1
|
Toh JY, Nkouawa A, Dong G, Kolev NG, Tschudi C. Two cold shock domain containing proteins trigger the development of infectious Trypanosoma brucei. PLoS Pathog 2023; 19:e1011438. [PMID: 37276216 PMCID: PMC10270622 DOI: 10.1371/journal.ppat.1011438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/22/2023] [Indexed: 06/07/2023] Open
Abstract
Cold shock proteins are members of a family of DNA- and RNA-binding proteins with one or more evolutionarily conserved cold shock domain (CSD). These proteins have a wide variety of biological functions, including DNA-damage repair, mRNA stability, and regulation of transcription, splicing and translation. We previously identified two CSD containing proteins, CSD1 and CSD2, in the protozoan parasite Trypanosoma brucei to be required for RBP6-driven metacyclic production, albeit at different steps of the developmental program. During metacyclogenesis T. brucei undergoes major morphological and metabolic changes that culminate in the establishment of quiescent metacyclic parasites and the acquisition of mammalian infectivity. To investigate the specific role of CSD1 and CSD2 in this process, we ectopically expressed CSD1 or CSD2 in non-infectious procyclic parasites and discovered that each protein is sufficient to produce infectious metacyclic parasites in 24 hours. Domain truncation assays determined that the N-terminal domain, but not the C-terminal domain, of CSD1 and CSD2 was required for metacyclic development. Furthermore, conserved amino acid residues in the CSD of CSD1 and CSD2, known to be important for binding nucleic acids, were found to be necessary for metacyclic production. Using single-end enhanced crosslinking and immunoprecipitation (seCLIP) we identified the specific binding motif of CSD1 and CSD2 as "ANACAU" and the bound mRNAs were enriched for biological processes, including lipid metabolism, microtubule-based movement and nucleocytoplasmic transport that are likely involved in the transition to bloodstream form-like cells.
Collapse
Affiliation(s)
- Justin Y Toh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Agathe Nkouawa
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Gang Dong
- Max Perutz Labs, Vienna Biocenter, Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Nikolay G Kolev
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Christian Tschudi
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| |
Collapse
|
2
|
Campagnaro GD, Nay E, Plevin MJ, Cruz AK, Walrad PB. Arginine Methyltransferases as Regulators of RNA-Binding Protein Activities in Pathogenic Kinetoplastids. Front Mol Biosci 2021; 8:692668. [PMID: 34179098 PMCID: PMC8226133 DOI: 10.3389/fmolb.2021.692668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/28/2021] [Indexed: 12/22/2022] Open
Abstract
A large number of eukaryotic proteins are processed by single or combinatorial post-translational covalent modifications that may alter their activity, interactions and fate. The set of modifications of each protein may be considered a "regulatory code". Among the PTMs, arginine methylation, catalyzed by protein arginine methyltransferases (PRMTs), can affect how a protein interacts with other macromolecules such as nucleic acids or other proteins. In fact, many RNA-binding (RBPs) proteins are targets of PRMTs. The methylation status of RBPs may affect the expression of their bound RNAs and impact a diverse range of physiological and pathological cellular processes. Unlike most eukaryotes, Kinetoplastids have overwhelmingly intronless genes that are arranged within polycistronic units from which mature mRNAs are generated by trans-splicing. Gene expression in these organisms is thus highly dependent on post-transcriptional control, and therefore on the action of RBPs. These genetic features make trypanosomatids excellent models for the study of post-transcriptional regulation of gene expression. The roles of PRMTs in controlling the activity of RBPs in pathogenic kinetoplastids have now been studied for close to 2 decades with important advances achieved in recent years. These include the finding that about 10% of the Trypanosoma brucei proteome carries arginine methylation and that arginine methylation controls Leishmania:host interaction. Herein, we review how trypanosomatid PRMTs regulate the activity of RBPs, including by modulating interactions with RNA and/or protein complex formation, and discuss how this impacts cellular and biological processes. We further highlight unique structural features of trypanosomatid PRMTs and how it contributes to their singular functionality.
Collapse
Affiliation(s)
- Gustavo D. Campagnaro
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Edward Nay
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| | - Michael J. Plevin
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| | - Angela K. Cruz
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Pegine B. Walrad
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom,*Correspondence: Pegine B. Walrad,
| |
Collapse
|
3
|
Aphasizheva I, Alfonzo J, Carnes J, Cestari I, Cruz-Reyes J, Göringer HU, Hajduk S, Lukeš J, Madison-Antenucci S, Maslov DA, McDermott SM, Ochsenreiter T, Read LK, Salavati R, Schnaufer A, Schneider A, Simpson L, Stuart K, Yurchenko V, Zhou ZH, Zíková A, Zhang L, Zimmer S, Aphasizhev R. Lexis and Grammar of Mitochondrial RNA Processing in Trypanosomes. Trends Parasitol 2020; 36:337-355. [PMID: 32191849 PMCID: PMC7083771 DOI: 10.1016/j.pt.2020.01.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/19/2020] [Accepted: 01/22/2020] [Indexed: 12/15/2022]
Abstract
Trypanosoma brucei spp. cause African human and animal trypanosomiasis, a burden on health and economy in Africa. These hemoflagellates are distinguished by a kinetoplast nucleoid containing mitochondrial DNAs of two kinds: maxicircles encoding ribosomal RNAs (rRNAs) and proteins and minicircles bearing guide RNAs (gRNAs) for mRNA editing. All RNAs are produced by a phage-type RNA polymerase as 3' extended precursors, which undergo exonucleolytic trimming. Most pre-mRNAs proceed through 3' adenylation, uridine insertion/deletion editing, and 3' A/U-tailing. The rRNAs and gRNAs are 3' uridylated. Historically, RNA editing has attracted major research effort, and recently essential pre- and postediting processing events have been discovered. Here, we classify the key players that transform primary transcripts into mature molecules and regulate their function and turnover.
