1
|
Tan X, Han M, Han M, Ren S, Sun Y, Zeng X, Liu X, Yan L, Gabriel A, Yao Q, Kong D, Wang X, Wu J, Wu W. Dimercaprol attenuates oxidative stress-induced damage of retinal ganglion cells in an in vitro and in vivo model of traumatic optic neuropathy. Neuropharmacology 2025:110525. [PMID: 40409536 DOI: 10.1016/j.neuropharm.2025.110525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/16/2025] [Accepted: 05/18/2025] [Indexed: 05/25/2025]
Abstract
Traumatic optic neuropathy (TON) is a prevalent form of optic neuropathy, which is a significant cause of irreversible blindness. To date, effective therapeutic interventions for TON are lacking, highlighting the urgent need for the development of new therapeutic drugs. In this study, a compound library comprising 480 Food and Drug Administration (FDA)-approved drugs was screened to identify potentially effective therapeutic drugs for TON. We reported that dimercaprol (DMP), an FDA-approved drug, can reduce L-Glutamic acid (Glu) and hydrogen peroxide (H2O2)-induced injury in a retinal cell line (R28 cell). Our findings further demonstrated that intracellular reactive oxygen species (ROS) and acrolein, a lipid peroxide, are major contributors to apoptosis-induced cell death in vitro. A series of functional assays revealed that DMP can inhibit apoptosis-induced by Glu via scavenging of intracellular ROS and acrolein in R28 cells and primary cortical neurones. Notably, DMP inhibited retinal ganglion cell complex (GCC) thinning and retinal ganglion cell (RGC) loss resulting from optic nerve crush (ONC) injury in vivo. Moreover, DMP effectively eliminated ONC-induced acrolein in the retina and inhibited RGC apoptosis in vivo. In conclusion, intracellular ROS and acrolein play significant roles in RGC loss in TON, and DMP effectively inhibits RGC apoptosis-induced by the oxidative stress pathway in vitro and in vivo. Therefore, DMP has emerged as a potential new therapeutic drug against TON.
Collapse
Affiliation(s)
- Xiangpeng Tan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine Vision and Brain Health), Wenzhou, Zhejiang, 325000, China; Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, 3 Xueyuan Road, Haikou 571199, PR China; State Key Laboratory of Eye Health, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Key Laboratory of Key Technologies for Visual Pathway Reconstruction,Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Meiting Han
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
| | - Mengke Han
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine Vision and Brain Health), Wenzhou, Zhejiang, 325000, China; State Key Laboratory of Eye Health, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Shuo Ren
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine Vision and Brain Health), Wenzhou, Zhejiang, 325000, China; State Key Laboratory of Eye Health, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yue Sun
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine Vision and Brain Health), Wenzhou, Zhejiang, 325000, China; State Key Laboratory of Eye Health, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaoqing Zeng
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine Vision and Brain Health), Wenzhou, Zhejiang, 325000, China; State Key Laboratory of Eye Health, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xin Liu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
| | - Lin Yan
- The 2nd Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Abekah Gabriel
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine Vision and Brain Health), Wenzhou, Zhejiang, 325000, China; State Key Laboratory of Eye Health, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qingqing Yao
- State Key Laboratory of Eye Health, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Key Laboratory of Key Technologies for Visual Pathway Reconstruction,Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Dulin Kong
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, 3 Xueyuan Road, Haikou 571199, PR China
| | - Xiaohui Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine Vision and Brain Health), Wenzhou, Zhejiang, 325000, China; State Key Laboratory of Eye Health, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Key Laboratory of Key Technologies for Visual Pathway Reconstruction,Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Jianzhang Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine Vision and Brain Health), Wenzhou, Zhejiang, 325000, China; Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, 3 Xueyuan Road, Haikou 571199, PR China; State Key Laboratory of Eye Health, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Wencan Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine Vision and Brain Health), Wenzhou, Zhejiang, 325000, China; State Key Laboratory of Eye Health, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Key Laboratory of Key Technologies for Visual Pathway Reconstruction,Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
2
|
Venanzi AW, McGee LD, Hackam AS. Evaluating the Evidence for Neuroprotective and Axonal Regenerative Activities of Different Inflammatory Cell Types After Optic Nerve Injury. Mol Neurobiol 2025; 62:6212-6227. [PMID: 39738875 PMCID: PMC11953096 DOI: 10.1007/s12035-024-04679-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/19/2024] [Indexed: 01/02/2025]
Abstract
The optic nerve contains retinal ganglion cell (RGC) axons and functions to transmit visual stimuli to the brain. Injury to the optic nerve from ischemia, trauma, or disease leads to retrograde axonal degeneration and subsequent RGC dysfunction and death, causing irreversible vision loss. Inflammatory responses to neurological damage and axonal injuries in the central nervous system (CNS) are typically harmful to neurons and prevent recovery. However, recent evidence indicates that certain inflammatory cell types and signaling pathways are protective after optic nerve injury and promote RGC survival and axonal regeneration. The objective of this review is to examine the evidence for diverse effects of inflammatory cell types on the retina and optic nerve after injury. Additionally, we highlight promising avenues for further research.
Collapse
Affiliation(s)
- Alexander W Venanzi
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10Th Ave, Rm 404, Miami, FL, 33136, USA
| | - Laura D McGee
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10Th Ave, Rm 404, Miami, FL, 33136, USA
| | - Abigail S Hackam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10Th Ave, Rm 404, Miami, FL, 33136, USA.
| |
Collapse
|
3
|
Bhattacharya S, Deka J, Avallone T, Todd L. The neuroimmune interface in retinal regeneration. Prog Retin Eye Res 2025; 106:101361. [PMID: 40287050 DOI: 10.1016/j.preteyeres.2025.101361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/12/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Retinal neurodegeneration leads to irreversible blindness due to the mammalian nervous system's inability to regenerate lost neurons. Efforts to regenerate retina involve two main strategies: stimulating endogenous cells to reprogram into neurons or transplanting stem-cell derived neurons into the degenerated retina. However, both approaches must overcome a major barrier in getting new neurons to grow back down the optic nerve and connect to appropriate visual targets in environments that differ significantly from developmental conditions. While immune privilege has historically been associated with the central nervous system, an emerging literature highlights the active role of immune cells in shaping neurodegeneration and regeneration. This review explores the neuroimmune interface in retinal repair, dissecting how immune interactions influence glial reprogramming, transplantation outcomes, and axonal regeneration. By integrating insights from regenerative species with mammalian models, we highlight novel immunomodulatory strategies to optimize retinal regeneration.
Collapse
Affiliation(s)
- Sucheta Bhattacharya
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Jugasmita Deka
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Thomas Avallone
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Levi Todd
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
4
|
Wang F, Zhao C, Jing Z, Wang Q, Li M, Lu B, Huo A, Liang W, Hu W, Fu X. The dual roles of chemokines in peripheral nerve injury and repair. Inflamm Regen 2025; 45:11. [PMID: 40217284 PMCID: PMC11987372 DOI: 10.1186/s41232-025-00375-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025] Open
Abstract
Peripheral nerve injuries (PNI) occur in approximately 13-23 per 100,000 individuals, predominantly affecting young and middle-aged adults. These injuries often require a lengthy recovery period, placing substantial burdens on healthcare systems and national economies. Current treatment strategies have not significantly shortened this lengthy regenerative process, highlighting the urgent need for innovative therapeutic interventions. Chemokines were originally noted for their powerful ability to recruit immune cells; however, as research has advanced, it has become increasingly evident that their role in peripheral nerve repair has been underestimated. In this review, we provide the first comprehensive overview of chemokine expression and activity during peripheral nerve injury and regeneration. We summarize the existing literature on chemokine family members, detailing their expression patterns and localization in injured nerves to facilitate further mechanistic investigations. For chemokines that remain controversial, such as CXCL1 and CCL2, we critically examine experimental methodologies and discuss factors underlying conflicting results, ultimately affirming their contributions to promoting nerve repair. Importantly, we highlight the dual nature of chemokines: in the early stages of injury, they initiate reparative responses, activate Schwann cells, regulate Wallerian degeneration, and support nerve recovery; but when the axons are connected and the repair enters the later stages, their persistent proinflammatory effects during later stages may impede the healing process. Additionally, we emphasize that certain chemokines, including CXCL5, CXCL12, and CCL2, can act directly on neurons/axons, thereby accelerating axonal regeneration. Future research should focus on precisely mapping the localization and temporal expression profiles of these chemokines and exploring therapeutic approaches.
Collapse
Affiliation(s)
- Fangyuan Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Cranial Nerve Diseases, ZhengZhou, China
| | - Chenglin Zhao
- Department of Neurosurgery, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Cranial Nerve Diseases, ZhengZhou, China
| | - Zhou Jing
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Cranial Nerve Diseases, ZhengZhou, China
| | - Qingyi Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Cranial Nerve Diseases, ZhengZhou, China
| | - Minghe Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Cranial Nerve Diseases, ZhengZhou, China
| | - Bingqi Lu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Cranial Nerve Diseases, ZhengZhou, China
| | - Ao Huo
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Cranial Nerve Diseases, ZhengZhou, China
| | - Wulong Liang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Cranial Nerve Diseases, ZhengZhou, China
| | - Weihua Hu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Cranial Nerve Diseases, ZhengZhou, China
| | - Xudong Fu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
- Henan Provincial Key Laboratory of Cranial Nerve Diseases, ZhengZhou, China.
| |
Collapse
|
5
|
Jiang X, Chen X, He L, Qin D, Nie M, Li C, Liu X. Equol promotes osteogenic differentiation of hPDLSCs by inhibiting oxidative stress via IL1B/NF-κB/CXCL1 signaling axis. Chem Biol Interact 2025; 407:111367. [PMID: 39743035 DOI: 10.1016/j.cbi.2024.111367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/16/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Oxidative stress (OS) inhibits the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs). Equol (Eq), a phytoestrogen, exhibits notable antioxidant properties and potential for preventing osteoporosis. However, the research on the regulatory effects of Eq on stem cell osteogenesis remains limited. This investigation aimed to identify whether Eq could protect the osteogenic potential of hPDLSCs under H2O2-induced oxidative microenvironment. We employed a series of assays, including CCK-8, DCFH-DA, ALP staining, ARS, RT-qPCR, and Western Blotting, to assess the changes in cell viability, antioxidant capacity, and osteogenic potential following H2O2 and Eq treatments. Our findings indicated that low concentrations of Eq had no cytotoxic effects on hPDLSCs and promoted their proliferation. Eq pre-treatment (0.5 μmol/L) partially counteracted the inhibitory effect of H2O2, reduced the generation of reactive oxygen species, and increased glutathione levels, thereby inhibiting oxidative damage. Eq suppressed the H2O2-induced inhibition of osteogenic differentiation, presenting as restoring the alkaline phosphatase levels and calcium nodule formation, as well as by upregulating the expression of BMP2 and RUNX2. Furthermore, bioinformatics analysis in this study suggested that the IL1B/NF-κB/CXCL1 signaling pathway might be a key pathway for Eq's enhancement of osteogenic differentiation potential of hPDLSCs under OS conditions. The activation of this axis by H2O2, which Eq can alleviate, was confirmed by validation experiments. This study provides new insights into the potential therapeutic application of Eq in alveolar bone resorption and bone regeneration research.
