1
|
Moreno-Gómez M, Abril S, Mayol-Pérez J, Manzanares-Sierra A. Menstrual Cycle Matters in Host Attractiveness to Mosquitoes and Topical Repellent Protection. INSECTS 2025; 16:265. [PMID: 40266743 PMCID: PMC11943085 DOI: 10.3390/insects16030265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 04/25/2025]
Abstract
Human hosts exhibit remarkable variability in their attractiveness to mosquitoes, leading to differences in biting rates. It is essential to understand the factors behind this variability if we wish to develop more effective strategies for controlling the transmission of mosquito-borne diseases. While past studies have shed significant light on the forces shaping host attractiveness to mosquitoes, we continue to lack information about variation in attractiveness within individual hosts. For example, little attention has been paid to the potential impact of the menstrual cycle. Our study explored the relationship between the menstrual cycle, host attractiveness to mosquitoes, and the effectiveness of topical mosquito repellents. We found that mosquito landing rate was higher and repellent protection time was shorter during ovulation than during menstruation and the luteal phase. By beginning to clarify the intricate interplay between human physiology and mosquito behavior, our results contribute to the growing body of knowledge regarding the factors that affect within-individual variability in attractiveness to mosquitoes, which has implications for the efficacy of protection and disease prevention strategies.
Collapse
Affiliation(s)
- Mara Moreno-Gómez
- Henkel Ibérica S.A, Research and Development (R&D) Insect Control Department, Carrer Llacuna 22, 1-1, 08005 Barcelona, Spain
| | - Sílvia Abril
- Department of Environmental Sciences, University of Girona, Carrer Maria Aurèlia Capmany i Farnès, 69, 17003 Girona, Spain; (S.A.); (A.M.-S.)
| | - Júlia Mayol-Pérez
- Acondicionamiento Tarrasense, Carrer de la Innovació 2, 08225 Terrassa, Spain;
| | - Ana Manzanares-Sierra
- Department of Environmental Sciences, University of Girona, Carrer Maria Aurèlia Capmany i Farnès, 69, 17003 Girona, Spain; (S.A.); (A.M.-S.)
- Acondicionamiento Tarrasense, Carrer de la Innovació 2, 08225 Terrassa, Spain;
| |
Collapse
|
2
|
Oshaghi MA, Abbasi M, Hanafi-Bojd AA. Host preference of Anopheles stephensi mosquitoes for blood feeding in south of Iran: Insights from Multiplex-PCR analysis. Trop Med Int Health 2025; 30:125-134. [PMID: 39707593 DOI: 10.1111/tmi.14076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
BACKGROUND The study aims to determine the host preference for blood feeding among potential hosts of Anopheles stephensi in Iran, using the Multiplex-PCR method. An. stephensi is the primary malaria vector in urban areas of South Asia and the Middle East, including southern Iran, where approximately 30.21% of malaria cases are urban. This trend has become more evident during the recent outbreaks in Iran, driven by infections of Plasmodium falciparum, Plasmodium vivax, and as well as mixed infections. Hormozgan province, one of the most endemic areas in Iran, was selected for its critical public health significance. This study builds on the validated efficiency of Multiplex-PCR for blood meal analysis by applying it to mosquitoes in southern Iran. METHODS In 2021, mosquitoes were collected monthly from three coastal villages in Bandar Abbas county, Hormozgan province, using WHO-recommended collection methods. Blood-fed An. stephensi mosquitoes were dissected, and their stomach contents analysed via Multiplex-PCR to identify human and animal blood sources. RESULTS Of 77 An. stephensi samples analysed, humans were the most common host was humans (29.9%), followed by mammals (19%), dogs (2.6%), and birds (1.3%). Mixed blood meals were detected in 34% of samples, including 23% with human and other hosts. Informal observations suggest that domestic animals such as goats, sheep, and chickens are commonly present near homes in these areas. CONCLUSION Approximately 50% of An. stephensi blood meals were sourced from humans, with 29% exclusively from humans and 23% from mixed hosts. Domestic animals such as goats, sheep, and chickens appear to attract mosquitoes, highlighting their potential role in malaria dynamics. Zooprophylaxis, alongside existing measures like insecticide residual spraying, insecticide-treated bed nets, and personal protection strategies, may strengthen urban malaria control. Further research on the ecological and behavioural drivers of mosquito host selection in urban settings is warranted.