Collapse
Affiliation(s)
- Inna Aphasizheva
- Department of Molecular and Cell Biology, Boston University Medical Campus, Boston, MA 02118, USA.
| | - Juan Alfonzo
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Jason Carnes
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Igor Cestari
- Institute of Parasitology, McGill University, 21,111 Lakeshore Road, Ste-Anne-de-Bellevue, H9X3V9, Québec, Canada
| | - Jorge Cruz-Reyes
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - H Ulrich Göringer
- Department of Molecular Genetics, Darmstadt University of Technology, 64287 Darmstadt, Germany
| | - Stephen Hajduk
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences and Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Susan Madison-Antenucci
- Parasitology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| | - Dmitri A Maslov
- Department of Molecular, Cell, and Systems Biology, University of California - Riverside, Riverside, CA 92521, USA
| | - Suzanne M McDermott
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Torsten Ochsenreiter
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, Bern CH-3012, Switzerland
| | - Laurie K Read
- Department of Microbiology and Immunology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Reza Salavati
- Institute of Parasitology, McGill University, 21,111 Lakeshore Road, Ste-Anne-de-Bellevue, H9X3V9, Québec, Canada
| | - Achim Schnaufer
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Bern CH-3012, Switzerland
| | - Larry Simpson
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095, USA
| | - Kenneth Stuart
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic; Martsinovsky Institute of Medical Parasitology, Sechenov University, Moscow, Russia
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095, USA
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences and Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Liye Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Sara Zimmer
- University of Minnesota Medical School, Duluth campus, Duluth, MN 55812, USA
| | - Ruslan Aphasizhev
- Department of Molecular and Cell Biology, Boston University Medical Campus, Boston, MA 02118, USA
| |
Collapse
|
4
|
Polledo JM, Cervini G, Romaniuk MA, Cassola A. Interactions between RNA-binding proteins and P32 homologues in trypanosomes and human cells. Curr Genet 2015; 62:203-12. [PMID: 26385742 DOI: 10.1007/s00294-015-0519-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 12/25/2022]
Abstract
RNA-binding proteins (RBPs) are involved in many aspects of mRNA metabolism such as splicing, nuclear export, translation, silencing, and decay. To cope with these tasks, these proteins use specialized domains such as the RNA recognition motif (RRM), the most abundant and widely spread RNA-binding domain. Although this domain was first described as a dedicated RNA-binding moiety, current evidence indicates these motifs can also engage in direct protein-protein interactions. Here, we discuss recent evidence describing the interaction between the RRM of the trypanosomatid RBP UBP1 and P22, the homolog of the human multifunctional protein P32/C1QBP. Human P32 was also identified while performing a similar interaction screening using both RRMs of TDP-43, an RBP involved in splicing regulation and Amyotrophic Lateral Sclerosis. Furthermore, we show that this interaction is mediated by RRM1. The relevance of this interaction is discussed in the context of recent TDP-43 interactomic approaches that identified P32, and the numerous evidences supporting interactions between P32 and RBPs. Finally, we discuss the vast universe of interactions involving P32, supporting its role as a molecular chaperone regulating the function of its ligands.
Collapse
Affiliation(s)
- Juan Manuel Polledo
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, UNSAM-CONICET, Buenos Aires, Argentina
| | - Gabriela Cervini
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, UNSAM-CONICET, Buenos Aires, Argentina
| | - María Albertina Romaniuk
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, UNSAM-CONICET, Buenos Aires, Argentina
| | - Alejandro Cassola
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, UNSAM-CONICET, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Cassola A, Romaniuk MA, Primrose D, Cervini G, D'Orso I, Frasch AC. Association of UBP1 to ribonucleoprotein complexes is regulated by interaction with the trypanosome ortholog of the human multifunctional P32 protein. Mol Microbiol 2015; 97:1079-96. [PMID: 26096620 DOI: 10.1111/mmi.13090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2015] [Indexed: 12/30/2022]
Abstract
Regulation of gene expression in trypanosomatid parasitic protozoa is mainly achieved posttranscriptionally. RNA-binding proteins (RBPs) associate to 3' untranslated regions in mRNAs through dedicated domains such as the RNA recognition motif (RRM). Trypanosoma cruzi UBP1 (TcUBP1) is an RRM-type RBP involved in stabilization/degradation of mRNAs. TcUBP1 uses its RRM to associate with cytoplasmic mRNA and to mRNA granules under starvation stress. Here, we show that under starvation stress, TcUBP1 is tightly associated with condensed cytoplasmic mRNA granules. Conversely, under high nutrient/low density-growing conditions, TcUBP1 ribonucleoprotein (RNP) complexes are lax and permeable to mRNA degradation and disassembly. After dissociating from mRNA, TcUBP1 can be phosphorylated only in unstressed parasites. We have identified TcP22, the ortholog of mammalian P32/C1QBP, as an interactor of TcUBP1 RRM. Overexpression of TcP22 decreased the number of TcUBP1 granules in starved parasites in vivo. Endogenous TcUBP1 RNP complexes could be dissociated in vitro by addition of recombinant TcP22, a condition stimulating TcUBP1 phosphorylation. Biochemical and in silico analysis revealed that TcP22 interacts with the RNA-binding surface of TcUBP1 RRM. We propose a model for the decondensation of TcUBP1 RNP complexes in T. cruzi through direct interaction with TcP22 and phosphorylation.
