1
|
Feng X, Zhu L, Qin Z, Mo X, Hao Y, Jiang Y, Hu W, Li S. Temporal transcriptome change of Oncomelania hupensis revealed by Schistosoma japonicum invasion. Cell Biosci 2020; 10:58. [PMID: 32328235 PMCID: PMC7165382 DOI: 10.1186/s13578-020-00420-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
Background The freshwater snail Oncomelania hupensis is the obligate intermediate host for Schistosoma japonicum in China. Transcriptomic examination of snail–schistosome interactions can provide valuable information of host response at physiological and immune levels. Methods To investigate S. japonicum-induced changes in O. hupensis gene expression, we utilized high-throughput sequencing to identify transcripts that were differentially expressed between infected snails and their uninfected controls at two key time-point, Day 7 and Day 30 after challenge. Time-series transcriptomic profiles were analyzed using R package DESeq 2, followed by GO, KEGG and (weighted gene correlation network analysis) WGCNA analysis to elucidate and identify important molecular mechanism, and subsequently understand host–parasite relationship. The identified unigenes was verified by bioinformatics and real-time PCR. Possible adaptation molecular mechanisms of O. hupensis to S. japonicum challenge were proposed. Results Transcriptomic analyses of O. hupensis by S. japonicum invasion yielded billion reads including 92,144 annotated transcripts. Over 5000 differentially expressed genes (DEGs) were identified by pairwise comparisons of infected libraries from two time points to uninfected libraries in O. hupensis. In total, 6032 gene ontology terms and 149 KEGG pathways were enriched. After the snails were infected with S. japonicum on Day 7 and Day 30, DEGs were shown to be involved in many key processes associated with biological regulation and innate immunity pathways. Gene expression patterns differed after exposure to S. japonicum. Using WGCNA, 16 modules were identified. Module-trait analysis identified that a module involved in RNA binding, ribosome, translation, mRNA processing, and structural constituent of ribosome were strongly associated with S. japonicum invasion. Many of the genes from enriched KEGG pathways were involved in lysosome, spliceosome and ribosome, indicating that S. japonicum invasion may activate the regulation of ribosomes and immune response to infection in O. hupensis. Conclusions Our analysis provided a temporally dynamic gene expression pattern of O. hupensis by S. japonicum invasion. The identification of gene candidates serves as a foundation for future investigations of S. japonicum infection. Additionally, major DEGs expression patterns and putative key regulatory pathways would provide useful information to construct gene regulatory networks between host-parasite crosstalk.
Collapse
Affiliation(s)
- Xinyu Feng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, 200025 People's Republic of China.,2Joint Research Laboratory of Genetics and Ecology on Parasites-hosts Interaction, National Institute of Parasitic Diseases-Fudan University, Shanghai, 200025 People's Republic of China
| | - Lingqian Zhu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, 200025 People's Republic of China
| | - Zhiqiang Qin
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, 200025 People's Republic of China
| | - Xiaojin Mo
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, 200025 People's Republic of China
| | - Yuwan Hao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, 200025 People's Republic of China
| | - Ying Jiang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, 200025 People's Republic of China
| | - Wei Hu
- 3State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438 People's Republic of China
| | - Shizhu Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, 200025 People's Republic of China
| |
Collapse
|
2
|
Prasopdee S, Thitapakorn V, Sathavornmanee T, Tesana S. A comprehensive review of omics and host-parasite interplays studies, towards control of Opisthorchis viverrini infection for prevention of cholangiocarcinoma. Acta Trop 2019; 196:76-82. [PMID: 31100270 DOI: 10.1016/j.actatropica.2019.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/10/2019] [Accepted: 05/12/2019] [Indexed: 10/26/2022]
Abstract
Opisthorchis viverrini infection, opisthorchiasis, is a food-borne trematodiasis that is the main cause of cholangiocarcinoma, a bile duct cancer, in the Lower Mekong sub-region of Lao PDR, Cambodia, Vietnam, and Thailand. Despite extensive research on opisthorchiasis, the eradication of this disease has yet to be achieved. One of the major reasons for this failure is due to the multi-host life cycle of the parasite, which requires complex medical and public health interventions to eradicate. Another reason is due to a lack of knowledge of not only the interactions between the parasite and the human immune system, but also the interactions between the parasite and its various hosts during its complicated life cycle. Recent advances in various high-throughput omics technologies has allowed for the identification of key biomolecules crucial to the processes of parasitic transmission, and the identification of novel drug and/or vaccine targets. In this paper, omics studies dealing with O. viverrini host-parasite biology will be reviewed. In particular, there will be a focus on the strategies O. viverrini uses to trigger, evade, and manipulate the host's defense systems. Recently-identified biological molecules with potential as targets for interventions will also be reviewed. The results obtained from these omics approaches to analyzing O. viverrini and host interactions will be of great importance in the future when developing effective and sustainable medical and public health models for the prevention and control of opisthorchiasis and opisthorchiasis-induced CCA.
