1
|
Park JH, Back DB, Guo S, Tanaka M, Takase H, Whalen MJ, Arai K, Hayakawa K, Lo EH. Effects of mitochondrial O-GlcNAcylation in pericytes after mechanical injury. Brain Res 2025:149647. [PMID: 40250747 DOI: 10.1016/j.brainres.2025.149647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Damage to vascular cells comprise an important part of traumatic brain injury (TBI) but the underlying pathophysiology remains to be fully elucidated. Here, we investigate the loss of O-Linked β-N-acetylglucosamine(O-GlcNAc) modification (O-GlcNAcylation) and mitochondrial disruption in vascular pericytes as a candidate mechanism. In mouse models in vivo, TBI rapidly induces vascular oxidative stress and down-regulates mitochondrial O-GlcNAcylation. In pericytes but not brain endothelial cultures in vitro, mechanical stretch injury down-regulates mitochondrial O-GlcNAcylation. This is accompanied by disruptions in mitochondrial dynamics, comprising a decrease in mitochondrial fusion and an increase in mitochondrial fission proteins. Pharmacologic rescue of endogenous mitochondrial O-GlcNAcylation with an O-GlcNAcase inhibitor Thiamet-G or addition of exogenous O-GlcNAc-enhanced extracellular mitochondria ameliorates the mitochondrial disruption in pericytes damaged by mechanical injury. Finally, in a pericyte-endothelial co-culture model, mechanical injury increased trans-cellular permeability; adding Thiamet-G or O-GlcNAc-enhanced extracellular mitochondria rescued trans-cellular permeability following mechanical injury. These proof-of-concept findings suggest that mitochondrial O-GlcNAcylation in pericytes may represent a novel therapeutic target for ameliorating oxidative stress and vascular damage after mechanical injury following TBI.
Collapse
Affiliation(s)
- Ji Hyun Park
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| | - Dong Bin Back
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Shuzhen Guo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Masayoshi Tanaka
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Hajime Takase
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Michael J Whalen
- Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Kazuhide Hayakawa
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
2
|
Chauhan P, Yadav N, Wadhwa K, Ganesan S, Walia C, Rathore G, Singh G, Abomughaid MM, Ahlawat A, Alexiou A, Papadakis M, Jha NK. Animal Models of Traumatic Brain Injury and Their Relevance in Clinical Settings. CNS Neurosci Ther 2025; 31:e70362. [PMID: 40241393 PMCID: PMC12003924 DOI: 10.1111/cns.70362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a significant concern that often goes overlooked, resulting from various factors such as traffic accidents, violence, military services, and medical conditions. It is a major health issue affecting people of all age groups across the world, causing significant morbidity and mortality. TBI is a highly intricate disease process that causes both structural damage and functional deficits. These effects result from a combination of primary and secondary injury mechanisms. It is responsible for causing a range of negative effects, such as impairments in cognitive function, changes in social and behavioural patterns, difficulties with motor skills, feelings of anxiety, and symptoms of depression. METHODS TBI associated various animal models were reviewed in databases including PubMed, Web of Science, and Google scholar etc. The current study provides a comprehensive overview of commonly utilized animal models for TBI and examines their potential usefulness in a clinical context. RESULTS Despite the notable advancements in TBI outcomes over the past two decades, there remain challenges in evaluating, treating, and addressing the long-term effects and prevention of this condition. Utilizing experimental animal models is crucial for gaining insight into the development and progression of TBI, as it allows us to examine the biochemical impacts of TBI on brain mechanisms. CONCLUSION This exploration can assist scientists in unraveling the intricate mechanisms involved in TBI and ultimately contribute to the advancement of successful treatments and interventions aimed at enhancing outcomes for TBI patients.
Collapse
Affiliation(s)
- Payal Chauhan
- Department of Pharmaceutical SciencesMaharshi Dayanand UniversityRohtakIndia
| | - Nikita Yadav
- Department of Pharmaceutical SciencesMaharshi Dayanand UniversityRohtakIndia
| | - Karan Wadhwa
- Department of Pharmaceutical SciencesMaharshi Dayanand UniversityRohtakIndia
| | - Subbulakshmi Ganesan
- Department of Chemistry and BiochemistrySchool of Sciences, JAIN (Deemed to be University)BangaloreIndia
| | - Chakshu Walia
- Chandigarh Pharmacy College, Chandigarh Group of Colleges JhanjheriMohaliIndia
| | - Gulshan Rathore
- Department of PharmaceuticsNIMS Institute of Pharmacy, NIMS University RajasthanJaipurIndia
| | - Govind Singh
- Department of Pharmaceutical SciencesMaharshi Dayanand UniversityRohtakIndia
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory SciencesCollege of Applied Medical Sciences, University of BishaBishaSaudi Arabia
| | - Abhilasha Ahlawat
- Department of Pharmaceutical SciencesMaharshi Dayanand UniversityRohtakIndia
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh UniversityMohaliIndia
- Department of Research & DevelopmentFunogenAthensGreece
| | | | - Niraj Kumar Jha
- Department of Biotechnology & BioengineeringSchool of Biosciences & Technology, Galgotias UniversityGreater NoidaIndia
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara UniversityRajpuraIndia
- School of Bioengineering & Biosciences, Lovely Professional UniversityPhagwaraIndia
| |
Collapse
|
3
|
Weng W, He Z, Ma Z, Huang J, Han Y, Feng Q, Qi W, Peng Y, Wang J, Gu J, Wang W, Lin Y, Jiang G, Jiang J, Feng J. Tufm lactylation regulates neuronal apoptosis by modulating mitophagy in traumatic brain injury. Cell Death Differ 2025; 32:530-545. [PMID: 39496783 PMCID: PMC11894137 DOI: 10.1038/s41418-024-01408-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/06/2024] Open
Abstract
Lactates accumulation following traumatic brain injury (TBI) is detrimental. However, whether lactylation is triggered and involved in the deterioration of TBI remains unknown. Here, we first report that Tufm lactylation pathway induces neuronal apoptosis in TBI. Lactylation is found significantly increased in brain tissues from patients with TBI and mice with controlled cortical impact (CCI), and in neuronal injury cell models. Tufm, a key factor in mitophagy, is screened and identified to be mostly lactylated. Tufm is detected to be lactylated at K286 and the lactylation inhibits the interaction of Tufm and Tomm40 on mitochondria. The mitochondrial distribution of Tufm is then inhibited. Consequently, Tufm-mediated mitophagy is suppressed while mitochondria-induced neuronal apoptosis is increased. In contrast, the knockin of a lactylation-deficient TufmK286R mutant in mice rescues the mitochondrial distribution of Tufm and Tufm-mediated mitophagy, and improves functional outcome after CCI. Likewise, mild hypothermia, as a critical therapeutic method in neuroprotection, helps in downregulating Tufm lactylation, increasing Tufm-mediated mitophagy, mitigating neuronal apoptosis, and eventually ameliorating the outcome of TBI. A novel molecular mechanism in neuronal apoptosis, TBI-initiated Tufm lactylation suppressing mitophagy, is thus revealed.
Collapse
Affiliation(s)
- Weiji Weng
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenghui He
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Zixuan Ma
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Jialin Huang
- Shanghai Institute of Head Trauma, Shanghai, China
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhan Han
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Qiyuan Feng
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Wenlan Qi
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Yidong Peng
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Jiangchang Wang
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Jiacheng Gu
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Wenye Wang
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Yong Lin
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Gan Jiang
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiyao Jiang
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Head Trauma, Shanghai, China
| | - Junfeng Feng
- Brain Injury Centre, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Institute of Head Trauma, Shanghai, China.
| |
Collapse
|
4
|
Bibineyshvili Y, Vajtay TJ, Salsabilian S, Fliss N, Suvarnakar A, Fang J, Teng S, Alder J, Najafizadeh L, Margolis DJ. Imaging the large-scale and cellular response to focal traumatic brain injury in mouse neocortex. Exp Physiol 2025; 110:321-344. [PMID: 39576175 PMCID: PMC11782206 DOI: 10.1113/ep092219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/14/2024] [Indexed: 11/27/2024]
Abstract
Traumatic brain injury (TBI) affects neural function at the local injury site and also at distant, connected brain areas. However, the real-time neural dynamics in response to injury and subsequent effects on sensory processing and behaviour are not fully resolved, especially across a range of spatial scales. We used in vivo calcium imaging in awake, head-restrained male and female mice to measure large-scale and cellular resolution neuronal activation, respectively, in response to a mild/moderate TBI induced by focal controlled cortical impact (CCI) injury of the motor cortex (M1). Widefield imaging revealed an immediate CCI-induced activation at the injury site, followed by a massive slow wave of calcium signal activation that travelled across the majority of the dorsal cortex within approximately 30 s. Correspondingly, two-photon calcium imaging in the primary somatosensory cortex (S1) found strong activation of neuropil and neuronal populations during the CCI-induced travelling wave. A depression of calcium signals followed the wave, during which we observed the atypical activity of a sparse population of S1 neurons. Longitudinal imaging in the hours and days after CCI revealed increases in the area of whisker-evoked sensory maps at early time points, in parallel to decreases in cortical functional connectivity and behavioural measures. Neural and behavioural changes mostly recovered over hours to days in our M1-TBI model, with a more lasting decrease in the number of active S1 neurons. Our results in unanaesthetized mice describe novel spatial and temporal neural adaptations that occur at cortical sites remote to a focal brain injury.
Collapse
Affiliation(s)
- Yelena Bibineyshvili
- Department of Cell Biology and NeuroscienceRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Thomas J. Vajtay
- Department of Cell Biology and NeuroscienceRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Shiva Salsabilian
- Department of Electrical and Computer EngineeringRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Nicholas Fliss
- Department of Cell Biology and NeuroscienceRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Aastha Suvarnakar
- Department of Cell Biology and NeuroscienceRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Jennifer Fang
- Department of Cell Biology and NeuroscienceRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - Shavonne Teng
- Department of Neuroscience and Cell BiologyRutgers Robert Wood Johnson Medical SchoolPiscatawayNew JerseyUSA
| | - Janet Alder
- Department of Neuroscience and Cell BiologyRutgers Robert Wood Johnson Medical SchoolPiscatawayNew JerseyUSA
| | - Laleh Najafizadeh
- Department of Electrical and Computer EngineeringRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| | - David J. Margolis
- Department of Cell Biology and NeuroscienceRutgers, The State University of New JerseyPiscatawayNew JerseyUSA
| |
Collapse
|
5
|
Carteri RB. Mitochondria as a Therapeutic Target: Focusing on Traumatic Brain Injury. J Integr Neurosci 2025; 24:25292. [PMID: 39862005 DOI: 10.31083/jin25292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 01/27/2025] Open
Abstract
Mitochondria are organelles of eukaryotic cells delimited by two membranes and cristae that consume oxygen to produce adenosine triphosphate (ATP), and are involved in the synthesis of vital metabolites, calcium homeostasis, and cell death mechanisms. Strikingly, normal mitochondria function as an integration center between multiple conditions that determine neural cell homeostasis, whereas lesions that lead to mitochondrial dysfunction can desynchronize cellular functions, thus contributing to the pathophysiology of traumatic brain injury (TBI). In addition, TBI leads to impaired coupling of the mitochondrial electron transport system with oxidative phosphorylation that provides most of the energy needed to maintain vital functions, ionic homeostasis, and membrane potentials. Furthermore, mitochondrial metabolism produces signaling molecules such as reactive oxygen species (ROS), regulating calcium levels and controlling the expression profile of intrinsic pro-apoptotic effectors influenced by TBI. Hence, the set of these functions is widely referred to as 'mitochondrial function', although the complexity of the relationship between such components limits such a definition. In this review, we present mitochondria as a therapeutic target, focus on TBI, and discuss aspects of mitochondrial structure and function.
Collapse
Affiliation(s)
- Randhall Bruce Carteri
- Department of Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170 Porto Alegre, Rio Grande do Sul (RS), Brazil
- Department of Nutrition, Centro Universitário CESUCA, 94935-630 Cachoeirinha, Rio Grande do Sul (RS), Brazil
| |
Collapse
|
6
|
Jin Z, Chen Z, Liang T, Liu W, Shan Z, Tan D, Chen J, Hu J, Qin L, Xu J. Accelerated fracture healing accompanied with traumatic brain injury: A review of clinical studies, animal models and potential mechanisms. J Orthop Translat 2025; 50:71-84. [PMID: 39868349 PMCID: PMC11763218 DOI: 10.1016/j.jot.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/16/2024] [Accepted: 10/30/2024] [Indexed: 01/28/2025] Open
Abstract
The orthopaedic community frequently encounters polytrauma individuals with concomitant traumatic brain injury (TBI) and their fractures demonstrate accelerated fracture union, but the mechanisms remain far from clear. Animal and clinical studies demonstrate robust callus formation at the early healing process and expedited radiographical union. In humans, robust callus formation in TBI occurs independently of fracture fixation methods across multiple fracture sites. Animal studies of TBI replicate clinically relevant enlarged fracture callus as characterized by increased tissue volume and bone volume at the early stages. However, refinement and standardization of the TBI models requires further research. The quest for its underlying mechanisms began with the finding of increased osteogenesis in vitro using the serum and cerebral spinal fluid (CSF) from TBI individuals. This has led to the investigation of myriads of brain-derived factors including humoral factors, cytokines, exosomes, and mi-RNAs. Further, the emerging information of interplay between the skeletal system and central nervous system, the roles of peripheral nerves and their neuropeptides in regulating bone regeneration, offers valuable insights for future research. This review consolidates the findings from both experimental and clinical studies, elucidating the potential mechanisms underlying enhanced fracture healing in concurrent TBI scenarios that may lay down a foundation to develop innovative therapies for fracture healing enhancement and conquer fracture non-union. The translational potential of this article. This review comprehensively summarizes the observations of accelerated fracture healing in the presence of traumatic brain injury from both preclinical and clinical studies. In addition, it also delineates potential cellular and molecular mechanisms. Further detailed investigation into its underlying mechanisms may reveal innovative orthopaedic intervention strategies to improve fracture healing and thus offering promising avenues for future translational applications.