Collapse
Affiliation(s)
- Alejandro Cassola
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, UNSAM-CONICET, Buenos Aires, Argentina
| | - María Albertina Romaniuk
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, UNSAM-CONICET, Buenos Aires, Argentina
| | - Debora Primrose
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, UNSAM-CONICET, Buenos Aires, Argentina
| | - Gabriela Cervini
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, UNSAM-CONICET, Buenos Aires, Argentina
| | - Iván D'Orso
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, UNSAM-CONICET, Buenos Aires, Argentina
| | - Alberto Carlos Frasch
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, UNSAM-CONICET, Buenos Aires, Argentina
| |
Collapse
|
6
|
Kruse E, Voigt C, Leeder WM, Göringer HU. RNA helicases involved in U-insertion/deletion-type RNA editing. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:835-41. [PMID: 23587716 DOI: 10.1016/j.bbagrm.2013.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/04/2013] [Accepted: 04/08/2013] [Indexed: 12/20/2022]
Abstract
Mitochondrial pre-messenger RNAs in kinetoplastid protozoa such as the disease-causing African trypanosomes are substrates of a unique RNA editing reaction. The process is characterized by the site-specific insertion and deletion of exclusively U nucleotides and converts nonfunctional pre-mRNAs into translatable transcripts. Similar to other RNA-based metabolic pathways, RNA editing is catalyzed by a macromolecular protein complex, the editosome. Editosomes provide a reactive surface for the individual steps of the catalytic cycle and involve as key players a specific class of small, non-coding RNAs termed guide (g)RNAs. gRNAs basepair proximal to an editing site and act as quasi templates in the U-insertion/deletion reaction. Next to the editosome several accessory proteins and complexes have been identified, which contribute to different steps of the reaction. This includes matchmaking-type RNA/RNA annealing factors as well as RNA helicases of the archetypical DEAD- and DExH/D-box families. Here we summarize the current structural, genetic and biochemical knowledge of the two characterized "editing RNA helicases" and provide an outlook onto dynamic processes within the editing reaction cycle. This article is part of a Special Issue entitled: The Biology of RNA helicases - Modulation for life.
Collapse
|
7
|
Abstract
RNA editing describes a chemically diverse set of biomolecular reactions in which the nucleotide sequence of RNA molecules is altered. Editing reactions have been identified in many organisms and frequently contribute to the maturation of organellar transcripts. A special editing reaction has evolved within the mitochondria of the kinetoplastid protozoa. The process is characterized by the insertion and deletion of uridine nucleotides into otherwise nontranslatable messenger RNAs. Kinetoplastid RNA editing involves an exclusive class of small, noncoding RNAs known as guide RNAs. Furthermore, a unique molecular machinery, the editosome, catalyzes the process. Editosomes are megadalton multienzyme assemblies that provide a catalytic surface for the individual steps of the reaction cycle. Here I review the current mechanistic understanding and molecular inventory of kinetoplastid RNA editing and the editosome machinery. Special emphasis is placed on the molecular morphology of the editing complex in order to correlate structural features with functional characteristics.
Collapse
Affiliation(s)
- H Ulrich Göringer
- Department of Genetics, Darmstadt University of Technology, Germany.
| |
Collapse
|
8
|
|
9
|
Aphasizhev R, Aphasizheva I. Uridine insertion/deletion editing in trypanosomes: a playground for RNA-guided information transfer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2011; 2:669-85. [PMID: 21823228 PMCID: PMC3154072 DOI: 10.1002/wrna.82] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
RNA editing is a collective term referring to enzymatic processes that change RNA sequence apart from splicing, 5' capping or 3' extension. In this article, we focus on uridine insertion/deletion mRNA editing found exclusively in mitochondria of kinetoplastid protists. This type of editing corrects frameshifts, introduces start and stops codons, and often adds much of the coding sequence to create an open reading frame. The mitochondrial genome of trypanosomatids, the most extensively studied clade within the order Kinetoplastida, is composed of ∼50 maxicircles with limited coding capacity and thousands of minicircles. To produce functional mRNAs, a multitude of nuclear-encoded factors mediate interactions of maxicircle-encoded pre-mRNAs with a vast repertoire of minicircle-encoded guide RNAs. Editing reactions of mRNA cleavage, U-insertions or U-deletions, and ligation are catalyzed by the RNA editing core complex (RECC, the 20S editosome) while each step of this enzymatic cascade is directed by guide RNAs. These 50-60 nucleotide (nt) molecules are 3' uridylated by RET1 TUTase and stabilized via association with the gRNA binding complex (GRBC). Remarkably, the information transfer between maxicircle and minicircle transcriptomes does not rely on template-dependent polymerization of nucleic acids. Instead, intrinsic substrate specificities of key enzymes are largely responsible for the fidelity of editing. Conversely, the efficiency of editing is enhanced by assembling enzymes and RNA binding proteins into stable multiprotein complexes. WIREs RNA 2011 2 669-685 DOI: 10.1002/wrna.82 For further resources related to this article, please visit the WIREs website.
