1
|
Sall I, Foxall R, Felth L, Maret S, Rosa Z, Gaur A, Calawa J, Pavlik N, Whistler JL, Whistler CA. Gut dysbiosis was inevitable, but tolerance was not: temporal responses of the murine microbiota that maintain its capacity for butyrate production correlate with sustained antinociception to chronic morphine. Gut Microbes 2025; 17:2446423. [PMID: 39800714 PMCID: PMC11730370 DOI: 10.1080/19490976.2024.2446423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 11/24/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
The therapeutic benefits of opioids are compromised by the development of analgesic tolerance, which necessitates higher dosing for pain management thereby increasing the liability for drug dependence and addiction. Rodent models indicate opposing roles of the gut microbiota in tolerance: morphine-induced gut dysbiosis exacerbates tolerance, whereas probiotics ameliorate tolerance. Not all individuals develop tolerance, which could be influenced by differences in microbiota, and yet no study design has capitalized upon this natural variation. We leveraged natural behavioral variation in a murine model of voluntary oral morphine self-administration to elucidate the mechanisms by which microbiota influences tolerance. Although all mice shared similar morphine-driven microbiota changes that largely masked informative associations with variability in tolerance, our high-resolution temporal analyses revealed a divergence in the progression of dysbiosis that best explained sustained antinociception. Mice that did not develop tolerance maintained a higher capacity for production of the short-chain fatty acid (SCFA) butyrate known to bolster intestinal barriers and promote neuronal homeostasis. Both fecal microbial transplantation (FMT) from donor mice that did not develop tolerance and dietary butyrate supplementation significantly reduced the development of tolerance independently of suppression of systemic inflammation. These findings could inform immediate therapies to extend the analgesic efficacy of opioids.
Collapse
Affiliation(s)
- Izabella Sall
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- Graduate program in Molecular and Evolutionary Systems Biology, University of New Hampshire, Durham, NH, USA
| | - Randi Foxall
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Lindsey Felth
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
| | - Soren Maret
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Zachary Rosa
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
| | - Anirudh Gaur
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
| | - Jennifer Calawa
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- Microbiology Graduate Program, University of New Hampshire, Durham, NH, USA
| | - Nadia Pavlik
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Jennifer L. Whistler
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
- Department of Physiology and Membrane Biology, UC Davis School of Medicine, Davis, CA, USA
| | - Cheryl A. Whistler
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
2
|
Antoine D, Tao J, Singh S, Singh PK, Marin BG, Roy S. Neonatal exposure to morphine results in prolonged pain hypersensitivity during adolescence, driven by gut microbial dysbiosis and gut-brain axis-mediated inflammation. Brain Behav Immun 2025; 126:3-23. [PMID: 39900146 DOI: 10.1016/j.bbi.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/17/2025] [Accepted: 01/29/2025] [Indexed: 02/05/2025] Open
Abstract
Opioids, such as morphine, are used in the Neonatal Intensive Care Unit (NICU) for pain relief in neonates. However, the available evidence concerning the benefits and harms of opioid therapy in neonates remains limited. While previous studies have reported that neonatal morphine exposure (NME) results in long-term heightened pain sensitivity, the underlying mechanisms are not well understood. This study proposes that dysbiosis of the gut microbiome contributes to pain hypersensitivity following NME. Using an adolescent female murine model, pain sensitivity was evaluated using the tail flick and hot plate assays for thermal pain and the Von Frey assay for mechanical pain. Gut microbiome composition was assessed using 16S rRNA sequencing, while transcriptomic changes in midbrain samples were investigated using bulk RNA sequencing. NME induced prolonged hypersensitivity to thermal and mechanical pain in adolescence, accompanied by persistent gut microbial dysbiosis and sustained systemic inflammation, characterized by elevated circulating cytokine levels (e.g., IL-1α, IL-12p70, IFN-γ, IL-10). Transplantation of the microbiome from NME adolescents recapitulated pain hypersensitivity in naïve adolescent mice, while neonatal probiotic intervention with Bifidobacterium infantis (B. infantis) reversed the pain hypersensitivity by preventing gut dysbiosis and associated systemic inflammation. Furthermore, transcriptomic analysis of midbrain tissues revealed that NME upregulated several genes and key signaling pathways, including those related to immune activation and excitatory signaling, which were notably mitigated with neonatal B. infantis administration. Together, these findings highlight the critical role of the gut-brain axis in modulating pain sensitivity and suggest that targeting the gut microbiome offers a promising therapeutic strategy for managing neurobiological disorders following early opioid exposure.
Collapse
Affiliation(s)
- Danielle Antoine
- Department of Surgery, University of Miami Miller School of Medicine Miami FL USA; Department of Neuroscience, University of Miami Miller School of Medicine Miami FL USA
| | - Junyi Tao
- Department of Surgery, University of Miami Miller School of Medicine Miami FL USA
| | - Salma Singh
- Department of Surgery, University of Miami Miller School of Medicine Miami FL USA
| | - Praveen Kumar Singh
- Department of Surgery, University of Miami Miller School of Medicine Miami FL USA
| | - Barbara G Marin
- Department of Surgery, University of Miami Miller School of Medicine Miami FL USA; Department of Neuroscience, University of Miami Miller School of Medicine Miami FL USA
| | - Sabita Roy
- Department of Surgery, University of Miami Miller School of Medicine Miami FL USA.
| |
Collapse
|
3
|
Saeedi N, Pourabdolhossein F, Dadashi M, Suha A, Janahmadi M, Behzadi G, Hosseinmardi N. Faecal Microbiota Transplantation Modulates Morphine Addictive-Like Behaviours Through Hippocampal Metaplasticity. Addict Biol 2025; 30:e70034. [PMID: 40237231 PMCID: PMC12000926 DOI: 10.1111/adb.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 02/11/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025]
Abstract
The microbiota-gut-brain axis has been implicated in the pathology of substance use disorders (SUDs). In light of the brain's capability to reorganize itself in response to intrinsic and extrinsic stimuli, opioid-induced dysbiosis is likely to contribute to addictive behaviour through modulating neuroplasticity. In this study, a faecal microbiota transplantation (FMT) from a saline-donor was performed on morphine-treated rats to evaluate the effects of gut microbiota on morphine-induced metaplasticity and addictive behaviours. Male Wistar rats were treated with subcutaneous injections of 10 mg/kg morphine sulphate every 12 h for 9 days in an effort to induce dependence. The withdrawal syndrome was precipitated by injecting naloxone (1.5 mg/kg, ip) after the final dose of morphine. The tolerance was induced by repeated morphine injections over a period of 7 days (10 mg/kg, once a day, ip). FMT was applied daily through gavage of processed faeces 1 week before and during the morphine treatment. Field potential recordings (i.e., fEPSP) were carried out to assess short-term and long-term synaptic plasticity in the CA1 area of the hippocampus following Schaffer-collateral stimulation. Animals subjected to FMT exhibited significant reductions in naloxone-precipitated withdrawal syndrome (one-way ANOVA, p < 0.05). Tolerance to the analgesic effects of morphine was not affected by FMT (two-way ANOVA, p > 0.05). Following high-frequency stimulation (HFS) to induce long-term potentiation (LTP), a greater fEPSP slope was observed in morphine-treated animals (unpaired t test, p < 0.05). FMT from saline-donor rats diminished morphine-induced augmented LTP (unpaired t test, p < 0.05). These results highlighted the alleviating effects of FMT from saline-donors on morphine-induced metaplasticity and dependence potentially by modulating the dysbiosis of gut microbiota.
Collapse
Affiliation(s)
- Negin Saeedi
- Department of Physiology, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | | | - Masoud Dadashi
- Department of Microbiology, School of MedicineAlborz University of Medical SciencesKarajIran
| | - Ali Jaafari Suha
- Department of Physiology, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Mahyar Janahmadi
- Neurophysiology Research Center, Department of Physiology, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Gila Behzadi
- Neurophysiology Research Center, Department of Physiology, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Narges Hosseinmardi
- Neurophysiology Research Center, Department of Physiology, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
4
|
Liu H, Yang S, Zhang Q, Wang S, Zhang B, Xu Y, Fu X, Zhou S, Zhang P, Wang H, Di L, Xu X, Xu X, Liu C, Yang C, Wang Y, Jiang R. S-ketamine alleviates morphine-induced hyperalgesia via decreasing the gut Enterobacteriaceae levels: Comparison with R-ketamine. Neuroscience 2025; 568:240-252. [PMID: 39837364 DOI: 10.1016/j.neuroscience.2025.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/18/2024] [Accepted: 01/11/2025] [Indexed: 01/23/2025]
Abstract
BACKGROUND Opioid-induced hyperalgesia (OIH) is a serious complication during the pain treatment. Ketamine has been commonly reported to treat OIH, but the mechanisms remain unclear. Gut microbiota is recently recognized as one of the important mechanisms underlying the occurrence and treatment of OIH. However, whether ketamine enantiomers could alleviate OIH through gut microbiota that still needs to be clarified. METHODS The OIH model was established by morphine injection for 3 consecutive days, followed by hierarchical clustering analysis of behavioral results into susceptible or resilient group. Broad-spectrum antibiotic cocktail (ABx) was used to eradicated the gut microbiota of mice. Subsequently, fecal microbiota transplantation (FMT) was performed. S- or R-ketamine was administered as pretreatment 30 min before morphine injection. Fecal samples were collected for 16S rRNA gene sequencing after completion of all behavioral tests. RESULTS Approximately 60% of the mice developed OIH after morphine exposure with abnormal locomotion and anxiety-like behaviors. Pseudo germ-free mice treated with ABx did not develop hyperalgesia, whereas pseudo germ-free mice that received fecal microbiota transplantation from OIH mice developed hyperalgesia. Interestingly, S-ketamine but not R-ketamine rescued mice from OIH. The principal co-ordinates analysis (PCoA) suggested that the distribution of gut microbiota differed among the groups. Importantly, levels of Enterobacteriaceae were increased in OIH susceptible group, while decreased after S-ketamine treatment. CONCLUSION S-ketamine but not R-ketamine was able to alleviate morphine-induced OIH, and this mechanism is probably related to decreasing the levels of gut Enterobacteriaceae.