Collapse
Affiliation(s)
- Xiaoxi Jiang
- Department of Periodontics and Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China; Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiao Chen
- Department of Oral Medical Technology, Sichuan College of Traditional Chinese Medicine, Mianyang, 621000, Sichuan, China; Department of Orthodontics, Mianyang Stomatological Hospital, Mianyang, 621000, Sichuan, China
| | - Lingxiao He
- Department of Periodontics and Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China; Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Dan Qin
- Department of Periodontics and Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China; Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Minhai Nie
- Department of Periodontics and Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China; Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Chunhui Li
- Department of Periodontics and Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China; Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Xuqian Liu
- Department of Periodontics and Oral Mucosal Diseases, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China; Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
6
|
Lee EJ, Lee MJ, Ryu YJ, Nam SH, Kim R, Song S, Park K, Park YJ, Kim JI, Koh SH, Chang MS. Neuroplasticity therapy using glia-like cells derived from human mesenchymal stem cells for the recovery of cerebral infarction sequelae. Mol Ther 2025; 33:356-374. [PMID: 39563032 PMCID: PMC11764092 DOI: 10.1016/j.ymthe.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/12/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024] Open
Abstract
Despite a dramatic increase in ischemic stroke incidence worldwide, effective therapies for attenuating sequelae of cerebral infarction are lacking. This study investigates the use of human mesenchymal stem cells (hMSCs) induced toward glia-like cells (ghMSCs) to ameliorate chronic sequelae resulting from cerebral infarction. Transcriptome analysis demonstrated that ghMSCs exhibited astrocytic characteristics, and assessments conducted ex vivo using organotypic brain slice cultures demonstrated that ghMSCs exhibited superior neuroregenerative and neuroprotective activity against ischemic damage compared to hMSCs. The observed beneficial effects of ghMSCs were diminished by pre-treatment with a CXCR2 antagonist, indicating a direct role for CXCR2 signaling. Studies conducted in rats subjected to cerebral infarction demonstrated that ghMSCs restored neurobehavioral functions and reduced chronic brain infarction in a dose-dependent manner when transplanted at the subacute-to-chronic phase. These beneficial impacts were also inhibited by a CXCR2 antagonist. Molecular analyses confirmed that increased neuroplasticity contributed to ghMSCs' neuroregenerative effects. These data indicate that ghMSCs hold promise for treating refractory sequelae resulting from cerebral infarction by enhancing neuroplasticity and identify CXCR2 signaling as an important mediator of ghMSCs' mechanism of action.
Collapse
Affiliation(s)
- Eun Ji Lee
- Department of Translational Medical Science, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul 04763, Republic of Korea
| | - Min-Ju Lee
- Laboratory of Stem Cell & Neurobiology, Department of Oral Anatomy and Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Republic of Korea
| | - Ye Jin Ryu
- Department of Translational Medical Science, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul 04763, Republic of Korea
| | - Sang-Hyeon Nam
- Laboratory of Stem Cell & Neurobiology, Department of Oral Anatomy and Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Republic of Korea
| | - Rokhyun Kim
- Genomic Medicine Institute (GMI), Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sehyeon Song
- Laboratory of Stem Cell & Neurobiology, Department of Oral Anatomy and Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Republic of Korea; Interdisciplinary Program in Neuroscience, Seoul National University College of Natural Sciences, Seoul 08826, Republic of Korea
| | - Kyunghyuk Park
- Genomic Medicine Institute (GMI), Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
| | - Young Jun Park
- Genomic Medicine Institute (GMI), Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
| | - Jong-Il Kim
- Genomic Medicine Institute (GMI), Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Seong-Ho Koh
- Department of Translational Medical Science, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul 04763, Republic of Korea; Department of Neurology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Gyeonggi-do 11923, Republic of Korea.
| | - Mi-Sook Chang
- Laboratory of Stem Cell & Neurobiology, Department of Oral Anatomy and Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Republic of Korea; Interdisciplinary Program in Neuroscience, Seoul National University College of Natural Sciences, Seoul 08826, Republic of Korea; Neuroscience Research Institute, Seoul National University, Seoul 03080, Republic of Korea.
| |
Collapse
|
7
|
Garcia MJ, Morales MS, Yang TS, Holden J, Bossardet OL, Palmer SA, Jhala M, Priest S, Namburu N, Beatty N, D'Empaire Salomon SE, Vancel J, Wareham LK, Padovani-Claudio DA. Adverse effects of CXCR2 deficiency in mice reared under non-gnotobiotic conditions. Sci Rep 2024; 14:26159. [PMID: 39478033 PMCID: PMC11525579 DOI: 10.1038/s41598-024-75532-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024] Open
Abstract
The family of pro-inflammatory and pro-angiogenic chemokines including Interleukin-8 (IL-8, aka CXCL8) and its homologues (CXCL1,2,3,5,6, and 7) exhibit promiscuous binding and activation of several G-protein-coupled receptors (i.e., CXCR2, CXCR1, and the atypical chemokine receptor (ACKR1)). A high proportion of their biological activity is attributed to CXCR2 activation, thus many CXCR2 inhibitors are in clinical trials for several chronic diseases. However, CXCR2 inhibition is often only investigated acutely in these trials or in Cxcr2-/- mice grown in gnotobiotic conditions. Since humans do not live in germ-free environments, our first goal is to highlight novel retinal and systemic observations in Cxcr2-/- mice grown in non-gnotobiotic conditions that suggest potential harmful consequences of long-term CXCR2 deficiency or blockade. Beyond confirmation of circulating blood/immune cell-related phenotypes, we report novel findings in Cxcr2-/- mice including: (1) delayed dye transit to the retinal vasculature, (2) alterations in the density and distribution of retinal vessels, astrocytes and microglia, (3) decreased electroretinogram a- and b-wave amplitudes, (4) reduced visual acuity, and (5) increased polymorphonuclear cell accumulation in vascular lumina abutting venular walls in the retina and in vital non-ocular tissues (lung and liver). Furthermore, PheWAS of CXCR2 CXCR1, and ACKR1 gene variants using data from UK Biobank participants suggest clinical associations with both retinal and vascular disease phenotypes. We conclude that chronic CXCR2 deficiency in mice contributes to functional damage to the retina and that the long-term safety of CXCR1/2 inhibitors designed for chronic use in humans should be explored before clinical adoption to safeguard sight and overall vascular health.
Collapse
Affiliation(s)
- Maximilian J Garcia
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA
| | - Monica S Morales
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA
| | - Tzushan S Yang
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joseph Holden
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA
| | - Olivia L Bossardet
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA
| | - Samuel A Palmer
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA
| | - Marvarakumari Jhala
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA
| | - Stephen Priest
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA
| | - Neeraj Namburu
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA
| | - Nolan Beatty
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA
| | - Sariah E D'Empaire Salomon
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA
| | - Jordan Vancel
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA
| | - Lauren K Wareham
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA
| | - Dolly Ann Padovani-Claudio
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute/Vanderbilt University Medical Center, 2311 Pierce Avenue, Nashville, TN, USA.
- Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
8
|
Fan ZQ, Zeng Q, Yu BF. Analysis of mRNA expression profile in the treatment of diabetic foot ulcer healing by tibial cortex transverse distraction. Sci Rep 2024; 14:24865. [PMID: 39438549 PMCID: PMC11496491 DOI: 10.1038/s41598-024-76291-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
To investigate mRNA Expression profile and associated signaling pathways in the treatment of diabetic foot ulcer healing by tibial cortex transverse distraction. Tissue samples were collected from the wound edge before and after the surgery. After reference genome transcriptome sequencing and subsequent bioinformatics analysis, the differentially expressed genes and related pathways were explored, and functional analysis of important genes and pathways was conducted. qRT-PCR was used to verify the significantly expressed genes-HLA-DRB1, HLA-DRB5, CXCL5 and IGFL1. There were 2441 significantly up-regulated and 3904 significantly down-regulated genes in the postoperative group. The qRT-PCR results showed the expression of HLA-DRB1, HLA-DRB5 and CXCL5 was consistent with the transcriptional sequencing results. CXCL5 and CXCL6 differentially up-regulated genes are involved in the process of neovascularization, and HLA-DRB1 is involved in the improvement of the degree of diabetic peripheral nerve degeneration. Pathway analysis showed that differential genes were most significantly enriched in Adherens junction, Inflammatory mediator regulation of TRP channels and Wnt signaling pathway. Inflammatory mediator regulation of TRP channels is involved in the improvement of peripheral neurodegeneration, VEGF signaling pathway is involved in the process of neovascularization, and Wnt signaling pathway is involved in the process of bone healing. Significantly up-regulated CXCL5 and CXCL6 and enriched VEGF signaling pathway analyzed are involved in postoperative lower limb neovascularization. The HLA-DRB1 and the enriched Inflammatory mediator regulation of TRP channels may be related to the improvement of postoperative peripheral neurodegeneration. The differentially expressed genes and related pathways can provide objective basis for further mechanism study.
Collapse
Affiliation(s)
- Zhi-Qiang Fan
- Department of Orthopaedic Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Ai Guo Road, Nanchang, 330006, Jiangxi, China.
| | - Qi Zeng
- Department of Plastic Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Jiangxi, China
| | - Bao-Fu Yu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Daga KR, Larey AM, Morfin MG, Chen K, Bitarafan S, Carpenter JM, Hynds HM, Hines KM, Wood LB, Marklein RA. Microglia morphological response to mesenchymal stromal cell extracellular vesicles demonstrates EV therapeutic potential for modulating neuroinflammation. J Biol Eng 2024; 18:58. [PMID: 39420399 PMCID: PMC11488223 DOI: 10.1186/s13036-024-00449-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Mesenchymal stromal cell derived extracellular vesicles (MSC-EVs) are a promising therapeutic for neuroinflammation. MSC-EVs can interact with microglia, the resident immune cells of the brain, to exert their immunomodulatory effects. In response to inflammatory cues, such as cytokines, microglia undergo phenotypic changes indicative of their function e.g. morphology and secretion. However, these changes in response to MSC-EVs are not well understood. Additionally, no disease-relevant screening tools to assess MSC-EV bioactivity exist, which has further impeded clinical translation. Here, we developed a quantitative, high throughput morphological profiling approach to assess the response of microglia to neuroinflammation- relevant signals and whether this morphological response can be used to indicate the bioactivity of MSC-EVs. RESULTS Using an immortalized human microglia cell-line, we observed increased size (perimeter, major axis length) and complexity (form factor) upon stimulation with interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α). Upon treatment with MSC-EVs, the overall morphological score (determined using principal component analysis) shifted towards the unstimulated morphology, indicating that MSC-EVs are bioactive and modulate microglia. The morphological effects of MSC-EVs in TNF-α /IFN-γ stimulated cells were concomitant with reduced secretion of 14 chemokines/cytokines (e.g. CXCL6, CXCL9) and increased secretion of 12 chemokines/cytokines (e.g. CXCL8, CXCL10). Proteomic analysis of cell lysates revealed significant increases in 192 proteins (e.g. HIBADH, MEAK7, LAMC1) and decreases in 257 proteins (e.g. PTEN, TOM1, MFF) with MSC-EV treatment. Of note, many of these proteins are involved in regulation of cell morphology and migration. Gene Set Variation Analysis revealed upregulation of pathways associated with immune response, such as regulation of cytokine production, immune cell infiltration (e.g. T cells, NK cells) and morphological changes (e.g. Semaphorin, RHO/Rac signaling). Additionally, changes in microglia mitochondrial morphology were measured suggesting that MSC-EV modulate mitochondrial metabolism. CONCLUSION This study comprehensively demonstrates the effects of MSC-EVs on human microglial morphology, cytokine secretion, cellular proteome, and mitochondrial content. Our high-throughput, rapid, low-cost morphometric approach enables screening of MSC-EV batches and manufacturing conditions to enhance EV function and mitigate EV functional heterogeneity in a disease relevant manner. This approach is highly generalizable and can be further adapted and refined based on selection of the disease-relevant signal, target cell, and therapeutic product.
