1
|
Nolasco-Pérez TDJ, Salazar-Castañón VH, Cervantes-Candelas LA, Buendía-González FO, Aguilar-Castro J, Legorreta-Herrera M. Testosterone Modulates Oxidative Stress in a Sexually Dimorphic Manner in CBA/Ca Mice Infected with Plasmodium berghei ANKA. Int J Mol Sci 2025; 26:3898. [PMID: 40332798 PMCID: PMC12027734 DOI: 10.3390/ijms26083898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 05/08/2025] Open
Abstract
Malaria, the deadliest parasitic disease in the world, is sexually dimorphic, inflammatory, and oxidative. Males experience more severe symptoms and mortality than females do; therefore, the roles of 17β-estradiol and testosterone in this phenomenon have been studied. Both hormones affect oxidative stress, the primary mechanism of Plasmodium elimination. Estradiol has antioxidant activity, but the role of testosterone is controversial. Testosterone increases oxidative stress by reducing superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) activities, which increase lipoperoxidation in the testis. However, the antioxidant properties of testosterone in prostate and nervous tissue have also been reported. The discrepancies are probably because when testosterone levels increase, the aromatase enzyme transforms testosterone into estrogens that possess antioxidant activity, which masks the results. Therefore, it is unknown whether testosterone is involved in the sexual dimorphism that occurs in oxidative stress in malaria. In this work, we administered testosterone and simultaneously inhibited aromatase with letrozole to evaluate the role of testosterone in the sexually dimorphic pattern of oxidative stress that occurs in the blood, spleen, and brain of male and female CBA/Ca mice infected with Plasmodium berghei ANKA (P. berghei ANKA). Testosterone triggers parasitemia in males, who also display more oxidative stress than females in the absence of infection, leading to sexually dimorphic patterns. Interestingly, increasing testosterone levels in infected mice reduced oxidative stress in males and increased oxidative stress in females, reversing or eliminating the dimorphic patterns observed. Oxidative stress varies in each tissue; the brain was the most protected, while the blood was the greatest damaged. Our findings highlight the role of testosterone as a regulator of oxidative stress in a tissue and sex-specific manner; therefore, understanding the role of testosterone in malaria may contribute to the development of sex-specific personalized antimalarial therapies.
Collapse
Affiliation(s)
- Teresita de Jesús Nolasco-Pérez
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 09320, CP, Mexico; (T.d.J.N.-P.); (V.H.S.-C.); (L.A.C.-C.); (F.O.B.-G.); (J.A.-C.)
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Universidad Nacional Autónoma de México, Circuito de Posgrados, Ciudad Universitaria, Ciudad de México 04510, CP, Mexico
| | - Víctor Hugo Salazar-Castañón
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 09320, CP, Mexico; (T.d.J.N.-P.); (V.H.S.-C.); (L.A.C.-C.); (F.O.B.-G.); (J.A.-C.)
| | - Luis Antonio Cervantes-Candelas
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 09320, CP, Mexico; (T.d.J.N.-P.); (V.H.S.-C.); (L.A.C.-C.); (F.O.B.-G.); (J.A.-C.)
| | - Fidel Orlando Buendía-González
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 09320, CP, Mexico; (T.d.J.N.-P.); (V.H.S.-C.); (L.A.C.-C.); (F.O.B.-G.); (J.A.-C.)
| | - Jesús Aguilar-Castro
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 09320, CP, Mexico; (T.d.J.N.-P.); (V.H.S.-C.); (L.A.C.-C.); (F.O.B.-G.); (J.A.-C.)
| | - Martha Legorreta-Herrera
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 09320, CP, Mexico; (T.d.J.N.-P.); (V.H.S.-C.); (L.A.C.-C.); (F.O.B.-G.); (J.A.-C.)