Collapse
Affiliation(s)
- Hanyu Liu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Department of Anesthesiology, Perioperative and Pain Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Siqi Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qi Zhang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Sen Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Bingyuan Zhang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yidong Xu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xinghuo Fu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Suli Zhou
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Peiyao Zhang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Haoran Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lingxiao Di
- The First Clinical Medical College, Nanjing Medical University, Nanjing 210029, China
| | - Xiangqing Xu
- Nhwa Institute of Pharmaceutical Research, Jiangsu Nhwa Pharmaceutical Co., Ltd and Jiangsu Key Laboratory of Central Nervous System Drug Research and Development, Xuzhou 221116, China
| | - Xiangyang Xu
- Nhwa Institute of Pharmaceutical Research, Jiangsu Nhwa Pharmaceutical Co., Ltd and Jiangsu Key Laboratory of Central Nervous System Drug Research and Development, Xuzhou 221116, China
| | - Cunming Liu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Yuanyuan Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Riyue Jiang
- Department of Radiation Oncology The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
5
|
Sall I, Foxall R, Felth L, Maret S, Rosa Z, Gaur A, Calawa J, Pavlik N, Whistler JL, Whistler CA. Gut dysbiosis was inevitable, but tolerance was not: temporal responses of the murine microbiota that maintain its capacity for butyrate production correlate with sustained antinociception to chronic morphine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589671. [PMID: 38659831 PMCID: PMC11042308 DOI: 10.1101/2024.04.15.589671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The therapeutic benefits of opioids are compromised by the development of analgesic tolerance, which necessitates higher dosing for pain management thereby increasing the liability for drug dependence and addiction. Rodent models indicate opposing roles of the gut microbiota in tolerance: morphine-induced gut dysbiosis exacerbates tolerance, whereas probiotics ameliorate tolerance. Not all individuals develop tolerance which could be influenced by differences in microbiota, and yet no study design has capitalized upon this natural variation. We leveraged natural behavioral variation in a murine model of voluntary oral morphine self-administration to elucidate the mechanisms by which microbiota influences tolerance. Although all mice shared similar morphine-driven microbiota changes that largely masked informative associations with variability in tolerance, our high-resolution temporal analyses revealed a divergence in the progression of dysbiosis that best explained sustained antinociception. Mice that did not develop tolerance maintained a higher capacity for production of the short-chain fatty acid (SCFA) butyrate known to bolster intestinal barriers and promote neuronal homeostasis. Both fecal microbial transplantation (FMT) from donor mice that did not develop tolerance and dietary butyrate supplementation significantly reduced the development of tolerance independently of suppression of systemic inflammation. These findings could inform immediate therapies to extend the analgesic efficacy of opioids.
Collapse
Affiliation(s)
- Izabella Sall
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- Graduate program in Molecular and Evolutionary Systems Biology, University of New Hampshire, Durham, NH, USA
| | - Randi Foxall
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Lindsey Felth
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
| | - Soren Maret
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Zachary Rosa
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
| | - Anirudh Gaur
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
| | - Jennifer Calawa
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- Microbiology Graduate Program, University of New Hampshire, Durham, NH, USA
| | - Nadia Pavlik
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Jennifer L. Whistler
- Center for Neuroscience, University of California–Davis, Davis, CA, USA
- Department of Physiology and Membrane Biology, UC Davis School of Medicine, Davis, CA, USA
| | - Cheryl A. Whistler
- Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
6
|
Iyer V, Saberi SA, Pacheco R, Sizemore EF, Stockman S, Kulkarni A, Cantwell L, Thakur GA, Hohmann AG. Negative allosteric modulation of CB 1 cannabinoid receptor signaling suppresses opioid-mediated tolerance and withdrawal without blocking opioid antinociception. Neuropharmacology 2024; 257:110052. [PMID: 38936657 PMCID: PMC11261750 DOI: 10.1016/j.neuropharm.2024.110052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/02/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
The direct blockade of CB1 cannabinoid receptors produces therapeutic effects as well as adverse side-effects that limit their clinical potential. CB1 negative allosteric modulators (NAMs) represent an indirect approach to decrease the affinity and/or efficacy of orthosteric cannabinoid ligands or endocannabinoids at CB1. We recently reported that GAT358, a CB1-NAM, blocked opioid-induced mesocorticolimbic dopamine release and reward via a CB1-allosteric mechanism of action. Whether a CB1-NAM dampens opioid-mediated therapeutic effects such as analgesia or alters other unwanted opioid side-effects remain unknown. Here, we characterized the effects of GAT358 on nociceptive behaviors in the presence and absence of morphine in male rats. We examined the impact of GAT358 on formalin-evoked pain behavior and Fos protein expression, a marker of neuronal activation, in the lumbar spinal cord. We also assessed the impact of GAT358 on morphine-induced slowing of colonic transit, tolerance, and withdrawal behaviors in male mice. GAT358 attenuated morphine antinociceptive tolerance without blocking acute antinociception and reduced morphine-induced slowing of colonic motility without impacting fecal boli production. GAT358 also produced antinociception in the presence and absence of morphine in the formalin model of inflammatory nociception and reduced the number of formalin-evoked Fos protein-like immunoreactive cells in the lumbar spinal cord. Finally, GAT358 mitigated the somatic signs of naloxone-precipitated, but not spontaneous, opioid withdrawal following chronic morphine dosing. Our results support the therapeutic potential of CB1-NAMs as novel drug candidates aimed at preserving opioid-mediated analgesia while preventing their unwanted side-effects. Our studies also uncover previously unrecognized antinociceptive properties associated with an arrestin-biased CB1-NAM.
Collapse
Affiliation(s)
- Vishakh Iyer
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Shahin A Saberi
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Romario Pacheco
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Emily Fender Sizemore
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Sarah Stockman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Abhijit Kulkarni
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Lucas Cantwell
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Ganesh A Thakur
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Andrea G Hohmann
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
7
|
Barkus A, Baltrūnienė V, Baušienė J, Baltrūnas T, Barkienė L, Kazlauskaitė P, Baušys A. The Gut-Brain Axis in Opioid Use Disorder: Exploring the Bidirectional Influence of Opioids and the Gut Microbiome-A Comprehensive Review. Life (Basel) 2024; 14:1227. [PMID: 39459527 PMCID: PMC11508959 DOI: 10.3390/life14101227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/15/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Opioid Use Disorder is a chronic condition characterized by compulsive opioid use despite negative consequences, resulting in severe health risks such as overdose and contraction of infectious diseases. High dropout rates in opioid agonist therapy highlight the need for more effective relapse prevention strategies. Animal and clinical studies indicate that opioids influence gut microbiota, which in turn plays a critical role in addiction development and alters behavioral responses to opioids. This study provides a comprehensive review of the literature on the effects of opioids on the gut microbiome and explores the potential of microbiome manipulation as a therapeutic target in opioid addiction.
Collapse
Affiliation(s)
- Artūras Barkus
- Department of Pathology and Forensic Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Laboratory of Experimental Surgery and Oncology, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| | - Vaida Baltrūnienė
- Department of Pathology and Forensic Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Laboratory of Experimental Surgery and Oncology, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| | - Justė Baušienė
- Department of Pathology and Forensic Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Laboratory of Experimental Surgery and Oncology, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| | - Tomas Baltrūnas
- Department of Pathology and Forensic Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Laboratory of Experimental Surgery and Oncology, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| | - Lina Barkienė
- Department of Pathology and Forensic Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Laboratory of Experimental Surgery and Oncology, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| | - Paulina Kazlauskaitė
- Department of Pathology and Forensic Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Laboratory of Experimental Surgery and Oncology, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| | - Augustinas Baušys
- Department of Pathology and Forensic Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Laboratory of Experimental Surgery and Oncology, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| |
Collapse
|
8
|
Han C, Manners MT, Robinson SA. Sex differences in opioid response: a role for the gut microbiome? Front Pharmacol 2024; 15:1455416. [PMID: 39268474 PMCID: PMC11390522 DOI: 10.3389/fphar.2024.1455416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
Opioid drugs have been long known to induce different responses in males compared to females, however, the molecular mechanisms underlying these effects are yet to be fully characterized. Recent studies have established a link between the gut microbiome and behavioral responses to opioids. Chronic opioid use is associated with gut dysbiosis, or microbiome disruptions, which is thought to contribute to altered opioid analgesia and reward processing. Gut microbiome composition and functioning have also been demonstrated to be influenced by sex hormones. Despite this, there is currently very little work investigating whether sex differences in the gut microbiome mediate sex-dependent responses to opioids, highlighting a critical gap in the literature. Here, we briefly review the supporting evidence implicating a potential role for the gut microbiome in regulating sexually dimorphic opioid response and identify areas for future research.
