1
|
Whole Genome Sequencing and CRISPR/Cas9 Gene Editing of Enterotoxigenic Escherichia coli BE311 for Fluorescence Labeling and Enterotoxin Analyses. Int J Mol Sci 2022; 23:ijms23147502. [PMID: 35886856 PMCID: PMC9321511 DOI: 10.3390/ijms23147502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 01/07/2023] Open
Abstract
Some prevention strategies, including vaccines and antibiotic alternatives, have been developed to reduce enterotoxigenic Escherichia coli proliferation in animal production. In this study, a wild-type strain of BE311 with a virulent heat-stable enterotoxin gene identical to E. coli K99 was isolated for its high potential for gene expression ability. The whole genome of E. coli BE311 was sequenced for gene analyses and editing. Subsequently, the fluorescent gene mCherry was successfully knocked into the genome of E. coli BE311 by CRISPR/Cas9. The E. coli BE311−mCherry strain was precisely quantified through the fluorescence intensity and red colony counting. The inflammatory factors in different intestinal tissues all increased significantly after an E. coli BE311−mCherry challenge in Sprague−Dawley rats (p < 0.05). The heat-stable enterotoxin gene of E. coli BE311 was knocked out, and an attenuated vaccine host E. coli BE311-STKO was constructed. Flow cytometry showed apoptotic cell numbers were lower following a challenge of IPEC-J2 cells with E. coli BE311-STKO than with E. coli BE311. Therefore, the E. coli BE311−mCherry and E. coli BE311-STKO strains that were successfully constructed based on the gene knock-in and knock-out technology could be used as ideal candidates in ETEC challenge models and for the development of attenuated vaccines.
Collapse
|
2
|
Park JM, Oliva Chávez AS, Shaw DK. Ticks: More Than Just a Pathogen Delivery Service. Front Cell Infect Microbiol 2021; 11:739419. [PMID: 34540723 PMCID: PMC8440996 DOI: 10.3389/fcimb.2021.739419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/11/2021] [Indexed: 12/17/2022] Open
Affiliation(s)
- Jason M Park
- Program in Vector-Borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Adela S Oliva Chávez
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Dana K Shaw
- Program in Vector-Borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| |
Collapse
|
3
|
Hoffmann A, Fingerle V, Noll M. Analysis of Tick Surface Decontamination Methods. Microorganisms 2020; 8:microorganisms8070987. [PMID: 32630152 PMCID: PMC7409031 DOI: 10.3390/microorganisms8070987] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 11/23/2022] Open
Abstract
Various microbial pathogens have been found in ticks such as Ixodes ricinus. However, most studies assessed tick microbiomes without prior decontamination of the tick surface, which may alter the results and mislead conclusions regarding the composition of the tick-borne microbiome. The aim of this study was to test four different decontamination methods, namely (i.) 70% ethanol, (ii.) DNA Away, (iii.) 5% sodium hypochlorite and (iv.) Reactive Skin Decontamination Lotion (RSDL), which have been previously reported for tick surface and animal or human skin decontamination. To test the efficiency of decontamination, we contaminated each tick with a defined mixture of Escherichia coli, Micrococcus luteus, Pseudomonas fluorescens, dog saliva and human sweat. No contamination was used as a negative control, and for a positive control, a no decontamination strategy was carried out. After nucleic acid extraction, the recovery rate of contaminants was determined for RNA and DNA samples by qPCR and tick-borne microbiome analyses by bacterial 16S rRNA and 16S rRNA gene amplicon sequencing. Ticks treated with 5% sodium hypochlorite revealed the lowest number of contaminants followed by DNA Away, RSDL and 70% ethanol. Moreover, tick microbiomes after 5% sodium hypochlorite decontamination clustered with negative controls. Therefore, the efficiency of decontamination was optimal with 5% sodium hypochlorite and is recommended for upcoming studies to address the unbiased detection of tick-borne pathogens.