| |
Collapse
|
2
|
Pal C. Redox modulating small molecules having antimalarial efficacy. Biochem Pharmacol 2023; 218:115927. [PMID: 37992998 DOI: 10.1016/j.bcp.2023.115927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
The search for effective antimalarial agents remains a critical priority because malaria is widely spread and drug-resistant strains are becoming more prevalent. In this review, a variety of small molecules capable of modulating redox processes were showcased for their potential as antimalarial agents. The compounds were designed to target the redox balance of Plasmodium parasites, which has a pivotal function in their ability to survive and multiply within the host organism. A thorough screening method was utilized to assess the effectiveness of these compounds against both drug-sensitive and drug-resistant strains of Plasmodium falciparum, the malaria-causing parasite. The results revealed that several of the tested compounds exhibited significant effectiveness against malaria, displaying IC50 values at a low micromolar range. Furthermore, these compounds displayed promising selectivity for the parasite, as they exhibited low cytotoxicity towards mammalian cells. Thorough mechanistic studies were undertaken to clarify how the active compounds exert their mode of action. The findings revealed that these compounds disrupted the parasites' redox balance, causing oxidative stress and interfering with essential cellular functions. Additionally, the compounds showed synergistic effects when combined with existing antimalarial drugs, suggesting their potential for combination therapies to combat drug resistance. Overall, this study highlights the potential of redox-modulating small molecules as effective antimalarial agents. The identified compounds demonstrate promising antimalarial activity, and their mechanism of action offers insights into targeting the redox balance of Plasmodium parasites. Further optimization and preclinical studies are warranted to determine their efficacy, safety, and potential for clinical development as novel antimalarial therapeutics.
Collapse
Affiliation(s)
- Chinmay Pal
- Department of Chemistry, Gobardanga Hindu College, North 24 Parganas, West Bengal 743273, India.
| |
Collapse
|
3
|
de Paula HL, de Lucca L, Vendrame SA, Wess LC, dos Santos Stein C, Moresco RN, Beck ST, de Lima Gonçalves T. Delta-aminolevulinate dehydratase enzyme activity and the oxidative profile of pregnant women being treated for acute toxoplasmosis. Microb Pathog 2022; 164:105455. [DOI: 10.1016/j.micpath.2022.105455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 01/08/2023]
|
4
|
Anti-Malarial and Anti-Lipid Peroxidation Activities of Deferiprone-Resveratrol Hybrid in Plasmodium berghei-Infected Mice. BIOLOGY 2021; 10:biology10090911. [PMID: 34571788 PMCID: PMC8468766 DOI: 10.3390/biology10090911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 11/30/2022]
Abstract
Simple Summary Malaria remains a public health problem in tropical and subtropical countries. The emergence of malaria parasite resistance to antimalarial drugs has been recently considered a serious issue. Alternative compounds have become an important therapeutic strategy to achieve malaria treatment. Iron chelators are widely used for the treatment of iron overload patients. The iron chelators also reveal an inhibitory effect on malaria parasite growth by depriving the parasite intracellular iron. This study presented the potential of the novel hybrid iron chelator, deferiprone-resveratrol hybrid on the inhibition of malaria parasite growth, the improvement of hematological parameters and the alleviatation of oxidative tissue damage in malaria-infected mice. Deferiprone-resveratrol hybrid would be used as a therapeutic/preventive compound to increase the efficacy of treatment and eliminate an antimalarial drug resistance. Abstract Iron is essential for all organisms including fast-dividing malarial parasites. Inversely, iron chelators can inhibit parasite growth through the inhibition of DNA synthesis and can ameliorate oxidative cell damage. Deferiprone (DFP)-resveratrol (RVT) hybrid (DFP-RVT) is a lipophilic anti-oxidative, iron-chelating agent that has displayed potent neuroprotective and anti-plasmodium activities in vitro. The goal of this work was to investigate the inhibitory effects of DFP-RVT on parasite growth and oxidative stress levels during malaria infections. Mice were intraperitoneally infected with P. berghei and orally administered with DFP, DFP-RVT and pyrimethamine for 4 d. The percentage of parasitemia was determined using Giemsa’s staining/microscopic examination. Amounts of the lipid-peroxidation product, thiobarbituric acid-reactive substance (TBARS), were determined in both plasma and liver tissue. In our findings, DFP-RVT exhibited a greater potent inhibitory effect and revealed an improvement in anemia and liver damage in infected mice than DFP. To this point, the anti-malarial activity was found to be associated with anti-RBC hemolysis and the liver weight index. In addition, plasma and liver TBARS levels in the DFP-RVT-treated mice were lower than those in DFP-treated mice. Thus, DFP-RVT could exert anti-plasmodium, anti-hemolysis and anti-lipid peroxidation activities to a better degree than DFP in P. berghei-infected mice.