Collapse
Affiliation(s)
- Caitlin Han
- Department of Psychology, Williams College, Williamstown, MA, United States
| | - Melissa T. Manners
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ, United States
| | - Shivon A. Robinson
- Department of Psychology, Williams College, Williamstown, MA, United States
| |
Collapse
|
9
|
Gong Z, Xue Q, Luo Y, Yu B, Hua B, Liu Z. The interplay between the microbiota and opioid in the treatment of neuropathic pain. Front Microbiol 2024; 15:1390046. [PMID: 38919504 PMCID: PMC11197152 DOI: 10.3389/fmicb.2024.1390046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
Neuropathic pain (NP) is characterized by its complex and multifactorial nature and limited responses to opioid therapy; NP is associated with risks of drug resistance, addiction, difficulty in treatment cessation, and psychological disorders. Emerging research on gut microbiota and their metabolites has demonstrated their effectiveness in alleviating NP and augmenting opioid-based pain management, concurrently mitigating the adverse effects of opioids. This review addresses the following key points: (1) the current advances in gut microbiota research and the challenges in using opioids to treat NP, (2) the reciprocal effects and benefits of gut microbiota on NP, and (3) the interaction between opioids with gut microbiota, as well as the benefits of gut microbiota in opioid-based treatment of NP. Through various intricate mechanisms, gut microbiota influences the onset and progression of NP, ultimately enhancing the efficacy of opioids in the management of NP. These insights pave the way for further pragmatic clinical research, ultimately enhancing the efficacy of opioid-based pain management.
Collapse
Affiliation(s)
- Zexiong Gong
- Department of Anesthesiology, Health Science Center, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qingsheng Xue
- Department of Anesthesiology, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yan Luo
- Department of Anesthesiology, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Buwei Yu
- Department of Anesthesiology, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Bo Hua
- Department of Anesthesiology, Health Science Center, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhiheng Liu
- Department of Anesthesiology, Health Science Center, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
10
|
Zhong S, Sun Y, Huo J, Xu W, Yang Y, Yang J, Wu W, Liu Y, Wu C, Li Y. The gut microbiota-aromatic hydrocarbon receptor (AhR) axis mediates the anticolitic effect of polyphenol-rich extracts from Sanghuangporus. IMETA 2024; 3:e180. [PMID: 38882491 PMCID: PMC11170970 DOI: 10.1002/imt2.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 06/18/2024]
Abstract
Inflammatory bowel disease (IBD) is a significant global health concern. The gut microbiota plays an essential role in the onset and development of IBD. Sanghuangporus (SH), a traditional Chinese medicinal mushroom, has excellent anti-inflammatory effects and is effective at modulating the gut microbiota. Despite these attributes, the specific anticolitic effects of SH and the mechanisms through which the gut microbiota mediates its benefits remain unclear. Herein, we demonstrated that polyphenol-rich extract from SH effectively alleviated the pathological symptoms of dextran sodium sulfate (DSS)-induced colitis in mice by modulating the gut microbiota. Treatment with SH distinctly enriched Alistipes, especially Alistipes onderdonkii, and its metabolite 5-hydroxyindole-3-acetic acid (5HIAA). Oral gavage of live A. onderdonkii or 5HIAA potently mitigated DSS-induced colitis in mice. Moreover, both 5HIAA and SH significantly activated the aromatic hydrocarbon receptor (AhR), and the administration of an AhR antagonist abrogated their protective effects against colitis. These results underscore the potent efficacy of SH in diminishing DSS-induced colitis through the promotion of A. onderdonkii and 5HIAA, ultimately activating AhR signaling. This study unveils potential avenues for developing therapeutic strategies for colitis based on the interplay between SH and the gut microbiota.
Collapse
Affiliation(s)
- Shi Zhong
- Institute of Sericulture and TeaZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Yu‐Qing Sun
- Institute of Sericulture and TeaZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Jin‐Xi Huo
- Institute of Sericulture and TeaZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Wen‐Yi Xu
- Beijing QuantiHealth Technology Co., Ltd.BeijingChina
| | - Ya‐Nan Yang
- School of Chinese Materia MedicaTianjin University of Traditional Chinese MedicineTianjinChina
| | - Jun‐Bo Yang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern AgricultureGenome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenGuangdongChina
| | - Wei‐Jie Wu
- Food Science InstituteZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Yong‐Xin Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern AgricultureGenome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenGuangdongChina
| | - Chong‐Ming Wu
- School of Chinese Materia MedicaTianjin University of Traditional Chinese MedicineTianjinChina
| | - You‐Gui Li
- Institute of Sericulture and TeaZhejiang Academy of Agricultural SciencesHangzhouChina
| |
Collapse
|
11
|
Zou LE, Yang YN, Zhan J, Cheng J, Fu Y, Cao Y, Yan X, Wang Y, Wu C. Gut microbiota-based discovery of Houttuyniae Herba as a novel prebiotic of Bacteroides thetaiotaomicron with anti-colitis activity. Biomed Pharmacother 2024; 172:116302. [PMID: 38387133 DOI: 10.1016/j.biopha.2024.116302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024] Open
Abstract
Ulcerative colitis (UC) represents an inflammatory disease characterized by fluctuations in severity, posing substantial challenges in treatment. The gut microbiota plays a pivotal role in the pathogenesis of UC. This study sought to identify drugs specifically targeting the gut microbiota to mitigate UC. We initiated a meta-analysis on gut microbiota in UC patients to identify UC-associated bacterial strains. Subsequently, we screened 164 dietary herbal medicines in vitro to identify potential prebiotics for the UC-associated bacterium, Bacteroides thetaiotaomicron. The DSS-induced colitis mouse model was utilized to evaluate the anti-colitis efficacy of the identified dietary herbal medicine. Full-length 16 S rRNA amplicon sequencing was employed to observe changes in gut microbiota following dietary herbal medicine intervention. The relative abundance of Bacteroides was notably diminished in UC patients compared to their healthy counterparts. B. thetaiotaomicron exhibited an inverse relationship with UC symptoms, indicating its potential as an anti-colitis agent. In vitro assessments revealed that H. Herba significantly bolstered the proliferation of B. thetaiotaomicron. Further experiments showed that treating DSS-induced mice with an aqueous extract of H. Herba considerably alleviated colitis indicators such as weight loss, colon shortening, disease activity score (DAI), and systemic inflammation. Microbial analysis revealed B. thetaiotaomicron as the sole bacterium substantially augmented by H. Herba in vivo. Overall H. Herba emerges as a promising prebiotic for B. thetaiotaomicron, offering significant anti-colitis benefits. Employing a gut microbiota-centric approach proves valuable in the quest for drug discovery.This study provides a new paradigm for drug discovery that targets the gut microbiota to treat UC.
Collapse
Affiliation(s)
- Lin-En Zou
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ya-Nan Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiaguo Zhan
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiale Cheng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Fu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ying Cao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xingxu Yan
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuming Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chongming Wu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
12
|
Greenberg JM, Winters AD, Zagorac B, Kracht DJ, Francescutti DM, Cannella N, Ciccocioppo R, Woods LCS, Mackle J, Hardiman GT, Kuhn BN, Kalivas PW, Kuhn DM, Angoa-Perez M. Long access heroin self-administration significantly alters gut microbiome composition and structure. Front Psychiatry 2024; 15:1369783. [PMID: 38476614 PMCID: PMC10927763 DOI: 10.3389/fpsyt.2024.1369783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction It is well known that chronic opioid use disorder is associated with alterations in gastrointestinal (GI) function that include constipation, reduced motility, and increased bacterial translocation due to compromised gut barrier function. These signs of disrupted GI function can be associated with alterations in the gut microbiome. However, it is not known if long-access opioid self-administration has effects on the gut microbiome. Methods We used 16S rRNA gene sequencing to investigate the gut microbiome in three independent cohorts (N=40 for each) of NIH heterogeneous stock rats before onset of long-access heroin self-administration (i.e., naïve status), at the end of a 15-day period of self-administration, and after post-extinction reinstatement. Measures of microbial α- and β-diversity were evaluated for all phases. High-dimensional class comparisons were carried out with MaAsLin2. PICRUSt2 was used for predicting functional pathways impacted by heroin based on marker gene sequences. Results Community α-diversity was not altered by heroin at any of the three phases by comparison to saline-yoked controls. Analyses of β-diversity showed that the heroin and saline-yoked groups clustered significantly apart from each other using the Bray-Curtis (community structure) index. Heroin caused significant alterations at the ASV level at the self-administration and extinction phases. At the phylum level, the relative abundance of Firmicutes was increased at the self-administration phase. Deferribacteres was decreased in heroin whereas Patescibacteria was increased in heroin at the extinction phase. Potential biomarkers for heroin emerged from the MaAsLin2 analysis. Bacterial metabolomic pathways relating to degradation of carboxylic acids, nucleotides, nucleosides, carbohydrates, and glycogen were increased by heroin while pathways relating to biosynthesis of vitamins, propionic acid, fatty acids, and lipids were decreased. Discussion These findings support the view that long access heroin self-administration significantly alters the structure of the gut microbiome by comparison to saline-yoked controls. Inferred metabolic pathway alterations suggest the development of a microbial imbalance favoring gut inflammation and energy expenditure. Potential microbial biomarkers and related functional pathways likely invoked by heroin self-administration could be targets for therapeutic intervention.