Collapse
MESH Headings
- Endonucleases/chemistry
- Endonucleases/genetics
- Endonucleases/metabolism
- Models, Biological
- Models, Molecular
- Protozoan Proteins/chemistry
- Protozoan Proteins/genetics
- Protozoan Proteins/metabolism
- RNA Editing/genetics
- RNA Editing/physiology
- RNA Helicases/chemistry
- RNA Helicases/genetics
- RNA Helicases/metabolism
- RNA, Guide, Kinetoplastida/genetics
- RNA, Guide, Kinetoplastida/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Protozoan/chemistry
- RNA, Protozoan/genetics
- RNA, Protozoan/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Trypanosoma/genetics
- Trypanosoma/metabolism
- Uridine/chemistry
Collapse
Affiliation(s)
- Ruslan Aphasizhev
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, USA.
| | | |
Collapse
|
10
|
Göringer HU, Katari VS, Böhm C. The structural landscape of native editosomes in African trypanosomes. WILEY INTERDISCIPLINARY REVIEWS. RNA 2011; 2:395-407. [PMID: 21957025 DOI: 10.1002/wrna.67] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The majority of mitochondrial pre-messenger RNAs in African trypanosomes are substrates of a U-nucleotide-specific insertion/deletion-type RNA editing reaction. The process converts nonfunctional pre-mRNAs into translation-competent molecules and can generate protein diversity by alternative editing. High molecular mass protein complexes termed editosomes catalyze the processing reaction. They stably interact with pre-edited mRNAs and small noncoding RNAs, known as guide RNAs (gRNAs), which act as templates in the reaction. Editosomes provide a molecular surface for the individual steps of the catalytic reaction cycle and although the protein inventory of the complexes has been studied in detail, a structural analysis of the processing machinery has only recently been accomplished. Electron microscopy in combination with single particle reconstruction techniques has shown that steady state isolates of editosomes contain ensembles of two classes of stable complexes with calculated apparent hydrodynamic sizes of 20S and 35-40S. 20S editosomes are free of substrate RNAs, whereas 35-40S editosomes are associated with endogenous mRNA and gRNA molecules. Both complexes are characterized by a diverse structural landscape, which include complexes that lack or possess defined subdomains. Here, we summarize the consensus models and structural landmarks of both complexes. We correlate structural features with functional characteristics and provide an outlook into dynamic aspects of the editing reaction cycle.
Collapse
Affiliation(s)
- H Ulrich Göringer
- Department of Microbiology and Genetics, Darmstadt University of Technology, Darmstadt, Germany.
| | | | | |
Collapse
|
11
|
Blifernez O, Wobbe L, Niehaus K, Kruse O. Protein arginine methylation modulates light-harvesting antenna translation in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:119-130. [PMID: 21175895 DOI: 10.1111/j.1365-313x.2010.04406.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Methylation of protein arginines represents an important post-translational modification mechanism, which has so far primarily been characterized in mammalian cells. In this work, we successfully identified and characterized arginine methylation as a crucial type of post-translational modification in the activity regulation of the cytosolic translation repressor protein NAB1 in the plant model organism Chlamydomonas reinhardtii. NAB1 represses the cytosolic translation of light-harvesting protein encoding mRNAs by sequestration into translationally silent messenger ribonucleoprotein complexes (mRNPs). Protein arginine methylation of NAB1 could be demonstrated by PRMT1 catalyzed methylation of recombinant NAB1 in vitro, and by immunodetection of methylated NAB1 arginines in vivo. Mass spectrometric analyses of NAB1 purified from C. reinhardtii revealed the asymmetric dimethylation of Arg90 and Arg92 within GAR motif I. Inhibition of arginine methylation by either adenosine-2'-3'-dialdehyde (AdOx) or 7,7'-carbonylbis(azanediyl)bis(4-hydroxynaphthalene-2-sulfonic acid) sodium salt hydrate (AMI-1) caused a dark-green phenotype characterized by the increased accumulation of light-harvesting complex proteins, and indicating a reduced translation repressor activity of NAB1. The extent of NAB1 arginine methylation depends on the growth conditions, with phototrophic growth causing a high methylation state and heterotrophic growth resulting in lowered methylation of the protein. In addition, we could show that NAB1 activity regulation by arginine methylation operates independently from cysteine-based redox control, which has previously been shown to control the activity of NAB1.
Collapse
Affiliation(s)
- Olga Blifernez
- Department of Algae Biotechnology & Bioenergy, Faculty of Biology, Bielefeld University, D-33615 Bielefeld, GermanyDepartment of Proteome & Metabolome Research, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Lutz Wobbe
- Department of Algae Biotechnology & Bioenergy, Faculty of Biology, Bielefeld University, D-33615 Bielefeld, GermanyDepartment of Proteome & Metabolome Research, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Karsten Niehaus
- Department of Algae Biotechnology & Bioenergy, Faculty of Biology, Bielefeld University, D-33615 Bielefeld, GermanyDepartment of Proteome & Metabolome Research, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Olaf Kruse
- Department of Algae Biotechnology & Bioenergy, Faculty of Biology, Bielefeld University, D-33615 Bielefeld, GermanyDepartment of Proteome & Metabolome Research, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
12
|
Fisk JC, Presnyak V, Ammerman ML, Read LK. Distinct and overlapping functions of MRP1/2 and RBP16 in mitochondrial RNA metabolism. Mol Cell Biol 2009; 29:5214-25. [PMID: 19620277 PMCID: PMC2747978 DOI: 10.1128/mcb.00520-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 05/29/2009] [Accepted: 07/14/2009] [Indexed: 01/05/2023] Open
Abstract
Mitochondrial RNA metabolism in Trypanosoma brucei is a complex process involving both extensive RNA editing and control of RNA stability. MRP1/2 and RBP16 are two factors that have been implicated in regulating the editing and stability of specific mRNAs. These two factors exhibit similar nonspecific RNA binding and RNA-annealing activities, suggesting that some of their actions may have been previously masked by functional redundancy. Here, we examine the functional interaction of MRP1/2 and RBP16 by separate and simultaneous RNA interference and by overexpressing RBP16 in an MRP1/2-depleted background. Simultaneous depletion of these factors resulted in synthetic lethality in procyclic trypanosomes. Analysis of mitochondrial RNAs in procyclic cells revealed distinct functions for MRP1/2 and RBP16 toward edited apocytochrome b mRNA, redundant functions in stabilization of edited ATPase subunit 6 and cytochrome oxidase subunit 3 mRNAs, and concentration-dependent positive and negative functions for RBP16 toward edited RPS12 mRNAs. While simultaneous MRP1/2-RBP16 depletion had no effect on the growth of bloodstream form cells, massive adverse effects on the levels of almost all mitochondrial RNAs were observed. These studies greatly expand our knowledge regarding the functions of MRP1/2 and RBP16 and suggest that both RNA-specific and life cycle stage-specific factors impact MRP1/2 and RBP16 functions.