Collapse
|
5
|
STAT3 transcription factor as target for anti-cancer therapy. Pharmacol Rep 2020; 72:1101-1124. [PMID: 32880101 DOI: 10.1007/s43440-020-00156-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022]
Abstract
STATs constitute a large family of transcription activators and transducers of signals that have an important role in many cell functions as regulation of proliferation and differentiation of the cell also regulation of apoptosis and angiogenesis. STAT3 as a member of that family, recently was discovered to have a vital role in progression of different types of cancers. The activation of STAT3 was observed to regulate multiple gene functions during cancer-like cell proliferation, differentiation, apoptosis, metastasis, inflammation, immunity, cell survival, and angiogenesis. The inhibition of STAT3 activation has been an important target for cancer therapy. Inhibitors of STAT3 have been used for a long time for treatment of many types of cancers like leukemia, melanoma, colon, and renal cancer. In this review article, we summarize and discuss different drugs inhibiting the action of STAT3 and used in treatment of different types of cancer.
Collapse
|
6
|
Polysaccharides from Hemp Seed Protect against Cyclophosphamide-Induced Intestinal Oxidative Damage via Nrf2-Keap1 Signaling Pathway in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1813798. [PMID: 32908623 PMCID: PMC7468657 DOI: 10.1155/2020/1813798] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/14/2020] [Indexed: 02/04/2023]
Abstract
Hemp seed has been used as a traditional oriental medicine and health food in China for centuries. Polysaccharides from hemp seed (HSP) exhibit important properties of intestinal protection, but there are limited data on the specific underlying mechanism. The primary objective of this study was to investigate the protective effect of HSP on intestinal oxidative damage induced by cyclophosphamide (Cy) in mice. The results showed that pretreatment with HSP significantly increased the average daily gain, thymus index, spleen index, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activity in serum and ileal homogenate and significantly reduced malondialdehyde (MDA) content in ileal homogenate. In addition, the expression levels of SOD, GSH-Px, Nrf2, heme oxidase-1 (HO-1), and quinoneoxidoreductase-1 (NQO1) mRNA in ileal homogenate were significantly increased. Western blot results showed that HSP significantly upregulated the expression of Nrf2 protein and downregulated the expression of Keap1 protein in the ileum. Collectively, our findings indicated that HSP had protective effects on intestinal oxidative damage induced by Cy in mice, and its mechanism might be related to the activation of Nrf2-Keap1 signaling pathway.