Collapse
Affiliation(s)
- Zheyu Jin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Areas of Excellence Centre for Musculoskeletal Degeneration and Regeneration, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ziyi Chen
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Areas of Excellence Centre for Musculoskeletal Degeneration and Regeneration, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Tongzhou Liang
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Areas of Excellence Centre for Musculoskeletal Degeneration and Regeneration, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Weiyang Liu
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Areas of Excellence Centre for Musculoskeletal Degeneration and Regeneration, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhengming Shan
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Areas of Excellence Centre for Musculoskeletal Degeneration and Regeneration, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Dianhui Tan
- Department of Neurosurgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jiechen Chen
- Department of Orthopaedics, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Orthopaedic Medical Research Centre, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jun Hu
- Department of Orthopaedics, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Orthopaedic Medical Research Centre, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Areas of Excellence Centre for Musculoskeletal Degeneration and Regeneration, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Areas of Excellence Centre for Musculoskeletal Degeneration and Regeneration, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
7
|
Goyal L, Singh S. Neurological Manifestations Following Traumatic Brain Injury: Role of Behavioral, Neuroinflammation, Excitotoxicity, Nrf-2 and Nitric Oxide. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2025; 24:47-59. [PMID: 39082170 DOI: 10.2174/0118715273318552240708055413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 01/31/2025]
Abstract
Traumatic Brain Injury (TBI) is attributed to a forceful impact on the brain caused by sharp, penetrating bodies, like bullets and any sharp object. Some popular instances like falls, traffic accidents, physical assaults, and athletic injuries frequently cause TBI. TBI is the primary cause of both mortality and disability among young children and adults. Several individuals experience psychiatric problems, including cognitive dysfunction, depression, post-traumatic stress disorder, and anxiety, after primary injury. Behavioral changes post TBI include cognitive deficits and emotional instability (anxiety, depression, and post-traumatic stress disorder). These alterations are linked to neuroinflammatory processes. On the other hand, the direct impact mitigates inflammation insult by the release of pro-inflammatory cytokines, namely IL-1β, IL-6, and TNF-α, exacerbating neuronal injury and contributing to neurodegeneration. During the excitotoxic phase, activation of glutamate subunits like NMDA enhances the influx of Ca2+ and leads to mitochondrial metabolic impairment and calpain-mediated cytoskeletal disassembly. TBI pathological insult is also linked to transcriptional response suppression Nrf-2, which plays a critical role against TBI-induced oxidative stress. Activation of NRF-2 enhances the expression of anti-oxidant enzymes, providing neuroprotection. A possible explanation for the elevated levels of NO is that the stimulation of NMDA receptors by glutamate leads to the influx of calcium in the postsynaptic region, activating NOS's constitutive isoforms.
Collapse
Affiliation(s)
- Lav Goyal
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga-142001 Punjab, India
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga-142001 Punjab, India
| |
Collapse
|
8
|
Shi H, Song L, Wu Y, Shen R, Zhang C, Liao X, Wang Q, Zhu J. Edaravone Alleviates Traumatic Brain Injury by Inhibition of Ferroptosis via FSP1 Pathway. Mol Neurobiol 2024; 61:10448-10461. [PMID: 38733490 PMCID: PMC11584507 DOI: 10.1007/s12035-024-04216-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
Abstract
Traumatic brain injury (TBI) is a highly severe form of trauma with complex series of reactions in brain tissue which ultimately results in neuronal damage. Previous studies proved that neuronal ferroptosis, which was induced by intracranial haemorrhage and other reasons, was one of the most primary causes of neuronal damage following TBI. However, the association between neuronal mechanical injury and ferroptosis in TBI and relevant treatments remain unclear. In the present study, we first demonstrated the occurrence of neuronal ferroptosis in the early stage of TBI and preliminarily elucidated that edaravone (EDA), a cerebroprotective agent that eliminates oxygen radicals, was able to inhibit ferroptosis induced by TBI. A cell scratching model was established in PC12 cells, and it was confirmed that mechanical injury induced ferroptosis in neurons at the early stage of TBI. Ferroptosis suppressor protein 1 (FSP1) plays a significant role in inhibiting ferroptosis, and we found that iFSP, a ferroptosis agonist which is capable to inhibit FSP1 pathway, attenuated the anti-ferroptosis effect of EDA. In conclusion, our results suggested that EDA inhibited neuronal ferroptosis induced by mechanical injury in the early phase of TBI by activating FSP1 pathway, which could provide evidence for future research on prevention and treatment of TBI.
Collapse
Affiliation(s)
- Haoyu Shi
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA)/Fifth Clinical Medical College of Anhui Medical University, Wuxi, 214044, Jiangsu Province, China
| | - Libiao Song
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA)/Fifth Clinical Medical College of Anhui Medical University, Wuxi, 214044, Jiangsu Province, China
| | - Yonghui Wu
- Department of Neurosurgery, The Second People's Hospital of Lu'an, Lu'an, 237000, Anhui Province, China
| | - Ruonan Shen
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA)/Fifth Clinical Medical College of Anhui Medical University, Wuxi, 214044, Jiangsu Province, China
| | - Chenxu Zhang
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA)/Fifth Clinical Medical College of Anhui Medical University, Wuxi, 214044, Jiangsu Province, China
| | - Xingzhi Liao
- Department of Anaesthesiology, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA)/Fifth Clinical Medical College of Anhui Medical University, Wuxi, 214044, Jiangsu Province, China
| | - Qiuhong Wang
- Department of Ophthalmology, Wuxi Second Hospital Affiliated to Jiangnan University, Wuxi, 214002, Jiangsu Province, China
| | - Jie Zhu
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904th Hospital of PLA)/Fifth Clinical Medical College of Anhui Medical University, Wuxi, 214044, Jiangsu Province, China.
| |
Collapse
|
9
|
Jin R, Wang M, Shukla M, Lei Y, An D, Du J, Li G. J147 treatment protects against traumatic brain injury by inhibiting neuronal endoplasmic reticulum stress potentially via the AMPK/SREBP-1 pathway. Transl Res 2024; 274:21-34. [PMID: 39245209 PMCID: PMC11563885 DOI: 10.1016/j.trsl.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/15/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024]
Abstract
Endoplasmic reticulum (ER) stress is recognized as a crucial contributor to the progression of traumatic brain injury (TBI) and represents a potential target for therapeutic intervention. This study aimed to assess the potential of J147, a novel neurotrophic compound, in alleviating ER stress by modulating related signaling pathways, thereby promoting functional recovery in TBI. To this end, adult mice underwent controlled cortical impact (CCI) injury to induce TBI, followed by oral administration of J147 one-hour post-injury, with daily dosing for 3 to 7 days. Multiple behavioral assessments were conducted over 35 days, revealing a significant, dose-dependent improvement in neurofunctional recovery with J147 treatment. The neuropathological analysis demonstrated reduced acute neurodegeneration (observed at three days through FJC staining), enhanced long-term neuron survival (H&E and Nissl staining), and improved neuroplasticity (Golgi staining) at 35 days post-TBI. At the molecular level, TBIinduced AMP-activated protein kinase (AMPK) dephosphorylation, sterol regulatory element binding protein-1 (SREBP-1) activation, and upregulation of ER stress marker proteins, including phosphorylated eukaryotic initiation factor-2α (p-eIF2a), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP) in perilesional cortex neurons at three days post-injury. Notably, the J147 treatment significantly attenuated AMPK dephosphorylation, SERBP-1 activation, and expression of the ER stress markers. In summary, this study reveals the therapeutic promise of J147 in mitigating secondary brain damage associated with TBI and improving long-term functional recovery by modulating ER stress pathways.
Collapse
Affiliation(s)
- Rong Jin
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA 17033, USA.
| | - Min Wang
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA 17033, USA
| | - Manish Shukla
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA 17033, USA
| | - Yuguo Lei
- Department of Biomedical Engineering, Pennsylvania State University; University Park, PA, 16802, USA
| | - Dong An
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA 17033, USA
| | - Jiwen Du
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA 17033, USA
| | - Guohong Li
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA 17033, USA.
| |
Collapse
|
10
|
Omais S, Kobeissy F, Zibara K, Shaito A. Editorial: Revisiting mouse models of traumatic brain injuries: a focus on intracellular mechanisms. Front Cell Neurosci 2024; 18:1505348. [PMID: 39484181 PMCID: PMC11524986 DOI: 10.3389/fncel.2024.1505348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 11/03/2024] Open
Affiliation(s)
- Saad Omais
- Department of Biological Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Firas Kobeissy
- Department of Neurobiology, Center for Neurotrauma, Multiomics and Biomarkers, Morehouse School of Medicine, Atlanta, GA, United States
| | - Kazem Zibara
- PRASE and Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Abdullah Shaito
- Biomedical Research Center, Department of Biomedical Sciences at College of Health Sciences, and College of Medicine, Qatar University, Doha, Qatar
| |
Collapse
|
11
|
Balakin E, Yurku K, Fomina T, Butkova T, Nakhod V, Izotov A, Kaysheva A, Pustovoyt V. A Systematic Review of Traumatic Brain Injury in Modern Rodent Models: Current Status and Future Prospects. BIOLOGY 2024; 13:813. [PMID: 39452122 PMCID: PMC11504108 DOI: 10.3390/biology13100813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
According to the Centers for Disease Control and Prevention (CDC), the national public health agency of the United States, traumatic brain injury is among the leading causes of mortality and disability worldwide. The consequences of TBI include diffuse brain atrophy, local post-traumatic atrophy, arachnoiditis, pachymeningitis, meningocerebral cicatrices, cranial nerve lesions, and cranial defects. In 2019, the economic cost of injuries in the USA alone was USD 4.2 trillion, which included USD 327 billion for medical care, USD 69 billion for work loss, and USD 3.8 trillion for the value of statistical life and quality of life losses. More than half of this cost (USD 2.4 trillion) was among working-age adults (25-64 years old). Currently, the development of new diagnostic approaches and the improvement of treatment techniques require further experimental studies focused on modeling TBI of varying severity.
Collapse
Affiliation(s)
- Evgenii Balakin
- Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia
| | - Ksenia Yurku
- Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia
| | - Tatiana Fomina
- Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia
| | | | | | | | - Anna Kaysheva
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Vasiliy Pustovoyt
- Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia
| |
Collapse
|
12
|
Bibineyshvili Y, Vajtay TJ, Salsabilian S, Fliss N, Suvarnakar A, Fang J, Teng S, Alder J, Najafizadeh L, Margolis DJ. Imaging the large-scale and cellular response to focal traumatic brain injury in mouse neocortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590835. [PMID: 38712183 PMCID: PMC11071467 DOI: 10.1101/2024.04.24.590835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Traumatic brain injury (TBI) affects neural function at the local injury site and also at distant, connected brain areas. However, the real-time neural dynamics in response to injury and subsequent effects on sensory processing and behavior are not fully resolved, especially across a range of spatial scales. We used in vivo calcium imaging in awake, head-restrained male and female mice to measure large-scale and cellular resolution neuronal activation, respectively, in response to a mild/moderate TBI induced by focal controlled cortical impact (CCI) injury of the motor cortex (M1). Widefield imaging revealed an immediate CCI-induced activation at the injury site, followed by a massive slow wave of calcium signal activation that traveled across the majority of the dorsal cortex within approximately 30 s. Correspondingly, two-photon calcium imaging in primary somatosensory cortex (S1) found strong activation of neuropil and neuronal populations during the CCI-induced traveling wave. A depression of calcium signals followed the wave, during which we observed atypical activity of a sparse population of S1 neurons. Longitudinal imaging in the hours and days after CCI revealed increases in the area of whisker-evoked sensory maps at early time points, in parallel to decreases in cortical functional connectivity and behavioral measures. Neural and behavioral changes mostly recovered over hours to days in our M1-TBI model, with a more lasting decrease in the number of active S1 neurons. Our results in unanesthetized mice describe novel spatial and temporal neural adaptations that occur at cortical sites remote to a focal brain injury.
Collapse
Affiliation(s)
- Yelena Bibineyshvili
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway NJ, USA
| | - Thomas J. Vajtay
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway NJ, USA
| | - Shiva Salsabilian
- Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Nicholas Fliss
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway NJ, USA
| | - Aastha Suvarnakar
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway NJ, USA
| | - Jennifer Fang
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway NJ, USA
| | - Shavonne Teng
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Janet Alder
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Laleh Najafizadeh
- Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - David J. Margolis
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway NJ, USA
| |
Collapse
|
13
|
Clay AM, Carr RL, DuBien JL, To F. Short-term behavioral and histological findings following a single concussive and repeated subconcussive brain injury in a rodent model. Brain Inj 2024; 38:827-834. [PMID: 38704844 DOI: 10.1080/02699052.2024.2349144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/23/2024] [Indexed: 05/07/2024]
Abstract
PRIMARY OBJECTIVE It is unclear of the correlation between a mild traumatic brain injury (mTBI) and repeated subconcussive (RSC) impacts with respect to injury biomechanics. Thus, the present study was designed to determine the behavioral and histological differences between a single mTBI impact and RSC impacts with subdivided cumulative kinetic energies of the single mTBI impact. RESEARCH DESIGN Adult male Sprague-Dawley rats were randomly assigned to a single mTBI impact, RSC impact, sham, or repeated sham groups. METHODS AND PROCEDURES Following a weight drop injury, anxiety-like behavior and general locomotive activity and were assessed using the open field test, while motor coordination was evaluated using a rotarod unit. Neuronal loss, astrogliosis, and microgliosis were assessed using NeuN, GFAP and Iba-1 immunohistochemistry. All assessments were undertaken at 3- and 7-days post impact. MAIN OUTCOMES AND RESULTS No behavioral disturbances were observed in injury groups, however, both injury groups did lead to microgliosis following 3-days post-impact. CONCLUSIONS No pathophysiological differences were observed between a single mTBI impact and RSC impacts of the same energy input. Even though a cumulative injury threshold for RSC impacts was not determined, a threshold still may exist where no pathodynamic shift occurs.
Collapse
Affiliation(s)
- Anna Marie Clay
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi, USA
| | - Russell L Carr
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi University, Mississippi, USA
| | - Janice L DuBien
- Department of Statistics, Mississippi University, Mississippi, USA
| | - Filip To
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi, USA
| |
Collapse
|
14
|
Kim J, Hong J, Park K, Lee S, Hoang AT, Pak S, Zhao H, Ji S, Yang S, Chung CK, Yang S, Ahn JH. Injectable 2D Material-Based Sensor Array for Minimally Invasive Neural Implants. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400261. [PMID: 38741451 DOI: 10.1002/adma.202400261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/16/2024] [Indexed: 05/16/2024]
Abstract
Intracranial implants for diagnosis and treatment of brain diseases have been developed over the past few decades. However, the platform of conventional implantable devices still relies on invasive probes and bulky sensors in conjunction with large-area craniotomy and provides only limited biometric information. Here, an implantable multi-modal sensor array that can be injected through a small hole in the skull and inherently spread out for conformal contact with the cortical surface is reported. The injectable sensor array, composed of graphene multi-channel electrodes for neural recording and electrical stimulation and MoS2-based sensors for monitoring intracranial temperature and pressure, is designed based on a mesh structure whose elastic restoring force enables the contracted device to spread out. It is demonstrated that the sensor array injected into a rabbit's head can detect epileptic discharges on the surface of the cortex and mitigate it by electrical stimulation while monitoring both intracranial temperature and pressure. This method provides good potential for implanting a variety of functional devices via minimally invasive surgery.