Collapse
|
3
|
Litopenaeus vannamei hemocyanin exhibits antitumor activity in S180 mouse model in vivo. PLoS One 2017; 12:e0183783. [PMID: 28854214 PMCID: PMC5576664 DOI: 10.1371/journal.pone.0183783] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/10/2017] [Indexed: 11/09/2022] Open
Abstract
Hemocyanin is a multifunctional glycoprotein, which also plays multiple roles in immune defense. While it has been demonstrated that hemocyanin from some mollusks can induce potent immune response and is therefore undergoing clinical trials to be used in anti-tumor immunotherapy, little is currently known about how hemocyanin from arthropods affect tumors. In this study we investigated the anti-tumor activity of hemocyanin from Litopenaeus vannamei on Sarcoma-180 (S180) tumor-bearing mice model. Eight days treatment with 4mg/kg bodyweight of hemocyanin significantly inhibited the growth of S180 up to 49% as compared to untreated. Similarly, histopathology analysis showed a significant decrease in tumor cell number and density in the tissues of treated mice. Moreover, there was a significant increase in immune organs index, lymphocyte proliferation, NK cell cytotoxic activity and serum TNF-α level, suggesting that hemocyanin could improve the immunity of the S180 tumor-bearing mice. Additionally, there was a significant increase in superoxide dismutase (SOD) activity and a decrease in the level of malondialdehyde (MDA) in serum and liver, which further suggest that hemocyanin improved the anti-oxidant ability of the S180 tumor-bearing mice. Collectively, our data demonstrated that L. vannamei hemocyanin had a significant antitumor activity in mice.
Collapse
|
4
|
Zhang YL, Peng B, Li H, Yan F, Wu HK, Zhao XL, Lin XM, Min SY, Gao YY, Wang SY, Li YY, Peng XX. C-Terminal Domain of Hemocyanin, a Major Antimicrobial Protein from Litopenaeus vannamei: Structural Homology with Immunoglobulins and Molecular Diversity. Front Immunol 2017; 8:611. [PMID: 28659912 PMCID: PMC5468459 DOI: 10.3389/fimmu.2017.00611] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/09/2017] [Indexed: 11/24/2022] Open
Abstract
Invertebrates rely heavily on immune-like molecules with highly diversified variability so as to counteract infections. However, the mechanisms and the relationship between this variability and functionalities are not well understood. Here, we showed that the C-terminal domain of hemocyanin (HMC) from shrimp Litopenaeus vannamei contained an evolutionary conserved domain with highly variable genetic sequence, which is structurally homologous to immunoglobulin (Ig). This domain is responsible for recognizing and binding to bacteria or red blood cells, initiating agglutination and hemolysis. Furthermore, when HMC is separated into three fractions using anti-human IgM, IgG, or IgA, the subpopulation, which reacted with anti-human IgM (HMC-M), showed the most significant antimicrobial activity. The high potency of HMC-M is a consequence of glycosylation, as it contains high abundance of α-d-mannose relative to α-d-glucose and N-acetyl-d-galactosamine. Thus, the removal of these glycans abolished the antimicrobial activity of HMC-M. Our results present a comprehensive investigation of the role of HMC in fighting against infections through genetic variability and epigenetic modification.