Collapse
|
7
|
Dimorphic effect of 17β-oestradiol on pathology and oxidative stress in experimental malaria. Immunobiology 2019; 225:151873. [PMID: 31812344 DOI: 10.1016/j.imbio.2019.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 11/23/2019] [Indexed: 02/08/2023]
Abstract
Malaria is the parasitic disease with the highest mortality worldwide; males exhibit higher mortality and more severe symptomatology than females, suggesting the participation of sexual hormones in protection and pathology. We have documented that gonadectomy modifies oxidative stress in Plasmodium berghei ANKA-infected mice in a dimorphic manner. However, gonadectomy decreases all sexual steroids levels, making it difficult to determine the contribution of each hormone to the results. This study aimed to explore the participation of 17β-oestradiol (E2) in oxidative stress in the blood, spleen, liver and brain of P. berghei-infected female and male mice. E2 was administered to intact or gonadectomized (GX) male and female mice to assess their effects on parasitaemia, body weight loss and hypothermia. We also measured the effect of E2 on the specific activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) and on malondialdehyde (MDA) levels in the blood, spleen, liver and brain of CBA/Ca male and female mice infected with P. berghei ANKA. We detected the effects of E2 and sexual dimorphism on all tissues and variables analysed. Administration of E2 increased parasitaemia in intact mice. However, reconstitution of GX female mice with E2 decreased parasitaemia. E2 decreased body weight and differentially modulated oxidative stress depending on the sex, infection and tissue analysed. Low antioxidant activity was detected in the brain, suggesting additional protective antioxidant mechanisms in the brain independent of antioxidant enzymes. Our results explained, at least in part, the sexual dimorphism in this experimental model of malaria.
Collapse
|
8
|
Khan MW, Saadalla A, Ewida AH, Al-Katranji K, Al-Saoudi G, Giaccone ZT, Gounari F, Zhang M, Frank DA, Khazaie K. The STAT3 inhibitor pyrimethamine displays anti-cancer and immune stimulatory effects in murine models of breast cancer. Cancer Immunol Immunother 2018; 67:13-23. [PMID: 28875329 PMCID: PMC5783191 DOI: 10.1007/s00262-017-2057-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 08/29/2017] [Indexed: 12/29/2022]
Abstract
The transcription factor signal activator and transducer or transcription (STAT3), which regulates genes controlling proliferation, survival, and invasion, is activated inappropriately in many human cancers, including breast cancer. Activation of STAT3 can lead to both malignant cellular behavior and suppression of immune cell function in the tumor microenvironment. Through a chemical-biology screen, pyrimethamine (PYR), an FDA approved anti-microbial drug, was identified as an inhibitor of STAT3 function at concentrations known to be achieved safely in humans. We report that PYR shows therapeutic activity in two independent mouse models of breast cancer, with both direct tumor inhibitory and immune stimulatory effects. PYR-inhibited STAT3 activity in TUBO and TM40D-MB metastatic breast cancer cells in vitro and inhibited tumor cell proliferation and invasion into Matrigel basement membrane matrix. In tumor-transplanted mice, PYR had both direct and indirect tumor inhibitory effects. Tumor-bearing mice treated with PYR showed reduced STAT3 activation in tumor cells, attenuated tumor growth, and reduced tumor-associated inflammation. In addition, expression of Lamp1 by tumor infiltrating CD8+ T cells was elevated, indicating enhanced release of cytotoxic granules. These findings suggest that PYR may have beneficial effects in the treatment of breast cancer.
Collapse
Affiliation(s)
- Mohammad W Khan
- Department of Biology, San Diego State University, 5500 Campanile Drive, NLS-407, San Diego, CA, 92182, USA
| | - Abdulrahman Saadalla
- Department of Immunology, Department of Surgery, Mayo Clinic, Guggenheim 3-42B, Rochester, MN, 55905, USA
| | - Ahmed H Ewida
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 303 East Superior Street, Lurie 3-250, Chicago, IL, 60611, USA
| | - Khalid Al-Katranji
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 303 East Superior Street, Lurie 3-250, Chicago, IL, 60611, USA
| | - Ghadier Al-Saoudi
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 303 East Superior Street, Lurie 3-250, Chicago, IL, 60611, USA
| | - Zachary T Giaccone
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Fotini Gounari
- Department of Medicine, Section of Rheumatology, University of Chicago, JFK R314, 924 East 57th Street, MC 0930, Chicago, IL, 60637, USA
| | - Ming Zhang
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 303 East Superior Street, Lurie 3-250, Chicago, IL, 60611, USA
- Departments of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - David A Frank
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Khashayarsha Khazaie
- Department of Immunology, Department of Surgery, Mayo Clinic, Guggenheim 3-42B, Rochester, MN, 55905, USA.