Collapse
Affiliation(s)
- Angeline Hoffmann
- Institute for Bioanalysis, Department of Applied Sciences, Coburg University of Applied Sciences and Arts, 96450 Coburg, Germany;
| | - Volker Fingerle
- Bavarian Health and Food Safety Authority (LGL), National Reference Center for Borrelia, 85764 Oberschleißheim, Germany;
| | - Matthias Noll
- Institute for Bioanalysis, Department of Applied Sciences, Coburg University of Applied Sciences and Arts, 96450 Coburg, Germany;
- Correspondence: ; Tel.: +49-9561-317-645
| |
Collapse
|
4
|
Gálvez D, Añino Y, Vega C, Bonilla E. Immune priming against bacteria in spiders and scorpions? PeerJ 2020; 8:e9285. [PMID: 32547885 PMCID: PMC7278890 DOI: 10.7717/peerj.9285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/12/2020] [Indexed: 11/20/2022] Open
Abstract
Empirical evidence of immune priming in arthropods keeps growing, both at the within- and trans-generational level. The evidence comes mostly from work on insects and it remains unclear for some other arthropods whether exposure to a non-lethal dose of a pathogen provides protection during a second exposure with a lethal dose. A poorly investigated group are arachnids, with regard to the benefits of immune priming measured as improved survival. Here, we investigated immune priming in two arachnids: the wolf spider Lycosa cerrofloresiana and the scorpion Centruroides granosus. We injected a third of the individuals with lipopolysaccharides of Escherichia coli (LPS, an immune elicitor), another third were injected with the control solution (PBS) and the other third were kept naive. Four days after the first inoculations, we challenged half of the individuals of each group with an injection of a high dose of E. coli and the other half was treated with the control solution. For scorpions, individuals that were initially injected with PBS or LPS did not differ in their survival rates against the bacterial challenge. Individuals injected with LPS showed higher survival than that of naive individuals as evidence of immune priming. Individuals injected with PBS tended to show higher survival rates than naive individuals, but the difference was not significant—perhaps suggesting a general immune upregulation caused by the wounding done by the needle. For spiders, we did not observe evidence of priming, the bacterial challenge reduced the survival of naive, PBS and LPS individuals at similar rates. Moreover; for scorpions, we performed antibacterial assays of hemolymph samples from the three priming treatments (LPS, PBS and naive) and found that the three treatments reduced bacterial growth but without differences among treatments. As non-model organisms, with some unique differences in their immunological mechanisms as compared to the most studied arthropods (insects), arachnids provide an unexplored field to elucidate the evolution of immune systems.
Collapse
Affiliation(s)
- Dumas Gálvez
- Programa Centroamericano de Maestría en Entomología, Universidad de Panamá, Panama, Panama.,COIBA AIP, Panama, Panama
| | - Yostin Añino
- Museo de Invertebrados G.B. Fairchild, Universidad de Panamá, Panama, Panama
| | - Carlos Vega
- Escuela de Biología, Universidad de Panamá, Panama, Panama
| | | |
Collapse
|
5
|
Liu XY, de la Fuente J, Cote M, Galindo RC, Moutailler S, Vayssier-Taussat M, Bonnet SI. IrSPI, a tick serine protease inhibitor involved in tick feeding and Bartonella henselae infection. PLoS Negl Trop Dis 2014; 8:e2993. [PMID: 25057911 PMCID: PMC4109860 DOI: 10.1371/journal.pntd.0002993] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/21/2014] [Indexed: 11/19/2022] Open
Abstract
Ixodes ricinus is the most widespread and abundant tick in Europe, frequently bites humans, and is the vector of several pathogens including those responsible for Lyme disease, Tick-Borne Encephalitis, anaplasmosis, babesiosis and bartonellosis. These tick-borne pathogens are transmitted to vertebrate hosts via tick saliva during blood feeding, and tick salivary gland (SG) factors are likely implicated in transmission. In order to identify such tick factors, we characterized the transcriptome of female I. ricinus SGs using next generation sequencing techniques, and compared transcriptomes between Bartonella henselae-infected and non-infected ticks. High-throughput sequencing of I. ricinus SG transcriptomes led to the generation of 24,539 isotigs. Among them, 829 and 517 transcripts were either significantly up- or down-regulated respectively, in response to bacterial infection. Searches based on sequence identity showed that among the differentially expressed transcripts, 161 transcripts corresponded to nine groups of previously annotated tick SG gene families, while the others corresponded to genes of unknown function. Expression patterns of five selected genes belonging to the BPTI/Kunitz family of serine protease inhibitors, the tick salivary peptide group 1 protein, the salp15 super-family, and the arthropod defensin family, were validated by qRT-PCR. IrSPI, a member of the BPTI/Kunitz family of serine protease inhibitors, showed the highest up-regulation in SGs in response to Bartonella infection. IrSPI silencing impaired tick feeding, as well as resulted in reduced bacterial load in tick SGs. This study provides a comprehensive analysis of I. ricinus SG transcriptome and contributes significant genomic information about this important disease vector. This in-depth knowledge will enable a better understanding of the molecular interactions between ticks and tick-borne pathogens, and identifies IrSPI, a candidate to study now in detail to estimate its potentialities as vaccine against the ticks and the pathogens they transmit.