Collapse
Affiliation(s)
- Kanupriya R Daga
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Andrew M Larey
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Maria G Morfin
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
| | - Kailin Chen
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
| | - Sara Bitarafan
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Hannah M Hynds
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Kelly M Hines
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Levi B Wood
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ross A Marklein
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA.
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA.
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20903, USA.
| |
Collapse
|
10
|
Wang F, Guo B, Jia Z, Jing Z, Wang Q, Li M, Lu B, Liang W, Hu W, Fu X. The Role of CXCR3 in Nervous System-Related Diseases. Mediators Inflamm 2024; 2024:8347647. [PMID: 39429695 PMCID: PMC11488998 DOI: 10.1155/2024/8347647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024] Open
Abstract
Inflammatory chemokines are a group of G-protein receptor ligands characterized by conserved cysteine residues, which can be divided into four main subfamilies: CC, CXC, XC, and CX3C. The C-X-C chemokine receptor (CXCR) 3 and its ligands, C-X-C chemokine ligands (CXCLs), are widely expressed in both the peripheral nervous system (PNS) and central nervous system (CNS). This comprehensive literature review aims to examine the functions and pathways of CXCR3 and its ligands in nervous system-related diseases. In summary, while the related pathways and the expression levels of CXCR3 and its ligands are varied among different cells in PNS and CNS, the MPAK pathway is the core via which CXCR3 exerts physiological functions. It is not only the core pathway of CXCR3 after activation but also participates in the expression of CXCR3 ligands in the nervous system. In addition, despite CXCR3 being a common inflammatory chemokine receptor, there is no consensus on its precise roles in various diseases. This uncertainty may be attributable to distinct inflammatory characteristics, that inflammation simultaneously possesses the dual properties of damage induction and repair facilitation.
Collapse
Affiliation(s)
- Fangyuan Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Bing Guo
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Ziyang Jia
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Zhou Jing
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Qingyi Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Minghe Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Bingqi Lu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Wulong Liang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Weihua Hu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xudong Fu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Rad A, Weigl L, Steinecker-Frohnwieser B, Stadlmayr S, Millesi F, Haertinger M, Borger A, Supper P, Semmler L, Wolf S, Naghilou A, Weiss T, Kress HG, Radtke C. Nuclear Magnetic Resonance Treatment Induces ßNGF Release from Schwann Cells and Enhances the Neurite Growth of Dorsal Root Ganglion Neurons In Vitro. Cells 2024; 13:1544. [PMID: 39329728 PMCID: PMC11430304 DOI: 10.3390/cells13181544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/28/2024] Open
Abstract
Peripheral nerve regeneration depends on close interaction between neurons and Schwann cells (SCs). After nerve injury, SCs produce growth factors and cytokines that are crucial for axon re-growth. Previous studies revealed the supernatant of SCs exposed to nuclear magnetic resonance therapy (NMRT) treatment to increase survival and neurite formation of rat dorsal root ganglion (DRG) neurons in vitro. The aim of this study was to identify factors involved in transferring the observed NMRT-induced effects to SCs and consequently to DRG neurons. Conditioned media of NMRT-treated (CM NMRT) and untreated SCs (CM CTRL) were tested by beta-nerve growth factor (ßNGF) ELISA and multiplex cytokine panels to profile secreted factors. The expression of nociceptive transient receptor potential vanilloid 1 (TRPV1) channels was assessed and the intracellular calcium response in DRG neurons to high-potassium solution, capsaicin or adenosine triphosphate was measured mimicking noxious stimuli. NMRT induced the secretion of ßNGF and pro-regenerative-signaling factors. Blocking antibody experiments confirmed ßNGF as the main factor responsible for neurotrophic/neuritogenic effects of CM NMRT. The TRPV1 expression or sensitivity to specific stimuli was not altered, whereas the viability of cultured DRG neurons was increased. Positive effects of CM NMRT supernatant on DRG neurons are primarily mediated by increased ßNGF levels.
Collapse
Affiliation(s)
- Anda Rad
- Research Laboratory of the Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Waehringerstrasse 18-20, 1090 Vienna, Austria; (A.R.); (S.S.); (F.M.); (M.H.); (A.B.); (P.S.); (L.S.); (S.W.); (A.N.); (C.R.)
| | - Lukas Weigl
- Clinical Department of Special Anesthesia and Pain Therapy, Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Waehringerstrasse 18-20, 1090 Vienna, Austria;
| | | | - Sarah Stadlmayr
- Research Laboratory of the Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Waehringerstrasse 18-20, 1090 Vienna, Austria; (A.R.); (S.S.); (F.M.); (M.H.); (A.B.); (P.S.); (L.S.); (S.W.); (A.N.); (C.R.)
| | - Flavia Millesi
- Research Laboratory of the Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Waehringerstrasse 18-20, 1090 Vienna, Austria; (A.R.); (S.S.); (F.M.); (M.H.); (A.B.); (P.S.); (L.S.); (S.W.); (A.N.); (C.R.)
| | - Maximilian Haertinger
- Research Laboratory of the Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Waehringerstrasse 18-20, 1090 Vienna, Austria; (A.R.); (S.S.); (F.M.); (M.H.); (A.B.); (P.S.); (L.S.); (S.W.); (A.N.); (C.R.)
| | - Anton Borger
- Research Laboratory of the Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Waehringerstrasse 18-20, 1090 Vienna, Austria; (A.R.); (S.S.); (F.M.); (M.H.); (A.B.); (P.S.); (L.S.); (S.W.); (A.N.); (C.R.)
| | - Paul Supper
- Research Laboratory of the Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Waehringerstrasse 18-20, 1090 Vienna, Austria; (A.R.); (S.S.); (F.M.); (M.H.); (A.B.); (P.S.); (L.S.); (S.W.); (A.N.); (C.R.)
| | - Lorenz Semmler
- Research Laboratory of the Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Waehringerstrasse 18-20, 1090 Vienna, Austria; (A.R.); (S.S.); (F.M.); (M.H.); (A.B.); (P.S.); (L.S.); (S.W.); (A.N.); (C.R.)
| | - Sonja Wolf
- Research Laboratory of the Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Waehringerstrasse 18-20, 1090 Vienna, Austria; (A.R.); (S.S.); (F.M.); (M.H.); (A.B.); (P.S.); (L.S.); (S.W.); (A.N.); (C.R.)
| | - Aida Naghilou
- Research Laboratory of the Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Waehringerstrasse 18-20, 1090 Vienna, Austria; (A.R.); (S.S.); (F.M.); (M.H.); (A.B.); (P.S.); (L.S.); (S.W.); (A.N.); (C.R.)
- Medical Systems Biophysics and Bioengineering, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Tamara Weiss
- Research Laboratory of the Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Waehringerstrasse 18-20, 1090 Vienna, Austria; (A.R.); (S.S.); (F.M.); (M.H.); (A.B.); (P.S.); (L.S.); (S.W.); (A.N.); (C.R.)
| | - Hans G. Kress
- Clinical Department of Special Anesthesia and Pain Therapy, Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Waehringerstrasse 18-20, 1090 Vienna, Austria;
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Hofmanning 214, 8962 Groebming, Austria
| | - Christine Radtke
- Research Laboratory of the Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Waehringerstrasse 18-20, 1090 Vienna, Austria; (A.R.); (S.S.); (F.M.); (M.H.); (A.B.); (P.S.); (L.S.); (S.W.); (A.N.); (C.R.)
| |
Collapse
|
12
|
Daga KR, Larey AM, Morfin MG, Chen K, Bitarafan S, Carpenter JM, Hynds HM, Hines KM, Wood LB, Marklein RA. Microglia Morphological Response to Mesenchymal Stromal Cell Extracellular Vesicles Demonstrates EV Therapeutic Potential for Modulating Neuroinflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601612. [PMID: 39005342 PMCID: PMC11245023 DOI: 10.1101/2024.07.01.601612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background Mesenchymal stromal cell derived extracellular vesicles (MSC-EVs) are a promising therapeutic for neuroinflammation. MSC-EVs can interact with microglia, the resident immune cells of the brain, to exert their immunomodulatory effects. In response to inflammatory cues, such as cytokines, microglia undergo phenotypic changes indicative of their function e.g. morphology and secretion. However, these changes in response to MSC-EVs are not well understood. Additionally, no disease-relevant screening tools to assess MSC-EV bioactivity exist, which has further impeded clinical translation. Here, we developed a quantitative, high throughput morphological profiling approach to assess the response of microglia to neuroinflammation-relevant signals and whether this morphological response can be used to indicate the bioactivity of MSC-EVs. Results Using an immortalized human microglia cell-line, we observed increased size (perimeter, major axis length) and complexity (form factor) upon stimulation with interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α). Upon treatment with MSC-EVs, the overall morphological score (determined using principal component analysis) shifted towards the unstimulated morphology, indicating that MSC-EVs are bioactive and modulate microglia. The morphological effects of MSC-EVs in TNF-γ/IFN-α stimulated cells were concomitant with reduced secretion of 14 chemokines/cytokines (e.g. CXCL6, CXCL9) and increased secretion of 12 chemokines/cytokines (e.g. CXCL8, CXCL10). Proteomic analysis of cell lysates revealed significant increases in 192 proteins (e.g. HIBADH, MEAK7, LAMC1) and decreases in 257 proteins (e.g. PTEN, TOM1, MFF) with MSC-EV treatment. Of note, many of these proteins are involved in regulation of cell morphology and migration. Gene Set Variation Analysis revealed upregulation of pathways associated with immune response, such as regulation of cytokine production, immune cell infiltration (e.g. T cells, NK cells) and morphological changes (e.g. Semaphorin, RHO/Rac signaling). Additionally, changes in microglia mitochondrial morphology were measured suggesting that MSC-EV modulate mitochondrial metabolism. Conclusion This study comprehensively demonstrates the effects of MSC-EVs on human microglial morphology, cytokine secretion, cellular proteome, and mitochondrial content. Our high-throughput, rapid, low-cost morphological approach enables screening of MSC-EV batches and manufacturing conditions to enhance EV function and mitigate EV functional heterogeneity in a disease relevant manner. This approach is highly generalizable and can be further adapted and refined based on selection of the disease-relevant signal, target cell, and therapeutic product.