Collapse
Affiliation(s)
- Jejung Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Juyeong Hong
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kyungtai Park
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sangwon Lee
- gBrain Inc., Incheon, 21984, Republic of Korea
| | - Anh Tuan Hoang
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sojeong Pak
- Department of Neuroscience, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Huilin Zhao
- Department of Neuroscience, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Seunghyeon Ji
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sungchil Yang
- Department of Nanobioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Chun Kee Chung
- Department of Neurosurgery, Seoul National University Hospital, Seoul, 03080, Republic of Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Sunggu Yang
- gBrain Inc., Incheon, 21984, Republic of Korea
- Department of Neuroscience, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
15
|
Bielefeld P, Martirosyan A, Martín-Suárez S, Apresyan A, Meerhoff GF, Pestana F, Poovathingal S, Reijner N, Koning W, Clement RA, Van der Veen I, Toledo EM, Polzer O, Durá I, Hovhannisyan S, Nilges BS, Bogdoll A, Kashikar ND, Lucassen PJ, Belgard TG, Encinas JM, Holt MG, Fitzsimons CP. Traumatic brain injury promotes neurogenesis at the cost of astrogliogenesis in the adult hippocampus of male mice. Nat Commun 2024; 15:5222. [PMID: 38890340 PMCID: PMC11189490 DOI: 10.1038/s41467-024-49299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
Traumatic brain injury (TBI) can result in long-lasting changes in hippocampal function. The changes induced by TBI on the hippocampus contribute to cognitive deficits. The adult hippocampus harbors neural stem cells (NSCs) that generate neurons (neurogenesis), and astrocytes (astrogliogenesis). While deregulation of hippocampal NSCs and neurogenesis have been observed after TBI, it is not known how TBI may affect hippocampal astrogliogenesis. Using a controlled cortical impact model of TBI in male mice, single cell RNA sequencing and spatial transcriptomics, we assessed how TBI affected hippocampal NSCs and the neuronal and astroglial lineages derived from them. We observe an increase in NSC-derived neuronal cells and a concomitant decrease in NSC-derived astrocytic cells, together with changes in gene expression and cell dysplasia within the dentate gyrus. Here, we show that TBI modifies NSC fate to promote neurogenesis at the cost of astrogliogenesis and identify specific cell populations as possible targets to counteract TBI-induced cellular changes in the adult hippocampus.
Collapse
Affiliation(s)
- P Bielefeld
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - A Martirosyan
- VIB Center for Brain and Disease Research, Leuven, Belgium
- KU Leuven-Department of Neurosciences, Leuven, Belgium
| | - S Martín-Suárez
- Achucarro Basque Center for Neuroscience, Sede Bldg, Campus, UPV/EHU, Barrio Sarriena S/N, Leioa, Spain
| | - A Apresyan
- Armenian Bioinformatics Institute, Yerevan, Armenia
| | - G F Meerhoff
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - F Pestana
- VIB Center for Brain and Disease Research, Leuven, Belgium
- KU Leuven-Department of Neurosciences, Leuven, Belgium
| | - S Poovathingal
- VIB Center for Brain and Disease Research, Leuven, Belgium
- KU Leuven-Department of Neurosciences, Leuven, Belgium
| | - N Reijner
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - W Koning
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - R A Clement
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - I Van der Veen
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - E M Toledo
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - O Polzer
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - I Durá
- Achucarro Basque Center for Neuroscience, Sede Bldg, Campus, UPV/EHU, Barrio Sarriena S/N, Leioa, Spain
| | - S Hovhannisyan
- Department of Mathematics and Mechanics, Yerevan State University, Yerevan, Armenia
| | - B S Nilges
- Resolve Biosciences GmbH, Monheim am Rhein, Germany
- OMAPiX GmbH, Langenfeld (Rheinland), Langenfeld, Germany
| | - A Bogdoll
- Resolve Biosciences GmbH, Monheim am Rhein, Germany
| | - N D Kashikar
- Resolve Biosciences GmbH, Monheim am Rhein, Germany
- OMAPiX GmbH, Langenfeld (Rheinland), Langenfeld, Germany
| | - P J Lucassen
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | | | - J M Encinas
- Achucarro Basque Center for Neuroscience, Sede Bldg, Campus, UPV/EHU, Barrio Sarriena S/N, Leioa, Spain
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Campus, UPV/EHU, Barrio Sarriena S/N, Leioa, Spain
- IKERBASQUE, The Basque Foundation for Science, Plaza Euskadi 5, Bilbao, Spain
| | - M G Holt
- VIB Center for Brain and Disease Research, Leuven, Belgium.
- KU Leuven-Department of Neurosciences, Leuven, Belgium.
- Instituto de Investigaçāo e Inovaçāo em Saúde (i3S), University of Porto, Porto, Portugal.
| | - C P Fitzsimons
- Brain Plasticity Department, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Fesharaki-Zadeh A, Datta D. An overview of preclinical models of traumatic brain injury (TBI): relevance to pathophysiological mechanisms. Front Cell Neurosci 2024; 18:1371213. [PMID: 38682091 PMCID: PMC11045909 DOI: 10.3389/fncel.2024.1371213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/20/2024] [Indexed: 05/01/2024] Open
Abstract
Background Traumatic brain injury (TBI) is a major cause of morbidity and mortality, affecting millions annually worldwide. Although the majority of TBI patients return to premorbid baseline, a subset of patient can develop persistent and often debilitating neurocognitive and behavioral changes. The etiology of TBI within the clinical setting is inherently heterogenous, ranging from sport related injuries, fall related injuries and motor vehicle accidents in the civilian setting, to blast injuries in the military setting. Objective Animal models of TBI, offer the distinct advantage of controlling for injury modality, duration and severity. Furthermore, preclinical models of TBI have provided the necessary temporal opportunity to study the chronic neuropathological sequelae of TBI, including neurodegenerative sequelae such as tauopathy and neuroinflammation within the finite experimental timeline. Despite the high prevalence of TBI, there are currently no disease modifying regimen for TBI, and the current clinical treatments remain largely symptom based. The preclinical models have provided the necessary biological substrate to examine the disease modifying effect of various pharmacological agents and have imperative translational value. Methods The current review will include a comprehensive survey of well-established preclinical models, including classic preclinical models including weight drop, blast injury, fluid percussion injury, controlled cortical impact injury, as well as more novel injury models including closed-head impact model of engineered rotational acceleration (CHIMERA) models and closed-head projectile concussive impact model (PCI). In addition to rodent preclinical models, the review will include an overview of other species including large animal models and Drosophila. Results There are major neuropathological perturbations post TBI captured in various preclinical models, which include neuroinflammation, calcium dysregulation, tauopathy, mitochondrial dysfunction and oxidative stress, axonopathy, as well as glymphatic system disruption. Conclusion The preclinical models of TBI continue to offer valuable translational insight, as well as essential neurobiological basis to examine specific disease modifying therapeutic regimen.
Collapse
Affiliation(s)
- Arman Fesharaki-Zadeh
- Department of Neurology and Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Dibyadeep Datta
- Division of Aging and Geriatric Psychiatry, Alzheimer’s Disease Research Unit, Department of Psychiatry, New Haven, CT, United States
| |
Collapse
|
17
|
Goodman GW, Devlin P, West BE, Ritzel RM. The emerging importance of skull-brain interactions in traumatic brain injury. Front Immunol 2024; 15:1353513. [PMID: 38680490 PMCID: PMC11047125 DOI: 10.3389/fimmu.2024.1353513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/01/2024] [Indexed: 05/01/2024] Open
Abstract
The recent identification of skull bone marrow as a reactive hematopoietic niche that can contribute to and direct leukocyte trafficking into the meninges and brain has transformed our view of this bone structure from a solid, protective casing to a living, dynamic tissue poised to modulate brain homeostasis and neuroinflammation. This emerging concept may be highly relevant to injuries that directly impact the skull such as in traumatic brain injury (TBI). From mild concussion to severe contusion with skull fracturing, the bone marrow response of this local myeloid cell reservoir has the potential to impact not just the acute inflammatory response in the brain, but also the remodeling of the calvarium itself, influencing its response to future head impacts. If we borrow understanding from recent discoveries in other CNS immunological niches and extend them to this nascent, but growing, subfield of neuroimmunology, it is not unreasonable to consider the hematopoietic compartment in the skull may similarly play an important role in health, aging, and neurodegenerative disease following TBI. This literature review briefly summarizes the traditional role of the skull in TBI and offers some additional insights into skull-brain interactions and their potential role in affecting secondary neuroinflammation and injury outcomes.
Collapse
Affiliation(s)
| | | | | | - Rodney M. Ritzel
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
18
|
Li Z, Yu S, Li L, Zhou C, Wang L, Tang S, Gu N, Zhang Z, Huang Z, Chen H, Tang W, Wang Y, Yang X, Sun X, Yan J. TREM2 alleviates white matter injury after traumatic brain injury in mice might be mediated by regulation of DHCR24/LXR pathway in microglia. Clin Transl Med 2024; 14:e1665. [PMID: 38649789 PMCID: PMC11035381 DOI: 10.1002/ctm2.1665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND White matter injury (WMI) is an important pathological process after traumatic brain injury (TBI). The correlation between white matter functions and the myeloid cells expressing triggering receptor-2 (TREM2) has been convincingly demonstrated. Moreover, a recent study revealed that microglial sterol metabolism is crucial for early remyelination after demyelinating diseases. However, the potential roles of TREM2 expression and microglial sterol metabolism in WMI after TBI have not yet been explored. METHODS Controlled cortical injury was induced in both wild-type (WT) and TREM2 depletion (TREM2 KO) mice to simulate clinical TBI. COG1410 was used to upregulate TREM2, while PLX5622 and GSK2033 were used to deplete microglia and inhibit the liver X receptor (LXR), respectively. Immunofluorescence, Luxol fast blue staining, magnetic resonance imaging, transmission electron microscopy, and oil red O staining were employed to assess WMI after TBI. Neurological behaviour tests and electrophysiological recordings were utilized to evaluate cognitive functions following TBI. Microglial cell sorting and transcriptomic sequencing were utilized to identify alterations in microglial sterol metabolism-related genes, while western blot was conducted to validate the findings. RESULTS TREM2 expressed highest at 3 days post-TBI and was predominantly localized to microglial cells within the white matter. Depletion of TREM2 worsened aberrant neurological behaviours, and this phenomenon was mediated by the exacerbation of WMI, reduced renewal of oligodendrocytes, and impaired phagocytosis ability of microglia after TBI. Subsequently, the upregulation of TREM2 alleviated WMI, promoted oligodendrocyte regeneration, and ultimately facilitated the recovery of neurological behaviours after TBI. Finally, the expression of DHCR24 increased in TREM2 KO mice after TBI. Interestingly, TREM2 inhibited DHCR24 and upregulated members of the LXR pathway. Moreover, LXR inhibition could partially reverse the effects of TREM2 upregulation on electrophysiological activities. CONCLUSIONS We demonstrate that TREM2 has the potential to alleviate WMI following TBI, possibly through the DHCR24/LXR pathway in microglia.
Collapse
Affiliation(s)
- Zhao Li
- Department of NeurosurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Emergency DepartmentChengdu First People's HospitalChengduChina
| | - Shenghui Yu
- Emergency DepartmentChengdu First People's HospitalChengduChina
| | - Lin Li
- Department of NeurosurgeryChongqing University Cancer HospitalChongqingChina
| | - Chao Zhou
- Emergency DepartmentChengdu First People's HospitalChengduChina
| | - Lin Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Department of NeurosurgeryNanchong Central HospitalThe Second Clinical Medical College of North Sichuan Medical CollegeNanchongChina
| | - Shuang Tang
- Department of NeurosurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Department of NeurosurgerySuining Central HospitalSuiningChina
| | - Nina Gu
- Department of NeurosurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Zhaosi Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Zhijian Huang
- Department of NeurosurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Hong Chen
- Department of NeurosurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Wei Tang
- Department of NeurosurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Yingwen Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Xiaomin Yang
- Department of NeurosurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Xiaochuan Sun
- Department of NeurosurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Jin Yan
- Department of NeurosurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
19
|
Baucom MR, Price AD, England L, Schuster RM, Pritts TA, Goodman MD. Murine Traumatic Brain Injury Model Comparison: Closed Head Injury Versus Controlled Cortical Impact. J Surg Res 2024; 296:230-238. [PMID: 38295710 DOI: 10.1016/j.jss.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 03/19/2024]
Abstract
INTRODUCTION Various murine models have been utilized to study TBI, including closed head injury (CHI) and controlled cortical impact (CCI), without direct comparison. The aim of our study was to evaluate these models to determine differences in neurological and behavioral outcomes postinjury. METHODS Male C57B/6 mice (9-10 wk) were separated into six groups including: untouched, sham craniotomy (4 mm), CCI 0.9 mm depth of impact, CCI 1.6 mm, CCI 2.2 mm, and CHI. CCI was performed using a 3 mm impact tip at a velocity of 5 m/s, dwell time of 250 ms, and depth as noted above. CHI was completed with a centered 400 g weight drop from 1 cm height. Mice were survived to 14-d (n = 5 per group) and 30-d (n = 5 per group) respectively for histological analysis of p-tau within the hippocampus. These mice underwent Morris Water Maze memory testing and Rotarod motor testing. Serum was collected from a separate cohort of mice (n = 5 per group) including untouched, isoflurane only, CCI 1.6 mm, CHI at 1, 4, 6, and 24 h for analysis of neuron specific enolase and glial fibrillary acidic protein (GFAP) via ELISA. Laser speckle contrast imaging was analyzed prior to and after impact in the CHI and CCI 1.6 mm groups. RESULTS There were no significant differences in Morris Water Maze or Rotarod testing times between groups at 14- or 30-d. P-tau was significantly elevated in all groups except CCI 1.6 mm contralateral and CCI 2.2 mm ipsilateral compared to untouched mice at 30-d. P-tau was also significantly elevated in the CHI group at 30 d compared to CCI 1.6 mm contralateral and CCI 2.2 mm on both sides. GFAP was significantly increased in mice undergoing CHI (9959 ± 91 pg/mL) compared to CCI (2299 ± 1288 pg/mL), isoflurane only (133 ± 75 pg/mL), and sham (86 ± 58 pg/mL) at 1-h post TBI (P < 0.0001). There were no differences in serum neuron specific enolase levels between groups. Laser doppler imaging demonstrated similar decreases in cerebral blood flow between CHI and CCI; however, CCI mice had a reduction in blood flow with craniotomy only that did not significantly decrease further with impact. CONCLUSIONS Based on our findings, CHI leads to increased serum GFAP levels and increased p-tau within the hippocampus at 30-d postinjury. While CCI allows the comparison of one cerebral hemisphere to the other, CHI may be a better model of TBI as it requires less technical expertise and has similar neurological outcomes in these murine models.