Collapse
Affiliation(s)
- Xiang Ye Liu
- USC INRA Bartonella-Tiques, French National Institute of Agricultural Research (UMR BIPAR ENVA-ANSES-UPEC), Maisons-Alfort, France
| | - Jose de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Martine Cote
- USC INRA Bartonella-Tiques, French National Institute of Agricultural Research (UMR BIPAR ENVA-ANSES-UPEC), Maisons-Alfort, France
| | - Ruth C. Galindo
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Sara Moutailler
- USC INRA Bartonella-Tiques, French National Institute of Agricultural Research (UMR BIPAR ENVA-ANSES-UPEC), Maisons-Alfort, France
| | - Muriel Vayssier-Taussat
- USC INRA Bartonella-Tiques, French National Institute of Agricultural Research (UMR BIPAR ENVA-ANSES-UPEC), Maisons-Alfort, France
| | - Sarah I. Bonnet
- USC INRA Bartonella-Tiques, French National Institute of Agricultural Research (UMR BIPAR ENVA-ANSES-UPEC), Maisons-Alfort, France
| |
Collapse
|
6
|
HlSRB, a Class B scavenger receptor, is key to the granulocyte-mediated microbial phagocytosis in ticks. PLoS One 2012; 7:e33504. [PMID: 22479406 PMCID: PMC3315565 DOI: 10.1371/journal.pone.0033504] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 02/09/2012] [Indexed: 12/03/2022] Open
Abstract
Ixodid ticks transmit various pathogens of deadly diseases to humans and animals. However, the specific molecule that functions in the recognition and control of pathogens inside ticks is not yet to be identified. Class B scavenger receptor CD36 (SRB) participates in internalization of apoptotic cells, certain bacterial and fungal pathogens, and modified low-density lipoproteins. Recently, we have reported on recombinant HlSRB, a 50-kDa protein with one hydrophobic SRB domain from the hard tick, Haemaphysalis longicornis. Here, we show that HlSRB plays vital roles in granulocyte-mediated phagocytosis to invading Escherichia coli and contributes to the first-line host defense against various pathogens. Data clearly revealed that granulocytes that up-regulated the expression of cell surface HlSRB are almost exclusively involved in hemocyte-mediated phagocytosis for E. coli in ticks, and post-transcriptional silencing of the HlSRB-specific gene ablated the granulocytes' ability to phagocytose E. coli and resulted in the mortality of ticks due to high bacteremia. This is the first report demonstrating that a scavenger receptor molecule contributes to hemocyte-mediated phagocytosis against exogenous pathogens, isolated and characterized from hematophagous arthropods.
Collapse
|
7
|
Tanaka T, Kawano S, Nakao S, Umemiya-Shirafuji R, Rahman MM, Boldbaatar D, Battur B, Liao M, Fujisaki K. The identification and characterization of lysozyme from the hard tick Haemaphysalis longicornis. Ticks Tick Borne Dis 2010; 1:178-85. [PMID: 21771526 DOI: 10.1016/j.ttbdis.2010.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 09/03/2010] [Accepted: 09/11/2010] [Indexed: 10/18/2022]
Abstract
A full-length cDNA-encoding lysozyme was obtained from cDNA libraries of salivary glands of the hard tick Haemaphysalis longicornis and designated as HlLysozyme. The HlLysozyme sequence represents an open reading frame for a putative signal peptide and the mature protein composed of 121 amino acids. The calculated molecular weight of the protein is 13.7 kDa, and the theoretical isoelectric point is 9.85. HlLysozyme shares 41-79% amino acid sequence identity with the lysozymes of other organisms. The activity of recombinant HlLysozyme expressed in Escherichia coli was confirmed by a lytic zone assay using lyophilized Micrococcus lysodeikticus. The HlLysozyme activity decreased at 70 °C and was demonstrated at acidic side and neutral in a pH range. Elevated gene expression of HlLysozyme was observed when female ticks were challenged with bacteria, suggesting possible roles of lysozyme as an innate immunity of ticks against microorganisms.