| |
Collapse
|
9
|
Reece SE, Prior KF, Mideo N. The Life and Times of Parasites: Rhythms in Strategies for Within-host Survival and Between-host Transmission. J Biol Rhythms 2017; 32:516-533. [PMID: 28845736 PMCID: PMC5734377 DOI: 10.1177/0748730417718904] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Biological rhythms are thought to have evolved to enable organisms to organize their activities according to the earth's predictable cycles, but quantifying the fitness advantages of rhythms is challenging and data revealing their costs and benefits are scarce. More difficult still is explaining why parasites that live exclusively within the bodies of other organisms have biological rhythms. Rhythms exist in the development and traits of parasites, in host immune responses, and in disease susceptibility. This raises the possibility that timing matters for how hosts and parasites interact and, consequently, for the severity and transmission of diseases. Here, we take an evolutionary ecological perspective to examine why parasites exhibit biological rhythms and how their rhythms are regulated. Specifically, we examine the adaptive significance (evolutionary costs and benefits) of rhythms for parasites and explore to what extent interactions between hosts and parasites can drive rhythms in infections. That parasites with altered rhythms can evade the effects of control interventions underscores the urgent need to understand how and why parasites exhibit biological rhythms. Thus, we contend that examining the roles of biological rhythms in disease offers innovative approaches to improve health and opens up a new arena for studying host-parasite (and host-parasite-vector) coevolution.
Collapse
Affiliation(s)
- Sarah E. Reece
- Institutes of Evolution, Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK
| | - Kimberley F. Prior
- Institutes of Evolution, Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Nicole Mideo
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Duran Lengua M, Kamali AN, Cano AJ, Piermattey J, Reyes N, Bautista JM, Gaitan R. Synthetic alkyl substituted quinones oxidize membrane proteins and arrest Plasmodium falciparum growth in vitro. ACTA ACUST UNITED AC 2015. [DOI: 10.5897/ajpp2014.4257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
11
|
Superoxide dismutase activity in patients of cerebral malaria. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2015. [DOI: 10.1016/s2222-1808(15)60856-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Gonadal steroids negatively modulate oxidative stress in CBA/Ca female mice infected with P. berghei ANKA. BIOMED RESEARCH INTERNATIONAL 2014; 2014:805495. [PMID: 25243182 PMCID: PMC4163401 DOI: 10.1155/2014/805495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/24/2014] [Indexed: 12/25/2022]
Abstract
We decreased the level of gonadal steroids in female and male mice by gonadectomy. We infected these mice with P. berghei ANKA and observed the subsequent impact on the oxidative stress response. Intact females developed lower levels of parasitaemia and lost weight faster than intact males. Gonadectomised female mice displayed increased levels of parasitaemia, increased body mass, and increased anaemia compared with their male counterparts. In addition, gonadectomised females exhibited lower specific catalase, superoxide dismutase, and glutathione peroxidase activities in their blood and spleen tissues compared with gonadectomised males. To further study the oxidative stress response in P. berghei ANKA-infected gonadectomised mice, nitric oxide levels were assessed in the blood and spleen, and MDA levels were assessed in the spleen. Intact, sham-operated, and gonadectomised female mice exhibited higher levels of nitric oxide in the blood and spleen compared with male mice. MDA levels were higher in all of the female groups. Finally, gonadectomy significantly increased the oxidative stress levels in females but not in males. These data suggest that differential oxidative stress is influenced by oestrogens that may contribute to sexual dimorphism in malaria.