Collapse
Affiliation(s)
- Matthew R Baucom
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Adam D Price
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Lisa England
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | | | - Timothy A Pritts
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | | |
Collapse
|
20
|
Ding X, Cao S, Wang Q, Du B, Lu K, Qi S, Cheng Y, Tuo Q, Liang W, Lei P. DNALI1 Promotes Neurodegeneration after Traumatic Brain Injury via Inhibition of Autophagosome-Lysosome Fusion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306399. [PMID: 38348540 PMCID: PMC11022701 DOI: 10.1002/advs.202306399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/25/2024] [Indexed: 04/18/2024]
Abstract
Traumatic brain injury (TBI) leads to progressive neurodegeneration that may be caused by chronic traumatic encephalopathy (CTE). However, the precise mechanism remains unclear. Herein, the study identifies a crucial protein, axonemal dynein light intermediate polypeptide 1 (DNALI1), and elucidated its potential pathogenic role in post-TBI neurodegeneration. The DNALI1 gene is systematically screened through analyses of Aging, Dementia, and TBI studies, confirming its elevated expression both in vitro and in vivo. Moreover, it is observed that altered DNALI1 expression under normal conditions has no discernible effect. However, upon overexpression, DNALI1 inhibits autophagosome-lysosome fusion, reduces autophagic flux, and exacerbates cell death under pathological conditions. DNALI1 silencing significantly enhances autophagic flux and alleviates neurodegeneration in a CTE model. These findings highlight DNALI1 as a potential key target for preventing TBI-related neurodegeneration.
Collapse
Affiliation(s)
- Xulong Ding
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
- Center of Translational Medicine and Clinical LaboratoryThe Fourth Affiliated Hospital of Soochow UniversityMedical Center of Soochow UniversitySuzhou Dushu Lake HospitalSuzhouJiangsu215123China
| | - Shuqiang Cao
- Department of Forensic GeneticsWest China School of Basic Science and Forensic MedicineSichuan UniversityChengdu610041China
| | - Qing Wang
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Bin Du
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Kefeng Lu
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Shiqian Qi
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Ying Cheng
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Qing‐zhang Tuo
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Weibo Liang
- Department of Forensic GeneticsWest China School of Basic Science and Forensic MedicineSichuan UniversityChengdu610041China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| |
Collapse
|
21
|
Han Y, Weng W, Zhang Y, Feng Q, Ma Y, Quan A, Fu X, Zhao X, Skudder-Hill L, Jiang J, Zhou Y, Chen H, Feng J. Intraoperative application of intelligent, responsive, self-assembling hydrogel rectifies oxygen and energy metabolism in traumatically injured brain. Biomaterials 2024; 306:122495. [PMID: 38309053 DOI: 10.1016/j.biomaterials.2024.122495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 01/02/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
In managing severe traumatic brain injury (TBI), emergency surgery involving the removal of damaged brain tissue and intracerebral hemorrhage is a priority. Secondary brain injury caused by oxidative stress and energy metabolic disorders, triggered by both primary mechanical brain damage and surgical insult, is also a determining factor in the prognosis of TBI. Unfortunately, the effectiveness of traditional postoperative intravenous neuroprotective agents therapy is often limited by the lack of targeting, timeliness, and side effects when neuroprotective agents systemically delivered. Here, we have developed injectable, intelligent, self-assembling hydrogels (P-RT/2DG) that can achieve precise treatment through intraoperative application to the target area. P-RT/2DG hydrogels were prepared by integrating a reactive oxygen species (ROS)-responsive thioketal linker (RT) into polyethylene glycol. By scavenging ROS and releasing 2-deoxyglucose (2DG) during degradation, these hydrogels functioned both in antioxidation and energy metabolism to inhibit the vicious cycle of post-TBI ROS-lactate which provoked secondary injury. In vitro and in vivo tests confirmed the absence of systemic side effects and the neuroprotective function of P-RT/2DG hydrogels in reducing edema, nerve cell apoptosis, neuroinflammation, and maintaining the blood-brain barrier. Our study thus provides a potential treatment strategy with novel hydrogels in TBI.
Collapse
Affiliation(s)
- Yuhan Han
- Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Head Trauma, Shanghai, China
| | - Weiji Weng
- Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Head Trauma, Shanghai, China
| | - Yongkang Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Qiyuan Feng
- Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Head Trauma, Shanghai, China
| | - Yuxiao Ma
- Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Head Trauma, Shanghai, China
| | - Ankang Quan
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Xianhua Fu
- Department of Neurosurgery, Suqian First People's Hospital, The Suqian Clinical College of Xuzhou Medical University, Suqian, China
| | - Xinxin Zhao
- Radiology Department, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Loren Skudder-Hill
- Department of Neurosurgery, Yuquan Hospital, Tsinghua University School of Clinical Medicine, Beijing, China
| | - Jiyao Jiang
- Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Head Trauma, Shanghai, China
| | - Yan Zhou
- Radiology Department, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Honglin Chen
- Department of Neurosurgery, Suqian First People's Hospital, The Suqian Clinical College of Xuzhou Medical University, Suqian, China.
| | - Junfeng Feng
- Brain Injury Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Head Trauma, Shanghai, China.
| |
Collapse
|
22
|
Yang Y, Lu D, Wang M, Liu G, Feng Y, Ren Y, Sun X, Chen Z, Wang Z. Endoplasmic reticulum stress and the unfolded protein response: emerging regulators in progression of traumatic brain injury. Cell Death Dis 2024; 15:156. [PMID: 38378666 PMCID: PMC10879178 DOI: 10.1038/s41419-024-06515-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/22/2024]
Abstract
Traumatic brain injury (TBI) is a common trauma with high mortality and disability rates worldwide. However, the current management of this disease is still unsatisfactory. Therefore, it is necessary to investigate the pathophysiological mechanisms of TBI in depth to improve the treatment options. In recent decades, abundant evidence has highlighted the significance of endoplasmic reticulum stress (ERS) in advancing central nervous system (CNS) disorders, including TBI. ERS following TBI leads to the accumulation of unfolded proteins, initiating the unfolded protein response (UPR). Protein kinase RNA-like ER kinase (PERK), inositol-requiring protein 1 (IRE1), and activating transcription factor 6 (ATF6) are the three major pathways of UPR initiation that determine whether a cell survives or dies. This review focuses on the dual effects of ERS on TBI and discusses the underlying mechanisms. It is suggested that ERS may crosstalk with a series of molecular cascade responses, such as mitochondrial dysfunction, oxidative stress, neuroinflammation, autophagy, and cell death, and is thus involved in the progression of secondary injury after TBI. Hence, ERS is a promising candidate for the management of TBI.
Collapse
Affiliation(s)
- Yayi Yang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Dengfeng Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Menghan Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Guangjie Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Yun Feng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Yubo Ren
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Xiaoou Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| | - Zhouqing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| |
Collapse
|
23
|
Yi H, Wu S, Wang X, Liu L, Wang W, Yu Y, Li Z, Jin Y, Liu J, Zheng T, Du D. Multimodal evaluation of the effects of low-intensity ultrasound on cerebral blood flow after traumatic brain injury in mice. BMC Neurosci 2024; 25:8. [PMID: 38350864 PMCID: PMC10865643 DOI: 10.1186/s12868-024-00849-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/29/2024] [Indexed: 02/15/2024] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of death and disability worldwide, and destruction of the cerebrovascular system is a major factor in the cascade of secondary injuries caused by TBI. Laser speckle imaging (LSCI)has high sensitivity in detecting cerebral blood flow. LSCI can visually show that transcranial focused ultrasound stimulation (tFUS) treatment stimulates angiogenesis and increases blood flow. To study the effect of tFUS on promoting angiogenesis in Controlled Cortical impact (CCI) model. tFUS was administered daily for 10 min and for 14 consecutive days after TBI. Cerebral blood flow was measured by LSCI at 1, 3, 7 and 14 days after trauma. Functional outcomes were assessed using LSCI and neurological severity score (NSS). After the last test, Nissl staining and vascular endothelial growth factor (VEGF) were used to assess neuropathology. TBI can cause the destruction of cerebrovascular system. Blood flow was significantly increased in TBI treated with tFUS. LSCI, behavioral and histological findings suggest that tFUS treatment can promote angiogenesis after TBI.
Collapse
Affiliation(s)
- Huiling Yi
- First Hospital of Qinhuangdao, No.258, Culture Road, Seaport District, Qinhuangdao, Hebei Province, China
| | - Shuo Wu
- First Hospital of Qinhuangdao, No.258, Culture Road, Seaport District, Qinhuangdao, Hebei Province, China
| | - Xiaohan Wang
- Graduate School, Chengde Medical University, Chengde, Hebei Province, China
| | - Lanxiang Liu
- First Hospital of Qinhuangdao, No.258, Culture Road, Seaport District, Qinhuangdao, Hebei Province, China.
- Graduate School, Chengde Medical University, Chengde, Hebei Province, China.
| | - Wenzhu Wang
- Beijing Key Laboratory of Neural Injury and Rehabilitation, China Rehabilitation Research Center, Beijing, China
| | - Yan Yu
- Beijing Key Laboratory of Neural Injury and Rehabilitation, China Rehabilitation Research Center, Beijing, China
| | - Zihan Li
- Beijing Key Laboratory of Neural Injury and Rehabilitation, China Rehabilitation Research Center, Beijing, China
| | | | - Jian Liu
- Northeastern University at Qinhuangdao of Information Science and Engineering, Qinhuangdao, Hebei Province, China
| | - Tao Zheng
- First Hospital of Qinhuangdao, No.258, Culture Road, Seaport District, Qinhuangdao, Hebei Province, China
| | - Dan Du
- First Hospital of Qinhuangdao, No.258, Culture Road, Seaport District, Qinhuangdao, Hebei Province, China
| |
Collapse
|
24
|
Bielanin JP, Metwally SAH, Paruchuri SS, Sun D. An overview of mild traumatic brain injuries and emerging therapeutic targets. Neurochem Int 2024; 172:105655. [PMID: 38072207 DOI: 10.1016/j.neuint.2023.105655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 01/01/2024]
Abstract
The majority of traumatic brain injuries (TBIs), approximately 90%, are classified as mild (mTBIs). Globally, an estimated 4 million injuries occur each year from concussions or mTBIs, highlighting their significance as a public health crisis. TBIs can lead to substantial long-term health consequences, including an increased risk of developing Alzheimer's Disease, Parkinson's Disease (PD), chronic traumatic encephalopathy (CTE), and nearly doubling one's risk of suicide. However, the current management of mTBIs in clinical practice and the available treatment options are limited. There exists an unmet need for effective therapy. This review addresses various aspects of mTBIs based on the most up-to-date literature review, with the goal of stimulating translational research to identify new therapeutic targets and improve our understanding of pathogenic mechanisms. First, we provide a summary of mTBI symptomatology and current diagnostic parameters such as the Glasgow Coma Scale (GCS) for classifying mTBIs or concussions, as well as the utility of alternative diagnostic parameters, including imaging techniques like MRI with diffusion tensor imaging (DTI) and serum biomarkers such as S100B, NSE, GFAP, UCH-L1, NFL, and t-tau. Our review highlights several pre-clinical concussion models employed in the study of mTBIs and the underlying cellular mechanisms involved in mTBI-related pathogenesis, including axonal damage, demyelination, inflammation, and oxidative stress. Finally, we examine a selection of new therapeutic targets currently under investigation in pre-clinical models. These targets may hold promise for clinical translation and address the pressing need for more effective treatments for mTBIs.
Collapse
Affiliation(s)
- John P Bielanin
- University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Shamseldin A H Metwally
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Satya S Paruchuri
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Dandan Sun
- University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
25
|
Huang YN, Greig NH, Huang PS, Chiang YH, Hoffer A, Yang CH, Tweedie D, Chen Y, Ou JC, Wang JY. Pomalidomide Improves Motor Behavioral Deficits and Protects Cerebral Cortex and Striatum Against Neurodegeneration Through a Reduction of Oxidative/Nitrosative Damages and Neuroinflammation After Traumatic Brain Injury. Cell Transplant 2024; 33:9636897241237049. [PMID: 38483119 PMCID: PMC10943757 DOI: 10.1177/09636897241237049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 03/18/2024] Open
Abstract
Neuronal damage resulting from traumatic brain injury (TBI) causes disruption of neuronal projections and neurotransmission that contribute to behavioral deficits. Cellular generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) is an early event following TBI. ROS often damage DNA, lipids, proteins, and carbohydrates while RNS attack proteins. The products of lipid peroxidation 4-hydroxynonenal (4-HNE) and protein nitration 3-nitrotyrosine (3-NT) are often used as indicators of oxidative and nitrosative damages, respectively. Increasing evidence has shown that striatum is vulnerable to damage from TBI with a disturbed dopamine neurotransmission. TBI results in neurodegeneration, oxidative stress, neuroinflammation, neuronal apoptosis, and autophagy in the striatum and contribute to motor or behavioral deficits. Pomalidomide (Pom) is a Food and Drug Administration (FDA)-approved immunomodulatory drug clinically used in treating multiple myeloma. We previously showed that Pom reduces neuroinflammation and neuronal death induced by TBI in rat cerebral cortex. Here, we further compared the effects of Pom in cortex and striatum focusing on neurodegeneration, oxidative and nitrosative damages, as well as neuroinflammation following TBI. Sprague-Dawley rats subjected to a controlled cortical impact were used as the animal model of TBI. Systemic administration of Pom (0.5 mg/kg, intravenous [i.v.]) at 5 h post-injury alleviated motor behavioral deficits, contusion volume at 24 h after TBI. Pom alleviated TBI-induced neurodegeneration stained by Fluoro-Jade C in both cortex and striatum. Notably, Pom treatment reduces oxidative and nitrosative damages in cortex and striatum and is more efficacious in striatum (93% reduction in 4-HNE-positive and 84% reduction in 3-NT-positive neurons) than in cerebral cortex (42% reduction in 4-HNE-positive and 55% reduction in 3-NT-positive neurons). In addition, Pom attenuated microgliosis, astrogliosis, and elevations of proinflammatory cytokines in cortical and striatal tissue. We conclude that Pom may contribute to improved motor behavioral outcomes after TBI through targeting oxidative/nitrosative damages and neuroinflammation.