Collapse
Affiliation(s)
- Tetsuya Tanaka
- Laboratory of Emerging Infectious Diseases, Department of Frontier Veterinary Science, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Wales AD, Carrique-Mas JJ, Rankin M, Bell B, Thind BB, Davies RH. Review of the carriage of zoonotic bacteria by arthropods, with special reference to Salmonella in mites, flies and litter beetles. Zoonoses Public Health 2010; 57:299-314. [PMID: 19486496 DOI: 10.1111/j.1863-2378.2008.01222.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
This systematic review considers the relationship between arthropods commonly found in and around livestock premises and zoonotic bacteria. The principal focus is upon insects and arachnids on poultry units, where houses, litter and manure provide good conditions for the growth, multiplication and protection of flies, beetles and mites, and where zoonotic pathogens such as Salmonella and Campylobacter are prevalent. Other members of the Enterobacteriaceae and the taxa Clostridium, Helicobacter, Erysipelas and Chlamydiaceae are also discussed. Salmonella is widely distributed in the flies of affected livestock units and is detectable to a lesser degree in beetles and mites. Persistent carriage appears to be common and there is some field and experimental evidence to support arthropod-mediated transmission between poultry flocks, particularly carry-over from one flock to the next. Campylobacter may readily be isolated from arthropods in contact with affected poultry flocks, although carriage is short-lived. There appears to be a role for flies, at least, in the breaching of biosecurity around Campylobacter-negative flocks. The carriage of other zoonotic bacteria by arthropods has been documented, but the duration and significance of such associations remain uncertain in the context of livestock production.
Collapse
Affiliation(s)
- A D Wales
- Department of Food and Environmental Safety, Veterinary Laboratories Agency, New Haw, Addlestone, Surrey, UK
| | | | | | | | | | | |
Collapse
|
9
|
Francischetti IMB, Sa-Nunes A, Mans BJ, Santos IM, Ribeiro JMC. The role of saliva in tick feeding. FRONT BIOSCI-LANDMRK 2009; 14:2051-88. [PMID: 19273185 PMCID: PMC2785505 DOI: 10.2741/3363] [Citation(s) in RCA: 384] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
When attempting to feed on their hosts, ticks face the problem of host hemostasis (the vertebrate mechanisms that prevent blood loss), inflammation (that can produce itching or pain and thus initiate defensive behavior on their hosts) and adaptive immunity (by way of both cellular and humoral responses). Against these barriers, ticks evolved a complex and sophisticated pharmacological armamentarium, consisting of bioactive lipids and proteins, to assist blood feeding. Recent progress in transcriptome research has uncovered that hard ticks have hundreds of different proteins expressed in their salivary glands, the majority of which have no known function, and include many novel protein families (e.g., their primary structure is unique to ticks). This review will address the vertebrate mechanisms of these barriers as a guide to identify the possible targets of these large numbers of known salivary proteins with unknown function. We additionally provide a supplemental Table that catalogues over 3,500 putative salivary proteins from various tick species, which might assist the scientific community in the process of functional identification of these unique proteins. This supplemental file is accessble fromhttp://exon.niaid.nih.gov/transcriptome/tick_review/Sup-Table-1.xls.gz.