Collapse
Affiliation(s)
- Kanupriya R Daga
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Andrew M Larey
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Maria G Morfin
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
| | - Kailin Chen
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
| | - Sara Bitarafan
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Hannah M Hynds
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Kelly M Hines
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Levi B Wood
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ross A Marklein
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
13
|
Gao M, Cai Q, Bian Y, Wang Z, Xu L, Peng J. Protective effect of esculentoside A against myocardial infarction via targeting C-X-C motif chemokine receptor 2. Biomed Pharmacother 2024; 174:116529. [PMID: 38569275 DOI: 10.1016/j.biopha.2024.116529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024] Open
Abstract
Myocardial infarction (MI) is the primary cause of cardiac mortality. Esculentoside A (EsA), a triterpenoid saponin, has anti-inflammatory and antioxidant activities. However, its effect on MI remains unknown. In this study, the protective effect and mechanisms of EsA against MI were investigated. EsA significantly alleviated hypoxia-induced HL-1 cell injury, including increasing cell viability, inhibiting reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP) and lactate dehydrogenase (LDH) leakage. In mouse MI model by left coronary artery (LAD) ligating, EsA obviously restored serum levels of creatine kinase isoenzymes (CK-MB), cardiac troponin I (cTnI), superoxide dismutase (SOD) and malondialdehyde (MDA). In addition, the cardioprotective effect of EsA was further confirmed by infarct size, electrocardiogram and echocardiography. Mechanistically, the targeted binding relationship between EsA and C-X-C motif chemokine receptor 2 (CXCR2) was predicted by molecular docking and dynamics, and validated by small molecule pull-down and surface plasmon resonance tests. EsA inhibited CXCR2 level both in vitro and in vivo, correspondingly alleviated oxidative stress by suppressing NOX1 and NOX2 and relieved inflammation through inhibiting p65 and p-p65. It demonstrated that EsA could play a cardioprotective role by targeting CXCR2. However, the effect of EsA against MI was abolished in combination with CXCR2 overexpression both in vitro and in vivo. This study revealed that EsA showed excellent cardioprotective activities by targeting CXCR2 to alleviate oxidative stress and inflammation in MI. EsA may function as a novel CXCR2 inhibitor and a potent candidate for the prevention and intervention of MI in the future.
Collapse
Affiliation(s)
- Meng Gao
- Institute of Intergrative Medicine, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China; College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Qing Cai
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Yehua Bian
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Zhuoya Wang
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China; College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Department of Traditional Chinese Medicine Pharmacology, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Hubei Shizhen Laboratory, Wuhan 430065, China.
| |
Collapse
|
14
|
Jiang S, Li W, Song M, Liang J, Liu G, Du Q, Wang L, Meng H, Tang L, Yang Y, Zhang B. CXCL1-CXCR2 axis mediates inflammatory response after sciatic nerve injury by regulating macrophage infiltration. Mol Immunol 2024; 169:50-65. [PMID: 38493581 DOI: 10.1016/j.molimm.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Macrophages play a crucial role in the inflammatory response following sciatic nerve injury. Studies have demonstrated that C-X-C motif chemokine (CXCL) 1 recruit macrophages by binding to C-X-C chemokine receptor (CXCR) 2 and participates in the inflammatory response of various diseases. Based on these findings, we aimed to explore the role of the CXCL1-CXCR2 axis in the repair process after peripheral nerve injury. Initially, we simulated sciatic nerve injury and observed an increased expression of CXCL1 and CXCR2 in the nerves of the injury group. Both in vivo and in vitro experiments confirmed that the heightened CXCL1 expression occurs in Schwann cells and is secreted, while the elevated CXCR2 is expressed by recruited macrophages. In addition, in vitro experiments demonstrated that the binding of CXCL1 to CXCR2 can activate the NLRP3 inflammasome and promote the production of interleukin-1 beta (IL-1β) in macrophages. However, after mice were subjected to sciatic nerve injury, the number of macrophages and the expression of inflammatory factors in the sciatic nerve were reduced following treatment with the CXCR2 inhibitor SB225002. Simultaneously, we evaluated the sciatic nerve function index, the expression of p75 neurotrophic factor receptor (p75NTR), and myelin proteins, and all of these results were improved with the use of SB225002. Thus, our results suggest that after sciatic nerve injury, the CXCL1-CXCR2 axis mediates the inflammatory response by promoting the recruitment and activation of macrophages, which is detrimental to the repair of the injured nerves. In contrast, treatment with SB225002 promotes the repair of injured sciatic nerves.
Collapse
Affiliation(s)
- Suli Jiang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Wei Li
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Meiying Song
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Jie Liang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Guixian Liu
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Qiaochu Du
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Luoyang Wang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Haining Meng
- School of Emergency Medicine, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Lei Tang
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao, Shandong Province, China
| | - Yanyan Yang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Bei Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
15
|
Okekawa A, Wada T, Onogi Y, Takeda Y, Miyazawa Y, Sasahara M, Tsuneki H, Sasaoka T. Platelet-derived growth factor signaling in pericytes promotes hypothalamic inflammation and obesity. Mol Med 2024; 30:21. [PMID: 38317079 PMCID: PMC10845801 DOI: 10.1186/s10020-024-00793-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Pericytes are a vital component of the blood-brain barrier, and their involvement in acute inflammation was recently suggested. However, it remains unclear whether pericytes contribute to hypothalamic chronic inflammation and energy metabolism in obesity. The present study investigated the impact of pericytes on the pathophysiology of obesity by focusing on platelet-derived growth factor (PDGF) signaling, which regulates pericyte functions. METHODS Tamoxifen-inducible systemic conditional PDGF receptor β knockout mice (Pdgfrb∆SYS-KO) and Calcium/calmodulin-dependent protein kinase type IIa (CaMKIIa)-positive neuron-specific PDGF receptor β knockout mice (Pdgfrb∆CaMKII-KO) were fed a high-fat diet, and metabolic phenotypes before and 3 to 4 weeks after dietary loading were examined. Intracellular energy metabolism and relevant signal transduction in lipopolysaccharide- and/or platelet-derived growth factor-BB (PDGF-BB)-stimulated human brain pericytes (HBPCs) were assessed by the Seahorse XFe24 Analyzer and Western blotting. The pericyte secretome in conditioned medium from HBPCs was studied using cytokine array kit, and its impact on polarization was examined in bone marrow-derived macrophages (BMDMs), which are microglia-like cells. RESULTS Energy consumption increased and body weight gain decreased after high-fat diet loading in Pdgfrb∆SYS-KO mice. Cellular oncogene fos (cFos) expression increased in proopiomelanocortin (POMC) neurons, whereas microglial numbers and inflammatory gene expression decreased in the hypothalamus of Pdgfrb∆SYS-KO mice. No significant changes were observed in Pdgfrb∆CaMKII-KO mice. In HBPCs, a co-stimulation with lipopolysaccharide and PDGF-BB shifted intracellular metabolism towards glycolysis, activated mitogen-activated protein kinase (MAPK), and modulated the secretome to the inflammatory phenotype. Consequently, the secretome showed an increase in various proinflammatory chemokines and growth factors including Epithelial-derived neutrophil-activating peptide 78 (C-X-C motif chemokine ligand (CXCL)5), Thymus and activation-regulated chemokine (C-C motif chemokine (CCL)17), Monocyte chemoattractant protein 1 (CCL2), and Growth-regulated oncogene α (CXCL1). Furthermore, conditioned medium from HBPCs stimulated the inflammatory priming of BMDMs, and this change was abolished by the C-X-C motif chemokine receptor (CXCR) inhibitor. Consistently, mRNA expression of CXCL5 was elevated by lipopolysaccharide and PDGF-BB treatment in HBPCs, and the expression was significantly lower in the hypothalamus of Pdgfrb∆SYS-KO mice than in control Pdgfrbflox/flox mice (FL) following 4 weeks of HFD feeding. CONCLUSIONS PDGF receptor β signaling in hypothalamic pericytes promotes polarization of macrophages by changing their secretome and contributes to the progression of obesity.
Collapse
Affiliation(s)
- Akira Okekawa
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Tsutomu Wada
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Yasuhiro Onogi
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
- Research Center for Pre-Disease Science, University of Toyama, 2630 Sugitani, Toyama, Japan
| | - Yuki Takeda
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Yuichiro Miyazawa
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Masakiyo Sasahara
- Department of Pathology, University of Toyama, 2630 Sugitani, Toyama, Japan
| | - Hiroshi Tsuneki
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
- Department of Integrative Pharmacology, University of Toyama, 2630 Sugitani, Toyama, Japan
| | - Toshiyasu Sasaoka
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
16
|
Yang Q, Xu Y, Bin X, Chan KP, Chen S, Qian Z, Yao Y, Yuan XL, Qiu K, Huang Y, Ng TK. Combined treatment of human mesenchymal stem cells and green tea extract on retinal ganglion cell regeneration in rats after optic nerve injury. Exp Eye Res 2024; 239:109787. [PMID: 38211683 DOI: 10.1016/j.exer.2024.109787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/15/2023] [Accepted: 01/09/2024] [Indexed: 01/13/2024]
Abstract
Retinal ganglion cell (RGC) death and axonal loss cause irreversible vision loss upon optic nerve (ON) injury. We have independently demonstrated that mesenchymal stem cells (MSCs) and green tea extract (GTE) promote RGC survival and axonal regeneration in rats with ON injury. Here we aimed to evaluate the combined treatment effect of human bone marrow-derived MSCs (hBM-MSCs) and GTE on RGC survival and axonal regeneration after ON injury. Combined treatment of hBM-MSCs and GTE promoted RGC survival and neurite outgrowth/axonal regeneration in ex vivo retinal explant culture and in rats after ON injury. GTE increased Stat3 activation in the retina after combined treatment, and enhanced brain-derived neurotrophic factor secretion from hBM-MSCs. Treatment of 10 μg/mL GTE would not induce hBM-MSC apoptosis, but inhibited their proliferation, migration, and adipogenic and osteogenic differentiation in vitro with reducing matrix metalloproteinase secretions. In summary, this study revealed that GTE can enhance RGC protective effect of hBM-MSCs, suggesting that stem cell priming could be a prospective strategy enhancing the properties of stem cells for ON injury treatment.
Collapse
Affiliation(s)
- Qichen Yang
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China; Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yanxuan Xu
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Xin Bin
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Kwok Ping Chan
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Shaowan Chen
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Zhen Qian
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Yao Yao
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Xiang-Ling Yuan
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Kunliang Qiu
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Yuqiang Huang
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong, China; Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
17
|
Jin F, Li Y, Gao X, Yang X, Li T, Liu S, Wei Z, Li S, Mao N, Liu H, Cai W, Xu H, Zhang H. Exercise training inhibits macrophage-derived IL-17A-CXCL5-CXCR2 inflammatory axis to attenuate pulmonary fibrosis in mice exposed to silica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166443. [PMID: 37611700 DOI: 10.1016/j.scitotenv.2023.166443] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Exposure to crystalline silica leads to health effects beyond occupational silicosis. Exercise training's potential benefits on pulmonary diseases yield inconsistent outcomes. In this study, we utilized experimental silicotic mice subjected to exercise training and pharmacological interventions, including interleukin-17A (IL-17A) neutralizing antibody or clodronate liposome for macrophage depletion. Findings reveal exercise training's ability to mitigate silicosis progression in mice by suppressing scavenger receptor B (SRB)/NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and Toll-like receptor 4 (TLR4) pathways. Macrophage-derived IL-17A emerges as primary source and trigger for silica-induced pulmonary inflammation and fibrosis. Exercise training effectively inhibits IL-17A-CXC motif chemokine ligand 5 (CXCL5)-Chemokine (C-X-C motif) Receptor 2 (CXCR2) axis in silicotic mice. Our study evidences exercise training's potential to reduce collagen deposition, preserve elastic fibers, slow pulmonary fibrosis advancement, and enhance pulmonary function post silica exposure by impeding macrophage-derived IL-17A-CXCL5-CXCR2 axis.