Collapse
Affiliation(s)
- Ya-Ni Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei
- Department of Nursing, Hsin Sheng Junior College of Medical Care and Management, Taoyuan City
| | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Pen-Sen Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei
| | - Yung-Hsiao Chiang
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei
- Neuroscience Research Center, Taipei Medical University, Taipei
| | - Alan Hoffer
- Department of Neurosurgery, University Hospitals of Cleveland, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Chih-Hao Yang
- Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Ying Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei
| | - Ju-Chi Ou
- Neuroscience Research Center, Taipei Medical University, Taipei
| | - Jia-Yi Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei
- Neuroscience Research Center, Taipei Medical University, Taipei
| |
Collapse
|
26
|
McGowan JC, Ladner LR, Shubeck CX, Tapia J, LaGamma CT, Anqueira-González A, DeFrancesco A, Chen BK, Hunsberger HC, Sydnor EJ, Logan RW, Yu TS, Kernie SG, Denny CA. Traumatic Brain Injury-Induced Fear Generalization in Mice Involves Hippocampal Memory Trace Dysfunction and Is Alleviated by (R,S)-Ketamine. Biol Psychiatry 2024; 95:15-26. [PMID: 37423591 PMCID: PMC10772211 DOI: 10.1016/j.biopsych.2023.06.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/12/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) is a debilitating neurological disorder caused by an impact to the head by an outside force. TBI results in persistent cognitive impairments, including fear generalization and the inability to distinguish between aversive and neutral stimuli. The mechanisms underlying fear generalization have not been fully elucidated, and there are no targeted therapeutics to alleviate this symptom of TBI. METHODS To identify the neural ensembles mediating fear generalization, we utilized ArcCreERT2 × enhanced yellow fluorescent protein (EYFP) mice, which allow for activity-dependent labeling and quantification of memory traces. Mice were administered a sham surgery or the controlled cortical impact model of TBI. Mice were then administered a contextual fear discrimination paradigm and memory traces were quantified in numerous brain regions. In a separate group of mice, we tested if (R,S)-ketamine could decrease fear generalization and alter the corresponding memory traces in TBI mice. RESULTS TBI mice exhibited increased fear generalization when compared with sham mice. This behavioral phenotype was paralleled by altered memory traces in the dentate gyrus, CA3, and amygdala, but not by alterations in inflammation or sleep. In TBI mice, (R,S)-ketamine facilitated fear discrimination, and this behavioral improvement was reflected in dentate gyrus memory trace activity. CONCLUSIONS These data show that TBI induces fear generalization by altering fear memory traces and that this deficit can be improved with a single injection of (R,S)-ketamine. This work enhances our understanding of the neural basis of TBI-induced fear generalization and reveals potential therapeutic avenues for alleviating this symptom.
Collapse
Affiliation(s)
- Josephine C McGowan
- Doctoral Program in Neurobiology and Behavior, Columbia University, New York, New York.
| | | | | | | | - Christina T LaGamma
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc./New York State Psychiatric Institute, New York, New York; Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | | | - Ariana DeFrancesco
- Department of Behavioral Neuroscience, Queens College, New York, New York
| | - Briana K Chen
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc./New York State Psychiatric Institute, New York, New York; Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Holly C Hunsberger
- Center for Neurodegenerative Diseases and Therapeutics, Rosalind Franklin University of Medicine and Science, Chicago Medical School, Chicago, Illinois
| | - Ezra J Sydnor
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc./New York State Psychiatric Institute, New York, New York
| | - Ryan W Logan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts; Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, Massachusetts
| | - Tzong-Shiue Yu
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York
| | - Steven G Kernie
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York; Department of Neurology, Columbia University College of Physicians and Surgeons, New York, New York
| | - Christine A Denny
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc./New York State Psychiatric Institute, New York, New York; Department of Psychiatry, Columbia University Irving Medical Center, New York, New York.
| |
Collapse
|
27
|
Dogan EO, Bouley J, Zhong J, Harkins AL, Keeler AM, Bosco DA, Brown RH, Henninger N. Genetic ablation of Sarm1 attenuates expression and mislocalization of phosphorylated TDP-43 after mouse repetitive traumatic brain injury. Acta Neuropathol Commun 2023; 11:206. [PMID: 38124145 PMCID: PMC10731794 DOI: 10.1186/s40478-023-01709-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Traumatic brain injury (TBI), particularly when moderate-to-severe and repetitive, is a strong environmental risk factor for several progressive neurodegenerative disorders. Mislocalization and deposition of transactive response DNA binding protein 43 (TDP-43) has been reported in both TBI and TBI-associated neurodegenerative diseases. It has been hypothesized that axonal pathology, an early event after TBI, may promote TDP-43 dysregulation and serve as a trigger for neurodegenerative processes. We sought to determine whether blocking the prodegenerative Sarm1 (sterile alpha and TIR motif containing 1) axon death pathway attenuates TDP-43 pathology after TBI. We subjected 111 male Sarm1 wild type, hemizygous, and knockout mice to moderate-to-severe repetitive TBI (rTBI) using a previously established injury paradigm. We conducted serial neurological assessments followed by histological analyses (NeuN, MBP, Iba-1, GFAP, pTDP-43, and AT8) at 1 month after rTBI. Genetic ablation of the Sarm1 gene attenuated the expression and mislocalization of phosphorylated TDP-43 (pTDP-43) and accumulation of pTau. In addition, Sarm1 knockout mice had significantly improved cortical neuronal and axonal integrity, functional deficits, and improved overall survival after rTBI. In contrast, removal of one Sarm1 allele delayed, but did not prevent, neurological deficits and neuroaxonal loss. Nevertheless, Sarm1 haploinsufficient mice showed significantly less microgliosis, pTDP-43 pathology, and pTau accumulation when compared to wild type mice. These data indicate that the Sarm1-mediated prodegenerative pathway contributes to pathogenesis in rTBI including the pathological accumulation of pTDP-43. This suggests that anti-Sarm1 therapeutics are a viable approach for preserving neurological function after moderate-to-severe rTBI.
Collapse
Affiliation(s)
- Elif O Dogan
- Department of Neurology, University of Massachusetts Chan Medical School, 55 Lake Ave, North, Worcester, MA, 01655, USA
| | - James Bouley
- Department of Neurology, University of Massachusetts Chan Medical School, 55 Lake Ave, North, Worcester, MA, 01655, USA
| | - Jianjun Zhong
- Department of Neurology, University of Massachusetts Chan Medical School, 55 Lake Ave, North, Worcester, MA, 01655, USA
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ashley L Harkins
- Department of Neurology, University of Massachusetts Chan Medical School, 55 Lake Ave, North, Worcester, MA, 01655, USA
- Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Allison M Keeler
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Daryl A Bosco
- Department of Neurology, University of Massachusetts Chan Medical School, 55 Lake Ave, North, Worcester, MA, 01655, USA
| | - Robert H Brown
- Department of Neurology, University of Massachusetts Chan Medical School, 55 Lake Ave, North, Worcester, MA, 01655, USA
| | - Nils Henninger
- Department of Neurology, University of Massachusetts Chan Medical School, 55 Lake Ave, North, Worcester, MA, 01655, USA.
- Department of Psychiatry, University of Massachusetts Chan Medical School, 55 Lake Ave, North, Worcester, MA, 01655, USA.
| |
Collapse
|
28
|
Jia M, Guo X, Liu R, Sun L, Wang Q, Wu J. Overexpress miR-132 in the Brain Parenchyma by a Non-invasive Way Improves Tissue Repairment and Releases Memory Impairment After Traumatic Brain Injury. Cell Mol Neurobiol 2023; 44:5. [PMID: 38104297 PMCID: PMC11397820 DOI: 10.1007/s10571-023-01435-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/08/2023] [Indexed: 12/19/2023]
Abstract
Traumatic brain injury (TBI) is a serious public health problem worldwide, which could lead to an extremely high percentage of mortality and disability. Current treatment strategies mainly concentrate on neuronal protection and reconstruction, among them, exogenous neural stem cell (NSC) transplantation has long been regarded as the most effective curative treatment. However, due to secondary trauma, transplant rejection, and increased incidence of brain malignant tumor, a non-invasive therapy that enhanced endogenous neurogenesis was more suitable for TBI treatment. Our previous work has shown that miR-132 overexpression could improve neuronal differentiation of NSCs in vitro and in vivo. So, we engineered a new kind of AAV vector named AAV-PHP.eB which can transfect brain parenchyma through intravenous injection to overexpress miR-132 in brain after TBI. We found that miR-132 overexpression could reduce impact volume, promote neurogenesis in the dentate gyrus (DG), accelerate neuroblast migrating into the impact cortex, ameliorate microglia-mediated inflammatory reaction, and ultimately restore learning memory function. Our results revealed that AAV-PHP.eB-based miR-132 overexpression could improve endogenous tissue repairment and release clinical symptoms after traumatic brain injury. This work would provide a new therapeutic strategy for TBI treatment and other neurological disorders characterized by markable neuronal loss and memory impairment. miR-132 overexpression accelerates endogenous neurogenesis and releases TBI-induced tissue repairment and memory impairment. Controlled cortical impact onto the cortex would induce serious cortical injury and microglia accumulation in both cortex and hippocampus. Moreover, endogenous neuroblast could migrate around the injury core. miR-132 overexpression could accelerate neuroblast migration toward the injury core and decreased microglia accumulation in the ipsilateral cortex and hippocampus. miR-132 could be a suitable target on neuroprotective therapy after TBI.
Collapse
Affiliation(s)
- Meng Jia
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, China
| | - Xi Guo
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, China
| | - Ru Liu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, China
| | - Lei Sun
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, China
| | - Qun Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Jianping Wu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, China.
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
29
|
Jones C, Elliott B, Liao Z, Johnson Z, Ma F, Bailey ZS, Gilsdorf J, Scultetus A, Shear D, Webb K, Lee JS. PEG hydrogel containing dexamethasone-conjugated hyaluronic acid reduces secondary injury and improves motor function in a rat moderate TBI model. Exp Neurol 2023; 369:114533. [PMID: 37666386 DOI: 10.1016/j.expneurol.2023.114533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
Traumatic brain injury (TBI) leads to long-term impairments in motor and cognitive function. TBI initiates a secondary injury cascade including a neuro-inflammatory response that is detrimental to tissue repair and limits recovery. Anti-inflammatory corticosteroids such as dexamethasone can reduce the deleterious effects of secondary injury; but challenges associated with dosing, administration route, and side effects have hindered their clinical application. Previously, we developed a hydrolytically degradable hydrogel (PEG-bis-AA/HA-DXM) composed of poly (ethylene) glycol-bis-(acryloyloxy acetate) (PEG-bis-AA) and dexamethasone-conjugated hyaluronic acid (HA-DXM) for local and sustained dexamethasone delivery. In this study, we evaluated the effect of locally applied PEG-bis-AA/HA-DXM hydrogel on secondary injury and motor function recovery after moderate controlled cortical impact (CCI) TBI. Hydrogel treatment significantly improved motor function evaluated by beam walk and rotarod tests compared to untreated rats over 7 days post-injury (DPI). We also observed that the hydrogel treatment reduced lesion volume, inflammatory response, astrogliosis, apoptosis, and increased neuronal survival compared to untreated rats at 7 DPI. These results suggest that PEG-bis-AA/HA-DXM hydrogels can mitigate secondary injury and promote motor functional recovery following moderate TBI.
Collapse
Affiliation(s)
- Claire Jones
- Drug Design, Development and Delivery (4D) Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - Bradley Elliott
- Drug Design, Development and Delivery (4D) Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - Zhen Liao
- Drug Design, Development and Delivery (4D) Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - Zack Johnson
- Drug Design, Development and Delivery (4D) Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - Fuying Ma
- Drug Design, Development and Delivery (4D) Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - Zachary S Bailey
- Brain Trauma Neuroprotection Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD 20783, USA
| | - Janice Gilsdorf
- Brain Trauma Neuroprotection Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD 20783, USA
| | - Anke Scultetus
- Brain Trauma Neuroprotection Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD 20783, USA
| | - Deborah Shear
- Brain Trauma Neuroprotection Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD 20783, USA
| | - Ken Webb
- MicroEnvironmental Engineering Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - Jeoung Soo Lee
- Drug Design, Development and Delivery (4D) Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
30
|
Park JY, Park J, Baek J, Chang JW, Kim YG, Chang WS. Long-term results on the suppression of secondary brain injury by early administered low-dose baclofen in a traumatic brain injury mouse model. Sci Rep 2023; 13:18563. [PMID: 37903976 PMCID: PMC10616194 DOI: 10.1038/s41598-023-45600-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/21/2023] [Indexed: 11/01/2023] Open
Abstract
Secondary injury from traumatic brain injury (TBI) perpetuates cerebral damages through varied ways. Attenuating neuroinflammation, which is a key feature of TBI, is important for long-term prognosis of its patients. Baclofen, a muscle relaxant, has shown promise in reducing excessive inflammation in other neurologic disorders. However, its effectiveness in TBI remains ambiguous. Thus, our study aimed to investigate whether early administration of baclofen could elicit potential therapeutic effects by diminishing exaggerated neuroinflammation in TBI mice. In this study, 80 C57BL/6 mice were used, of which 69 mice received controlled cortical impact. The mice were divided into six groups (11-16 mice each). Baclofen, administered at dose of 0.05, 0.2 and 1 mg/kg, was injected intraperitoneally a day after TBI for 3 consecutive weeks. 3 weeks after completing the treatments, the mice were assessed histologically. The results showed that mice treated with baclofen exhibited a significantly lower volume of lesion tissue than TBI mice with normal saline. Baclofen also reduced activated glial cells with neurotoxic immune molecules and inhibited apoptotic cells. Significant recovery was observed and sustained for 6 weeks at the 0.2 mg/kg dose in the modified neurological severity score. Furthermore, memory impairment was recovered with low-doses of baclofen in the Y-maze. Our findings demonstrate that early administration of low dose baclofen can regulate neuroinflammation, prevent cell death, and improve TBI motor and cognitive abnormalities.