Collapse
Affiliation(s)
- Ivo M B Francischetti
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda MD, USA
| | | | | | | | | |
Collapse
|
10
|
Anderson JM, Sonenshine DE, Valenzuela JG. Exploring the mialome of ticks: an annotated catalogue of midgut transcripts from the hard tick, Dermacentor variabilis (Acari: Ixodidae). BMC Genomics 2008; 9:552. [PMID: 19021911 PMCID: PMC2644717 DOI: 10.1186/1471-2164-9-552] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Accepted: 11/20/2008] [Indexed: 11/30/2022] Open
Abstract
Background Ticks are obligate blood feeders. The midgut is the first major region of the body where blood and microbes ingested with the blood meal come in contact with the tick's internal tissues. Little is known about protein expression in the digestive tract of ticks. In this study, for analysis of global gene expression during tick attachment and feeding, we generated and sequenced 1,679 random transcripts (ESTs) from cDNA libraries from the midguts of female ticks at varying stages of feeding. Results Sequence analysis of the 1,679 ESTs resulted in the identification of 835 distinct transcripts, from these, a total of 82 transcripts were identified as proteins putatively directly involved in blood meal digestion, including enzymes involved in oxidative stress reduction/antimicrobial activity/detoxification, peptidase inhibitors, protein digestion (cysteine-, aspartic-, serine-, and metallo-peptidases), cell, protein and lipid binding including mucins and iron/heme metabolism and transport. A lectin-like protein with a high match to lectins in other tick species, allergen-like proteins and surface antigens important in pathogen recognition and/or antimicrobial activity were also found. Furthermore, midguts collected from the 6-day-fed ticks expressed twice as many transcripts involved in bloodmeal processing as midguts from unfed/2-day-fed ticks. Conclusion This tissue-specific transcriptome analysis provides an opportunity to examine the global expression of transcripts in the tick midgut and to compare the gut response to host attachment versus blood feeding and digestion. In contrast to those in salivary glands of other Ixodid ticks, most proteins in the D. variabilis midgut cDNA library were intracellular. Of the total ESTs associated with a function, an unusually large number of transcripts were associated with peptidases, cell, lipid and protein binding, and oxidative stress or detoxification. Presumably, this is consistent with their role in intracellular processing of the blood meal and response to microbial infections. The presence of many proteins with similar functions is consistent with the hypothesis that gene duplication contributed to the successful adaptation of ticks to hematophagy. Furthermore, these transcripts may be useful to scientists investigating the role of the tick midgut in blood-meal digestion, antimicrobial activity or the transmission of tick-borne pathogens.
Collapse
Affiliation(s)
- Jennifer M Anderson
- Vector Molecular Biology Unit, Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA.
| | | | | |
Collapse
|
11
|
Tsuji N, Miyoshi T, Battsetseg B, Matsuo T, Xuan X, Fujisaki K. A cysteine protease is critical for Babesia spp. transmission in Haemaphysalis ticks. PLoS Pathog 2008; 4:e1000062. [PMID: 18483546 PMCID: PMC2358973 DOI: 10.1371/journal.ppat.1000062] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 04/09/2008] [Indexed: 11/25/2022] Open
Abstract
Vector ticks possess a unique system that enables them to digest large amounts of host blood and to transmit various animal and human pathogens, suggesting the existence of evolutionally acquired proteolytic mechanisms. We report here the molecular and reverse genetic characterization of a multifunctional cysteine protease, longipain, from the babesial parasite vector tick Haemaphysalis longicornis. Longipain shares structural similarity with papain-family cysteine proteases obtained from invertebrates and vertebrates. Endogenous longipain was mainly expressed in the midgut epithelium and was specifically localized at lysosomal vacuoles and possibly released into the lumen. Its expression was up-regulated by host blood feeding. Enzymatic functional assays using in vitro and in vivo substrates revealed that longipain hydrolysis occurs over a broad range of pH and temperature. Haemoparasiticidal assays showed that longipain dose-dependently killed tick-borne Babesia parasites, and its babesiacidal effect occurred via specific adherence to the parasite membranes. Disruption of endogenous longipain by RNA interference revealed that longipain is involved in the digestion of the host blood meal. In addition, the knockdown ticks contained an increased number of parasites, suggesting that longipain exerts a killing effect against the midgut-stage Babesia parasites in ticks. Our results suggest that longipain is essential for tick survival, and may have a role in controlling the transmission of tick-transmittable Babesia parasites. Ticks are important ectoparasites among the blood-feeding arthropods and serve as vectors of many deadly diseases of humans and animals. Of tick-transmitted pathogens, Babesia, an intracellular haemoprotozoan parasite causing a malaria-like disease, called babesiosis, gain increasing interest due to its zoonotic significance. When vector ticks acquire the protozoa via blood-meals, they invade midgut and undergo several developmental stages prior to exit through salivary glands. It has long been conceived that midguts of these ticks evolve diverse innate immune mechanisms and perform blood digestion critical for tick survival. A cysteine proteinase, longipain, was identified from the three-host tick Haemaphysalis longicornis, which shows potent parasiticidal activity. Longipain is localized in midgut epithelium and its expression is induced by blood feeding. This protein is passively secreted into midgut lumen where it exerts enzymatic degradation of blood-meals. A series of experiments unveil that longipain-knockdown ticks when fed on Babesia-infected dog, exhibited a significantly increased numbers of parasites compared with controls. Longipain has shown to interact on the surface of Babesia parasites in vitro and in vivo, and is thought to mediate direct killing of the parasites, suggesting that longipain may be a potential chemotherapeutic target against babesiosis and ticks themselves.