Collapse
Affiliation(s)
- Yue-Ling Zhang
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, School of Sciences, Shantou University, Shantou, China
| | - Bo Peng
- Center for Proteomics, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, China
| | - Hui Li
- Center for Proteomics, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, China
| | - Fang Yan
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, School of Sciences, Shantou University, Shantou, China
| | - Hong-Kai Wu
- Center for Proteomics, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, China
| | - Xian-Liang Zhao
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, School of Sciences, Shantou University, Shantou, China
| | - Xiang-Min Lin
- Center for Proteomics, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, China
| | - Shao-Ying Min
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, School of Sciences, Shantou University, Shantou, China
| | - Yuan-Yuan Gao
- School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - San-Ying Wang
- School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yuan-You Li
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, School of Sciences, Shantou University, Shantou, China
| | - Xuan-Xian Peng
- Center for Proteomics, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou, China
| |
Collapse
|
5
|
Peña JJ, Adema CM. The Planorbid Snail Biomphalaria glabrata Expresses a Hemocyanin-Like Sequence in the Albumen Gland. PLoS One 2016; 11:e0168665. [PMID: 28036345 PMCID: PMC5201427 DOI: 10.1371/journal.pone.0168665] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 12/05/2016] [Indexed: 02/03/2023] Open
Abstract
The parasitic flatworm Schistosoma mansoni, causative agent of human intestinal schistosomiasis in South America, relies importantly on the freshwater snail Biomphalaria glabrata as intermediate host to achieve development of cercariae that infect humans. The recommendation from the World Health Organization (WHO) to integrate snail control in efforts to counter schistosomiasis transmission provides impetus for in depth study of B. glabrata biology. Our analysis indicates that two distinct hemocyanin-like genes (hcl-1 and hcl-2) are present in B. glabrata, a snail that uses hemoglobin for oxygen transport. Characterization of BAC clones yielded the full length hcl-1 gene, which is comprised of three functional unit (FU) domains at the amino acid level. Database searches and in silico analyses identified the second hcl gene (hcl-2), composed of six FU domains. Both genes are unusual for lacking canonical residues and having fewer FU domains than typical molluscan hemocyanins that contain 7-8 FUs. Reverse transcription PCR demonstrated that Hcl-1 is expressed in a manner that correlates with reproductive maturity in the albumen gland (AG), an immune- and reproduction-relevant organ. Immune cross-reactivity with anti-keyhole limpet hemocyanin (α-KLH) antiserum and tandem-mass spectrometry validated the presence of Hcl-1 protein in the AG and egg mass fluid (EMF). The evolutionary conservation of hemocyanin-like sequences in B. glabrata in the presence of the oxygen carrier hemoglobin, combined with our results, suggest that the Hcl-1protein has a functional role in general and/or reproductive biology. Further investigations are needed to explore Hcl-1 as a potential target for snail control.
Collapse
Affiliation(s)
- Janeth J. Peña
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, MSCO3 2020, Albuquerque, NM, United States of America
| | - Coen M. Adema
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, MSCO3 2020, Albuquerque, NM, United States of America
| |
Collapse
|
6
|
Immunological properties of oxygen-transport proteins: hemoglobin, hemocyanin and hemerythrin. Cell Mol Life Sci 2016; 74:293-317. [PMID: 27518203 PMCID: PMC5219038 DOI: 10.1007/s00018-016-2326-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/17/2016] [Accepted: 08/03/2016] [Indexed: 01/22/2023]
Abstract
It is now well documented that peptides with enhanced or alternative functionality (termed cryptides) can be liberated from larger, and sometimes inactive, proteins. A primary example of this phenomenon is the oxygen-transport protein hemoglobin. Aside from respiration, hemoglobin and hemoglobin-derived peptides have been associated with immune modulation, hematopoiesis, signal transduction and microbicidal activities in metazoans. Likewise, the functional equivalents to hemoglobin in invertebrates, namely hemocyanin and hemerythrin, act as potent immune effectors under certain physiological conditions. The purpose of this review is to evaluate the true extent of oxygen-transport protein dynamics in innate immunity, and to impress upon the reader the multi-functionality of these ancient proteins on the basis of their structures. In this context, erythrocyte-pathogen antibiosis and the immune competences of various erythroid cells are compared across diverse taxa.