Collapse
Affiliation(s)
- John C Fisk
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214.
| | | | | | | |
Collapse
|
13
|
Ammerman ML, Fisk JC, Read LK. gRNA/pre-mRNA annealing and RNA chaperone activities of RBP16. RNA (NEW YORK, N.Y.) 2008; 14:1069-80. [PMID: 18441045 PMCID: PMC2390797 DOI: 10.1261/rna.982908] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Accepted: 02/29/2008] [Indexed: 05/08/2023]
Abstract
Editing in trypanosomes involves the addition or deletion of uridines at specific sites to produce translatable mitochondrial mRNAs. RBP16 is an accessory factor from Trypanosoma brucei that affects mitochondrial RNA editing in vivo and also stimulates editing in vitro. We report here experiments aimed at elucidating the biochemical activities of RBP16 involved in modulating RNA editing. In vitro RNA annealing assays demonstrate that RBP16 significantly stimulates the annealing of gRNAs to cognate pre-mRNAs. In addition, RBP16 also facilitates hybridization of partially complementary RNAs unrelated to the editing process. The RNA annealing activity of RBP16 is independent of its high-affinity binding to gRNA oligo(U) tails, consistent with the previously reported in vitro editing stimulatory properties of the protein. In vivo studies expressing recombinant RBP16 in mutant Escherichia coli strains demonstrate that RBP16 is an RNA chaperone and that in addition to RNA annealing activity, it contains RNA unwinding activity. Our data suggest that the mechanism by which RBP16 facilitates RNA editing involves its capacity to modulate RNA secondary structure and promote gRNA/pre-mRNA annealing.
Collapse
Affiliation(s)
- Michelle L Ammerman
- Department of Microbiology and Immunology, School of Medicine, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | | | | |
Collapse
|
14
|
Göringer HU, Brecht M, Böhm C, Kruse E. RNA Editing Accessory Factors — the Example of mHel61p. NUCLEIC ACIDS AND MOLECULAR BIOLOGY 2008. [DOI: 10.1007/978-3-540-73787-2_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
15
|
Pasternack DA, Sayegh J, Clarke S, Read LK. Evolutionarily divergent type II protein arginine methyltransferase in Trypanosoma brucei. EUKARYOTIC CELL 2007; 6:1665-81. [PMID: 17601874 PMCID: PMC2043365 DOI: 10.1128/ec.00133-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Protein arginine methylation is a posttranslational modification that impacts cellular functions, such as RNA processing, transcription, DNA repair, and signal transduction. The majority of our knowledge regarding arginine methylation derives from studies of yeast and mammals. Here, we describe a protein arginine N-methyltransferase (PRMT), TbPRMT5, from the early-branching eukaryote Trypanosoma brucei. TbPRMT5 shares the greatest sequence similarity with PRMT5 and Skb1 type II enzymes from humans and Schizosaccharomyces pombe, respectively, although it is significantly divergent at the amino acid level from its mammalian and yeast counterparts. Recombinant TbPRMT5 displays broad substrate specificity in vitro, including methylation of a mitochondrial-gene-regulatory protein, RBP16. TbPRMT5 catalyzes the formation of omega-N(G)-monomethylarginine and symmetric omega-N(G),N(G')-dimethylarginine and does not require trypanosome cofactors for this activity. These data establish that type II PRMTs evolved early in the eukaryotic lineage. In vivo, TbPRMT5 is constitutively expressed in the bloodstream form and procyclic-form (insect host) life stages of the parasite and localizes to the cytoplasm. Genetic disruption via RNA interference in procyclic-form trypanosomes indicates that TbPRMT5 is not essential for growth in this life cycle stage. TbPRMT5-TAP ectopically expressed in procyclic-form trypanosomes is present in high-molecular-weight complexes and associates with an RG domain-containing DEAD box protein related to yeast Ded1 and two kinetoplastid-specific proteins. Thus, TbPRMT5 is likely to be involved in novel methylation-regulated functions in trypanosomes, some of which may include RNA processing and/or translation.