Collapse
Affiliation(s)
- Naotoshi Tsuji
- Laboratory of Parasitic Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Takeharu Miyoshi
- Laboratory of Parasitic Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Badger Battsetseg
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Tomohide Matsuo
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
- Department of Infectious Diseases, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Xuenan Xuan
- Department of Infectious Diseases, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Kozo Fujisaki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
- Department of Emerging Infectious Diseases, School of Veterinary Medicine, Kagoshima University, Korimoto, Kagoshima, Japan
- * E-mail:
| |
Collapse
|
12
|
Umemiya R, Matsuo T, Hatta T, Sakakibara SI, Boldbaatar D, Fujisaki K. Cloning and characterization of an autophagy-related gene, ATG12, from the three-host tick Haemaphysalis longicornis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 37:975-84. [PMID: 17681237 DOI: 10.1016/j.ibmb.2007.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 05/01/2007] [Accepted: 05/08/2007] [Indexed: 05/16/2023]
Abstract
Ticks are obligate hematophagous ectoparasites with a life cycle characterized by a period of starvation; many ticks spend more than 95% of their life off the host. Autophagy, which is the process of bulk cytoplasmic degradation in eukaryotic cells, is induced by starvation and is essential for extension of the lifespan. Therefore, we hypothesized that autophagy also occurs in ticks; however, there has been no report on autophagy-related (ATG) genes in ticks. Here, we show the homologue of an ATG gene, ATG12, and its expression pattern from the nymphal to adult stages in the three-host tick Haemaphysalis longicornis. The sequence analysis showed that H. longicornis ATG12 (HlATG12) cDNA is 649bp, has a 411bp ORF coding for a 136-amino acid polypeptide with the carboxy-terminal glycine residue, and has a predicted molecular mass of 15.2kDa. Moreover, RT-PCR revealed that HlATG12 was downregulated at the beginning of feeding, upregulated after engorgement, and downregulated again after molting. The expression level of HlATG12 was highest at 3 months after engorgement. By immuno-electron microscopy, it was demonstrated that HlAtg12 was localized to the region around granule-like structures within midgut cells of unfed adults. In conclusion, HlATG12 might function during unfed and molting stages.
Collapse
Affiliation(s)
- Rika Umemiya
- Department of Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, Yanagito, Gifu 501-1193, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Todd SM, Sonenshine DE, Hynes WL. Tissue and life-stage distribution of a defensin gene in the Lone Star tick, Amblyomma americanum. MEDICAL AND VETERINARY ENTOMOLOGY 2007; 21:141-7. [PMID: 17550433 DOI: 10.1111/j.1365-2915.2007.00682.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The transcript sequence of the Amblyomma americanum Linnaeus (Acari: Ixodidae) defensin, termed amercin (amn), was ascertained and a 219-bp amn coding region identified. The gene encodes a 72-amino acid prepropeptide with a putative 37-amino acid mature peptide. This gene shows little similarity to either of the defensins from Amblyomma hebraeum Koch, the only other Amblyomma species for which a defensin has been described. Sequence comparisons with other tick defensins reveal amn to be shorter (6 bp or 2 amino acids) than the Ixodes scapularis Linnaeus (Acari: Ixodidae) and Dermacentor variabilis (Say) (Acari: Ixodidae) defensin sequences. The amercin prepropeptide has 60.8% and 59.5% similarity with the I. scapularis and D. variabilis prepropeptides, respectively, whereas the mature amercin peptide has 73.7% and 71.1% similarity with the mature peptides of these ticks. Similarity with other tick defensins ranges from 42% to 71%. In A. americanum, defensin transcript was found in the midgut, fat body and salivary gland tissues, as well as in the haemocytes. Defensin transcript was also present in early-stage eggs (less than 48 h old), late-stage eggs (approximately 2 weeks old), larvae and nymphs of A. americanum and I. scapularis, both of which are vector-competent for Borrelia spirochetes.