Collapse
|
13
|
Protective effect of Thunbergia laurifolia extract on hemolysis during Plasmodium berghei infection. Parasitol Res 2014; 113:1843-6. [PMID: 24595643 DOI: 10.1007/s00436-014-3831-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 02/21/2014] [Indexed: 10/25/2022]
Abstract
This study was aimed to investigate the efficacy of Thunbergia laurifolia leaf extract to protect hemolysis in mice infected with Plasmodium berghei. Aqueous leaf extract of T. laurifolia was freshly prepared, and total polyphenol was then measured using Folin-Ciocalteu reagent method. For in vivo test, ICR mice were given intraperitoneally with this extract (1,000 mg/kg) once a day for four consecutive days and subsequently inoculated with 1 × 10(6) parasitized erythrocytes of P. berghei ANKA by intraperitoneal injection for 8 days. The results showed that hemolysis was inhibited as indicated by %hematocrit (%Hct) which was normal in infected mice treated with T. laurifolia extract. Untreated and pyrimethamine-treated controls showed decreasing %Hct. Moreover, no any toxic signs were observed in normal mice treated with this extract. We conclude that T. laurifolia leaf extract clearly protects hemolysis during P. berghei infection in mice.
Collapse
|
14
|
Garavito G, Bertani S, Quiliano M, Valentin A, Aldana I, Deharo E. The in vivo antimalarial activity of methylene blue combined with pyrimethamine, chloroquine and quinine. Mem Inst Oswaldo Cruz 2013; 107:820-3. [PMID: 22990975 DOI: 10.1590/s0074-02762012000600019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 05/29/2012] [Indexed: 11/22/2022] Open
Abstract
The effectiveness of methylene blue (MB) combined with pyrimethamine (PYR), chloroquine (CQ) or quinine (Q) was examined in a classical four-day suppressive test against a causative agent of rodent malaria, Plasmodium berghei. A marked potentiation was observed when MB was administered at a non-curative dose of 15 mg/kg/day in combination with PYR (0.19 mg/kg/day) or Q (25 mg/kg/day). No synergy was found between MB (15 mg/Kg) and CQ (0.75 mg/Kg). Our results suggest that the combination of MB with PYR or Q may improve the efficacy of these currently used antimalarial drugs.
Collapse
Affiliation(s)
- Giovanny Garavito
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | | | | | | | | |
Collapse
|
15
|
Hobbs CV, Tanaka TQ, Muratova O, Van Vliet J, Borkowsky W, Williamson KC, Duffy PE. HIV treatments have malaria gametocyte killing and transmission blocking activity. J Infect Dis 2013; 208:139-48. [PMID: 23539746 DOI: 10.1093/infdis/jit132] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Millions of individuals being treated for human immunodeficiency virus (HIV) live in malaria-endemic areas, but the effects of these treatments on malaria transmission are unknown. While drugs like HIV protease inhibitors (PIs) and trimethoprim-sulfamethoxazole (TMP-SMX) have known activity against parasites during liver or asexual blood stages, their effects on transmission stages require further study. METHODS The HIV PIs lopinavir and saquinavir, the nonnucleoside reverse-transcriptase inhibitor nevirapine, and the antibiotic TMP-SMX were assessed for activity against Plasmodium falciparum transmission stages. The alamarBlue assay was used to determine the effects of drugs on gametocyte viability, and exflagellation was assessed to determine the effects of drugs on gametocyte maturation. The effects of drug on transmission were assessed by calculating the mosquito oocyst count as a marker for infectivity, using standard membrane feeding assays. RESULTS Lopinavir and saquinavir have gametocytocidal and transmission blocking activities at or approaching clinically relevant treatment levels, while nevirapine does not. TMP-SMX is not gametocytocidal, but at prophylactic levels it blocks transmission. CONCLUSIONS Specific HIV treatments have gametocyte killing and transmission-blocking effects. Clinical studies are warranted to evaluate these findings and their potential impact on eradication efforts.