Collapse
Affiliation(s)
- Fuyu Jin
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Yaqian Li
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Xuemin Gao
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Xinyu Yang
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Tian Li
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Shupeng Liu
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Zhongqiu Wei
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Shifeng Li
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Na Mao
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Heliang Liu
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei 063210, China.
| | - Wenchen Cai
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei 063210, China.
| | - Hong Xu
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei 063210, China; Health Science Center, North China University of Science and Technology, Tangshan, Hebei 063210, China.
| | - Haibo Zhang
- Department of Anesthesiology and Pain Medicine, Department of Physiology, Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada; The Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Benowitz LI, Xie L, Yin Y. Inflammatory Mediators of Axon Regeneration in the Central and Peripheral Nervous Systems. Int J Mol Sci 2023; 24:15359. [PMID: 37895039 PMCID: PMC10607492 DOI: 10.3390/ijms242015359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Although most pathways in the mature central nervous system cannot regenerate when injured, research beginning in the late 20th century has led to discoveries that may help reverse this situation. Here, we highlight research in recent years from our laboratory identifying oncomodulin (Ocm), stromal cell-derived factor (SDF)-1, and chemokine CCL5 as growth factors expressed by cells of the innate immune system that promote axon regeneration in the injured optic nerve and elsewhere in the central and peripheral nervous systems. We also review the role of ArmC10, a newly discovered Ocm receptor, in mediating many of these effects, and the synergy between inflammation-derived growth factors and complementary strategies to promote regeneration, including deleting genes encoding cell-intrinsic suppressors of axon growth, manipulating transcription factors that suppress or promote the expression of growth-related genes, and manipulating cell-extrinsic suppressors of axon growth. In some cases, combinatorial strategies have led to unprecedented levels of nerve regeneration. The identification of some similar mechanisms in human neurons offers hope that key discoveries made in animal models may eventually lead to treatments to improve outcomes after neurological damage in patients.
Collapse
Affiliation(s)
- Larry I. Benowitz
- Department of Neurosurgery, Boston Children’s Hospital, Boston, MA 02115, USA; (L.X.); (Y.Y.)
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
- Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Lili Xie
- Department of Neurosurgery, Boston Children’s Hospital, Boston, MA 02115, USA; (L.X.); (Y.Y.)
- Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
- Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yuqin Yin
- Department of Neurosurgery, Boston Children’s Hospital, Boston, MA 02115, USA; (L.X.); (Y.Y.)
- Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
19
|
Yang L, Cao M, Tian J, Cui P, Ai L, Li X, Li H, Gao M, Fang L, Zhao L, Gong F, Zhou C. Identification of Plasma Inflammatory Markers of Adolescent Depression Using the Olink Proteomics Platform. J Inflamm Res 2023; 16:4489-4501. [PMID: 37849645 PMCID: PMC10577244 DOI: 10.2147/jir.s425780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023] Open
Abstract
Purpose The quality of life of worldwide adolescents has been seriously affected by depression. Notably, the inflammatory response is closely associated with the pathophysiology of depression. The present study applied a novel targeted proteomics technology, Olink proximity extension assay (PEA), to profile circulating immune-related proteins in adolescents with depression. Methods In the present study, the expression levels of 92 inflammation-related proteins were compared between adolescents with depression (ADs) (n=15) and healthy controls (HCs) (n=15), using the OLINK PEA inflammation panel. We further validated 5 top proteins that were identified through KEGG and GO analyses between 40 HCs and 50 ADs, including CCL4, CXCL5, CXCL6, CXCL11, and IL-18 using enzyme linked immunosorbent assay (ELISA). Results We identified 13 differentially expressed proteins between the two cohorts, including 5 up-regulated and 8 down-regulated proteins. Among them, the TRAIL protein levels were significantly negatively correlated with the HAMA-14 score (r=-0.538, p= 0.038), and the levels of transforming growth factor α (TGF-α) were significantly associated with a change in appetite (r = -0.658, p = 0.008). After validation by ELISA, CCL4, CXCL5, CXCL11, and IL-18 showed significant changes between ADs and HCs (p < 0.05), while CXCL6 showed an up-regulated tendency in ADs (p=0.0673). The pooled diagnostic efficacy (area under the curve [AUC]) of these five inflammation markers in clinical diagnosis for adolescent depression was 0.819 (95% CI: 0.735-0.904). Conclusion We report a number of inflammation-related plasma biomarkers, which uncover a potential involvement of chemokines, cytokines, and cytokine receptors in adolescent depression. Their roles in the pathophysiology of depression need to be further elucidated.
Collapse
Affiliation(s)
- Ling Yang
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Cerebrovascular Disease Research, Chongqing, People’s Republic of China
| | - Maolin Cao
- Department of General Practice, Yongchuan Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jing Tian
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Peijin Cui
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Ling Ai
- Department of General Practice, Yongchuan Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xue Li
- Central Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Hua Li
- Department of Ophthalmology, Yongchuan Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Menghan Gao
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Liang Fang
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Cerebrovascular Disease Research, Chongqing, People’s Republic of China
- Chongqing Clinical Research Center for Geriatric Disease, Chongqing, People’s Republic of China
| | - Libo Zhao
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Cerebrovascular Disease Research, Chongqing, People’s Republic of China
| | - Fang Gong
- Chongqing Key Laboratory of Cerebrovascular Disease Research, Chongqing, People’s Republic of China
- Chongqing Clinical Research Center for Geriatric Disease, Chongqing, People’s Republic of China
| | - Chanjuan Zhou
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Department of General Practice, Yongchuan Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Central Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Clinical Research Center for Geriatric Disease, Chongqing, People’s Republic of China
| |
Collapse
|
20
|
Qi J, Yan X, Li L, Qiu K, Huang W, Zhou Z. CXCL5 promotes lipotoxicity of hepatocytes through upregulating NLRP3/Caspase-1/IL-1β signaling in Kupffer cells and exacerbates nonalcoholic steatohepatitis in mice. Int Immunopharmacol 2023; 123:110752. [PMID: 37573690 DOI: 10.1016/j.intimp.2023.110752] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/13/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023]
Abstract
Immune-inflammatory responses play a key role in the development of nonalcoholic steatohepatitis (NASH). Previous studies have demonstrated that CXC motif chemokine ligand 5 (CXCL5) correlates positively with obesity and type 2 diabetes. This study is to explore the functional role of CXCL5 in the pathogenesis of NASH. To establish a NASH model, mice were fed with methionine-and choline-deficient high-fat diet for 6 weeks and anti-CXCL5 mAb was injected during the same period. An in vitro NASH model was established by treating palmitic acid (PA), using a trans-well co-culture system of mouse primary hepatocytes and Kupffer cells (KCs), and recombinant mouse (rm) CXCL5 was treated after PA administration. Our data showed that hepatic CXCL5 levels were highly expressed in the NASH mouse model. CXCL5 neutralization significantly alleviated the severity of NASH livers, demonstrated by pathological analysis, decreased biochemicals, and inflammation. Besides, neutralizing CXCL5 reduced lipid accumulation, cell death, and fibrosis in injured livers. In vitro, rmCXCL5 could not affect the activation of hepatic stellate cells. Also, rmCXCL5 exacerbated PA-induced hepatotoxicity and lipid deposition in hepatocytes co-cultured with KCs rather than in single-cultured hepatocytes. Mechanistically, rmCXCL5 not only promoted NOD-like receptor pyrin domain-containing protein 3 (NLRP3) expression, Cleaved caspase-1 expression, and interleukin 1 beta (IL-1β) secretion in single-cultured and co-cultured KCs but also increased lipid deposition in co-cultured hepatocytes. In addition, MCC950, an inhibitor of NLRP3, almost abolished the effects of rmCXCL5 on PA-treated co-culture system. Therefore, CXCL5 could exacerbate NASH by promoting lipotoxicity of hepatocytes via upregulating NLRP3/Caspase-1/IL-1β signaling in KCs.
Collapse
Affiliation(s)
- Jing Qi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, No.1, Xuefu North Road, University Town, Fuzhou 350122, Fujian, China
| | - Xueqing Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, No.1, Xuefu North Road, University Town, Fuzhou 350122, Fujian, China
| | - Lanqian Li
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China; Diagnostic Pathology Center, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Kexin Qiu
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China; Diagnostic Pathology Center, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Weizhi Huang
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China; Diagnostic Pathology Center, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Zixiong Zhou
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China; Diagnostic Pathology Center, Fujian Medical University, Fuzhou, Fujian 350122, China.
| |
Collapse
|
21
|
Li J, Zhu Y, Xu M, Li P, Zhou Y, Song Y, Cai Q. Physcion prevents induction of optic nerve injury in rats via inhibition of the JAK2/STAT3 pathway. Exp Ther Med 2023; 26:381. [PMID: 37456161 PMCID: PMC10347236 DOI: 10.3892/etm.2023.12080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 04/26/2023] [Indexed: 07/18/2023] Open
Abstract
Optic nerve injury is a type of neurodegenerative disease. Physcion is an anthraquinone that exerts a protective role against various diseases. However, its function in regulating optic nerve injury remains largely unknown. An in vitro model of optic nerve injury was established in HAPI cells treated with IFN-β. Functional assays were used to detect HAPI cell viability and apoptosis. The levels of inflammation and the expression levels of oxidative stress-related genes were measured in HAPI cells. In addition, western blot analysis was used to detect the expression levels of Janus kinase 2 (JAK2)/STAT3-linked genes in HAPI cells. Treatment of the cells with physcion prevented cells against IFN-β-induced neuronal injury. Physcion restrained IFN-β-induced inflammatory response and oxidative stress in HAPI cells. In addition, it improved IFN-β-induced injury in HAPI cells by suppressing the JAK2/STAT3 pathway. In conclusion, the present study revealed that physcion improved optic nerve injury in vitro by inhibiting the JAK2/STAT3 pathway. Physcion may be a promising therapeutic target for the treatment of this disease.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Ophthalmology, The Second Affiliated Hospital of Nantong University (Nantong First People's Hospital), Nantong, Jiangsu 226006, P.R. China
| | - Yan Zhu
- Department of Ophthalmology, The Second Affiliated Hospital of Nantong University (Nantong First People's Hospital), Nantong, Jiangsu 226006, P.R. China
| | - Mudong Xu
- Department of Ophthalmology, The Second Affiliated Hospital of Nantong University (Nantong First People's Hospital), Nantong, Jiangsu 226006, P.R. China
| | - Panpan Li
- Department of Ophthalmology, The Second Affiliated Hospital of Nantong University (Nantong First People's Hospital), Nantong, Jiangsu 226006, P.R. China
| | - Yue Zhou
- Department of Ophthalmology, The Second Affiliated Hospital of Nantong University (Nantong First People's Hospital), Nantong, Jiangsu 226006, P.R. China
| | - Yu Song
- Department of Ophthalmology, The Second Affiliated Hospital of Nantong University (Nantong First People's Hospital), Nantong, Jiangsu 226006, P.R. China
| | - Qi Cai
- Department of Ophthalmology, The Second Affiliated Hospital of Nantong University (Nantong First People's Hospital), Nantong, Jiangsu 226006, P.R. China
| |
Collapse
|
22
|
Cen LP, Park KK, So KF. Optic nerve diseases and regeneration: How far are we from the promised land? Clin Exp Ophthalmol 2023; 51:627-641. [PMID: 37317890 PMCID: PMC10519420 DOI: 10.1111/ceo.14259] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 06/16/2023]
Abstract
The retinal ganglion cells (RGCs) are the sole output neurons that connect information from the retina to the brain. Optic neuropathies such as glaucoma, trauma, inflammation, ischemia and hereditary optic neuropathy can cause RGC loss and axon damage, and lead to partial or total loss of vision, which is an irreversible process in mammals. The accurate diagnoses of optic neuropathies are crucial for timely treatments to prevent irrevocable RGCs loss. After severe ON damage in optic neuropathies, promoting RGC axon regeneration is vital for restoring vision. Clearance of neuronal debris, decreased intrinsic growth capacity, and the presence of inhibitory factors have been shown to contribute to the failure of post-traumatic CNS regeneration. Here, we review the current understanding of manifestations and treatments of various common optic neuropathies. We also summarise the current known mechanisms of RGC survival and axon regeneration in mammals, including specific intrinsic signalling pathways, key transcription factors, reprogramming genes, inflammation-related regeneration factors, stem cell therapy, and combination therapies. Significant differences in RGC subtypes in survival and regenerative capacity after injury have also been found. Finally, we highlight the developmental states and non-mammalian species that are capable of regenerating RGC axons after injury, and cellular state reprogramming for neural repair.
