Ghiglieri
- IRCCS Santa Lucia Foundation, Laboratory of Neurophysiology, via del Fosso di Fiorano, 64, 00143, Rome, Italy.,Department of Medicine, University of Perugia, Italy
| | - Barbara Picconi
- Laboratory of Experimental Neurophysiology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Paolo Calabresi
- Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Piazzale Agostino Gemelli 8, 00168, Rome, Italy
| | - Laura Ravasi
- EA1046, IMPRT-IFR114, Faculty of Medicine, University of Lille, 59000, Lille, France
| | - Francesca Cisani
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France.,Dept. of Pharmacology, School of Medical and Pharmaceutical Sciences, Center of Excellence for Biochemical Research (CEBR), University of Genova, Italy
| | - Farzaneh Bagheri
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France.,School of Biology, Damghan University, Damghan, Iran
| | - Anna Pittaluga
- Dept. of Pharmacology, School of Medical and Pharmaceutical Sciences, Center of Excellence for Biochemical Research (CEBR), University of Genova, Italy.,IRCCS San Martino Hospital Genova Italy, Italy
| | - Valeria Bruno
- IRCCS Neuromed, Località Camerelle, 86077, Pozzilli, Italy.,Departments of Physiology and Pharmacology "V. Erspamer", University Sapienza of Rome, 00185, Rome, Italy
| | - Giuseppe Battaglia
- IRCCS Neuromed, Località Camerelle, 86077, Pozzilli, Italy.,Departments of Physiology and Pharmacology "V. Erspamer", University Sapienza of Rome, 00185, Rome, Italy
| | - Sara Morley-Fletcher
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France.,International Associated Laboratory (LIA) "Perinatal Stress and Neurodegenerative Diseases": University of Lille - CNRS, UMR 8576, Sapienza University of Rome and IRCCS Neuromed, Italy
| | - Ferdinando Nicoletti
- IRCCS Neuromed, Località Camerelle, 86077, Pozzilli, Italy.,Departments of Physiology and Pharmacology "V. Erspamer", University Sapienza of Rome, 00185, Rome, Italy
| | - Stefania Maccari
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France.,Science and Medical - Surgical Biotechnology, University Sapienza of Rome, 00185, Rome, Italy
| |
Collapse
|
9
|
Perry CJ, Campbell EJ, Drummond KD, Lum JS, Kim JH. Sex differences in the neurochemistry of frontal cortex: Impact of early life stress. J Neurochem 2020; 157:963-981. [PMID: 33025572 DOI: 10.1111/jnc.15208] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 08/02/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022]
Abstract
Traumatic events during early life have been linked with later life psychopathology. To understand this risk factor, researchers have studied the effects of prenatal and postnatal early life stress on neurochemical changes. Here we review the rodent literature on sex differences and sex-specific impact of early life stress on frontal cortex neurochemistry. This region is implicated in regulating motivation and emotion, which are often disrupted in psychological disorders. The prefrontal cortex (PFC) in particular is one of the last brain regions to develop, and there are sex differences in the rate of this development. To draw direct comparisons between sexes, our review of the literature was restricted to studies where the effects of prenatal or postnatal stress had been described in male and female littermates. This literature included research describing glutamate, γ-amino butyric acid (GABA), corticosteroids, monoamines, and cannabinoids. We found that sex-dependent effects of stress are mediated by the age at which stress is experienced, age at test, and type of stress endured. More research is required, particularly into the effects of adolescent stress on male and female littermates. We hope that a greater understanding of sex-specific susceptibilities in response to stress across development will help to uncover risk factors for psychological disorders in vulnerable populations.