Collapse
Affiliation(s)
- Deborah A Pasternack
- Department of Microbiology and Immunology and Witebsky Center for Microbial Pathogenesis and Immunology, State University of New York School of Medicine, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
16
|
Goulah CC, Read LK. Differential effects of arginine methylation on RBP16 mRNA binding, guide RNA (gRNA) binding, and gRNA-containing ribonucleoprotein complex (gRNP) formation. J Biol Chem 2007; 282:7181-90. [PMID: 17229732 DOI: 10.1074/jbc.m609485200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mitochondrial gene expression in Trypanosoma brucei involves the coordination of multiple events including polycistronic transcript cleavage, polyadenylation, RNA stability, and RNA editing. Arg methylation of RNA binding proteins has the potential to influence many of these processes via regulation of protein-protein and protein-RNA interactions. Here we demonstrate that Arg methylation differentially regulates the RNA binding capacity and macromolecular interactions of the mitochondrial gene regulatory protein, RBP16. We show that, in T. brucei mitochondria, RBP16 forms two major stable complexes: a 5 S multiprotein complex and an 11 S complex consisting of the 5 S complex associated with guide RNA (gRNA). Expression of a non-methylatable RBP16 mutant protein demonstrates that Arg methylation of RBP16 is required to maintain the protein-protein interactions necessary for assembly and/or stability of both complexes. Down-regulation of the major trypanosome type 1 protein arginine methyltransferase, TbPRMT1, disrupts formation of both the 5 and 11 S complexes, indicating that TbPRMT1-catalyzed methylation of RBP16 Arg-78 and Arg-85 is critical for complex formation. We also show that Arg methylation decreases the capacity of RBP16 to associate with gRNA. This is not a general effect on RBP16 RNA binding, however, since methylation conversely increases the association of the protein with mRNA. Thus, TbPRMT1-catalyzed Arg methylation has distinct effects on RBP16 gRNA and mRNA association and gRNA-containing ribonucleoprotein complex (gRNP) formation.
Collapse
Affiliation(s)
- Christopher C Goulah
- Department of Microbiology and Immunology and Witebsky Center for Microbial Pathogenesis and Immunology, SUNY Buffalo School of Medicine, Buffalo, New York 14214, USA
| | | |
Collapse
|
17
|
Pelletier M, Read LK, Aphasizhev R. Isolation of RNA binding proteins involved in insertion/deletion editing. Methods Enzymol 2007; 424:75-105. [PMID: 17662837 DOI: 10.1016/s0076-6879(07)24004-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
RNA editing is a collective term referring to a plethora of reactions that ultimately lead to changes in RNA nucleotide sequences apart from splicing, 5' capping, or 3' end processing. In the mitochondria of trypanosomatids, insertion and deletion of uridines must occur, often on a massive scale, in order to generate functional messenger RNAs. The current state of knowledge perceives the editing machinery as a dynamic system, in which heterogeneous protein complexes undergo multiple transient RNA-protein interactions in the course of gRNA processing, gRNA-mRNA recognition, and the cascade of nucleolytic and phosphoryl transfer reactions that ultimately change the mRNA sequence. Identification of RNA binding proteins that interact with the mitochondrial RNAs, core editing complex, or contribute to mRNA stability is of critical importance to our understanding of the editing process. This chapter describes purification and characterization of three RNA binding proteins from kinetoplastid mitochondria that have been genetically demonstrated to affect RNA editing.
Collapse
Affiliation(s)
- Michel Pelletier
- Department of Microbiology and Immunology, SUNY Buffalo School of Medicine, Buffalo, New York, USA
| | | | | |
Collapse
|
18
|
Goulah CC, Pelletier M, Read LK. Arginine methylation regulates mitochondrial gene expression in Trypanosoma brucei through multiple effector proteins. RNA (NEW YORK, N.Y.) 2006; 12:1545-55. [PMID: 16775306 PMCID: PMC1524885 DOI: 10.1261/rna.90106] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Arginine methylation is a post-translational modification that impacts gene expression in both the cytoplasm and nucleus. Here, we demonstrate that arginine methylation also affects mitochondrial gene expression in the protozoan parasite, Trypanosoma brucei. Down-regulation of the major trypanosome type I protein arginine methyltransferase, TbPRMT1, leads to destabilization of specific mitochondrial mRNAs. We provide evidence that some of these effects are mediated by the mitochondrial RNA-binding protein, RBP16, which we previously demonstrated affects both RNA editing and stability. TbPRMT1 catalyzes methylation of RBP16 in vitro. Further, MALDI-TOF-MS analysis of RBP16 isolated from TbPRMT1-depleted cells indicates that, in vivo, TbPRMT1 modifies two of the three known methylated arginine residues in RBP16. Expression of mutated, nonmethylatable RBP16 in T. brucei has a dominant negative effect, leading to destabilization of a subset of those mRNAs affected by TbPRMT1 depletion. Our results suggest that the specificity and multifunctional nature of RBP16 are due, at least in part, to the presence of differentially methylated forms of the protein. However, some effects of TbPRMT1 depletion on mitochondrial gene expression cannot be accounted for by RBP16 action. Thus, these data implicate additional, unknown methylproteins in mitochondrial gene regulation.