Collapse
Affiliation(s)
- Jonathan M. Greenberg
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
- John D. Dingell Veterans Affairs (VA) Medical Center, Detroit, MI, United States
| | - Andrew D. Winters
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
- John D. Dingell Veterans Affairs (VA) Medical Center, Detroit, MI, United States
| | - Branislava Zagorac
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - David J. Kracht
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
- John D. Dingell Veterans Affairs (VA) Medical Center, Detroit, MI, United States
| | - Dina M. Francescutti
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
- John D. Dingell Veterans Affairs (VA) Medical Center, Detroit, MI, United States
| | - Nazzareno Cannella
- Pharmacology Unit, School of Pharmacy, Center for Neuroscience, University of Camerino, Camerino, Italy
| | - Roberto Ciccocioppo
- Pharmacology Unit, School of Pharmacy, Center for Neuroscience, University of Camerino, Camerino, Italy
| | - Leah C. Solberg Woods
- Department of Molecular Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, United States
| | - James Mackle
- School of Biological Sciences and Institute for Global Food Security, Queen’s University Belfast, Belfast, United Kingdom
| | - Gary T. Hardiman
- School of Biological Sciences and Institute for Global Food Security, Queen’s University Belfast, Belfast, United Kingdom
| | - Brittany N. Kuhn
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Peter W. Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Donald M. Kuhn
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
- John D. Dingell Veterans Affairs (VA) Medical Center, Detroit, MI, United States
| | - Mariana Angoa-Perez
- John D. Dingell Veterans Affairs (VA) Medical Center, Detroit, MI, United States
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
13
|
Hofford RS, Kiraly DD. Clinical and Preclinical Evidence for Gut Microbiome Mechanisms in Substance Use Disorders. Biol Psychiatry 2024; 95:329-338. [PMID: 37573004 PMCID: PMC10884738 DOI: 10.1016/j.biopsych.2023.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023]
Abstract
Substance use disorders are a set of recalcitrant neuropsychiatric conditions that cause tremendous morbidity and mortality and are among the leading causes of loss of disability-adjusted life years worldwide. While each specific substance use disorder is driven by problematic use of a different substance, they all share a similar pattern of escalating and out-of-control substance use, continued use despite negative consequences, and a remitting/relapsing pattern over time. Despite significant advances in our understanding of the neurobiology of these conditions, current treatment options remain few and are ineffective for too many individuals. In recent years, there has been a rapidly growing body of literature demonstrating that the resident population of microbes in the gastrointestinal tract, collectively called the gut microbiome, plays an important role in modulating brain and behavior in preclinical and clinical studies of psychiatric disease. While these findings have not yet been translated into clinical practice, this remains an important and exciting avenue for translational research. In this review, we highlight the current state of microbiome-brain research within the substance use field with a focus on both clinical and preclinical studies. We also discuss potential neurobiological mechanisms underlying microbiome effects on models of substance use disorder and propose future directions to bring these findings from bench to bedside.
Collapse
Affiliation(s)
- Rebecca S Hofford
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist, Winston-Salem, North Carolina
| | - Drew D Kiraly
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist, Winston-Salem, North Carolina; Department of Psychiatry, Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist, Winston-Salem, North Carolina.
| |
Collapse
|
14
|
Browning BD, Kirkland AE, Green R, Engevik M, Alekseyenko AV, Leggio L, Tomko RL, Squeglia LM. The adolescent and young adult microbiome and its association with substance use: a scoping review. Alcohol Alcohol 2024; 59:agad055. [PMID: 37665023 PMCID: PMC10979412 DOI: 10.1093/alcalc/agad055] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/18/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
AIMS The microbiome is a critical factor in health throughout human development. The aims of this scoping review are to (i) elucidate the differences between the youth (post-natal day 21-65 for rodents, 2-7 years for non-human primates, and 10-25 years for humans) microbiome with other life stages and (ii) identify youth-specific microbial changes associated with substance use. METHODS Peer-reviewed studies published up to May 2023 were identified in PubMed and SCOPUS and included gut and oral microbiome studies from rodents, non-human primates, and humans (N = 1733). Twenty-six articles were determined eligible based on inclusion criteria (aim 1: n = 19, aim 2: n = 7). RESULTS The adolescent and young adult oral and gut microbiomes are distinct compared to other life stages, within both non-human and human models. While there is limited research in this area, the microbiome appears to be vulnerable to substance use exposure earlier in life, including substances commonly initiated and escalated during adolescence and young adulthood (i.e. alcohol, cannabis, and tobacco). CONCLUSIONS Studies across the lifespan indicate that adolescence and young adulthood are distinct periods of development, where the microbiome is sensitive to exposures, including substance use. There is a need for more studies focused on the adolescent and young adult microbiome and substance use, as well as focused on the oral microbiome during this developmental period. Understanding the gut and oral microbiome during adolescence and young adulthood may provide insight into the pathophysiology of substance use disorders.
Collapse
Affiliation(s)
- Brittney D Browning
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President St., Charleston, SC 29425, United States
- Department of Neuroscience, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, United States
| | - Anna E Kirkland
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President St., Charleston, SC 29425, United States
| | - Rejoyce Green
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President St., Charleston, SC 29425, United States
| | - Melinda Engevik
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Ave., Charleston SC, 29425, United States
| | - Alexander V Alekseyenko
- Department of Public Health Sciences, Biomedical Informatics Center, Medical University of South Carolina, 135 Cannon St., Charleston, SC 29425, United States
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, Maryland, USA
| | - Rachel L Tomko
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President St., Charleston, SC 29425, United States
| | - Lindsay M Squeglia
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President St., Charleston, SC 29425, United States
| |
Collapse
|
15
|
Iyer V, Saberi SA, Pacheco R, Sizemore EF, Stockman S, Kulkarni A, Cantwell L, Thakur GA, Hohmann AG. Negative allosteric modulation of cannabinoid CB 1 receptor signaling suppresses opioid-mediated tolerance and withdrawal without blocking opioid antinociception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.06.574477. [PMID: 38260598 PMCID: PMC10802405 DOI: 10.1101/2024.01.06.574477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The direct blockade of CB 1 cannabinoid receptors produces therapeutic effects as well as adverse side-effects that limit their clinical potential. CB 1 negative allosteric modulators (NAMs) represent an indirect approach to decrease the affinity and/or efficacy of orthosteric cannabinoid ligands or endocannabinoids at CB 1 . We recently reported that GAT358, a CB 1 -NAM, blocked opioid-induced mesocorticolimbic dopamine release and reward via a CB 1 -allosteric mechanism of action. Whether a CB 1 -NAM dampens opioid-mediated therapeutic effects such as analgesia or alters other unwanted side-effects of opioids remain unknown. Here, we characterized the effects of GAT358 on nociceptive behaviors in the presence and absence of morphine. We examined the impact of GAT358 on formalin-evoked pain behavior and Fos protein expression, a marker of neuronal activation, in the lumbar dorsal horn. We also assessed the impact of GAT358 on morphine-induced slowing of colonic transit, tolerance, and withdrawal behaviors. GAT358 attenuated morphine antinociceptive tolerance without blocking acute antinociception. GAT358 also reduced morphine-induced slowing of colonic motility without impacting fecal boli production. GAT358 produced antinociception in the presence and absence of morphine in the formalin model of inflammatory nociception and reduced the number of formalin-evoked Fos protein-like immunoreactive cells in the lumbar spinal dorsal horn. Finally, GAT358 mitigated the somatic signs of naloxone-precipitated, but not spontaneous, opioid withdrawal following chronic morphine dosing in mice. Our results support the therapeutic potential of CB 1 -NAMs as novel drug candidates aimed at preserving opioid-mediated analgesia while preventing their unwanted side-effects. Our studies also uncover previously unrecognized antinociceptive properties associated with an arrestin-biased CB 1 -NAMs. Highlights CB 1 negative allosteric modulator (NAM) GAT358 attenuated morphine tolerance GAT358 reduced morphine-induced slowing of colonic motility but not fecal productionGAT358 was antinociceptive for formalin pain alone and when combined with morphineGAT358 reduced formalin-evoked Fos protein expression in the lumbar spinal cordGAT358 mitigated naloxone precipitated withdrawal after chronic morphine dosing.