Collapse
Affiliation(s)
- Charlotte V Hobbs
- Laboratory of Malaria Vaccinology and Immunology, NIH/NIAID, 12735 Twinbrook Pkwy, Rockville, MD 20852, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Percário S, Moreira DR, Gomes BAQ, Ferreira MES, Gonçalves ACM, Laurindo PSOC, Vilhena TC, Dolabela MF, Green MD. Oxidative stress in malaria. Int J Mol Sci 2012; 13:16346-72. [PMID: 23208374 PMCID: PMC3546694 DOI: 10.3390/ijms131216346] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 11/08/2012] [Accepted: 11/23/2012] [Indexed: 12/16/2022] Open
Abstract
Malaria is a significant public health problem in more than 100 countries and causes an estimated 200 million new infections every year. Despite the significant effort to eradicate this dangerous disease, lack of complete knowledge of its physiopathology compromises the success in this enterprise. In this paper we review oxidative stress mechanisms involved in the disease and discuss the potential benefits of antioxidant supplementation as an adjuvant antimalarial strategy.
Collapse
Affiliation(s)
- Sandro Percário
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Para (LAPEO/ICB/UFPA) Av. Augusto Correa, 1, Guama, Belem, Para 66075-110, Brazil; E-Mails: (D.R.M.); (B.A.Q.G.); (M.E.S.F.); (A.C.M.G.); (P.S.O.C.L.); (T.C.V.)
| | - Danilo R. Moreira
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Para (LAPEO/ICB/UFPA) Av. Augusto Correa, 1, Guama, Belem, Para 66075-110, Brazil; E-Mails: (D.R.M.); (B.A.Q.G.); (M.E.S.F.); (A.C.M.G.); (P.S.O.C.L.); (T.C.V.)
| | - Bruno A. Q. Gomes
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Para (LAPEO/ICB/UFPA) Av. Augusto Correa, 1, Guama, Belem, Para 66075-110, Brazil; E-Mails: (D.R.M.); (B.A.Q.G.); (M.E.S.F.); (A.C.M.G.); (P.S.O.C.L.); (T.C.V.)
| | - Michelli E. S. Ferreira
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Para (LAPEO/ICB/UFPA) Av. Augusto Correa, 1, Guama, Belem, Para 66075-110, Brazil; E-Mails: (D.R.M.); (B.A.Q.G.); (M.E.S.F.); (A.C.M.G.); (P.S.O.C.L.); (T.C.V.)
| | - Ana Carolina M. Gonçalves
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Para (LAPEO/ICB/UFPA) Av. Augusto Correa, 1, Guama, Belem, Para 66075-110, Brazil; E-Mails: (D.R.M.); (B.A.Q.G.); (M.E.S.F.); (A.C.M.G.); (P.S.O.C.L.); (T.C.V.)
| | - Paula S. O. C. Laurindo
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Para (LAPEO/ICB/UFPA) Av. Augusto Correa, 1, Guama, Belem, Para 66075-110, Brazil; E-Mails: (D.R.M.); (B.A.Q.G.); (M.E.S.F.); (A.C.M.G.); (P.S.O.C.L.); (T.C.V.)
| | - Thyago C. Vilhena
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Para (LAPEO/ICB/UFPA) Av. Augusto Correa, 1, Guama, Belem, Para 66075-110, Brazil; E-Mails: (D.R.M.); (B.A.Q.G.); (M.E.S.F.); (A.C.M.G.); (P.S.O.C.L.); (T.C.V.)