Collapse
Affiliation(s)
- Ling-Ping Cen
- Department of Neuro-Ophthalmology, Joint Shantou International Eye Centre of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Kevin K. Park
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Kowk-Fai So
- Guangzhou-HongKong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- Aier School of Ophthalmology, Changsha Aier Hospital of Ophthalmology, Changsha, China
| |
Collapse
|
23
|
Qiu K, Pan Y, Huang W, Li M, Yan X, Zhou Z, Qi J. CXCL5 Promotes Acetaminophen-Induced Hepatotoxicity by Activating Kupffer Cells. Int J Mol Sci 2023; 24:12180. [PMID: 37569554 PMCID: PMC10419303 DOI: 10.3390/ijms241512180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Kupffer cells (KCs) play a key part in the pathological process of acetaminophen (APAP)-induced acute liver injury (ALI), the leading cause of acute liver failure in the world. CXC motif chemokine ligand 5 (CXCL5) exerts proinflammatory effects in acute respiratory distress syndrome and arthritis. In the current study, we aim to reveal the effects of CXCL5 on the activation of KCs and the role of CXCL5 in the pathogenesis of APAP-induced hepatotoxicity. The in vivo study, conducted on mice intraperitoneally injected with APAP (300 mg/kg) to establish the ALI model and then treated with Anti-CXCL5 mAb at 30 min and 12 h after the APAP challenge, showed that CXCL5 expression significantly increased in injured livers, and Anti-CXCL5 mAb mitigated the degree of APAP-evoked ALI in mice which was proven through biochemicals and histological examination. Also, neutralization of CXCL5 had no significant effect on APAP metabolism in the liver but exhibited anti-inflammatory effects and ameliorated hepatocellular death in the injured liver. The in vitro data displayed that recombinant mouse CXCL5 treatment promoted APAP-induced cellular toxicity in primary hepatocytes co-cultured with KCs, compared with single-cultured hepatocytes. Consistent with the result, we found that the Anti-CXCL5 mAb gradient decreased LPS-induced expression of inflammatory cytokines in single-cultured KCs. Therefore, CXCL5 could stimulate KCs to produce inflammatory mediators, therefore damaging hepatocytes from APAP toxicity.
Collapse
Affiliation(s)
- Kexin Qiu
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; (K.Q.); (Y.P.); (W.H.); (M.L.)
- Diagnostic Pathology Center, Fujian Medical University, Fuzhou 350122, China
| | - Yan Pan
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; (K.Q.); (Y.P.); (W.H.); (M.L.)
- Diagnostic Pathology Center, Fujian Medical University, Fuzhou 350122, China
| | - Weizhi Huang
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; (K.Q.); (Y.P.); (W.H.); (M.L.)
- Diagnostic Pathology Center, Fujian Medical University, Fuzhou 350122, China
| | - Mengyuan Li
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; (K.Q.); (Y.P.); (W.H.); (M.L.)
- Diagnostic Pathology Center, Fujian Medical University, Fuzhou 350122, China
| | - Xueqing Yan
- Department of Biochemistry and Molecular Biology, The School of Basic Medical Sciences, Fujian Medical University, No.1, Xuefu North Road, University Town, Fuzhou 350122, China;
| | - Zixiong Zhou
- Department of Pathology and Institute of Oncology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China; (K.Q.); (Y.P.); (W.H.); (M.L.)
- Diagnostic Pathology Center, Fujian Medical University, Fuzhou 350122, China
| | - Jing Qi
- Department of Biochemistry and Molecular Biology, The School of Basic Medical Sciences, Fujian Medical University, No.1, Xuefu North Road, University Town, Fuzhou 350122, China;
| |
Collapse
|
24
|
Zhang ZY, Zuo ZY, Liang Y, Zhang SM, Zhang CX, Chi J, Fan B, Li GY. Promotion of axon regeneration and protection on injured retinal ganglion cells by rCXCL2. Inflamm Regen 2023; 43:31. [PMID: 37340465 DOI: 10.1186/s41232-023-00283-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/31/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND In addition to rescuing injured retinal ganglion cells (RGCs) by stimulating the intrinsic growth ability of damaged RGCs in various retinal/optic neuropathies, increasing evidence has shown that the external microenvironmental factors also play a crucial role in restoring the survival of RGCs by promoting the regrowth of RGC axons, especially inflammatory factors. In this study, we aimed to screen out the underlying inflammatory factor involved in the signaling of staurosporine (STS)-induced axon regeneration and verify its role in the protection of RGCs and the promotion of axon regrowth. METHODS We performed transcriptome RNA sequencing for STS induction models in vitro and analyzed the differentially expressed genes. After targeting the key gene, we verified the role of the candidate factor in RGC protection and promotion of axon regeneration in vivo with two RGC-injured animal models (optic nerve crush, ONC; retinal N-methyl-D-aspartate, NMDA damage) by using cholera toxin subunit B anterograde axon tracing and specific immunostaining of RGCs. RESULTS We found that a series of inflammatory genes expressed upregulated in the signaling of STS-induced axon regrowth and we targeted the candidate CXCL2 gene since the level of the chemokine CXCL2 gene elevated significantly among the top upregulated genes. We further demonstrated that intravitreal injection of rCXCL2 robustly promoted axon regeneration and significantly improved RGC survival in ONC-injured mice in vivo. However, different from its role in ONC model, the intravitreal injection of rCXCL2 was able to simply protect RGCs against NMDA-induced excitotoxicity in mouse retina and maintain the long-distance projection of RGC axons, yet failed to promote significant axon regeneration. CONCLUSIONS We provide the first in vivo evidence that CXCL2, as an inflammatory factor, is a key regulator in the axon regeneration and neuroprotection of RGCs. Our comparative study may facilitate deciphering the exact molecular mechanisms of RGC axon regeneration and developing high-potency targeted drugs.
Collapse
Affiliation(s)
- Zi-Yuan Zhang
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China
| | - Zhao-Yang Zuo
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China
| | - Yang Liang
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China
| | - Si-Ming Zhang
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China
| | - Chun-Xia Zhang
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China
| | - Jing Chi
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China
| | - Bin Fan
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China.
| | - Guang-Yu Li
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China.
| |
Collapse
|
25
|
Jiang S, Liang J, Li W, Wang L, Song M, Xu S, Liu G, Du Q, Zhai D, Tang L, Yang Y, Zhang L, Zhang B. The role of CXCL1/CXCR2 axis in neurological diseases. Int Immunopharmacol 2023; 120:110330. [PMID: 37247498 DOI: 10.1016/j.intimp.2023.110330] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023]
Abstract
The C-X-C chemokine ligand (CXCL) 1 and its receptor C-X-C chemokine receptor (CXCR) 2 are widely expressed in the peripheral nervous systems (PNS) and central nervous systems (CNS) and are involved in the development of inflammation and pain after various nerve injuries. Once a nerve is damaged, it affects not only the neuron itself but also lesions elsewhere in its dominant site. After the CXCL1/CXCR2 axis is activated, multiple downstream pathways can be activated, such as c-Raf/MAPK/AP-1, p-PKC-μ/p-ILK/NLRP3, JAK2/STAT3, TAK1/NF-κB, etc. These pathways in turn mediate cellular motility state or cell migration. CXCR2 is expressed on the surface of neutrophils and monocytes/macrophages. These cells can be recruited to the lesion through the CXCL1/CXCR2 axis to participate in the inflammatory response. The expression of CXCR2 in neurons can activate some pathways in neurons through the CXCL1/CXCR2 axis, thereby causing damage to neurons. CXCR2 is also expressed in astrocytes, and when CXCR2 activated, it increases the number of astrocytes but impairs their function. Since inflammation can occur at almost any site of injury, elucidating the mechanism of CXCL1/CXCR2 axis' influence on inflammation may provide a favorable target for clinical treatment. Therefore, this article reviews the research progress of the CXCL1/CXCR2 axis in neurological diseases, aiming to provide a more meaningful theoretical basis for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Suli Jiang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Jie Liang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Wei Li
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Luoyang Wang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Meiying Song
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Shuo Xu
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Guixian Liu
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Qiaochu Du
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Dongchang Zhai
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Lei Tang
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Yanyan Yang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Li Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Bei Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China.
| |
Collapse
|
26
|
Cao Q, Chen J, Zhang Z, Shu S, Qian Y, Yang L, Xu L, Zhang Y, Bao X, Xia S, Yang H, Xu Y, Qiu S. Astrocytic CXCL5 hinders microglial phagocytosis of myelin debris and aggravates white matter injury in chronic cerebral ischemia. J Neuroinflammation 2023; 20:105. [PMID: 37138312 PMCID: PMC10155379 DOI: 10.1186/s12974-023-02780-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/17/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Chronic cerebral ischemia induces white matter injury (WMI) contributing to cognitive decline. Both astrocytes and microglia play vital roles in the demyelination and remyelination processes, but the underlying mechanism remains unclear. This study aimed to explore the influence of the chemokine CXCL5 on WMI and cognitive decline in chronic cerebral ischemia and the underlying mechanism. METHODS Bilateral carotid artery stenosis (BCAS) model was constructed to mimic chronic cerebral ischemia in 7-10 weeks old male mice. Astrocytic Cxcl5 conditional knockout (cKO) mice were constructed and mice with Cxcl5 overexpressing in astrocytes were generated by stereotactic injection of adeno-associated virus (AAV). WMI was evaluated by magnetic resonance imaging (MRI), electron microscopy, histological staining and western blotting. Cognitive function was examined by a series of neurobehavioral tests. The proliferation and differentiation of oligodendrocyte progenitor cells (OPCs), phagocytosis of microglia were analyzed via immunofluorescence staining, western blotting or flow cytometry. RESULTS CXCL5 was significantly elevated in the corpus callosum (CC) and serum in BCAS model, mainly expressed in astrocytes, and Cxcl5 cKO mice displayed improved WMI and cognitive performance. Recombinant CXCL5 (rCXCL5) had no direct effect on the proliferation and differentiation of OPCs in vitro. Astrocytic specific Cxcl5 overexpression aggravated WMI and cognitive decline induced by chronic cerebral ischemia, while microglia depletion counteracted this effect. Recombinant CXCL5 remarkably hindered microglial phagocytosis of myelin debris, which was rescued by inhibition of CXCL5 receptor C-X-C motif chemokine receptor 2 (CXCR2). CONCLUSION Our study revealed that astrocyte-derived CXCL5 aggravated WMI and cognitive decline by inhibiting microglial phagocytosis of myelin debris, suggesting a novel astrocyte-microglia circuit mediated by CXCL5-CXCR2 signaling in chronic cerebral ischemia.