Collapse
|
16
|
Zheng M, Ye H, Yang X, Shen L, Dang X, Liu X, Gong Y, Wu Q, Wang L, Ge X, Fang X, Hou B, Zhang P, Tang R, Zheng K, Huang XF, Yu Y. Probiotic Clostridium butyricum ameliorates cognitive impairment in obesity via the microbiota-gut-brain axis. Brain Behav Immun 2024; 115:565-587. [PMID: 37981012 DOI: 10.1016/j.bbi.2023.11.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023] Open
Abstract
Obesity is a risk factor for cognitive dysfunction and neurodegenerative disease, including Alzheimer's disease (AD). The gut microbiota-brain axis is altered in obesity and linked to cognitive impairment and neurodegenerative disorders. Here, we targeted obesity-induced cognitive impairment by testing the impact of the probiotic Clostridium butyricum, which has previously shown beneficial effects on gut homeostasis and brain function. Firstly, we characterized and analyzed the gut microbial profiles of participants with obesity and the correlation between gut microbiota and cognitive scores. Then, using an obese mouse model induced by a Western-style diet (high-fat and fiber-deficient diet), the effects of Clostridium butyricum on the microbiota-gut-brain axis and hippocampal cognitive function were evaluated. Finally, fecal microbiota transplantation was performed to assess the functional link between Clostridium butyricum remodeling gut microbiota and hippocampal synaptic protein and cognitive behaviors. Our results showed that participants with obesity had gut microbiota dysbiosis characterized by an increase in phylum Proteobacteria and a decrease in Clostridium butyricum, which were closely associated with cognitive decline. In diet-induced obese mice, oral Clostridium butyricum supplementation significantly alleviated cognitive impairment, attenuated the deficit of hippocampal neurite outgrowth and synaptic ultrastructure, improved hippocampal transcriptome related to synapses and dendrites; a comparison of the effects of Clostridium butyricum in mice against human AD datasets revealed that many of the genes changes in AD were reversed by Clostridium butyricum; concurrently, Clostridium butyricum also prevented gut microbiota dysbiosis, colonic barrier impairment and inflammation, and attenuated endotoxemia. Importantly, fecal microbiota transplantation from donor-obese mice with Clostridium butyricum supplementation facilitated cognitive variables and colonic integrity compared with from donor obese mice, highlighting that Clostridium butyricum's impact on cognitive function is largely due to its ability to remodel gut microbiota. Our findings provide the first insights into the neuroprotective effects of Clostridium butyricum on obesity-associated cognitive impairments and neurodegeneration via the gut microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Mingxuan Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Huaiyu Ye
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Lijun Shen
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xuemei Dang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaoli Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yuying Gong
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Qingyuan Wu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Li Wang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110033, China
| | - Xing Ge
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaoli Fang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Jiangsu 221004, China
| | - Benchi Hou
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110033, China
| | - Peng Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xu-Feng Huang
- Illawarra Health and Medical Research Institute (IHMRI) and School of Medicine, University of Wollongong, NSW 2522, Australia
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
17
|
Duffy EP, Bachtell RK, Ehringer MA. Opioid trail: Tracking contributions to opioid use disorder from host genetics to the gut microbiome. Neurosci Biobehav Rev 2024; 156:105487. [PMID: 38040073 PMCID: PMC10836641 DOI: 10.1016/j.neubiorev.2023.105487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
Opioid use disorder (OUD) is a worldwide public health crisis with few effective treatment options. Traditional genetics and neuroscience approaches have provided knowledge about biological mechanisms that contribute to OUD-related phenotypes, but the complexity and magnitude of effects in the brain and body remain poorly understood. The gut-brain axis has emerged as a promising target for future therapeutics for several psychiatric conditions, so characterizing the relationship between host genetics and the gut microbiome in the context of OUD will be essential for development of novel treatments. In this review, we describe evidence that interactions between host genetics, the gut microbiome, and immune signaling likely play a key role in mediating opioid-related phenotypes. Studies in humans and model organisms consistently demonstrated that genetic background is a major determinant of gut microbiome composition. Furthermore, the gut microbiome is susceptible to environmental influences such as opioid exposure. Additional work focused on gene by microbiome interactions will be necessary to gain improved understanding of their effects on OUD-related behaviors.
Collapse
Affiliation(s)
- Eamonn P Duffy
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA; Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA.
| | - Ryan K Bachtell
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA; Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Marissa A Ehringer
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA; Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
18
|
Wang C, Yan J, Du K, Liu S, Wang J, Wang Q, Zhao H, Li M, Yan D, Zhang R, Yang F. Intestinal microbiome dysbiosis in alcohol-dependent patients and its effect on rat behaviors. mBio 2023; 14:e0239223. [PMID: 37962470 PMCID: PMC10746284 DOI: 10.1128/mbio.02392-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/03/2023] [Indexed: 11/15/2023] Open
Abstract
IMPORTANCE Intestinal microbiome dysbiosis is associated with psychiatric disease through the "microbiota-gut-brain" axis. Here, we revealed that there was obvious intestinal microbiome (including bacterial and fungal) dysbiosis in alcohol-dependent patients. Alcohol consumption seriously disturbs the gut equilibrium between bacteria and fungi, reduces the interactions among bacterial-fungal trans-kingdom, and increases intestinal permeability. Gut microbiota should be considered as a whole to study the development of alcohol dependence. The gut microbiome of alcohol-dependent patients increased the anxiety- and depression-like behavior in rats. The gut microbiota dysbiosis may promote the development of alcohol dependence by regulating the endogenous cholecystokinin (CCK) and related receptors. Hence, regulating the balance of gut microbiota and the endogenous CCK may be a potential strategy for reducing the risk of relapse in alcohol addiction patients.
Collapse
Affiliation(s)
- Chuansheng Wang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Junli Yan
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Keda Du
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Shuai Liu
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Jiali Wang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Qi Wang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Huajie Zhao
- Department of Pathogeny, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Min Li
- Department of Pathogeny, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Dong Yan
- Department of Pathogeny, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Ruiling Zhang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Fan Yang
- Department of Pathogeny, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
19
|
Taboun ZS, Sadeghi J. The bidirectional relationship between opioids and the gut microbiome: Implications for opioid tolerance and clinical interventions. Int Immunopharmacol 2023; 125:111142. [PMID: 37918085 DOI: 10.1016/j.intimp.2023.111142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/06/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
Opioids are widely used in treating patients with acute and chronic pain; however, this class of drugs is also commonly abused. Opioid use disorder and associated overdoses are becoming more prevalent as the opioid crisis continues. Chronic opioid use is associated with tolerance, which decreases the efficacy of opioids over time, but also puts individuals at risk of fatal overdoses. Therefore, it is essential to identify strategies to reduce opioid tolerance in those that use these agents. The gut microbiome has been found to play a critical role in opioid tolerance, with opioids causing dysbiosis of the gut, and changes in the gut microbiome impacting opioid tolerance. These changes in turn have a detrimental effect on the gut microbiome, creating a positive feedback cycle. We review the bidirectional relationship between the gut microbiome and opioid tolerance, discuss the role of modulation of the gut microbiome as a potential therapeutic option in opioid-induced gut dysbiosis, and suggest opportunities for further research and clinical interventions.
Collapse
Affiliation(s)
- Zahra S Taboun
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Javad Sadeghi
- School of Engineering, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada.
| |
Collapse
|
20
|
Essmat N, Karádi DÁ, Zádor F, Király K, Fürst S, Al-Khrasani M. Insights into the Current and Possible Future Use of Opioid Antagonists in Relation to Opioid-Induced Constipation and Dysbiosis. Molecules 2023; 28:7766. [PMID: 38067494 PMCID: PMC10708112 DOI: 10.3390/molecules28237766] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Opioid receptor agonists, particularly those that activate µ-opioid receptors (MORs), are essential analgesic agents for acute or chronic mild to severe pain treatment. However, their use has raised concerns including, among others, intestinal dysbiosis. In addition, growing data on constipation-evoked intestinal dysbiosis have been reported. Opioid-induced constipation (OIC) creates an obstacle to continuing treatment with opioid analgesics. When non-opioid therapies fail to overcome the OIC, opioid antagonists with peripheral, fast first-pass metabolism, and gastrointestinal localized effects remain the drug of choice for OIC, which are discussed here. At first glance, their use seems to only be restricted to constipation, however, recent data on OIC-related dysbiosis and its contribution to the appearance of several opioid side effects has garnered a great of attention from researchers. Peripheral MORs have also been considered as a future target for opioid analgesics with limited central side effects. The properties of MOR antagonists counteracting OIC, and with limited influence on central and possibly peripheral MOR-mediated antinociception, will be highlighted. A new concept is also proposed for developing gut-selective MOR antagonists to treat or restore OIC while keeping peripheral antinociception unaffected. The impact of opioid antagonists on OIC in relation to changes in the gut microbiome is included.