Collapse
Affiliation(s)
- S M Todd
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia 23529, USA
| | | | | |
Collapse
|
14
|
Mattila JT, Munderloh UG, Kurtti TJ. Phagocytosis of the Lyme disease spirochete, Borrelia burgdorferi, by cells from the ticks, Ixodes scapularis and Dermacentor andersoni, infected with an endosymbiont, Rickettsia peacockii. JOURNAL OF INSECT SCIENCE (ONLINE) 2007; 7:58. [PMID: 20331397 PMCID: PMC2999452 DOI: 10.1673/031.007.5801] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Tick cell lines were used to model the effects of endosymbiont infection on phagocytic immune responses. The lines tested for their ability to phagocytose the Lyme disease spirochete, Borrelia burgdorferi (Spirochaetales: Spirochaetaceae), were ISE6 and IDE12 from the black-legged tick, Ixodes scapularis Say (Acari: Ixodidae) and DAE15 from the Rocky Mountain wood tick, Dermacentor andersoni Stiles. Rickettsia peacockii (Rickettsiales: Rickettsiaceae), an endosymbiont of D. andersoni, was used as a representative tick endosymbiont. 70-80% of uninfected or R. peacocciz-infected IDE12 and DAE15 cells phagocytosed heat-killed borreliae and 80-90% of IDE12 and DAE15 cells phagocytosed viable spirochetes. ISE6 cells were permissive of spirochetes; less than 1% of these cells phagocytosed borreliae, and spirochetes remained adherent to the cells seven days after inoculation. Cytochalasin B blocked phagocytosis of killed and viable borreliae by IDE12 cells, and prevented phagocytosis of killed spirochetes by DAE15 cells, whereas viable spirochetes successfully invaded cytochalasin-treated DAE15. IDE12 and DAE15 cells degraded borreliae within phagolysosome-like compartments. Time-lapse microscopy showed that DAE15 cells phagocytosed borreliae more rapidly than IDE12 cells. IDE12 and DAE15 cells eliminated most adherent spirochetes within 7 days of inoculation. Thus, endosymbiont infection does not significantly interfere with the phagocytic activity of immunocompetent tick cells.
Collapse
Affiliation(s)
- Joshua T. Mattila
- Department of Entomology, University of Minnesota, St. Paul, MN 55108
- Correspondence: ,
| | | | - Timothy J. Kurtti
- Department of Entomology, University of Minnesota, St. Paul, MN 55108
- Correspondence: ,
| |
Collapse
|
15
|
Baldridge GD, Kurtti TJ, Burkhardt N, Baldridge AS, Nelson CM, Oliva AS, Munderloh UG. Infection of Ixodes scapularis ticks with Rickettsia monacensis expressing green fluorescent protein: a model system. J Invertebr Pathol 2006; 94:163-74. [PMID: 17125789 PMCID: PMC1868488 DOI: 10.1016/j.jip.2006.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 09/28/2006] [Accepted: 10/03/2006] [Indexed: 10/23/2022]
Abstract
Ticks (Acari: Ixodidae) are ubiquitous hosts of rickettsiae (Rickettsiaceae: Rickettsia), obligate intracellular bacteria that occur as a continuum from nonpathogenic arthropod endosymbionts to virulent pathogens of both arthropod vectors and vertebrates. Visualization of rickettsiae in hosts has traditionally been limited to techniques utilizing fixed tissues. We report epifluorescence microscopy observations of unfixed tick tissues infected with a spotted fever group endosymbiont, Rickettsia monacensis, transformed to express green fluorescent protein (GFP). Fluorescent rickettsiae were readily visualized in tick tissues. In adult female, but not male, Ixodes scapularis infected by capillary feeding, R. monacensis disseminated from the gut and infected the salivary glands that are crucial to the role of ticks as vectors. The rickettsiae infected the respiratory tracheal system, a potential dissemination pathway and possible infection reservoir during tick molting. R. monacensis disseminated from the gut of capillary fed I. scapularis nymphs and was transstadially transmitted to adults. Larvae, infected by immersion, transstadially transmitted the rickettsiae to nymphs. Infected female I. scapularis did not transovarially transmit R. monacensis to progeny and the rickettsiae were not horizontally transmitted to a rabbit or hamsters. Survival of infected nymphal and adult I. scapularis did not differ from that of uninfected control ticks. R. monacensis did not disseminate from the gut of capillary fed adult female Amblyomma americanum (L.), or adult Dermacentor variabilis (Say) ticks of either sex. Infection of I. scapularis with R. monacensis expressing GFP provides a model system allowing visualization and study of live rickettsiae in unfixed tissues of an arthropod host.