Collapse
Affiliation(s)
- Christina J Perry
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville, Vic, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Vic, Australia
| | - Erin J Campbell
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville, Vic, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Vic, Australia
| | - Katherine D Drummond
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville, Vic, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Vic, Australia
| | - Jeremy S Lum
- Neuropharmacology and Molecular Psychiatry Laboratory, School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Jee Hyun Kim
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville, Vic, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Vic, Australia.,IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia
| |
Collapse
|
10
|
Desplats P, Gutierrez AM, Antonelli MC, Frasch MG. Microglial memory of early life stress and inflammation: Susceptibility to neurodegeneration in adulthood. Neurosci Biobehav Rev 2020; 117:232-242. [PMID: 31703966 PMCID: PMC7198341 DOI: 10.1016/j.neubiorev.2019.10.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 09/15/2019] [Accepted: 10/20/2019] [Indexed: 02/08/2023]
Abstract
We review evidence supporting the role of early life programming in the susceptibility for adult neurodegenerative diseases while highlighting questions and proposing avenues for future research to advance our understanding of this fundamental process. The key elements of this phenomenon are chronic stress, neuroinflammation triggering microglial polarization, microglial memory and their connection to neurodegeneration. We review the mediating mechanisms which may function as early biomarkers of increased susceptibility for neurodegeneration. Can we devise novel early life modifying interventions to steer developmental trajectories to their optimum?
Collapse
Affiliation(s)
- Paula Desplats
- Department of Neurosciences, University of California San Diego, CA, USA; Department of Pathology, University of California San Diego, CA, USA
| | - Ashley M Gutierrez
- Department of Neurosciences, University of California San Diego, CA, USA
| | - Marta C Antonelli
- Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis", Facultad de Medicina, Universidad de Buenos Aires, Argentina; Department of Obstetrics and Gynecology, Klinikum rechts der Isar, Technical University of Munich, Germany
| | - Martin G Frasch
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA; Center on Human Development and Disability, University of Washington, Seattle, WA, USA.
| |
Collapse
|
11
|
Hippocampal Protein Kinase C Gamma Signaling Mediates the Impairment of Spatial Learning and Memory in Prenatally Stressed Offspring Rats. Neuroscience 2019; 414:186-199. [DOI: 10.1016/j.neuroscience.2019.06.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/06/2019] [Accepted: 06/23/2019] [Indexed: 12/13/2022]
|
12
|
Sobolewski M, Conrad K, Marvin E, Allen JL, Cory-Slechta DA. Endocrine active metals, prenatal stress and enhanced neurobehavioral disruption. Horm Behav 2018; 101:36-49. [PMID: 29355495 PMCID: PMC5970043 DOI: 10.1016/j.yhbeh.2018.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/05/2018] [Accepted: 01/14/2018] [Indexed: 11/24/2022]
Abstract
Metals, including lead (Pb), methylmercury (MeHg) and arsenic (As), are long-known developmental neurotoxicants. More recently, environmental context has been recognized to modulate metals toxicity, including nutritional state and stress exposure. Modulation of metal toxicity by stress exposure can occur through shared targeting of endocrine systems, such as the hypothalamic-pituitary-adrenal axis (HPA). Our previous rodent research has identified that prenatal stress (PS) modulates neurotoxicity of two endocrine active metals (EAMs), Pb and MeHg, by altering HPA and CNS systems disrupting behavior. Here, we review this research and further test the hypothesis that prenatal stress modulates metals neurotoxicity by expanding to test the effect of developmental As ± PS exposure. Serum corticosterone and behavior was assessed in offspring of dams exposed to As ± PS. PS increased female offspring serum corticosterone at birth, while developmental As exposure decreased adult serum corticosterone in both sexes. As + PS induced reductions in locomotor activity in females and reduced response rates on a Fixed Interval schedule of reinforcement in males, with the latter suggesting unique learning deficits only in the combined exposure. As-exposed males showed increased time in the open arms of an elevated plus maze and decreased novel object recognition whereas females did not. These data further confirm the hypothesis that combined exposure to chemical (EAMs) and non-chemical (PS) stressors results in enhanced neurobehavioral toxicity. Given that humans are exposed to multiple environmental risk factors that alter endocrine function in development, such models are critical for risk assessment and public health protection, particularly for children.