Collapse
Affiliation(s)
- Christopher C Goulah
- Department of Microbiology and Immunology and Witebsky Center for Microbial Pathogenesis and Immunology, SUNY Buffalo School of Medicine, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
19
|
Miller MM, Halbig K, Cruz-Reyes J, Read LK. RBP16 stimulates trypanosome RNA editing in vitro at an early step in the editing reaction. RNA (NEW YORK, N.Y.) 2006; 12:1292-303. [PMID: 16691000 PMCID: PMC1484434 DOI: 10.1261/rna.2331506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Accepted: 03/24/2006] [Indexed: 05/09/2023]
Abstract
RBP16 is an abundant RNA binding protein from Trypanosoma brucei mitochondria that affects both RNA editing and stability. We report here experiments aimed at elucidating the mechanism of RBP16 function in RNA editing. In in vitro RNA editing assays, recombinant RBP16 is able to significantly stimulate insertion editing of both CYb and A6 pre-mRNAs. Enhancement of in vitro editing activity occurs at, or prior to, the step of pre-mRNA cleavage, as evidenced by increased accumulation of pre-mRNA 3' cleavage products in the presence of RBP16. Mutated RBP16 that is severely compromised in cold shock domain (CSD)-mediated RNA binding was able to enhance editing to levels comparable to the wild-type protein in some assays at the highest RBP16 levels tested. However, at low RBP16 concentrations or in assays with native, oligo(U)-tail-bearing gRNAs, editing stimulation by mutant RBP16 was somewhat compromised. Together, these results indicate that both the N-terminal CSD and C-terminal RGG RNA binding domains of RBP16 are required for maximal editing stimulation. Finally, the relaxed specificity of RBP16 for stimulation of both CYb and A6 editing in vitro implicates additional specificity factors that account for the strict CYb specificity of RBP16 action in editing in vivo. Our results constitute the first report of any putative RNA editing accessory factor eliciting an effect on editing in vitro. Overall, these results support a novel accessory role for RBP16 in U insertion editing.
Collapse
Affiliation(s)
- Melissa M Miller
- Department of Microbiology and Immunology and Witebsky Center for Microbial Pathogenesis and Immunology, SUNY Buffalo School of Medicine, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
20
|
Lukes J, Hashimi H, Zíková A. Unexplained complexity of the mitochondrial genome and transcriptome in kinetoplastid flagellates. Curr Genet 2005; 48:277-99. [PMID: 16215758 DOI: 10.1007/s00294-005-0027-0] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 09/03/2005] [Accepted: 09/07/2005] [Indexed: 10/25/2022]
Abstract
Kinetoplastids are flagellated protozoans, whose members include the pathogens Trypanosoma brucei, T. cruzi and Leishmania species, that are considered among the earliest diverging eukaryotes with a mitochondrion. This organelle has become famous because of its many unusual properties, which are unique to the order Kinetoplastida, including an extensive kinetoplast DNA network and U-insertion/deletion type RNA editing of its mitochondrial transcripts. In the last decade, considerable progress has been made in elucidating the complex machinery of RNA editing. Moreover, our understanding of the structure and replication of kinetoplast DNA has also dramatically improved. Much less however, is known, about the developmental regulation of RNA editing, its integration with other RNA maturation processes, stability of mitochondrial mRNAs, or evolution of the editing process itself. Yet the profusion of genomic data recently made available by sequencing consortia, in combination with methods of reverse genetics, hold promise in understanding the complexity of this exciting organelle, knowledge of which may enable us to fight these often medically important protozoans.
Collapse
Affiliation(s)
- Julius Lukes
- Institute of Parasitology, Czech Academy of Sciences, Faculty of Biology, University of South Bohemia, Branisovská 31, 37005, Ceské Budejovice, Czech Republic.
| | | | | |
Collapse
|
21
|
Pelletier M, Pasternack DA, Read LK. In vitro and in vivo analysis of the major type I protein arginine methyltransferase from Trypanosoma brucei. Mol Biochem Parasitol 2005; 144:206-17. [PMID: 16198009 DOI: 10.1016/j.molbiopara.2005.08.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 08/10/2005] [Accepted: 08/18/2005] [Indexed: 10/25/2022]
Abstract
In mammals and yeasts, arginine methylation, catalyzed by protein arginine methyltransferases (PRMTs), has been implicated in regulation of diverse processes such as protein-protein interaction, protein localization, signal transduction, RNA processing, and transcription. A large number of PRMT substrates are RNA binding proteins. In trypanosomes, gene regulation is controlled primarily at the levels of RNA processing, stability, and translation, and likely involves numerous RNA binding proteins. Thus, arginine methylation may be especially important in controlling gene expression in this evolutionarily ancient group of organisms. To begin to understand the role of arginine methylation in trypanosomes, we identified and characterized a type I PRMT from Trypanosoma brucei, termed TbPRMT1. TbPRMT1 displays 51% amino acid identity to human PRMT1. It possesses an S-adenosylmethionine binding site and double E and THW loops, common and absolute features associated with other PRMTs. Recombinant TbPRMT1 methylates both an artificial RG-rich peptide and the T. brucei mitochondrial RNA binding protein, TBRGG1, and it exhibits differences in substrate specificity compared to rat PRMT1. TbPRMT1 is constitutively expressed during the T. brucei life cycle. Disruption of TbPRMT1 gene expression by RNA interference did not result in a significant growth defect in procyclic form T. brucei. Finally, we observe a dramatic decrease in the cellular level of asymmetric dimethylarginine upon TbPRMT1 knock down, indicating that TbPRMT1 is the predominant type I PRMT in T. brucei. The strong conservation of PRMT1 homologs between protozoa and humans highlights the importance of arginine methylation as a regulatory mechanism in eukaryotes.