Collapse
Affiliation(s)
- Ji Young Park
- Department of Neurosurgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Junwon Park
- Department of Neurosurgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jiwon Baek
- Department of Neurosurgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jin Woo Chang
- Department of Neurosurgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Goo Kim
- Department of Neurosurgery, Ewha Womans University School of Medicine, Ewha Womans University Mokdong Hospital, Mok 5-dong, Yangcheon-gu, Seoul, 07985, Republic of Korea.
| | - Won Seok Chang
- Department of Neurosurgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
31
|
Chen Z, Wang P, Cheng H, Wang N, Wu M, Wang Z, Wang Z, Dong W, Guan D, Wang L, Zhao R. Adolescent traumatic brain injury leads to incremental neural impairment in middle-aged mice: role of persistent oxidative stress and neuroinflammation. Front Neurosci 2023; 17:1292014. [PMID: 37965213 PMCID: PMC10642192 DOI: 10.3389/fnins.2023.1292014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) increases the risk of mental disorders and neurodegenerative diseases in the chronic phase. However, there is limited neuropathological or molecular data on the long-term neural dysfunction and its potential mechanism following adolescent TBI. METHODS A total of 160 male mice aged 8 weeks were used to mimic moderate TBI by controlled cortical impact. At 1, 3, 6 and 12 months post-injury (mpi), different neurological functions were evaluated by elevated plus maze, forced swimming test, sucrose preference test and Morris water maze. The levels of oxidative stress, antioxidant response, reactive astrocytes and microglia, and expression of inflammatory cytokines were subsequently assessed in the ipsilateral hippocampus, followed by neuronal apoptosis detection. Additionally, the morphological complexity of hippocampal astrocytes was evaluated by Sholl analysis. RESULTS The adolescent mice exhibited persistent and incremental deficits in memory and anxiety-like behavior after TBI, which were sharply exacerbated at 12 mpi. Depression-like behaviors were observed in TBI mice at 6 mpi and 12 mpi. Compared with the age-matched control mice, apoptotic neurons were observed in the ipsilateral hippocampus during the chronic phase of TBI, which were accompanied by enhanced oxidative stress, and expression of inflammatory cytokines (IL-1β and TNF-α). Moreover, the reactive astrogliosis and microgliosis in the ipsilateral hippocampus were observed in the late phase of TBI, especially at 12 mpi. CONCLUSION Adolescent TBI leads to incremental cognitive dysfunction, and depression- and anxiety-like behaviors in middle-aged mice. The chronic persistent neuroinflammation and oxidative stress account for the neuronal loss and neural dysfunction in the ipsilateral hippocampus. Our results provide evidence for the pathogenesis of chronic neural damage following TBI and shed new light on the treatment of TBI-induced late-phase neurological dysfunction.
Collapse
Affiliation(s)
- Ziyuan Chen
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, China
| | - Pengfei Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, China
| | - Hao Cheng
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, China
| | - Ning Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, China
| | - Mingzhe Wu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, China
| | - Ziwei Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, China
| | - Zhi Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, China
| | - Wenwen Dong
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, China
| | - Dawei Guan
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, China
| | - Linlin Wang
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, China
| | - Rui Zhao
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, China
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang, China
| |
Collapse
|
32
|
Li Y, Li N, Luan C, Pei Y, Zheng Q, Yan B, Ma X, Liu W. Identification of novel key markers that are induced during traumatic brain injury in mice. PeerJ 2023; 11:e15981. [PMID: 37645012 PMCID: PMC10461542 DOI: 10.7717/peerj.15981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023] Open
Abstract
Background Traumatic brain injury (TBI) has emerged as an increasing public health problem but has not been well studied, particularly the mechanisms of brain cellular behaviors during TBI. Methods In this study, we established an ischemia/reperfusion (I/R) brain injury mice model using transient middle cerebral artery occlusion (tMCAO) strategy. After then, RNA-sequencing of frontal lobes was performed to screen key inducers during TBI. To further verify the selected genes, we collected peripheral blood mononuclear cells (PBMCs) from TBI patients within 24 h who attended intensive care unit (ICU) in the Affiliated Hospital of Yangzhou University and analyzed the genes expression using RT-qPCR. Finally, the receiver operator characteristic (ROC) curves and co-expression with cellular senescence markers were applied to evaluate the predictive value of the genes. Results A total of six genes were screened out from the RNA-sequencing based on their novelty in TBI and implications in apoptosis and cellular senescence signaling. RT-qPCR analysis of PBMCs from patients showed the six genes were all up-regulated during TBI after comparing with healthy volunteers who attended the hospital for physical examination. The area under ROC (AUC) curves were all >0.7, and the co-expression scores of the six genes with senescence markers were all significantly positive. We thus identified TGM1, TGM2, ATF3, RCN3, ORAI1 and ITPR3 as novel key markers that are induced during TBI, and these markers may also serve as potential predictors for the progression of TBI.
Collapse
Affiliation(s)
- Yucheng Li
- Department of Intensive Care, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ningbo Li
- Department of Intensive Care, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Changjiao Luan
- Department of Intensive Care, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Lung, the Third People’s Hospital of Yangzhou, Yangzhou, China
| | - Yunlong Pei
- Department of Intensive Care, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qingbin Zheng
- Department of Intensive Care, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Bingchun Yan
- Department of Neurology, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xingjie Ma
- Department of Intensive Care, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Weili Liu
- Department of Intensive Care, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
33
|
Bjorklund GR, Wong J, Brafman D, Bowser R, Stabenfeldt SE. Traumatic brain injury induces TDP-43 mislocalization and neurodegenerative effects in tissue distal to the primary injury site in a non-transgenic mouse. Acta Neuropathol Commun 2023; 11:137. [PMID: 37608352 PMCID: PMC10463884 DOI: 10.1186/s40478-023-01625-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023] Open
Abstract
Traumatic brain injury (TBI) initiates tissue and cellular damage to the brain that is immediately followed by secondary injury sequalae with delayed and continual damage. This secondary damage includes pathological processes that may contribute to chronic neurodegeneration and permanent functional and cognitive deficits. TBI is also associated with an increased risk of developing neurodegenerative diseases such as Alzheimer's disease (AD), frontotemporal dementia (FTD), and amyotrophic lateral sclerosis (ALS) as indicated by shared pathological features. For example, abnormalities in the TAR DNA-binding Protein 43 (TDP-43) that includes cytoplasmic mislocalization, cytosolic aggregation, and an increase in phosphorylation and ubiquitination are seen in up to 50% of FTD cases, up to 70% of AD cases, and is considered a hallmark pathology of ALS occurring in > 97% of cases. Yet the prevalence of TDP-43 pathology post-TBI has yet to be fully characterized. Here, we employed a non-transgenic murine controlled cortical injury model of TBI and observed injury-induced hallmark TDP-43 pathologies in brain and spinal cord tissue distal to the primary injury site and did not include the focally damaged tissue within the primary cortical injury site. Analysis revealed a temporal-dependent and significant increase in neuronal TDP-43 mislocalization in the cortical forebrain rostral to and distant from the primary injury site up to 180 days post injury (DPI). TDP-43 mislocalization was also detected in neurons located in the ventral horns of the cervical spinal cord following a TBI. Moreover, a cortical layer-dependent affect was identified, increasing from superficial to deeper cortical layers over time from 7 DPI up to 180 DPI. Lastly, RNAseq analysis confirmed an injury-induced misregulation of several key biological processes implicated in neurons that increased over time. Collectively, this study demonstrates a connection between a single moderate TBI event and chronic neurodegenerative processes that are not limited to the primary injury site and broadly distributed throughout the cortex and corticospinal tract.
Collapse
Affiliation(s)
- George R Bjorklund
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Jennifer Wong
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - David Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Robert Bowser
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Sarah E Stabenfeldt
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
34
|
Zhang L, Li C, He Y, Kuang C, Qiu X, Gu L, Wu J, Pang J, Zhang L, Xie B, Peng J, Yin S, Jiang Y. TRPM4 Drives Cerebral Edema by Switching to Alternative Splicing Isoform After Experimental Traumatic Brain Injury. J Neurotrauma 2023; 40:1779-1795. [PMID: 37078148 DOI: 10.1089/neu.2022.0503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023] Open
Abstract
Traumatic brain injury (TBI) affects persons of all ages and is recognized as a major cause of death and disability worldwide; it also brings heavy life burden to patients and their families. The treatment of those with secondary injury after TBI is still scarce, however. Alternative splicing (AS) is a crucial post-transcriptional regulatory mechanism associated with various physiological processes, while the contribution of AS in treatment after TBI is poorly illuminated. In this study, we performed and analyzed the transcriptome and proteome datasets of brain tissue at multiple time points in a controlled cortical impact (CCI) mouse model. We found that AS, as an independent change against the transcriptional level, is a novel mechanism linked to cerebral edema after TBI. Bioinformatics analysis further indicated that the transformation of splicing isoforms after TBI was related to cerebral edema. Accordingly, we found that the fourth exon of transient receptor potential channel melastatin 4 (Trpm4) abrogated skipping at 72 h after TBI, resulting in a frameshift of the encoded amino acid and an increase in the proportion of spliced isoforms. Using magnetic resonance imaging (MRI), we have shown the numbers of 3nEx isoforms of Trpm4 may be positively correlated with volume of cerebral edema. Thus alternative splicing of Trpm4 becomes a noteworthy mechanism of potential influence on edema. In summary, alternative splicing of Trpm4 may drive cerebral edema after TBI. Trpm4 is a potential therapeutic targeting cerebral edema in patients with TBI.
Collapse
Affiliation(s)
- Lihan Zhang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chaojie Li
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yijing He
- Department of Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
- Department of Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chenghao Kuang
- Department of Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
| | - Xiancheng Qiu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Long Gu
- Department of Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jinpeng Wu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jinwei Pang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
| | - Lifang Zhang
- Department of Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Bingqing Xie
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
| | - Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
| | - Shigang Yin
- Department of Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
- Department of Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, China
- Department of Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
35
|
Pischiutta F, Cavaleiro H, Caruso E, Tribuzio F, Di Marzo N, Moro F, Kobeissy F, Wang KK, Salgado AJ, Zanier ER. A novel organotypic cortical slice culture model for traumatic brain injury: molecular changes induced by injury and mesenchymal stromal cell secretome treatment. Front Cell Neurosci 2023; 17:1217987. [PMID: 37534042 PMCID: PMC10390737 DOI: 10.3389/fncel.2023.1217987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/23/2023] [Indexed: 08/04/2023] Open
Abstract
Traumatic brain injury (TBI) is a major worldwide neurological disorder with no neuroprotective treatment available. Three-dimensional (3D) in vitro models of brain contusion serving as a screening platform for drug testing are lacking. Here we developed a new in vitro model of brain contusion on organotypic cortical brain slices and tested its responsiveness to mesenchymal stromal cell (MSC) derived secretome. A focal TBI was induced on organotypic slices by an electromagnetic impactor. Compared to control condition, a temporal increase in cell death was observed after TBI by propidium iodide incorporation and lactate dehydrogenase release assays up to 48 h post-injury. TBI induced gross neuronal loss in the lesion core, with disruption of neuronal arborizations measured by microtubule-associated protein-2 (MAP-2) immunostaining and associated with MAP-2 gene down-regulation. Neuronal damage was confirmed by increased levels of neurofilament light chain (NfL), microtubule associated protein (Tau) and ubiquitin C-terminal hydrolase L1 (UCH-L1) released into the culture medium 48 h after TBI. We detected glial activation with microglia cells acquiring an amoeboid shape with less ramified morphology in the contusion core. MSC-secretome treatment, delivered 1 h post-injury, reduced cell death in the contusion core, decreased NfL release in the culture media, promoted neuronal reorganization and improved microglia survival/activation. Our 3D in vitro model of brain contusion recapitulates key features of TBI pathology. We showed protective effects of MSC-secretome, suggesting the model stands as a tractable medium/high throughput, ethically viable, and pathomimetic biological asset for testing new cell-based therapies.
Collapse
Affiliation(s)
- Francesca Pischiutta
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Helena Cavaleiro
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Enrico Caruso
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
- Neuroscience Intensive Care Unit, Department of Anesthesia and Critical Care, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Tribuzio
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Noemi Di Marzo
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Federico Moro
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Firas Kobeissy
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, FL, United States
- Department of Neurobiology, Center for Neurotrauma, Multiomics and Biomarkers (CNMB), Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, United States
| | - Kevin K. Wang
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Departments of Emergency Medicine, Psychiatry, Neuroscience and Chemistry, University of Florida, Gainesville, FL, United States
- Department of Neurobiology, Center for Neurotrauma, Multiomics and Biomarkers (CNMB), Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, United States
| | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Elisa R. Zanier
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
36
|
Miao Y, Fan X, Wei L, Wang B, Diao F, Fu J, Zhuang P, Zhang Y. Lizhong decoction ameliorates pulmonary infection secondary to severe traumatic brain injury in rats by regulating the intestinal physical barrier and immune response. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116346. [PMID: 36898448 DOI: 10.1016/j.jep.2023.116346] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The pathogenesis of pulmonary infection secondary to severe traumatic brain injury (sTBI) is closely related to damage to the intestinal barrier. Lizhong decoction (LZD) is a prominent traditional Chinese medicine (TCM) that is widely used in clinical treatment to regulate gastrointestinal movement and enhance resistance. Nevertheless, the role and mechanism of LZD in lung infection secondary to sTBI have yet to be elucidated. AIM OF THE STUDY Here, we evaluate the therapeutic effect of LZD on pulmonary infection secondary to sTBI in rats and discuss potential regulatory mechanisms. MATERIALS AND METHODS The chemical constituents of LZD were analyzed by ultra-high performance liquid chromatography-Q Exactive-tandem mass spectrometry(UPLC-QE-MS/MS). The efficacy of LZD on rats with lung infection secondary to sTBI was examined by changes in brain morphology, coma time, brain water content, mNSS score, colony counts, 16S rRNA/RNaseP/MRP30 kDa(16S/RPP30), myeloperoxidase (MPO) content and pathology of lung tissue. The concentration of fluorescein isothiocyanate(FITC)-dextran in serum and the contents of secretory immunoglobulin A (SIgA) in colon tissue were detected by enzyme-linked immunosorbent assay (ELISA). Subsequently, Alcian Blue Periodic acid Schiff (AB-PAS) was used to detect colonic goblet cells. Immunofluorescence (IF) was used to detect the expression of tight junction proteins. The proportions of CD3+ cell, CD4+CD8+ T cells, CD45+ cell and CD103+ cells in the colon were analyzed by flow cytometry (FC). In addition, colon transcriptomics were analyzed by Illumina mRNA-Seq sequencing. Real-time quantitative polymerase chain reaction (qRT‒PCR) was used to verify the genes associated with LZD alleviation of intestinal barrier function. RESULTS Twenty-nine chemical constituents of LZD were revealed with UPLC-QE-MS/MS analysis. Administration of LZD significantly reduced colony counts, 16S/RPP30 and MPO content in lung infection secondary to sTBI rats. In addition, LZD also reduced the serum FITC-glucan content and the SIgA content of the colon. Additionally, LZD significantly increased the number of colonic goblet cells and the expression of tight junction proteins. Furthermore, LZD significantly decreased the proportion of CD3+ cell, CD4+CD8+ T cells,CD45+ and CD103+ cells in colon tissue. Transcriptomic analysis identified 22 upregulated genes and 56 downregulated genes in sTBI compared to the sham group. The levels of seven genes were recovered after LZD treatment. qRT‒PCR successfully validated two genes (Jchain and IL-6) at the mRNA level. CONCLUSION LZD can improves sTBI secondary lung infection by regulating the intestinal physical barrier and immune response. Thees results suggested that LZD may be a prospective treatment for pulmonary infection secondary to sTBI.