Collapse
Affiliation(s)
- Marissa Sobolewski
- Dept. of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, United States. marissa:
| | - Katherine Conrad
- Dept. of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, United States
| | - Elena Marvin
- Dept. of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, United States
| | - Joshua L Allen
- Dept. of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, United States
| | - Deborah A Cory-Slechta
- Dept. of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, United States
| |
Collapse
|
13
|
Prenatal stress induced gender-specific alterations of N -methyl- d -aspartate receptor subunit expression and response to Aβ in offspring hippocampal cells. Behav Brain Res 2018; 336:182-190. [DOI: 10.1016/j.bbr.2017.08.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/20/2017] [Accepted: 08/23/2017] [Indexed: 11/23/2022]
|
14
|
Bath KG, Nitenson AS, Lichtman E, Lopez C, Chen W, Gallo M, Goodwill H, Manzano-Nieves G. Early life stress leads to developmental and sex selective effects on performance in a novel object placement task. Neurobiol Stress 2017; 7:57-67. [PMID: 28462362 PMCID: PMC5408156 DOI: 10.1016/j.ynstr.2017.04.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 01/06/2023] Open
Abstract
Disruptions in early life care, including neglect, extreme poverty, and trauma, influence neural development and increase the risk for and severity of pathology. Significant sex disparities have been identified for affective pathology, with females having an increased risk of developing anxiety and depressive disorder. However, the effects of early life stress (ELS) on cognitive development have not been as well characterized, especially in reference to sex specific impacts of ELS on cognitive abilities over development. In mice, fragmented maternal care resulting from maternal bedding restriction, was used to induce ELS. The development of spatial abilities were tracked using a novel object placement (NOP) task at several different ages across early development (P21, P28, P38, P50, and P75). Male mice exposed to ELS showed significant impairments in the NOP task compared with control reared mice at all ages tested. In female mice, ELS led to impaired NOP performance immediately following weaning (P21) and during peri-adolescence (P38), but these effects did not persist into early adulthood. Prior work has implicated impaired hippocampus neurogenesis as a possible mediator of negative outcomes in ELS males. In the hippocampus of behaviorally naïve animals there was a significant decrease in expression of Ki-67 (proliferative marker) and doublecortin (DCX-immature cell marker) as mice aged, and a more rapid developmental decline in these markers in ELS reared mice. However, the effect of ELS dissipated by P28 and no main effect of sex were observed. Together these results indicate that ELS impacts the development of spatial abilities in both male and female mice and that these effects are more profound and lasting in males. ELS leads to sex differences in spatial memory abilities in mice. Female mice show impaired performance that resolve prior to adolescence. Male mice show persistent impairments across early life. Effects are restricted to spatial abilities and not other task dimensions. Effects are not related to markers of proliferation and differentiation in hippocampus.
Collapse
Affiliation(s)
- Kevin G Bath
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence RI 02912, United States
| | | | - Ezra Lichtman
- Yale School of Medicine, New Haven, CT 06510, United States
| | - Chelsea Lopez
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence RI 02912, United States
| | - Whitney Chen
- Department of Neuroscience, University of California at San Francisco, San Francisco, CA 94158, United States
| | - Meghan Gallo
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence RI 02912, United States
| | - Haley Goodwill
- Department of Neuroscience, Brown University, Providence, RI 02912, United States
| | | |
Collapse
|
15
|
Prenatal Stress Impairs Spatial Learning and Memory Associated with Lower mRNA Level of the CAMKII and CREB in the Adult Female Rat Hippocampus. Neurochem Res 2017; 42:1496-1503. [DOI: 10.1007/s11064-017-2206-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/29/2016] [Accepted: 02/13/2017] [Indexed: 11/26/2022]
|
16
|
Devan BD, Tobin EL, Dunn EN, Magalis C. Sex differences on the competitive place task in the water maze: The influence of peripheral pool time on spatial navigation performance in rats. Behav Processes 2016; 132:34-41. [DOI: 10.1016/j.beproc.2016.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/03/2016] [Accepted: 09/27/2016] [Indexed: 01/20/2023]
|