Collapse
Affiliation(s)
- Michel Pelletier
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, SUNY Buffalo School of Medicine, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
22
|
Kavanagh SJ, Schulz TC, Davey P, Claudianos C, Russell C, Rathjen PD. A family of RS domain proteins with novel subcellular localization and trafficking. Nucleic Acids Res 2005; 33:1309-22. [PMID: 15741184 PMCID: PMC552957 DOI: 10.1093/nar/gki269] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We report the sequence, conservation and cell biology of a novel protein, Psc1, which is expressed and regulated within the embryonic pluripotent cell population of the mouse. The Psc1 sequence includes an RS domain and an RNA recognition motif (RRM), and a sequential arrangement of protein motifs that has not been demonstrated for other RS domain proteins. This arrangement was conserved in a second mouse protein (BAC34721). The identification of Psc1 and BAC34721 homologues in vertebrates and related proteins, more widely throughout evolution, defines a new family of RS domain proteins termed acidic rich RS (ARRS) domain proteins. Psc1 incorporated into the nuclear speckles, but demonstrated novel aspects of subcellular distribution including localization to speckles proximal to the nuclear periphery and localization to punctate structures in the cytoplasm termed cytospeckles. Integration of Psc1 into cytospeckles was dependent on the RRM. Cytospeckles were dynamic within the cytoplasm and appeared to traffic into the nucleus. These observations suggest a novel role in RNA metabolism for ARRS proteins.
Collapse
Affiliation(s)
- Steven J. Kavanagh
- School of Molecular and Biomedical Science, University of AdelaideAdelaide 5005, Australia
- Australian Research Council Special Research Centre in Molecular Genetics, University of AdelaideAdelaide 5005, Australia
| | - Thomas C. Schulz
- School of Molecular and Biomedical Science, University of AdelaideAdelaide 5005, Australia
- Australian Research Council Special Research Centre in Molecular Genetics, University of AdelaideAdelaide 5005, Australia
| | - Philippa Davey
- School of Molecular and Biomedical Science, University of AdelaideAdelaide 5005, Australia
- Australian Research Council Special Research Centre in Molecular Genetics, University of AdelaideAdelaide 5005, Australia
| | - Charles Claudianos
- Molecular Genetics and Evolution, Research School of Biological Sciences, Australian National UniversityACT 2601, Australia
| | - Carrie Russell
- School of Molecular and Biomedical Science, University of AdelaideAdelaide 5005, Australia
| | - Peter D. Rathjen
- School of Molecular and Biomedical Science, University of AdelaideAdelaide 5005, Australia
- Australian Research Council Special Research Centre in Molecular Genetics, University of AdelaideAdelaide 5005, Australia
- National Stem Cell CentreNotting Hill, VIC 3168, Australia
- To whom correspondence should be addressed. Tel: +61 8 8303 5650; Fax: +61 8 8303 4348;
| |
Collapse
|
23
|
Lu CC, Wu CW, Chang SC, Chen TY, Hu CR, Yeh MY, Chen JY, Chen MR. Epstein-Barr virus nuclear antigen 1 is a DNA-binding protein with strong RNA-binding activity. J Gen Virol 2004; 85:2755-2765. [PMID: 15448336 DOI: 10.1099/vir.0.80239-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA-1) plays key roles in both the regulation of gene expression and the replication of the EBV genome in latently infected cells. To characterize the RNA-binding activity of EBNA-1, it was demonstrated that EBNA-1 binds efficiently to RNA homopolymers that are composed of poly(G) and weakly to those composed of poly(U). All three RGG boxes of EBNA-1 contributed additively to poly(G)-binding activity and could mediate RNA binding when attached to a heterologous protein in an RNA gel mobility-shift assay. In vitro-transcribed EBV and non-EBV RNA probes revealed that EBNA-1 bound to most RNAs examined and the affinity increased as the content of G and U increased, as demonstrated in competition assays. Among these probes, the 5' non-coding region (NCR) (nt 131-278) of hepatitis C virus RNA appeared to be the strongest competitor for EBNA-1 binding to the EBV-encoded small nuclear RNA 1 (EBER1) probe, whereas a mutant 5' NCR RNA with partially disrupted secondary structure was a weak competitor. Furthermore, the interaction of endogenous EBNA-1 and EBER1 in EBV-infected cells was demonstrated by a ribonucleoprotein immunoprecipitation assay. These results revealed that EBNA-1 is a DNA-binding protein with strong binding activity to a relatively broad spectrum of RNA and suggested an additional biological impact of EBNA-1 through its ability to bind to RNA.
Collapse
Affiliation(s)
- Chih-Chung Lu
- Graduate Institute of Microbiology, College of Medicine, No. 1, Jen-Ai Road, 1st Section, National Taiwan University, Taipei, Taiwan
| | - Chia-Wei Wu
- Graduate Institute of Microbiology, College of Medicine, No. 1, Jen-Ai Road, 1st Section, National Taiwan University, Taipei, Taiwan
| | - Shin C Chang
- Graduate Institute of Microbiology, College of Medicine, No. 1, Jen-Ai Road, 1st Section, National Taiwan University, Taipei, Taiwan
| | - Tzu-Yi Chen
- Graduate Institute of Microbiology, College of Medicine, No. 1, Jen-Ai Road, 1st Section, National Taiwan University, Taipei, Taiwan
| | - Chwan-Ren Hu
- Graduate Institute of Microbiology, College of Medicine, No. 1, Jen-Ai Road, 1st Section, National Taiwan University, Taipei, Taiwan
| | - Ming-Yi Yeh
- Graduate Institute of Microbiology, College of Medicine, No. 1, Jen-Ai Road, 1st Section, National Taiwan University, Taipei, Taiwan
| | - Jen-Yang Chen
- National Health Research Institutes, Taipei, Taiwan
- Graduate Institute of Microbiology, College of Medicine, No. 1, Jen-Ai Road, 1st Section, National Taiwan University, Taipei, Taiwan
| | - Mei-Ru Chen
- Graduate Institute of Microbiology, College of Medicine, No. 1, Jen-Ai Road, 1st Section, National Taiwan University, Taipei, Taiwan
| |
Collapse
|