Collapse
Affiliation(s)
- Qian Cao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Jian Chen
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Zhi Zhang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Shu Shu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Yi Qian
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Lixuan Yang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Lushan Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Yuxin Zhang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Xinyu Bao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Shengnan Xia
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Haiyan Yang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China.
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, China.
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, 210008, China.
| | - Shuwei Qiu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
27
|
Enamorado M, Kulalert W, Han SJ, Rao I, Delaleu J, Link VM, Yong D, Smelkinson M, Gil L, Nakajima S, Linehan JL, Bouladoux N, Wlaschin J, Kabat J, Kamenyeva O, Deng L, Gribonika I, Chesler AT, Chiu IM, Le Pichon CE, Belkaid Y. Immunity to the microbiota promotes sensory neuron regeneration. Cell 2023; 186:607-620.e17. [PMID: 36640762 PMCID: PMC11512587 DOI: 10.1016/j.cell.2022.12.037] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 11/11/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023]
Abstract
Tissue immunity and responses to injury depend on the coordinated action and communication among physiological systems. Here, we show that, upon injury, adaptive responses to the microbiota directly promote sensory neuron regeneration. At homeostasis, tissue-resident commensal-specific T cells colocalize with sensory nerve fibers within the dermis, express a transcriptional program associated with neuronal interaction and repair, and promote axon growth and local nerve regeneration following injury. Mechanistically, our data reveal that the cytokine interleukin-17A (IL-17A) released by commensal-specific Th17 cells upon injury directly signals to sensory neurons via IL-17 receptor A, the transcription of which is specifically upregulated in injured neurons. Collectively, our work reveals that in the context of tissue damage, preemptive immunity to the microbiota can rapidly bridge biological systems by directly promoting neuronal repair, while also identifying IL-17A as a major determinant of this fundamental process.
Collapse
Affiliation(s)
- Michel Enamorado
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Warakorn Kulalert
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seong-Ji Han
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Indira Rao
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jérémie Delaleu
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Verena M Link
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel Yong
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Margery Smelkinson
- Biological Imaging, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Louis Gil
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Saeko Nakajima
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jonathan L Linehan
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicolas Bouladoux
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Josette Wlaschin
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juraj Kabat
- Biological Imaging, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Olena Kamenyeva
- Biological Imaging, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Liwen Deng
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Inta Gribonika
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexander T Chesler
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Claire E Le Pichon
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
28
|
Wong KA, Benowitz LI. Retinal Ganglion Cell Survival and Axon Regeneration after Optic Nerve Injury: Role of Inflammation and Other Factors. Int J Mol Sci 2022; 23:ijms231710179. [PMID: 36077577 PMCID: PMC9456227 DOI: 10.3390/ijms231710179] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/24/2022] Open
Abstract
The optic nerve, like most pathways in the mature central nervous system, cannot regenerate if injured, and within days, retinal ganglion cells (RGCs), the neurons that extend axons through the optic nerve, begin to die. Thus, there are few clinical options to improve vision after traumatic or ischemic optic nerve injury or in neurodegenerative diseases such as glaucoma, dominant optic neuropathy, or optic pathway gliomas. Research over the past two decades has identified several strategies to enable RGCs to regenerate axons the entire length of the optic nerve, in some cases leading to modest reinnervation of di- and mesencephalic visual relay centers. This review primarily focuses on the role of the innate immune system in improving RGC survival and axon regeneration, and its synergy with manipulations of signal transduction pathways, transcription factors, and cell-extrinsic suppressors of axon growth. Research in this field provides hope that clinically effective strategies to improve vision in patients with currently untreatable losses could become a reality in 5-10 years.
Collapse
Affiliation(s)
- Kimberly A. Wong
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Correspondence: (K.A.W.); (L.I.B.)
| | - Larry I. Benowitz
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: (K.A.W.); (L.I.B.)
| |
Collapse
|
29
|
Wang S, Bai J, Zhang YL, Lin QY, Han X, Qu WK, Zhang PF, Ge YS, Zhao Q, Li HH. CXCL1-CXCR2 signalling mediates hypertensive retinopathy by inducing macrophage infiltration. Redox Biol 2022; 56:102438. [PMID: 35981418 PMCID: PMC9418605 DOI: 10.1016/j.redox.2022.102438] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/26/2022] [Accepted: 08/09/2022] [Indexed: 11/04/2022] Open
Abstract
Inflammation plays an important role in hypertensive retinal vascular injury and subsequent retinopathy. Monocyte chemotaxis via CXCL1-CXCR2 binding has been implicated in various cardiovascular diseases, but the function of CXCL1-CXCR2 signalling involved in retinopathy, which was investigated as angiotensin II (Ang II)-induced retinopathy, is unclear. In our study, we established a hypertensive retinopathy (HR) model by Ang II infusion (3000 ng/min/kg) for 3 weeks. To determine the involvement of CXCR2 signalling, we used CXCR2 knockout (KO) mice or C57BL/6J wild-type (WT) mice as experimental subjects. The mice were treated with a CXCL1 neutralizing antibody or SB225002 (the specific CXCR2 inhibitor). Our results showed that after Ang II treatment, the mRNA levels of CXCL1 and CXCR2 and the number of CXCR2+ inflammatory cells were significantly elevated. Conversely, unlike in the IgG control group, the CXCL1 neutralizing antibody greatly reduced the increase in central retinal thickness induced by Ang II infusion, arteriolar remodelling, superoxide production, and retinal dysfunction in WT mice. Furthermore, Ang II infusion induced arteriolar remodelling, infiltration of Iba1+ macrophages, the production of oxidative stress, and retinal dysfunction, but the symptoms were ameliorated in CXCR2 KO mice and SB225002-treated mice. These protective effects were related to the reduction in the number of CXCR2+ immune cells, particularly macrophages, and the decrease in proinflammatory cytokine (IL-1β, IL-6, TNF-ɑ, and MCP-1) expression in Ang II-treated retinas. Notably, serum CXCL1 levels and the number of CXCR2+ monocytes/neutrophils were higher in HR patients than in healthy controls. In conclusion, this study provides new evidence that the CXCL1-CXCR2 axis plays a vital role in the pathogenesis of hypertensive retinopathy, and selective blockade of CXCL1-CXCR2 activation may be a potential treatment for HR.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Ophthalmology, Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China.
| | - Jie Bai
- Department of Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, Dalian, 116004, China
| | - Yun-Long Zhang
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Qiu-Yue Lin
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, 116000, China
| | - Xiao Han
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Wei-Kun Qu
- Department of Ophthalmology, Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Peng-Fei Zhang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, 116024, China
| | - Yu-Song Ge
- Department of Ophthalmology, Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Qi Zhao
- Department of Ophthalmology, Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China.
| | - Hui-Hua Li
- Department of Emergency Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
30
|
Alvites RD, Branquinho MV, Sousa AC, Lopes B, Sousa P, Prada J, Pires I, Ronchi G, Raimondo S, Luís AL, Geuna S, Varejão ASP, Maurício AC. Effects of Olfactory Mucosa Stem/Stromal Cell and Olfactory Ensheating Cells Secretome on Peripheral Nerve Regeneration. Biomolecules 2022; 12:biom12060818. [PMID: 35740943 PMCID: PMC9220795 DOI: 10.3390/biom12060818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022] Open
Abstract
Cell secretome has been explored as a cell-free technique with high scientific and medical interest for Regenerative Medicine. In this work, the secretome produced and collected from Olfactory Mucosa Mesenchymal Stem Cells and Olfactory Ensheating Cells was analyzed and therapeutically applied to promote peripheral nerve regeneration. The analysis of the conditioned medium revealed the production and secretion of several factors with immunomodulatory functions, capable of intervening beneficially in the phases of nerve regeneration. Subsequently, the conditioned medium was applied to sciatic nerves of rats after neurotmesis, using Reaxon® as tube-guides. Over 20 weeks, the animals were subjected to periodic functional assessments, and after this period, the sciatic nerves and cranial tibial muscles were evaluated stereologically and histomorphometrically, respectively. The results obtained allowed to confirm the beneficial effects resulting from the application of this therapeutic combination. The administration of conditioned medium from Olfactory Mucosal Mesenchymal Stem Cells led to the best results in motor performance, sensory recovery, and gait patterns. Stereological and histomorphometric evaluation also revealed the ability of this therapeutic combination to promote nervous and muscular histologic reorganization during the regenerative process. The therapeutic combination discussed in this work shows promising results and should be further explored to clarify irregularities found in the outcomes and to allow establishing the use of cell secretome as a new therapeutic field applied in the treatment of peripheral nerves after injury.
Collapse
Affiliation(s)
- Rui D. Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (A.S.P.V.)
| | - Mariana V. Branquinho
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (A.S.P.V.)
| | - Ana C. Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (A.S.P.V.)
| | - Bruna Lopes
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (A.S.P.V.)
| | - Patrícia Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (A.S.P.V.)
| | - Justina Prada
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (A.S.P.V.)
- Centro de Ciência Animal e Veterinária (CECAV), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Isabel Pires
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (A.S.P.V.)
- Centro de Ciência Animal e Veterinária (CECAV), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Giulia Ronchi
- Department of Clinical and Biological Sciences, and Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (G.R.); (S.R.); (S.G.)
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences, and Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (G.R.); (S.R.); (S.G.)
| | - Ana L. Luís
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (A.S.P.V.)
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, and Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (G.R.); (S.R.); (S.G.)
| | - Artur Severo P. Varejão
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (A.S.P.V.)
- Centro de Ciência Animal e Veterinária (CECAV), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Ana Colette Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (A.S.P.V.)