Collapse
Affiliation(s)
- Nariman Essmat
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1445 Budapest, Hungary; (N.E.); (D.Á.K.); (F.Z.); (K.K.); (S.F.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Dávid Árpád Karádi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1445 Budapest, Hungary; (N.E.); (D.Á.K.); (F.Z.); (K.K.); (S.F.)
| | - Ferenc Zádor
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1445 Budapest, Hungary; (N.E.); (D.Á.K.); (F.Z.); (K.K.); (S.F.)
| | - Kornél Király
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1445 Budapest, Hungary; (N.E.); (D.Á.K.); (F.Z.); (K.K.); (S.F.)
| | - Susanna Fürst
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1445 Budapest, Hungary; (N.E.); (D.Á.K.); (F.Z.); (K.K.); (S.F.)
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1445 Budapest, Hungary; (N.E.); (D.Á.K.); (F.Z.); (K.K.); (S.F.)
| |
Collapse
|
21
|
Kong D, Sun JX, Yang JQ, Li YS, Bi K, Zhang ZY, Wang KH, Luo HY, Zhu M, Xu Y. Ketogenic diet: a potential adjunctive treatment for substance use disorders. Front Nutr 2023; 10:1191903. [PMID: 37575322 PMCID: PMC10414993 DOI: 10.3389/fnut.2023.1191903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
Substance use disorders (SUD) can lead to serious health problems, and there is a great interest in developing new treatment methods to alleviate the impact of substance abuse. In recent years, the ketogenic diet (KD) has shown therapeutic benefits as a dietary therapy in a variety of neurological disorders. Recent studies suggest that KD can compensate for the glucose metabolism disorders caused by alcohol use disorder by increasing ketone metabolism, thereby reducing withdrawal symptoms and indicating the therapeutic potential of KD in SUD. Additionally, SUD often accompanies increased sugar intake, involving neural circuits and altered neuroplasticity similar to substance addiction, which may induce cross-sensitization and increased use of other abused substances. Reducing carbohydrate intake through KD may have a positive effect on this. Finally, SUD is often associated with mitochondrial damage, oxidative stress, inflammation, glia dysfunction, and gut microbial disorders, while KD may potentially reverse these abnormalities and serve a therapeutic role. Although there is much indirect evidence that KD has a positive effect on SUD, the small number of relevant studies and the fact that KD leads to side effects such as metabolic abnormalities, increased risk of malnutrition and gastrointestinal symptoms have led to the limitation of KD in the treatment of SUD. Here, we described the organismal disorders caused by SUD and the possible positive effects of KD, aiming to provide potential therapeutic directions for SUD.
Collapse
Affiliation(s)
- Deshenyue Kong
- General Hospital of Eastern Theater Command, Nanjing, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jia-xue Sun
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ji-qun Yang
- Third People’s Hospital of Kunming City/Drug Rehabilitation Hospital of Kunming City, Kunming, China
| | - Yuan-sen Li
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ke Bi
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zun-yue Zhang
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
| | - Kun-hua Wang
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
| | - Hua-you Luo
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Mei Zhu
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yu Xu
- General Hospital of Eastern Theater Command, Nanjing, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
- First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
22
|
Satish S, Abu Y, Gomez D, Kumar Dutta R, Roy S. HIV, opioid use, and alterations to the gut microbiome: elucidating independent and synergistic effects. Front Immunol 2023; 14:1156862. [PMID: 37168868 PMCID: PMC10164749 DOI: 10.3389/fimmu.2023.1156862] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/22/2023] [Indexed: 05/13/2023] Open
Abstract
Background The microbiome is essential to immune development, defense against pathogens, and modulation of inflammation. Microbial dysbiosis has been reported in various diseases including human immunodeficiency virus (HIV) and opioid use disorder (OUD). Notably, people living with HIV (PLWH) have been reported to both have higher rates of OUD and use opioids at higher rates than the general public. Thus, studying gut microbial alterations in people living with HIV and with OUD could elucidate mechanisms pertaining to how these conditions both shape and are shaped by the microbiome. However, to date few studies have investigated how HIV and OUD in combination impact the microbiome. Aim of review Here, we review previous studies outlining interactions between HIV, opioid use, and microbial dysbiosis and describe attempts to treat this dysbiosis with fecal microbial transplantation, probiotics, and dietary changes. Key scientific concepts of review While the limited number of studies prevent overgeneralizations; accumulating data suggest that HIV and opioid use together induce distinct alterations in the gut microbiome. Among the three existing preclinical studies of HIV and opioid use, two studies reported a decrease in Lachnospiraceae and Ruminococcaceae, and one study reported a decrease in Muribaculaceae in the combined HIV and opioid group relative to HIV-alone, opioid-alone, or control groups. These bacteria are known to modulate immune function, decrease colonic inflammation, and maintain gut epithelial barrier integrity in healthy individuals. Accordingly, modulation of the gut microbiome to restore gut homeostasis may be attempted to improve both conditions. While mixed results exist regarding treating dysbiosis with microbial restoration in PLWH or in those with opioid dependency, larger well-defined studies that can improve microbial engraftment in hosts hold much promise and should still be explored.
Collapse
Affiliation(s)
- Sanjana Satish
- Department of Medical Education, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Yaa Abu
- Department of Medical Education, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Daniel Gomez
- Department of Medical Education, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Rajib Kumar Dutta
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Sabita Roy
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
23
|
Bodnar RJ. Endogenous opiates and behavior: 2021. Peptides 2023; 164:171004. [PMID: 36990387 DOI: 10.1016/j.peptides.2023.171004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
This paper is the forty-fourth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2021 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonizts and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|
24
|
Vasiliu O. Is fecal microbiota transplantation a useful therapeutic intervention for psychiatric disorders? A narrative review of clinical and preclinical evidence. Curr Med Res Opin 2023; 39:161-177. [PMID: 36094098 DOI: 10.1080/03007995.2022.2124071] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The therapeutic management of psychiatric disorders is currently confronted with a critical need to find new therapeutic interventions due to the high rates of non-responsivity or low responsivity in the key pathologies, e.g. schizophrenia spectrum disorders, alcohol use disorders, or major depressive disorder. The modulation of intestinal microbiota has been explored in various organic and psychiatric dysfunctions, with different degrees of success. However, this type of intervention may represent a helpful add-on at a conceptual level since it does not associate negative pharmacokinetics interactions, significant adverse events, or risk for non-adherence in the long term. Oral administration of pre-, pro-, or synbiotics, and especially the treatment with fecal microbiota transplantation (FMT), are methods still in their early research phase for patients with psychiatric disorders, therefore an exploration of data regarding the potential benefits and adverse events of FMT was considered necessary. In order to accomplish this purpose, the available results of research dedicated to each category of psychiatric disorders, starting with depressive and anxiety disorders, continuing with schizophrenia, substance use disorders, and finishing with disorders diagnosed during childhood, were presented in this paper. Seven clinical trials, 16 preclinical studies, three meta-analyses/systematic reviews, and six case reports, all of these representing ten distinct categories of psychiatric disorders or manifestations, have been reviewed. Mood disorders, anxiety disorders, and alcohol dependence have been the most extensively investigated clinical entities from the FMT efficacy and tolerability perspective, and reviewed data are generally promising. Based on the current status of research, FMT may be considered a helpful intervention in specific psychiatric pathologies. Still, this review showed that most of the information is derived from entirely preclinical studies. Therefore, clinical trials with sound methodology and more participants are needed to clarify FMT's benefits and risks in psychiatric disorders.
Collapse
Affiliation(s)
- Octavian Vasiliu
- Spitalul Universitar de Urgenţă Militar Central Dr Carol Davila Ringgold standard institution, Bucuresti, Romania
| |
Collapse
|
25
|
Ren M, Lotfipour S. Antibiotic Knockdown of Gut Bacteria Sex-Dependently Enhances Intravenous Fentanyl Self-Administration in Adult Sprague Dawley Rats. Int J Mol Sci 2022; 24:409. [PMID: 36613853 PMCID: PMC9820294 DOI: 10.3390/ijms24010409] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Communication between the brain and gut bacteria impacts drug- and addiction-related behaviors. To investigate the role of gut microbiota on fentanyl reinforcement and reward, we depleted gut bacteria in adult Sprague Dawley male and female rats using an oral, nonabsorbable antibiotic cocktail and allowed rats to intravenously self-administer fentanyl on an escalating schedule of reinforcement. We found that antibiotic treatment enhanced fentanyl self-administration in males, but not females, at the lowest schedule of reinforcement (i.e., fixed ratio 1). Both males and females treated with antibiotics self-administered greater amounts of fentanyl at higher schedules of reinforcement. We then replete microbial metabolites via short-chain fatty acid administration to evaluate a potential mechanism in gut-brain communication and found that restoring metabolites decreases fentanyl self-administration back to controls at higher fixed ratio schedules of reinforcement. Our findings highlight an important relationship between the knockdown and rescue of gut bacterial metabolites and fentanyl self-administration in adult rats, which provides support for a significant relationship between the gut microbiome and opioid use. Further work in this field may lead to effective, targeted treatment interventions in opioid-related disorders.