Collapse
Affiliation(s)
- Yulu Miao
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuejin Fan
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Luge Wei
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bin Wang
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fengyin Diao
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiafeng Fu
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Pengwei Zhuang
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Yanjun Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Department of Integrated Rehabilitation, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
37
|
Kudryashev JA, Madias MI, Kandell RM, Lin QX, Kwon EJ. An Activity-Based Nanosensor for Minimally-Invasive Measurement of Protease Activity in Traumatic Brain Injury. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2300218. [PMID: 37873031 PMCID: PMC10586543 DOI: 10.1002/adfm.202300218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Indexed: 10/25/2023]
Abstract
Current screening and diagnostic tools for traumatic brain injury (TBI) have limitations in sensitivity and prognostication. Aberrant protease activity is a central process that drives disease progression in TBI and is associated with worsened prognosis; thus direct measurements of protease activity could provide more diagnostic information. In this study, a nanosensor is engineered to release a measurable signal into the blood and urine in response to activity from the TBI-associated protease calpain. Readouts from the nanosensor were designed to be compatible with ELISA and lateral flow assays, clinically-relevant assay modalities. In a mouse model of TBI, the nanosensor sensitivity is enhanced when ligands that target hyaluronic acid are added. In evaluation of mice with mild or severe injuries, the nanosensor identifies mild TBI with a higher sensitivity than the biomarker GFAP. This nanosensor technology allows for measurement of TBI-associated proteases without the need to directly access brain tissue, and has the potential to complement existing TBI diagnostic tools.
Collapse
Affiliation(s)
- Julia A Kudryashev
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Marianne I Madias
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Rebecca M Kandell
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Queenie X Lin
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Ester J Kwon
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
38
|
Khan Malik AA, Ahmad W, Younas F, Badshah H, Alharazy S, Rehman SU, Naseer MI, Yousef Muthaffar O, Achakzai R, Ullah I. Pretreatment with troxerutin protects/improves neurological deficits in a mouse model of traumatic brain injury. Heliyon 2023; 9:e18033. [PMID: 37483772 PMCID: PMC10362234 DOI: 10.1016/j.heliyon.2023.e18033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 05/10/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023] Open
Abstract
Traumatic brain injury (TBI) is the major and leading cause of mortality and an alarming public health challenge. TBI leads to permanent cognitive, motor, sensory and psychotic disabilities. Patients suffering from the various and long-term repercussions of TBI currently have limited therapy choices. The current research work was designed to evaluate the beneficial and neuroprotective role of Troxerutin (Trox) (a natural flavonoid) in a closed brain injury mouse model. The male BALB/c 8-weeks old mice (n꞊150) were randomly distributed in three experimental groups. Control group of mice (n꞊50), TBI group (n꞊50) and Trox pre-treated mice group (Trox + TBI, n꞊50). The mice in Trox + TBI were pre-treated with Trox (150 mg/kg, 7 days) before TBI. The weight-drop mechanism was used to induce mild-moderate injury in mice in both the groups. Our results showed that the mice pre-treated with troxerutin significantly improved neurological severity score, blood glucose level, food intake and brain edema as compared to the mice in the TBI group. Furthermore, compared to the TBI group, the mice treated with troxerutin improved cognitive behavior as evaluated by Open field test, Shallow Water Maze and Y-Maze, decreased brain-infarct volume and blood-brain barrier (BBB) permeability, significantly decreased Reactive Oxygen Species (ROS), improved neuronal morphology and survival in the brain regions such as cortex and hippocampus. In summary, our data provided evidence that pre-treatment with troxerutin improved neurological functions, decreased the BBB permeability, improved behavior, reduced ROS and increased neuronal survival in the weight-drop close head traumatic injury mouse model.
Collapse
Affiliation(s)
- Ashfaq Ahmed Khan Malik
- Center for Interdisciplinary Research in Basic Sciences (CIRBS), International Islamic University Islamabad, Pakistan
| | - Waqas Ahmad
- Center for Interdisciplinary Research in Basic Sciences (CIRBS), International Islamic University Islamabad, Pakistan
| | - Farhan Younas
- Center for Interdisciplinary Research in Basic Sciences (CIRBS), International Islamic University Islamabad, Pakistan
| | - Haroon Badshah
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Shatha Alharazy
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | | | - Muhammad Imran Naseer
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama Yousef Muthaffar
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| | | | - Ikram Ullah
- Center for Interdisciplinary Research in Basic Sciences (CIRBS), International Islamic University Islamabad, Pakistan
| |
Collapse
|
39
|
Johnson NH, Kerr NA, de Rivero Vaccari JP, Bramlett HM, Keane RW, Dietrich WD. Genetic predisposition to Alzheimer's disease alters inflammasome activity after traumatic brain injury. Transl Res 2023; 257:66-77. [PMID: 36758791 PMCID: PMC10192027 DOI: 10.1016/j.trsl.2023.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
Traumatic Brain Injury (TBI) is a major cause of death and disability in the US and a recognized risk factor for the development of Alzheimer's disease (AD). The relationship between these conditions is not completely understood, but the conditions may share additive or synergistic pathological hallmarks that may serve as novel therapeutic targets. Heightened inflammasome signaling plays a critical role in the pathogenesis of central nervous system injury (CNS) and the release of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) speck from neurons and activated microglia contribute significantly to TBI and AD pathology. This study investigated whether inflammasome signaling after TBI was augmented in AD and whether this signaling pathway impacted biochemical and neuropathological outcomes and overall cognitive function. Five-month-old, 3xTg mice and respective wild type controls were randomized and underwent moderate controlled cortical impact (CCI) injury or served as sham/uninjured controls. Animals were sacrificed at 1 hour, 1 day, or 1 week after TBI to assess acute pathology or at 12 weeks after assessing cognitive function. The ipsilateral cerebral cortex was processed for inflammasome protein expression by immunoblotting. Mice were evaluated for behavior by open field (3 days), novel object recognition (2 weeks), and Morris water maze (6 weeks) testing after TBI. There was a statistically significant increase in the expression of inflammasome signaling proteins Caspase-1, Caspase-8, ASC, and interleukin (IL)-1β after TBI in both wild type and 3xTg animals. At 1-day post injury, significant increases in ASC and IL-1β protein expression were measured in AD TBI mice compared to WT TBI. Behavioral testing showed that injured AD mice had altered cognitive function when compared to injured WT mice. Elevated Aβ was seen in the ipsilateral cortex and hippocampus of sham and injured AD when compared to respective groups at 12 weeks post injury. Moreover, treatment of injured AD mice with IC100, an anti-ASC monoclonal antibody, inhibited the inflammasome, as evidenced by IL-1β reduction in the injured cortex at 1-week post injury. These findings show that the inflammasome response is heightened in mice genetically predisposed to AD and suggests that AD may exacerbate TBI pathology. Thus, dampening inflammasome signaling may offer a novel approach for the treatment of AD and TBI.
Collapse
Affiliation(s)
- Nathan H Johnson
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida
| | - Nadine A Kerr
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Juan P de Rivero Vaccari
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Helen M Bramlett
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida
| | - Robert W Keane
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida; Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida
| | - W Dalton Dietrich
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida.
| |
Collapse
|
40
|
Liang MZ, Lu TH, Chen L. Timely expression of PGAM5 and its cleavage control mitochondrial homeostasis during neurite re-growth after traumatic brain injury. Cell Biosci 2023; 13:96. [PMID: 37221611 DOI: 10.1186/s13578-023-01052-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/13/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Patients suffered from severe traumatic brain injury (TBI) have twice the risk of developing into neurodegenerative diseases later in their life. Thus, early intervention is needed not only to treat TBI but also to reduce neurodegenerative diseases in the future. Physiological functions of neurons highly depend on mitochondria. Thus, when mitochondrial integrity is compromised by injury, neurons would initiate a cascade of events to maintain homeostasis of mitochondria. However, what protein senses mitochondrial dysfunction and how mitochondrial homeostasis is maintained during regeneration remains unclear. RESULTS We found that TBI-increased transcription of a mitochondrial protein, phosphoglycerate mutase 5 (PGAM5), during acute phase was via topological remodeling of a novel enhancer-promoter interaction. This up-regulated PGAM5 correlated with mitophagy, whereas presenilins-associated rhomboid-like protein (PARL)-dependent PGAM5 cleavage at a later stage of TBI enhanced mitochondrial transcription factor A (TFAM) expression and mitochondrial mass. To test whether PGAM5 cleavage and TFAM expression were sufficient for functional recovery, mitochondrial oxidative phosphorylation uncoupler carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) was used to uncouple electron transport chain and reduce mitochondrial function. As a result, FCCP triggered PGAM5 cleavage, TFAM expression and recovery of motor function deficits of CCI mice. CONCLUSIONS Findings from this study implicate that PGAM5 may act as a mitochondrial sensor for brain injury to activate its own transcription at acute phase, serving to remove damaged mitochondria through mitophagy. Subsequently, PGAM5 is cleaved by PARL, and TFAM expression is increased for mitochondrial biogenesis at a later stage after TBI. Taken together, this study concludes that timely regulation of PGAM5 expression and its own cleavage are required for neurite re-growth and functional recovery.
Collapse
Affiliation(s)
- Min-Zong Liang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Ting-Hsuan Lu
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Linyi Chen
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan.
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
41
|
Dean T, Ghaemmaghami J, Corso J, Gallo V. The cortical NG2-glia response to traumatic brain injury. Glia 2023; 71:1164-1175. [PMID: 36692058 PMCID: PMC10404390 DOI: 10.1002/glia.24342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/25/2023]
Abstract
Traumatic brain injury (TBI) is a significant worldwide cause of morbidity and mortality. A chronic neurologic disease bearing the moniker of "the silent epidemic," TBI currently has no targeted therapies to ameliorate cellular loss or enhance functional recovery. Compared with those of astrocytes, microglia, and peripheral immune cells, the functions and mechanisms of NG2-glia following TBI are far less understood, despite NG2-glia comprising the largest population of regenerative cells in the mature cortex. Here, we synthesize the results from multiple rodent models of TBI, with a focus on cortical NG2-glia proliferation and lineage potential, and propose future avenues for glia researchers to address this unique cell type in TBI. As the molecular mechanisms that regulate NG2-glia regenerative potential are uncovered, we posit that future therapeutic strategies may exploit cortical NG2-glia to augment local cellular recovery following TBI.
Collapse
Affiliation(s)
- Terry Dean
- Center for Neuroscience Research, Children's National Hospital, Washington, District of Columbia, USA
- Division of Critical Care Medicine, Children's National Hospital, Washington, District of Columbia, USA
| | - Javid Ghaemmaghami
- Center for Neuroscience Research, Children's National Hospital, Washington, District of Columbia, USA
| | - John Corso
- Center for Neuroscience Research, Children's National Hospital, Washington, District of Columbia, USA
| | - Vittorio Gallo
- Center for Neuroscience Research, Children's National Hospital, Washington, District of Columbia, USA
| |
Collapse
|
42
|
McGowan JC, Ladner LR, Shubeck CX, Tapia J, LaGamma CT, Anqueira-Gonz Lez A, DeFrancesco A, Chen BK, Hunsberger HC, Sydnor EJ, Logan RW, Yu TS, Kernie SG, Denny CA. Traumatic brain injury-induced fear generalization in mice involves hippocampal memory trace dysfunction and is alleviated by ( R,S )-ketamine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.24.529876. [PMID: 36909465 PMCID: PMC10002673 DOI: 10.1101/2023.02.24.529876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
INTRODUCTION Traumatic brain injury (TBI) is a debilitating neurological disorder caused by an impact to the head by an outside force. TBI results in persistent cognitive impairments, including fear generalization, the inability to distinguish between aversive and neutral stimuli. The mechanisms underlying fear generalization have not been fully elucidated, and there are no targeted therapeutics to alleviate this symptom of TBI. METHODS To identify the neural ensembles mediating fear generalization, we utilized the ArcCreER T2 x enhanced yellow fluorescent protein (EYFP) mice, which allow for activity-dependent labeling and quantification of memory traces. Mice were administered a sham surgery or the controlled cortical impact (CCI) model of TBI. Mice were then administered a contextual fear discrimination (CFD) paradigm and memory traces were quantified in numerous brain regions. In a separate group of mice, we tested if ( R,S )-ketamine could decrease fear generalization and alter the corresponding memory traces in TBI mice. RESULTS TBI mice exhibited increased fear generalization when compared with sham mice. This behavioral phenotype was paralleled by altered memory traces in the DG, CA3, and amygdala, but not by alterations in inflammation or sleep. In TBI mice, ( R,S )-ketamine facilitated fear discrimination and this behavioral improvement was reflected in DG memory trace activity. CONCLUSIONS These data show that TBI induces fear generalization by altering fear memory traces, and that this deficit can be improved with a single injection of ( R,S )-ketamine. This work enhances our understanding of the neural basis of TBI-induced fear generalization and reveals potential therapeutic avenues for alleviating this symptom.