| | - Maria F. Dolabela
- Pharmacy Faculty, Institute of Health Sciences, Federal University of Para. Av. Augusto Correa, 1, Guama, Belem, Para 66075-110, Brazil; E-Mail:
| | - Michael D. Green
- US Centers for Disease Control and Prevention, 1600 Clifton Road NE, mailstop G49, Atlanta, GA 30329, USA; E-Mail:
| |
Collapse
|
17
|
Abstract
SIGNIFICANCE Parasitic diseases affect hundreds of millions of people worldwide and represent major health problems. Treatment is becoming extremely difficult due to the emergence of drug resistance, the absence of effective vaccines, and the spread of insecticide-resistant vectors. Thus, identification of affordable and readily available drugs against resistant parasites is of global demand. RECENT ADVANCES Susceptibility of many parasites to oxidative stress is a well-known phenomenon. Therefore, generation of reactive oxygen species (ROS) or inhibition of endogenous antioxidant enzymes would be a novel therapeutic approach to develop antiparasitic drugs. This article highlights the unique metabolic pathways along with redox enzymes of unicellular (Plasmodium falciparum, Trypanosoma cruzi, Trypanosoma brucei, Leishmania donovani, Entamoeba histolytica, and Trichomonas vaginalis) and multicellular parasites (Schistosoma mansoni), which could be utilized to promote ROS-mediated toxicity. CRITICAL ISSUES Enzymes involved in various vital redox reactions could be potential targets for drug development. FUTURE DIRECTIONS The identification of redox-active antiparasitic drugs along with their mode of action will help researchers around the world in designing novel drugs in the future.
Collapse
Affiliation(s)
- Chinmay Pal
- Department of Infectious Diseases and Immunology, Indian Institute of Chemical Biology, Kolkata, India
| | | |
Collapse
|
18
|
Giammarioli AM, Gambardella L, Barbati C, Pietraforte D, Tinari A, Alberton M, Gnessi L, Griffin RJ, Minetti M, Malorni W. Differential effects of the glycolysis inhibitor 2-deoxy-D-glucose on the activity of pro-apoptotic agents in metastatic melanoma cells, and induction of a cytoprotective autophagic response. Int J Cancer 2011; 131:E337-47. [PMID: 21913183 DOI: 10.1002/ijc.26420] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 08/10/2011] [Indexed: 02/06/2023]
Abstract
2-Deoxy-D-glucose (2DG) is a synthetic glucose analogue that inhibits glycolysis and blocks cancer cell growth. In this report, we evaluated the role of 2DG in the induction of cell death in human metastatic melanoma cells. We have also examined the effects of 2DG in combined treatments with four different pro-apoptotic agents: (i) Temozolomide (TMZ), a chemotherapic drug commonly used to treat metastatic melanoma, (ii) Pyrimethamine (Pyr), a pro-apoptotic antifolate drug recently reappraised in cancer therapy, (iii) Cisplatin (CisPt), a drug capable of directly binding to DNA ultimately triggering apoptosis of cancer cells and (iv) the kinase inhibitor Staurosporine (STS), a prototypical inducer of mitochondria-mediated apoptosis. We found that 2DG per se: (i) induced a cell cycle arrest in G(0) /G(1) , (ii) promoted autophagy, (iii) was ineffective in inducing apoptosis in association with the chemotherapic drug TMZ, whereas (iv) it was synergistic with CisPt and STS pro-apoptotic drugs through a mechanism involving changes of mitochondrial homeostasis. Conversely, (v) 2DG hindered the pro-apoptotic effects of Pyr via a mechanism involving either the block of cell cycle in G(0) /G(1) or the modification of the free radical production of the cell, i.e., decreasing the production of reactive oxygen species (ROS) and increasing the production of reactive nitrogen species (RNS). Moreover, a clear-cut autophagic response involving endoplasmic reticulum remodelling was detectable. Since autophagic cytoprotection has been suggested to contribute to the induction of chemoresistance, these results could provide useful clues as concerns the use of 2DG as anticancer agent in combinatory protocols.
Collapse
Affiliation(s)
- Anna Maria Giammarioli
- Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kalinna BH, Terrazas LI, Satoskar AR. A special issue on immunology and cell biology of protozoa. Exp Parasitol 2010; 126:281-2. [PMID: 20816388 DOI: 10.1016/j.exppara.2010.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|