Collapse
Affiliation(s)
- Michelle Ren
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Shahrdad Lotfipour
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA
- Department of Emergency Medicine, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
26
|
Ji J, Yan N, Zhang Z, Li B, Xue R, Dang Y. Characterized profiles of gut microbiota in morphine abstinence-induced depressive-like behavior. Neurosci Lett 2022; 788:136857. [PMID: 36038030 DOI: 10.1016/j.neulet.2022.136857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 10/15/2022]
Abstract
Morphine is the most widely used analgesic for pain management worldwide. Abstinence of morphine could lead to neuropsychiatric symptoms, including depression. Gut microbiota is believed to contribute to the development of depression. However, the characteristics and potential role of gut microbiota in morphine abstinence-induced depression remain unclear. In the present study, we first established morphine abstinence-induced depressive behavior in mice. After dividing the mice into depressive and non-depressive groups, the gut microbiota of the mice was detected by 16S rRNA gene sequencing. The difference in the diversities and abundance of the gut microbiota were analyzed between groups. Then, the representative microbial markers that could distinguish each group were identified. In addition, gene function prediction of the operational taxonomic units (OTUs) with differential abundance between the depressive and non-depressive groups after morphine abstinence was conducted. Our results suggested that four weeks of abstinence from morphine did not change the richness of the gut microbiota. However, morphine abstinence influenced the gut microbial composition. Several specific genera of gut microbiota were identified as markers for each group. Interestingly, gene function prediction found that the fatty acid metabolism pathway was enriched in the OUTs in the depressive group compared with the non-depressive group after morphine abstinence. Our data suggested that gut microbiota dysbiosis was associated with morphine abstinence-induced depressive behavior, possibly by implicating the fatty acid metabolism pathway.
Collapse
Affiliation(s)
- Jinshan Ji
- Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China; Department of Preventive Medicine, Medical College of Yan'an University, Yan'an 716000, Shanxi, China
| | - Ni Yan
- Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China; Department of Disease Control and Prevention, The Affiliated Ninth Hospital of Xi'an of Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Zhengxiang Zhang
- Department of Preventive Medicine, Medical College of Yan'an University, Yan'an 716000, Shanxi, China
| | - Baoli Li
- Department of Preventive Medicine, Medical College of Yan'an University, Yan'an 716000, Shanxi, China
| | - Ruiyang Xue
- Department of Preventive Medicine, Medical College of Yan'an University, Yan'an 716000, Shanxi, China
| | - Yonghui Dang
- Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China.
| |
Collapse
|
27
|
Pain and Opioid-Induced Gut Microbial Dysbiosis. Biomedicines 2022; 10:biomedicines10081815. [PMID: 36009361 PMCID: PMC9404803 DOI: 10.3390/biomedicines10081815] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/10/2022] [Accepted: 07/22/2022] [Indexed: 12/12/2022] Open
Abstract
Opioid-induced dysbiosis (OID) is a specific condition describing the consequences of opioid use on the bacterial composition of the gut. Opioids have been shown to affect the epithelial barrier in the gut and modulate inflammatory pathways, possibly mediating opioid tolerance or opioid-induced hyperalgesia; in combination, these allow the invasion and proliferation of non-native bacterial colonies. There is also evidence that the gut-brain axis is linked to the emotional and cognitive aspects of the brain with intestinal function, which can be a factor that affects mental health. For example, Mycobacterium, Escherichia coli and Clostridium difficile are linked to Irritable Bowel Disease; Lactobacillaceae and Enterococcacae have associations with Parkinson’s disease, and Alistipes has increased prevalence in depression. However, changes to the gut microbiome can be therapeutically influenced with treatments such as faecal microbiota transplantation, targeted antibiotic therapy and probiotics. There is also evidence of emerging therapies to combat OID. This review has collated evidence that shows that there are correlations between OID and depression, Parkinson’s Disease, infection, and more. Specifically, in pain management, targeting OID deserves specific investigations.
Collapse
|
28
|
Substance use, microbiome and psychiatric disorders. Pharmacol Biochem Behav 2022; 219:173432. [PMID: 35905802 DOI: 10.1016/j.pbb.2022.173432] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/29/2022] [Accepted: 07/20/2022] [Indexed: 11/21/2022]
Abstract
Accumulating evidence from several studies has shown association between substance use, dysregulation of the microbiome and psychiatric disorders such as depression, anxiety, and psychosis. Many of the abused substances such as cocaine and alcohol have been shown to alter immune signaling pathways and cause inflammation in both the periphery and the central nervous system (CNS). In addition, these substances of abuse also alter the composition and function of the gut microbiome which is known to play important roles such as the synthesis of neurotransmitters and metabolites, that affect the CNS homeostasis and consequent behavioral outcomes. The emerging interactions between substance use, microbiome and CNS neurochemical alterations could contribute to the development of psychiatric disorders. This review provides an overview of the associative effects of substance use such as alcohol, cocaine, methamphetamine, nicotine and opioids on the gut microbiome and psychiatric disorders involving anxiety, depression and psychosis. Understanding the relationship between substance use, microbiome and psychiatric disorders will provide insights for potential therapeutic targets, aimed at mitigating these adverse outcomes.
Collapse
|
29
|
Opioid Use, Gut Dysbiosis, Inflammation, and the Nervous System. J Neuroimmune Pharmacol 2022; 17:76-93. [PMID: 34993905 DOI: 10.1007/s11481-021-10046-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/17/2021] [Indexed: 12/29/2022]
Abstract
Opioid use disorder (OUD) is defined as the chronic use or misuse of prescribed or illicitly obtained opioids and is characterized by clinically significant impairment. The etiology of OUD is multifactorial as it is influenced by genetics, environmental factors, stress response and behavior. Given the profound role of the gut microbiome in health and disease states, in recent years there has been a growing interest to explore interactions between the gut microbiome and the central nervous system as a causal link and potential therapeutic source for OUD. This review describes the role of the gut microbiome and opioid-induced immunopathological disturbances at the gut epithelial surface, which collectively contribute to OUD and perpetuate the vicious cycle of addiction and relapse.
Collapse
|
30
|
Iyer V, Woodward TJ, Pacheco R, Hohmann AG. A limited access oral oxycodone paradigm produces physical dependence and mesocorticolimbic region-dependent increases in DeltaFosB expression without preference. Neuropharmacology 2021; 205:108925. [PMID: 34921830 DOI: 10.1016/j.neuropharm.2021.108925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/02/2021] [Accepted: 12/11/2021] [Indexed: 01/07/2023]
Abstract
The abuse of oral formulations of prescription opioids has precipitated the current opioid epidemic. We developed an oral oxycodone consumption model consisting of a limited access (4 h) two-bottle choice drinking in the dark (TBC-DID) paradigm and quantified dependence with naloxone challenge using mice of both sexes. We also assessed neurobiological correlates of withdrawal and dependence elicited via oral oxycodone consumption using immunohistochemistry for DeltaFosB (ΔFosB), a transcription factor described as a molecular marker for drug addiction. Neither sex developed a preference for the oxycodone bottle, irrespective of oxycodone concentration, bottle position or prior water restriction. Mice that volitionally consumed oxycodone exhibited hyperlocomotion in an open field test and supraspinal but not spinally-mediated antinociception. Both sexes also developed robust, dose-dependent levels of opioid withdrawal that was precipitated by the opioid antagonist naloxone. Oral oxycodone consumption followed by naloxone challenge led to mesocorticolimbic region-dependent increases in the number of ΔFosB expressing cells. Naloxone-precipitated withdrawal jumps, but not the oxycodone bottle % preference, was positively correlated with the number of ΔFosB expressing cells specifically in the nucleus accumbens shell. Thus, limited access oral consumption of oxycodone produced physical dependence and increased ΔFosB expression despite the absence of opioid preference. Our TBC-DID paradigm allows for the study of oral opioid consumption in a simple, high-throughput manner and elucidates the underlying neurobiological substrates that accompany opioid-induced physical dependence.