Collapse
|
43
|
Wang J, Shi Y, Cao S, Liu X, Martin LJ, Simoni J, Soltys BJ, Hsia CJC, Koehler RC. Polynitroxylated PEGylated hemoglobin protects pig brain neocortical gray and white matter after traumatic brain injury and hemorrhagic shock. FRONTIERS IN MEDICAL TECHNOLOGY 2023; 5:1074643. [PMID: 36896342 PMCID: PMC9988926 DOI: 10.3389/fmedt.2023.1074643] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/13/2023] [Indexed: 02/23/2023] Open
Abstract
Polynitroxylated PEGylated hemoglobin (PNPH, aka SanFlow) possesses superoxide dismutase/catalase mimetic activities that may directly protect the brain from oxidative stress. Stabilization of PNPH with bound carbon monoxide prevents methemoglobin formation during storage and permits it to serve as an anti-inflammatory carbon monoxide donor. We determined whether small volume transfusion of hyperoncotic PNPH is neuroprotective in a porcine model of traumatic brain injury (TBI) with and without accompanying hemorrhagic shock (HS). TBI was produced by controlled cortical impact over the frontal lobe of anesthetized juvenile pigs. Hemorrhagic shock was induced starting 5 min after TBI by 30 ml/kg blood withdrawal. At 120 min after TBI, pigs were resuscitated with 60 ml/kg lactated Ringer's (LR) or 10 or 20 ml/kg PNPH. Mean arterial pressure recovered to approximately 100 mmHg in all groups. A significant amount of PNPH was retained in the plasma over the first day of recovery. At 4 days of recovery in the LR-resuscitated group, the volume of frontal lobe subcortical white matter ipsilateral to the injury was 26.2 ± 7.6% smaller than homotypic contralateral volume, whereas this white matter loss was only 8.6 ± 12.0% with 20-ml/kg PNPH resuscitation. Amyloid precursor protein punctate accumulation, a marker of axonopathy, increased in ipsilateral subcortical white matter by 132 ± 71% after LR resuscitation, whereas the changes after 10 ml/kg (36 ± 41%) and 20 ml/kg (26 ± 15%) PNPH resuscitation were not significantly different from controls. The number of cortical neuron long dendrites enriched in microtubules (length >50 microns) decreased in neocortex by 41 ± 24% after LR resuscitation but was not significantly changed after PNPH resuscitation. The perilesion microglia density increased by 45 ± 24% after LR resuscitation but was unchanged after 20 ml/kg PNPH resuscitation (4 ± 18%). Furthermore, the number with an activated morphology was attenuated by 30 ± 10%. In TBI pigs without HS followed 2 h later by infusion of 10 ml/kg LR or PNPH, PNPH remained neuroprotective. These results in a gyrencephalic brain show that resuscitation from TBI + HS with PNPH protects neocortical gray matter, including dendritic microstructure, and white matter axons and myelin. This neuroprotective effect persists with TBI alone, indicating brain-targeting benefits independent of blood pressure restoration.
Collapse
Affiliation(s)
- Jun Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Yanrong Shi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Suyi Cao
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Xiuyun Liu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Lee J. Martin
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Jan Simoni
- AntiRadical Therapeutics LLC, Sioux Falls, SD, United States
| | | | | | - Raymond C. Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
44
|
Reeder EL, O'Connell CJ, Collins SM, Traubert OD, Norman SV, Cáceres RA, Sah R, Smith DW, Robson MJ. Increased Carbon Dioxide Respiration Prevents the Effects of Acceleration/Deceleration Elicited Mild Traumatic Brain Injury. Neuroscience 2023; 509:20-35. [PMID: 36332692 DOI: 10.1016/j.neuroscience.2022.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/30/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022]
Abstract
Acceleration/deceleration forces are a common component of various causes of mild traumatic brain injury (mTBI) and result in strain and shear forces on brain tissue. A small quantifiable volume dubbed the compensatory reserve volume (CRV) permits energy transmission to brain tissue during acceleration/deceleration events. The CRV is principally regulated by cerebral blood flow (CBF) and CBF is primarily determined by the concentration of inspired carbon dioxide (CO2). We hypothesized that experimental hypercapnia (i.e. increased inspired concentration of CO2) may act to prevent and mitigate the actions of acceleration/deceleration-induced TBI. To determine these effects C57Bl/6 mice underwent experimental hypercapnia whereby they were exposed to medical-grade atmospheric air or 5% CO2 immediately prior to an acceleration/deceleration-induced mTBI paradigm. mTBI results in significant increases in righting reflex time (RRT), reductions in core body temperature, and reductions in general locomotor activity-three hours post injury (hpi). Experimental hypercapnia immediately preceding mTBI was found to prevent mTBI-induced increases in RRT and reductions in core body temperature and general locomotor activity. Ribonucleic acid (RNA) sequencing conducted four hpi revealed that CO2 exposure prevented mTBI-induced transcriptional alterations of several targets related to oxidative stress, immune, and inflammatory signaling. Quantitative real-time PCR analysis confirmed the prevention of mTBI-induced increases in mitogen-activated protein kinase kinase kinase 6 and metallothionein-2. These initial proof of concept studies reveal that increases in inspired CO2 mitigate the detrimental contributions of acceleration/deceleration events in mTBI and may feasibly be translated in the future to humans using a medical device seeking to prevent mTBI among high-risk groups.
Collapse
Affiliation(s)
- Evan L Reeder
- University of Cincinnati James L. Winkle College of Pharmacy, Division of Pharmaceutical Sciences, Cincinnati, OH 45267, USA
| | - Christopher J O'Connell
- University of Cincinnati James L. Winkle College of Pharmacy, Division of Pharmaceutical Sciences, Cincinnati, OH 45267, USA
| | - Sean M Collins
- University of Cincinnati James L. Winkle College of Pharmacy, Division of Pharmaceutical Sciences, Cincinnati, OH 45267, USA
| | - Owen D Traubert
- University of Cincinnati College of Arts and Sciences, Department of Biological Sciences, Cincinnati, OH 45221, USA
| | - Sophia V Norman
- University of Cincinnati College of Arts and Sciences, Department of Biological Sciences, Cincinnati, OH 45221, USA
| | - Román A Cáceres
- University of Cincinnati College of Medicine, Department of Cancer and Cell Biology Cincinnati, OH 45267, USA
| | - Renu Sah
- University of Cincinnati College of Medicine, Department of Pharmacology and Systems Physiology, Cincinnati, OH 45267, USA
| | | | - Matthew J Robson
- University of Cincinnati James L. Winkle College of Pharmacy, Division of Pharmaceutical Sciences, Cincinnati, OH 45267, USA.
| |
Collapse
|
45
|
Kundu S, Singh S. What Happens in TBI? A Wide Talk on Animal Models and Future Perspective. Curr Neuropharmacol 2023; 21:1139-1164. [PMID: 35794772 PMCID: PMC10286592 DOI: 10.2174/1570159x20666220706094248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 11/22/2022] Open
Abstract
Traumatic brain injury (TBI) is a global healthcare concern and a leading cause of death. The most common causes of TBI include road accidents, sports injuries, violence in warzones, and falls. TBI induces neuronal cell death independent of age, gender, and genetic background. TBI survivor patients often experience long-term behavioral changes like cognitive and emotional changes. TBI affects social activity, reducing the quality and duration of life. Over the last 40 years, several rodent models have been developed to mimic different clinical outcomes of human TBI for a better understanding of pathophysiology and to check the efficacy of drugs used for TBI. However, promising neuroprotective approaches that have been used preclinically have been found to be less beneficial in clinical trials. So, there is an urgent need to find a suitable animal model for establishing a new therapeutic intervention useful for TBI. In this review, we have demonstrated the etiology of TBI and post- TBI social life alteration, and also discussed various preclinical TBI models of rodents, zebrafish, and drosophila.
Collapse
Affiliation(s)
- Satyabrata Kundu
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Shamsher Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
46
|
Mohammed FS, Omay SB, Sheth KN, Zhou J. Nanoparticle-based drug delivery for the treatment of traumatic brain injury. Expert Opin Drug Deliv 2023; 20:55-73. [PMID: 36420918 PMCID: PMC9983310 DOI: 10.1080/17425247.2023.2152001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/10/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Traumatic brain injuries (TBIs) impact the breadth of society and remain without any approved pharmacological treatments. Despite successful Phase II clinical trials, the failure of many Phase III clinical trials may be explained by insufficient drug targeting and retention, preventing the proper attainment of an observable dosage threshold. To address this challenge, nanoparticles can be functionalized to protect pharmacological payloads, improve targeted drug delivery to sites of injury, and can be combined with supportive scaffolding to improve secondary outcomes. AREAS COVERED This review briefly covers the pathophysiology of TBIs and their subtypes, the current pre-clinical and clinical management strategies, explores the common models of focal, diffuse, and mixed traumatic brain injury employed in experimental animals, and surveys the existing literature on nanoparticles developed to treat TBIs. EXPERT OPINION Nanoparticles are well suited to improve secondary outcomes as their multifunctionality and customizability enhance their potential for efficient targeted delivery, payload protection, increased brain penetration, low off-target toxicity, and biocompatibility in both acute and chronic timescales.
Collapse
Affiliation(s)
- Farrah S. Mohammed
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Sacit Bulent Omay
- Department of Neurosurgery, Yale University, New Haven, Connecticut, USA
| | - Kevin N. Sheth
- Department of Neurosurgery, Yale University, New Haven, Connecticut, USA
- Department of Neurology, Yale University, New Haven, Connecticut, USA
| | - Jiangbing Zhou
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
- Department of Neurosurgery, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
47
|
Cramer SW, Haley SP, Popa LS, Carter RE, Scott E, Flaherty EB, Dominguez J, Aronson JD, Sabal L, Surinach D, Chen CC, Kodandaramaiah SB, Ebner TJ. Wide-field calcium imaging reveals widespread changes in cortical functional connectivity following mild traumatic brain injury in the mouse. Neurobiol Dis 2023; 176:105943. [PMID: 36476979 PMCID: PMC9972226 DOI: 10.1016/j.nbd.2022.105943] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
>2.5 million individuals in the United States suffer mild traumatic brain injuries (mTBI) annually. Mild TBI is characterized by a brief period of altered consciousness, without objective findings of anatomic injury on clinical imaging or physical deficit on examination. Nevertheless, a subset of mTBI patients experience persistent subjective symptoms and repeated mTBI can lead to quantifiable neurological deficits, suggesting that each mTBI alters neurophysiology in a deleterious manner not detected using current clinical methods. To better understand these effects, we performed mesoscopic Ca2+ imaging in mice to evaluate how mTBI alters patterns of neuronal interactions across the dorsal cerebral cortex. Spatial Independent Component Analysis (sICA) and Localized semi-Nonnegative Matrix Factorization (LocaNMF) were used to quantify changes in cerebral functional connectivity (FC). Repetitive, mild, controlled cortical impacts induce temporary neuroinflammatory responses, characterized by increased density of microglia exhibiting de-ramified morphology. These temporary neuro-inflammatory changes were not associated with compromised cognitive performance in the Barnes maze or motor function as assessed by rotarod. However, long-term alterations in functional connectivity (FC) were observed. Widespread, bilateral changes in FC occurred immediately following impact and persisted for up to 7 weeks, the duration of the experiment. Network alterations include decreases in global efficiency, clustering coefficient, and nodal strength, thereby disrupting functional interactions and information flow throughout the dorsal cerebral cortex. A subnetwork analysis shows the largest disruptions in FC were concentrated near the impact site. Therefore, mTBI induces a transient neuroinflammation, without alterations in cognitive or motor behavior, and a reorganized cortical network evidenced by the widespread, chronic alterations in cortical FC.
Collapse
Affiliation(s)
- Samuel W Cramer
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Samuel P Haley
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Laurentiu S Popa
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Russell E Carter
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Earl Scott
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Evelyn B Flaherty
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Judith Dominguez
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Justin D Aronson
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Luke Sabal
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel Surinach
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Timothy J Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
48
|
Cheng J, Lin L, Yu J, Zhu X, Ma H, Zhao Y. N6-methyladenosine RNA is modified in the rat hippocampus following traumatic brain injury with hypothermia treatment. Front Neurosci 2023; 17:1069640. [PMID: 36875640 PMCID: PMC9975158 DOI: 10.3389/fnins.2023.1069640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/16/2023] [Indexed: 02/17/2023] Open
Abstract
Recent studies have suggested a role for N6-methyladenosine (m6A) modification in neurological diseases. Hypothermia, a commonly used treatment for traumatic brain injury, plays a neuroprotective role by altering m6A modifications. In this study, methylated RNA immunoprecipitation sequencing (MeRIP-Seq) was applied to conduct a genome-wide analysis of RNA m6A methylation in the rat hippocampus of Sham and traumatic brain injury (TBI) groups. In addition, we identified the expression of mRNA in the rat hippocampus after TBI with hypothermia treatment. Compared with the Sham group, the sequencing results of the TBI group showed that 951 different m6A peaks and 1226 differentially expressed mRNAs were found. We performed cross-linking analysis of the data of the two groups. The result showed that 92 hyper-methylated genes were upregulated, 13 hyper-methylated genes were downregulated, 25 hypo-methylated genes were upregulated, and 10 hypo-methylated genes were downregulated. Moreover, a total of 758 differential peaks were identified between TBI and hypothermia treatment groups. Among these differential peaks, 173 peaks were altered by TBI and reversed by hypothermia treatment, including Plat, Pdcd5, Rnd3, Sirt1, Plaur, Runx1, Ccr1, Marveld1, Lmnb2, and Chd7. We found that hypothermia treatment transformed some aspects of the TBI-induced m6A methylation landscape of the rat hippocampus.
Collapse
Affiliation(s)
- Jin Cheng
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lian Lin
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Emergency, Gansu Provincial People's Hospital, Lanzhou, China
| | - Jiangtao Yu
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaolu Zhu
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Haoli Ma
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Zhao
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
49
|
Clay AM, Carr R, Dubien J, To F. Short-term behavioral and histological changes in a rodent model of mild traumatic brain injury. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
50
|
Mild traumatic brain injury elicits time- and region-specific reductions in serotonin transporter protein expression and uptake capacity. Neuroreport 2022; 33:612-616. [DOI: 10.1097/wnr.0000000000001822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|