Collapse
|
7
|
Prasopdee S, Tesana S, Cantacessi C, Laha T, Mulvenna J, Grams R, Loukas A, Sotillo J. Proteomic profile of Bithynia siamensis goniomphalos snails upon infection with the carcinogenic liver fluke Opisthorchis viverrini. J Proteomics 2014; 113:281-91. [PMID: 25284051 DOI: 10.1016/j.jprot.2014.09.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/11/2014] [Accepted: 09/23/2014] [Indexed: 12/30/2022]
Abstract
UNLABELLED The snail Bithynia siamensis goniomphalos acts as the first intermediate host for the human liver fluke Opisthorchis viverrini, the major cause of cholangiocarcinoma (CCA) in Northeast Thailand. The undisputed link between CCA and O. viverrini infection has precipitated efforts to understand the molecular basis of host-parasite interactions with a view to ultimately developing new control strategies to combat this carcinogenic infection. To date most effort has focused on the interactions between the parasite and its human host, and little is known about the molecular relationships between the liver fluke and its snail intermediate host. In the present study we analyse the protein expression changes in different tissues of B. siamensis goniomphalos induced by infection with larval O. viverrini using iTRAQ labelling technology. We show that O. viverrini infection downregulates the expression of oxidoreductases and catalytic enzymes, while stress-related and motor proteins are upregulated. The present work could serve as a basis for future studies on the proteins implicated in the susceptibility/resistance of B. siamensis goniomphalos to O. viverrini, as well as studies on other pulmonate snail intermediate hosts of various parasitic flukes that infect humans. BIOLOGICAL SIGNIFICANCE Despite the importance and high prevalence of opisthorchiasis in some regions of Southeast Asia and the direct relationship between infection by Opisthorchis viverrini and the incidence of cholangiocarcinoma, little is known of the modifications induced by this parasite in its snail intermediate hosts. This time-course study provides the first in-depth quantitative proteomic analysis of experimentally infected Bithynia siamensis goniomphalos. We show how motor and stress-related proteins are upregulated in infected snails, while O. viverrini infection downregulates the expression of oxidoreductases and catalytic enzymes. This work serves as a basis for the development of new strategies, focused on the invertebrate intermediate hosts, to control parasite transmission.
Collapse
Affiliation(s)
- Sattrachai Prasopdee
- Food-borne Parasite Research Group, Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia; Chulabhorn International College of Medicine, Thammasat University, Klong Luang, Pathum Thani 12120, Thailand
| | - Smarn Tesana
- Food-borne Parasite Research Group, Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Cinzia Cantacessi
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia; Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Thewarach Laha
- Food-borne Parasite Research Group, Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jason Mulvenna
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Rudi Grams
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Klong Luang, Pathum Thani 12120, Thailand
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Javier Sotillo
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.
| |
Collapse
|
8
|
Coates CJ, Nairn J. Diverse immune functions of hemocyanins. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 45:43-55. [PMID: 24486681 DOI: 10.1016/j.dci.2014.01.021] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 01/24/2014] [Accepted: 01/25/2014] [Indexed: 06/03/2023]
Abstract
Substantial evidence gathered recently has revealed the multiple functionalities of hemocyanin. Contrary to previous claims that this ancient protein is involved solely in oxygen transport within the hemolymph of invertebrates, hemocyanin and hemocyanin-derived peptides have been linked to key aspects of innate immunity, in particular, antiviral and phenoloxidase-like activities. Both phenoloxidase and hemocyanin belong to the family of type-3 copper proteins and share a high degree of sequence homology. While the importance of phenoloxidase in immunity and development is well characterised, the contribution of hemocyanin to biological defence systems within invertebrates is not recognised widely. This review focusses on the conversion of hemocyanin into a phenoloxidase-like enzyme and the array of hemocyanin-derived immune responses documented to date.