- Correspondence: ; Tel.: +351-91-9071286 or +351-22-0428000
| |
Collapse
|
31
|
Li H, Wu M, Zhao X. Role of chemokine systems in cancer and inflammatory diseases. MedComm (Beijing) 2022; 3:e147. [PMID: 35702353 PMCID: PMC9175564 DOI: 10.1002/mco2.147] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Chemokines are a large family of small secreted proteins that have fundamental roles in organ development, normal physiology, and immune responses upon binding to their corresponding receptors. The primary functions of chemokines are to coordinate and recruit immune cells to and from tissues and to participate in regulating interactions between immune cells. In addition to the generally recognized antimicrobial immunity, the chemokine/chemokine receptor axis also exerts a tumorigenic function in many different cancer models and is involved in the formation of immunosuppressive and protective tumor microenvironment (TME), making them potential prognostic markers for various hematologic and solid tumors. In fact, apart from its vital role in tumors, almost all inflammatory diseases involve chemokines and their receptors in one way or another. Modulating the expression of chemokines and/or their corresponding receptors on tumor cells or immune cells provides the basis for the exploitation of new drugs for clinical evaluation in the treatment of related diseases. Here, we summarize recent advances of chemokine systems in protumor and antitumor immune responses and discuss the prevailing understanding of how the chemokine system operates in inflammatory diseases. In this review, we also emphatically highlight the complexity of the chemokine system and explore its potential to guide the treatment of cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Hongyi Li
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of EducationWest China Second HospitalSichuan UniversityChengduChina
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health SciencesUniversity of North DakotaGrand ForksNorth DakotaUSA
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of EducationWest China Second HospitalSichuan UniversityChengduChina
| |
Collapse
|
32
|
Xie L, Cen LP, Li Y, Gilbert HY, Strelko O, Berlinicke C, Stavarache MA, Ma M, Wang Y, Cui Q, Kaplitt MG, Zack DJ, Benowitz LI, Yin Y. Monocyte-derived SDF1 supports optic nerve regeneration and alters retinal ganglion cells' response to Pten deletion. Proc Natl Acad Sci U S A 2022; 119:e2113751119. [PMID: 35394873 PMCID: PMC9169637 DOI: 10.1073/pnas.2113751119] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 02/23/2022] [Indexed: 12/22/2022] Open
Abstract
Although mammalian retinal ganglion cells (RGCs) normally cannot regenerate axons nor survive after optic nerve injury, this failure is partially reversed by inducing sterile inflammation in the eye. Infiltrative myeloid cells express the axogenic protein oncomodulin (Ocm) but additional, as-yet-unidentified, factors are also required. We show here that infiltrative macrophages express stromal cell–derived factor 1 (SDF1, CXCL12), which plays a central role in this regard. Among many growth factors tested in culture, only SDF1 enhances Ocm activity, an effect mediated through intracellular cyclic AMP (cAMP) elevation and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) activation. SDF1 deficiency in myeloid cells (CXCL12flx/flxLysM-Cre−/+ mice) or deletion of the SDF1 receptor CXCR4 in RGCs (intraocular AAV2-Cre in CXCR4flx/flx mice) or SDF1 antagonist AMD3100 greatly suppresses inflammation-induced regeneration and decreases RGC survival to baseline levels. Conversely, SDF1 induces optic nerve regeneration and RGC survival, and, when combined with Ocm/cAMP, SDF1 increases axon regeneration to levels similar to those induced by intraocular inflammation. In contrast to deletion of phosphatase and tensin homolog (Pten), which promotes regeneration selectively from αRGCs, SDF1 promotes regeneration from non-αRGCs and enables the latter cells to respond robustly to Pten deletion; however, SDF1 surprisingly diminishes the response of αRGCs to Pten deletion. When combined with inflammation and Pten deletion, SDF1 enables many RGCs to regenerate axons the entire length of the optic nerve. Thus, SDF1 complements the effects of Ocm in mediating inflammation-induced regeneration and enables different RGC subtypes to respond to Pten deletion.
Collapse
Affiliation(s)
- Lili Xie
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
| | - Ling-Ping Cen
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
- Joint Shantou International Eye Center, Shantou University and The Chinese University of Hong Kong, Shantou 515000, China
| | - Yiqing Li
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510085, China
| | - Hui-Ya Gilbert
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
| | - Oleksandr Strelko
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
| | - Cynthia Berlinicke
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Mihaela A. Stavarache
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, New York, NY 10065
| | - Madeline Ma
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
| | - Yongting Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Cui
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
- Joint Shantou International Eye Center, Shantou University and The Chinese University of Hong Kong, Shantou 515000, China
| | - Michael G. Kaplitt
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medical College, New York, NY 10065
| | - Donald J. Zack
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Larry I. Benowitz
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115
- Program in Neuroscience, Harvard Medical School, Boston, MA 02115
| | - Yuqin Yin
- Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115
| |
Collapse
|
33
|
Saumell-Esnaola M, Delgado D, García del Caño G, Beitia M, Sallés J, González-Burguera I, Sánchez P, López de Jesús M, Barrondo S, Sánchez M. Isolation of Platelet-Derived Exosomes from Human Platelet-Rich Plasma: Biochemical and Morphological Characterization. Int J Mol Sci 2022; 23:ijms23052861. [PMID: 35270001 PMCID: PMC8911307 DOI: 10.3390/ijms23052861] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
Platelet-Rich Plasma (PRP) is enriched in molecular messengers with restorative effects on altered tissue environments. Upon activation, platelets release a plethora of growth factors and cytokines, either in free form or encapsulated in exosomes, which have been proven to promote tissue repair and regeneration. Translational research on the potential of exosomes as a safe nanosystem for therapeutic cargo delivery requires standardizing exosome isolation methods along with their molecular and morphological characterization. With this aim, we isolated and characterized the exosomes released by human PRP platelets. Western blot analysis revealed that CaCl2-activated platelets (PLT-Exos-Ca2+) released more exosomes than non-activated ones (PLT-Exos). Moreover, PLT-Exos-Ca2+ exhibited a molecular signature that meets the most up-to-date biochemical criteria for platelet-derived exosomes and possessed morphological features typical of exosomes as assessed by transmission electron microscopy. Array analysis of 105 analytes including growth factors and cytokines showed that PLT-Exos-Ca2+ exhibited lower levels of most analytes compared to PLT-Exos, but relatively higher levels of those consistently validated as components of the protein cargo of platelet exosomes. In summary, the present study provides new insights into the molecular composition of human platelet-derived exosomes and validates a method for isolating highly pure platelet exosomes as a basis for future preclinical studies in regenerative medicine and drug delivery.
Collapse
Affiliation(s)
- Miquel Saumell-Esnaola
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (M.S.-E.); (M.L.d.J.); (S.B.)
- Bioaraba, Neurofarmacología Celular y Molecular, 01008 Vitoria-Gasteiz, Spain; (G.G.d.C.); (I.G.-B.)
| | - Diego Delgado
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, 01008 Vitoria-Gasteiz, Spain; (D.D.); (M.B.); (P.S.)
| | - Gontzal García del Caño
- Bioaraba, Neurofarmacología Celular y Molecular, 01008 Vitoria-Gasteiz, Spain; (G.G.d.C.); (I.G.-B.)
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| | - Maider Beitia
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, 01008 Vitoria-Gasteiz, Spain; (D.D.); (M.B.); (P.S.)
| | - Joan Sallés
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (M.S.-E.); (M.L.d.J.); (S.B.)
- Bioaraba, Neurofarmacología Celular y Molecular, 01008 Vitoria-Gasteiz, Spain; (G.G.d.C.); (I.G.-B.)
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029 Madrid, Spain
- Correspondence: (J.S.); (M.S.); Tel.: +34-945-013114 (J.S.); +34-945-252077 (M.S.)
| | - Imanol González-Burguera
- Bioaraba, Neurofarmacología Celular y Molecular, 01008 Vitoria-Gasteiz, Spain; (G.G.d.C.); (I.G.-B.)
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| | - Pello Sánchez
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, 01008 Vitoria-Gasteiz, Spain; (D.D.); (M.B.); (P.S.)
| | - Maider López de Jesús
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (M.S.-E.); (M.L.d.J.); (S.B.)
- Bioaraba, Neurofarmacología Celular y Molecular, 01008 Vitoria-Gasteiz, Spain; (G.G.d.C.); (I.G.-B.)
| | - Sergio Barrondo
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain; (M.S.-E.); (M.L.d.J.); (S.B.)
- Bioaraba, Neurofarmacología Celular y Molecular, 01008 Vitoria-Gasteiz, Spain; (G.G.d.C.); (I.G.-B.)
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029 Madrid, Spain
| | - Mikel Sánchez
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, 01008 Vitoria-Gasteiz, Spain; (D.D.); (M.B.); (P.S.)
- Arthroscopic Surgery Unit, Hospital Vithas Vitoria, 01008 Vitoria-Gasteiz, Spain
- Correspondence: (J.S.); (M.S.); Tel.: +34-945-013114 (J.S.); +34-945-252077 (M.S.)
| |
Collapse
|
34
|
Traumatic optic neuropathy: a review of current studies. Neurosurg Rev 2022; 45:1895-1913. [PMID: 35034261 DOI: 10.1007/s10143-021-01717-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/26/2021] [Accepted: 12/09/2021] [Indexed: 10/24/2022]
Abstract
Traumatic optic neuropathy (TON) is a serious complication of craniofacial trauma that directly or indirectly damages the optic nerve and can cause severe vision loss. The incidence of TON has been gradually increasing in recent years. Research on the protection and regeneration of the optic nerve after the onset of TON is still at the level of laboratory studies and which is insufficient to support clinical treatment of TON. And, due to without clear guidelines, there is much ambiguity regarding its diagnosis and management. Clinical interventions for TON include observation only, treatment with corticosteroids alone, or optic canal (OC) decompression (with or without steroids). There is controversy in clinical practice concerning which treatment is the best. A review of available studies shows that the visual acuity of patients with TON can be significantly improved after OC decompression surgery (especially endoscopic transnasal/transseptal optic canal decompression (ETOCD)) with or without the use of corticosteroids. And new findings of laboratory studies such as mitochondrial therapy, lipid change studies, and other studies in favor of TON therapy have also been identified. In this review, we discuss the evolving perspective of surgical treatment and experimental study.
Collapse
|
35
|
Mathew DJ, Livne-Bar I, Sivak JM. An inducible rodent glaucoma model that exhibits gradual sustained increase in intraocular pressure with distinct inner retina and optic nerve inflammation. Sci Rep 2021; 11:22880. [PMID: 34819548 PMCID: PMC8613281 DOI: 10.1038/s41598-021-02057-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/09/2021] [Indexed: 01/29/2023] Open
Abstract
Glaucoma is a chronic and progressive neurodegenerative disease of the optic nerve resulting in loss of retinal ganglion cells (RGCs) and vision. The most prominent glaucoma risk factor is increased intraocular pressure (IOP), and most models focus on reproducing this aspect to study disease mechanisms and targets. Yet, current models result in IOP profiles that often do not resemble clinical glaucoma. Here we introduce a new model that results in a gradual and sustained IOP increase over time. This approach modifies a circumlimbal suture method, taking care to make the sutures 'snug' instead of tight, without inducing an initial IOP spike. This approach did not immediately affect IOPs, but generated gradual ocular hypertension (gOHT) as the sutures tighten over time, in comparison to loosely sutured control eyes (CON), resulting in an average 12.6 mmHg increase in IOP at 17 weeks (p < 0.001). Corresponding characterization revealed relevant retinal and optic nerve pathology, such as thinning of the retinal nerve fiber layer, decreased optokinetic response, RGC loss, and optic nerve head remodeling. Yet, angles remained open, with no evidence of inflammation. Corresponding biochemical profiling indicated significant increases in TGF-β2 and 3, and IL-1 family cytokines in gOHT optic nerve tissues compared to CON, with accompanying microglial reactivity, consistent with active tissue injury and repair mechanisms. Remarkably, this signature was absent from optic nerves following acute ocular hypertension (aOHT) associated with intentionally tightened sutures, although the resulting RGC loss was similar in both methods. These results suggest that the pattern of IOP change has an important impact on underlying pathophysiology.
Collapse
Affiliation(s)
- David J Mathew
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
- Department of Lab Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Izhar Livne-Bar
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
- Department of Lab Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jeremy M Sivak
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada.
- Department of Lab Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|