Collapse
Affiliation(s)
- Gerald D Baldridge
- Department of Entomology, University of Minnesota, 219 Hodson Hall, 1980 Folwell Av., St. Paul, MN 55108, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Battsetseg B, Matsuo T, Xuan X, Boldbaatar D, Chee SH, Umemiya R, Sakaguchi T, Hatta T, Zhou J, Verdida AR, Taylor D, Fujisaki K. Babesiaparasites develop and are transmitted by the non-vector soft tickOrnithodoros moubata(Acari: Argasidae). Parasitology 2006; 134:1-8. [PMID: 16978440 DOI: 10.1017/s0031182006000916] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 05/30/2006] [Accepted: 06/02/2006] [Indexed: 11/06/2022]
Abstract
Ornithodoros moubataticks were fed on blood infected withBabesia equi. However, the parasites were quickly cleared as evidenced by the disappearance ofB. equi-specific ribosomal RNA from the ticks. We hypothesized that if theBabesiaparasite can escape midgut-associated barriers a non-vector tick can become infected withBabesia. To test this hypothesis,B. equiparasite-infected blood fromin vitroculture was injected into the haemocoel of ticks.B. equi-specific rRNA was surprisingly detected 45 days after injection even in the eggs.Babesia-free dogs were infested withO. moubataticks that were infected by inoculation withB. gibsoni-infected red blood cells. Parasitaemia and antibody production against Bg-TRAP ofB. gibsoniincreased gradually. These results indicate thatO. moubatamay be a useful vector model forBabesiaparasites and also a very important tool for studies on tick immunity againstBabesiaparasites and tick-Babesiainteractions.
Collapse
Affiliation(s)
- B Battsetseg
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Buresová V, Franta Z, Kopácek P. A comparison of Chryseobacterium indologenes pathogenicity to the soft tick Ornithodoros moubata and hard tick Ixodes ricinus. J Invertebr Pathol 2006; 93:96-104. [PMID: 16793056 DOI: 10.1016/j.jip.2006.05.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 03/23/2006] [Accepted: 05/17/2006] [Indexed: 11/16/2022]
Abstract
A yellow-pigmented Gram-negative bacterium, Chryseobacterium indologenes, was found in the gut contents of about 65% of soft ticks Ornithodoros moubata from a perishing laboratory colony. The isolated putative pathogen, C. indologenes, was susceptible to cotrimoxazol and addition of this antibiotic (Biseptol 480) to the blood meal significantly decreased the tick mortality rate. The artificial infection of healthy O. moubata by membrane feeding on blood contaminated with C. indologenes was lethal to all ticks at concentrations 10(6) bacteria/ml. On the contrary, a similar infection dose applied to the hard tick Ixodes ricinus by capillary feeding did not cause significant mortality. Examination of guts dissected from infected O. moubata and I. ricinus revealed that C. indologenes was exponentially multiplied in the soft tick but were completely cleared from the gut of the hard ticks within 1 day. In both tick species, C. indologenes were found to penetrate from the gut into the hemocoel. The phagocytic activity of hemocytes from both tick species was tested by intrahaemocoelic microinjection of C. indologenes and evaluated by indirect fluorescent microscopy using antibodies raised against whole bacteria. Hemocytes from both tick species displayed significant phagocytic activity against C. indologenes. All O. moubata injected with C. indologenes died within 3 days, whereas the increase of the mortality rate of I. ricinus was insignificant. Our results indicate that hard ticks possess much more efficient defense system against infection with C. indologenes than the soft ticks. Thus, C. indologenes infection has the potential to be a relevant comparative model for the study of tick immune reactions to transmitted pathogens.
Collapse
Affiliation(s)
- Veronika Buresová
- Faculty of Biological Sciences, University of South Bohemia, Branisovská 31, 370 05 Ceské Budejovice, Czech Republic
| | | | | |
Collapse
|