Collapse
Affiliation(s)
- Vishakh Iyer
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Taylor J Woodward
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Romario Pacheco
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Andrea G Hohmann
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
31
|
Hao S. Editorial of special issue: Opioid analgesia and opioid use disorder. Exp Neurol 2021; 345:113830. [PMID: 34411876 DOI: 10.1016/j.expneurol.2021.113830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Shuanglin Hao
- Department of Anesthesiology, University of Miami Miller School of Medicine, 1550 NW 10(th) Ave, Miami FL 33136, United States of America.
| |
Collapse
|
32
|
Dietert RR. Microbiome First Approaches to Rescue Public Health and Reduce Human Suffering. Biomedicines 2021; 9:biomedicines9111581. [PMID: 34829809 PMCID: PMC8615664 DOI: 10.3390/biomedicines9111581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 10/27/2021] [Indexed: 01/03/2023] Open
Abstract
The is a sequential article to an initial review suggesting that Microbiome First medical approaches to human health and wellness could both aid the fight against noncommunicable diseases and conditions (NCDs) and help to usher in sustainable healthcare. This current review article specifically focuses on public health programs and initiatives and what has been termed by medical journals as a catastrophic record of recent failures. Included in the review is a discussion of the four priority behavioral modifications (food choices, cessation of two drugs of abuse, and exercise) advocated by the World Health Organization as the way to stop the ongoing NCD epidemic. The lack of public health focus on the majority of cells and genes in the human superorganism, the microbiome, is highlighted as is the "regulatory gap" failure to protect humans, particularly the young, from a series of mass population toxic exposures (e.g., asbestos, trichloroethylene, dioxin, polychlorinated biphenyls, triclosan, bisphenol A and other plasticizers, polyfluorinated compounds, herbicides, food emulsifiers, high fructose corn syrup, certain nanoparticles, endocrine disruptors, and obesogens). The combination of early life toxicity for the microbiome and connected human physiological systems (e.g., immune, neurological), plus a lack of attention to the importance of microbial rebiosis has facilitated rather than suppressed, the NCD epidemic. This review article concludes with a call to place the microbiome first and foremost in public health initiatives as a way to both rescue public health effectiveness and reduce the human suffering connected to comorbid NCDs.
Collapse
Affiliation(s)
- Rodney R Dietert
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
33
|
Ayoub SM, Piscitelli F, Silvestri C, Limebeer CL, Rock EM, Smoum R, Farag M, de Almeida H, Sullivan MT, Lacroix S, Boubertakh B, Nallabelli N, Lichtman AH, Leri F, Mechoulam R, Di Marzo V, Parker LA. Spontaneous and Naloxone-Precipitated Withdrawal Behaviors From Chronic Opiates are Accompanied by Changes in N-Oleoylglycine and N-Oleoylalanine Levels in the Brain and Ameliorated by Treatment With These Mediators. Front Pharmacol 2021; 12:706703. [PMID: 34603019 PMCID: PMC8479102 DOI: 10.3389/fphar.2021.706703] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/23/2021] [Indexed: 12/18/2022] Open
Abstract
Rationale: The endocannabinoidome mediators, N-Oleoylglycine (OlGly) and N-Oleoylalanine (OlAla), have been shown to reduce acute naloxone-precipitated morphine withdrawal affective and somatic responses. Objectives: To determine the role and mechanism of action of OlGly and OlAla in withdrawal responses from chronic exposure to opiates in male Sprague-Dawley rats. Methods: Opiate withdrawal was produced: 1) spontaneously 24 h following chronic exposure to escalating doses of morphine over 14 days (Experiments 1 and 2) and steady-state exposure to heroin by minipumps for 12 days (Experiment 3), 2) by naloxone injection during steady-state heroin exposure (Experiment 4), 3) by naloxone injection during operant heroin self-administration (Experiment 5). Results: In Experiment 1, spontaneous morphine withdrawal produced somatic withdrawal reactions. The behavioral withdrawal reactions were accompanied by suppressed endogenous levels of OlGly in the nucleus accumbens, amygdala, and prefrontal cortex, N-Arachidonylglycerol and OlAla in the amygdala, 2-arachidonoylglycerol in the nucleus accumbens, amygdala and interoceptive insular cortex, and by changes in colonic microbiota composition. In Experiment 2, treatment with OlAla, but not OlGly, reduced spontaneous morphine withdrawal responses. In Experiment 3, OlAla attenuated spontaneous steady-state heroin withdrawal responses at both 5 and 20 mg/kg; OlGly only reduced withdrawal responses at the higher dose of 20 mg/kg. Experiment 4 demonstrated that naloxone-precipitated heroin withdrawal from steady-state exposure to heroin (7 mg/kg/day for 12 days) is accompanied by tissue-specific changes in brain or gut endocannabinoidome mediator, including OlGly and OlAla, levels and colonic microbiota composition, and that OlAla (5 mg/kg) attenuated behavioural withdrawal reactions, while also reversing some of the changes in brain and gut endocannabinoidome and gut microbiota induced by naloxone. Experiment 5 demonstrated that although OlAla (5 mg/kg) did not interfere with operant heroin self-administration on its own, it blocked naloxone-precipitated elevation of heroin self-administration behavior. Conclusion: These results suggest that OlAla and OlGly are two endogenous mediators whose brain concentrations respond to chronic opiate treatment and withdrawal concomitantly with changes in colon microbiota composition, and that OlAla may be more effective than OlGly in suppressing chronic opiate withdrawal responses.
Collapse
Affiliation(s)
- Samantha M Ayoub
- Department of Psychology and Collaborative Neuroscience, University of Guelph, Guelph, ON, Canada
| | - Fabiana Piscitelli
- Institute of Biomolecular Chemistry, Endocannabinoid Research Group Consiglio Nazionale delle Richerche, Pozzuli, Italy
| | - Cristoforo Silvestri
- Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, Faculty of Medicine, Centre NUTRISS, Université Laval, Québec City, QC, Canada
| | - Cheryl L Limebeer
- Department of Psychology and Collaborative Neuroscience, University of Guelph, Guelph, ON, Canada
| | - Erin M Rock
- Department of Psychology and Collaborative Neuroscience, University of Guelph, Guelph, ON, Canada
| | - Reem Smoum
- Institute of Drug Research, School of Pharmacy, Medical Faculty, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mathew Farag
- Department of Psychology and Collaborative Neuroscience, University of Guelph, Guelph, ON, Canada
| | - Hannah de Almeida
- Department of Psychology and Collaborative Neuroscience, University of Guelph, Guelph, ON, Canada
| | - Megan T Sullivan
- Department of Psychology and Collaborative Neuroscience, University of Guelph, Guelph, ON, Canada
| | - Sébastien Lacroix
- Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, Faculty of Medicine, Centre NUTRISS, Université Laval, Québec City, QC, Canada
| | - Besma Boubertakh
- Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, Faculty of Medicine, Centre NUTRISS, Université Laval, Québec City, QC, Canada
| | - Nayudu Nallabelli
- Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, Faculty of Medicine, Centre NUTRISS, Université Laval, Québec City, QC, Canada
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus Virginia Commonwealth University, Richmond, VA, United States
| | - Francesco Leri
- Department of Psychology and Collaborative Neuroscience, University of Guelph, Guelph, ON, Canada
| | - Raphael Mechoulam
- Institute of Drug Research, School of Pharmacy, Medical Faculty, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vincenzo Di Marzo
- Institute of Biomolecular Chemistry, Endocannabinoid Research Group Consiglio Nazionale delle Richerche, Pozzuli, Italy.,Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, Faculty of Medicine, Centre NUTRISS, Université Laval, Québec City, QC, Canada.,Faculty of Agriculture and Food Science, INAF, Université Laval, Québec City, QC, Canada.,Canada Excellence Research Chair on the Microbiome/Endocannabinoidome Axis in Metabolic Health, Québec City, QC, Canada
| | - Linda A Parker
- Department of Psychology and Collaborative Neuroscience, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
34
|
Shi Z, Pan S, Wang L, Li S. Oleanolic Acid Attenuates Morphine Withdrawal Symptoms in Rodents: Association with Regulation of Dopamine Function. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:3685-3696. [PMID: 34465980 PMCID: PMC8402955 DOI: 10.2147/dddt.s326583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/09/2021] [Indexed: 01/13/2023]
Abstract
Introduction Oleanolic acid (OA) has been shown to be useful for the treatment of mental disorders. Methods In this study, we investigated the effects of OA in animal models of spontaneous withdrawal and naloxone-precipitated withdrawal and evaluated the effects of OA on the acquisition, extinction, and reinstatement of morphine-induced conditioned place preference (CPP). Results OA significantly improved symptoms of withdrawal, and significantly reduced the acquisition and reinstatement of morphine-induced conditioned place preference. Moreover, OA significantly reduced the serum content of 5-hydroxy tryptamine (5-HT) and dopamine (DA) in a dose-dependent manner, and reduced norepinephrine (NE) and 5-HT content in the frontal cortex (PFC), while significantly increasing endorphin content in rats. OA also significantly reduced serum DA content in mice. Conclusion These results indicate that OA can improve the withdrawal symptoms of rats and mice by regulating the DA system and suggest that OA may be useful in treatment of morphine addiction.
Collapse
Affiliation(s)
- Zhiqi Shi
- School of Pharmacy, Changzhou Institute of Industry and Technology, Changzhou, Jiangsu, People's Republic of China.,Longsha Medical Research Institute, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, Jiangsu, People's Republic of China
| | - Shugang Pan
- School of Pharmacy, Changzhou Institute of Technology, Changzhou, 213022, People's Republic of China.,Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, Nanjing University of Science and Technology, Nanjing, People's Republic of China
| | - Luolin Wang
- Department of Pharmacy, Guangdong Provincial Institute of Traditional Chinese Medicine, Guangzhou, People's Republic of China
| | - Sha Li
- Longsha Medical Research Institute, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, Jiangsu, People's Republic of China
| |
Collapse
|