Collapse
Affiliation(s)
- Christopher J Coates
- Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK.
| | - Jacqueline Nairn
- Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| |
Collapse
|
9
|
Wu JY, Zhou YB, Li LH, Zheng SB, Liang S, Coatsworth A, Ren GH, Song XX, He Z, Cai B, You JB, Jiang QW. Identification of optimum scopes of environmental factors for snails using spatial analysis techniques in Dongting Lake Region, China. Parasit Vectors 2014; 7:216. [PMID: 24886456 PMCID: PMC4025561 DOI: 10.1186/1756-3305-7-216] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 05/01/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Owing to the harmfulness and seriousness of Schistosomiasis japonica in China, the control and prevention of S. japonica transmission are imperative. As the unique intermediate host of this disease, Oncomelania hupensis plays an important role in the transmission. It has been reported that the snail population in Qiangliang Lake district, Dongting Lake Region has been naturally declining and is slowly becoming extinct. Considering the changes of environmental factors that may cause this phenomenon, we try to explore the relationship between circumstance elements and snails, and then search for the possible optimum scopes of environmental factors for snails. METHODS Moisture content of soil, pH, temperature of soil and elevation were collected by corresponding apparatus in the study sites. The LISA statistic and GWR model were used to analyze the association between factors and mean snail density, and the values in high-high clustered areas and low-low clustered areas were extracted to find out the possible optimum ranges of these elements for snails. RESULTS A total of 8,589 snail specimens were collected from 397 sampling sites in the study field. Besides the mean snail density, three environmental factors including water content, pH and temperature had high spatial autocorrelation. The spatial clustering suggested that the possible optimum scopes of moisture content, pH, temperature of the soil and elevation were 58.70 to 68.93%, 6.80 to 7.80, 22.73 to 24.23°C and 23.50 to 25.97 m, respectively. Moreover, the GWR model showed that the possible optimum ranges of these four factors were 36.58 to 61.08%, 6.541 to 6.89, 24.30 to 25.70°C and 23.50 to 29.44 m, respectively. CONCLUSION The results indicated the association between snails and environmental factors was not linear but U-shaped. Considering the results of two analysis methods, the possible optimum scopes of moisture content, pH, temperature of the soil and elevation were 58.70% to 68.93%, 6.6 to 7.0, 22.73°C to 24.23°C, and 23.5 m to 26.0 m, respectively. The findings in this research will help in making an effective strategy to control snails and provide a method to analyze other factors.
Collapse
Affiliation(s)
- Jin-Yi Wu
- Department of Epidemiology, School of Public Health, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
- Center for Tropical Disease Research, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Yi-Biao Zhou
- Department of Epidemiology, School of Public Health, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
- Center for Tropical Disease Research, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Lin-Han Li
- Department of Epidemiology, School of Public Health, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
- Center for Tropical Disease Research, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Sheng-Bang Zheng
- Department of Epidemiology, School of Public Health, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
- Center for Tropical Disease Research, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Song Liang
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Ashley Coatsworth
- Department of Epidemiology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Guang-Hui Ren
- Hunan station for Schistosomiasis Control, Changsha, Hunan Province 410000, China
| | - Xiu-Xia Song
- Department of Epidemiology, School of Public Health, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
- Center for Tropical Disease Research, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Zhong He
- Junshan office of Leading Group for Schistosomiasis Control, Yueyang, Hunan province 414000, China
| | - Bin Cai
- Junshan station for Schistosomiasis Control, Yueyang, Hunan Province 414000, China
| | - Jia-Bian You
- Qianlianghu station for Schistosomiasis Control, Yueyang, Hunan Province 414000, China
| | - Qing-Wu Jiang
- Department of Epidemiology, School of Public Health, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
- Center for Tropical Disease Research, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| |
Collapse
|
10
|
Bae YA, Cai GB, Kim SH, Sohn WM, Kong Y. Expression pattern and substrate specificity of Clonorchis sinensis tyrosinases. Int J Parasitol 2013; 43:891-900. [DOI: 10.1016/j.ijpara.2013.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 11/24/2022]
|
11
|
Vaccine potential of hemocyanin from Oncomelania hupensis against Schistosoma Japonicum. Parasitol Int 2011; 60:242-6. [DOI: 10.1016/j.parint.2011.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 02/21/2011] [Accepted: 03/19/2011] [Indexed: 11/24/2022]
|
12
|
Dolashka P, Velkova L, Shishkov S, Kostova K, Dolashki A, Dimitrov I, Atanasov B, Devreese B, Voelter W, Van Beeumen J. Glycan structures and antiviral effect of the structural subunit RvH2 of Rapana hemocyanin. Carbohydr Res 2010; 345:2361-7. [PMID: 20863484 DOI: 10.1016/j.carres.2010.08.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 07/22/2010] [Accepted: 08/12/2010] [Indexed: 11/24/2022]
Abstract
Molluscan hemocyanins are very large biological macromolecules and they act as oxygen-transporting glycoproteins. Most of them are glycoproteins with molecular mass around 9000 kDa. The oligosaccharide structures of the structural subunit RvH2 of Rapana venosa hemocyanin (RvH) were studied by sequence analysis of glycans using MALDI-TOF-MS and tandem mass spectrometry on a Q-Trap mass spectrometer after enzymatical liberation of the N-glycans from the polypeptides. Our study revealed a highly heterogeneous mixture of glycans of the compositions Hex(0-9) HexNAc(2-4) Hex(0-3) Pent(0-3) Fuc(0-3). A novel type of N-glycan, with an internal fucose residue connecting one GalNAc(β1-2) and one hexuronic acid, was detected, as also occurs in subunit RvH1. A glycan with the same structure but with two deoxyhexose residues was observed as a doubly charged ion. Antiviral effects of the native molecules of RvH and also of Helix lucorum hemocyanin (HlH), of their structural subunits, and of the glycosylated functional unit RvH2-e and the non-glycosylated unit RvH2-c on HSV virus type 1 were investigated. Only glycosylated FU RvH2-e exhibits this antiviral activity. The carbohydrate chains of the FU are likely to interact with specific regions of glycoproteins of HSV, through van der Waals interactions in general or with certain amino acid residues in particular. Several clusters of these residues can be identified on the surface of RvH2-e.
Collapse
Affiliation(s)
- Pavlina Dolashka
- Institute of Organic Chemistry, Bulgarian Academy of Sciences, G. Bonchev 9, Sofia 1113, Bulgaria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hanington PC, Lun CM, Adema CM, Loker ES. Time series analysis of the transcriptional responses of Biomphalaria glabrata throughout the course of intramolluscan development of Schistosoma mansoni and Echinostoma paraensei. Int J Parasitol 2010; 40:819-31. [PMID: 20083115 DOI: 10.1016/j.ijpara.2009.12.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 12/08/2009] [Accepted: 12/14/2009] [Indexed: 01/09/2023]
Abstract
Successful colonization of a compatible snail host by a digenetic trematode miracidium initiates a complex, proliferative development program requiring weeks to reach culmination in the form of production of cercariae which, once started, may persist for the remainder of the life span of the infected snail. How are such proliferative and invasive parasites able to circumvent host defenses and establish chronic infections? Using a microarray designed to monitor the internal defense and stress-related responses of the freshwater snail Biomphalaria glabrata, we have undertaken a time course study to monitor snail responses following exposure to two different trematode species to which the snail is susceptible: the medically important Schistosoma mansoni, exemplifying sporocyst production in its larval development, or Echinostoma paraensei, representing an emphasis on rediae production in its larval development. We sampled eight time points (0.5, 1, 2, 4, 8, 16 and 32 days p.i.) that cover the period required for cercariae to be produced. Following exposure to S. mansoni, there was a preponderance of up-regulated over down-regulated array features through 2 days p.i. but by 4 days p.i. and thereafter, this pattern was strongly reversed. For E. paraensei, there was a preponderance of down-regulated array features over up-regulated features at even 0.5 days p.i., a pattern that persists throughout the course of infection except for 1 day p.i., when up-regulated array features slightly outnumbered down-regulated features. Examination of particular array features revealed several that were up-regulated by both parasites early in the course of infection and one, fibrinogen related protein 4 (FREP 4), that remained significantly elevated throughout the course of infection with either parasite, effectively serving as a marker of infection. Many defense-related transcripts were persistently down-regulated, including several fibrinogen-containing lectins and homologs of molecules best known from vertebrate phagocytic cells. Our results are consistent with earlier studies suggesting that both parasites are able to interfere with host defense responses, including a tendency for E. paraensei to do so more rapidly and strongly than S. mansoni. They further suggest mechanisms for how trematodes are able to establish the chronic infections necessary for their continued success.
Collapse
Affiliation(s)
- Patrick C Hanington
- Center for Theoretical and Evolutionary Immunology (CETI), Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | | | | | | |
Collapse
|