Collapse
Affiliation(s)
- Mohammad Ali Oshaghi
- Department of Vector Biology & Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Madineh Abbasi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Ali Hanafi-Bojd
- Department of Vector Biology & Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Zoonoses Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
de Swart MM, Balvers C, Verhulst NO, Koenraadt CJM. Effects of host blood on mosquito reproduction. Trends Parasitol 2023; 39:575-587. [PMID: 37230833 DOI: 10.1016/j.pt.2023.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/14/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023]
Abstract
Female mosquitoes require blood from their host for egg development. However, the relationship between the composition of host blood and mosquito reproduction, and whether and how this is linked to host selection, remain unclear. A better understanding of these issues is beneficial for mass-rearing of mosquitoes for vector control. This review provides an overview of the currently known effects of blood constituents on mosquito reproduction. Furthermore, it highlights knowledge gaps and proposes new avenues for investigation. We recommend that research efforts be focused on physiological differences between generalist and specialist mosquito species as models to investigate if and how host preference correlates with reproductive output.
Collapse
Affiliation(s)
- Marieke M de Swart
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands.
| | - Carlijn Balvers
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - Niels O Verhulst
- Institute of Parasitology, National Centre for Vector Entomology, Vetsuisse and Medical Faculty, University of Zürich, Zürich, Switzerland
| | | |
Collapse
|
4
|
Talebzadeh F, Raoofian R, Ghadipasha M, Moosa-Kazemi SH, Akbarzadeh K, Oshaghi MA. Sex-typing of ingested human blood meal in Anopheles stephensi mosquito based on the amelogenin gene. Exp Parasitol 2023; 248:108517. [PMID: 36967035 DOI: 10.1016/j.exppara.2023.108517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/28/2023]
Abstract
Identifying the sex of human hosts of insect disease vectors, using PCR amplification of the amelogenin gene (AMEL) from the ingested blood meal is an increasingly useful technique for epidemiological studies of vector-borne diseases, as well as within the criminal justice system. Detection of DNA from ingested blood is influenced by the choice of DNA extraction method, genomic target region, type and length of PCR, and rate of degradation in the DNA samples over time. Here, we have tested two types of PCR (i.e. conventional and nested), producing differently-sized PCR products, in time-course assays targeting the human AMEL gene in Anopheles stephensi mosquitoes that were fed on human male and female blood. The fed female mosquitoes were allowed to digest at 28 °C for times ranging from 0 to 120 h. Three AMEL primer pairs were used to amplify three sequences that were 977, 539, and 106 bp for the X chromosome and 790, 355, and 112 bp for Y. We found that time since feeding had a significant negative effect on the success of PCR amplification. The shortest fragments (106 and 112 bp) were amplified for the longest time after blood feeding (up to 60 h), whereas the medium and longest loci were not amplified by conventional PCR even at 0 h. However, the nested PCR protocol, targeting the medium sequence, could detect small amounts of human DNA up to 36 h (1.5 days) after the blood meal. The shortest PCR assay standardized herein successfully detected small amounts of human DNA in female mosquitoes up to 60 h after the blood meal. This assay represents a promising tool for identifying the sex of the human host from the blood meal in field-collected female mosquitoes.
Collapse
Affiliation(s)
- Fahimeh Talebzadeh
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Seyed Hassan Moosa-Kazemi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamran Akbarzadeh
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Oshaghi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
De Obaldia ME, Morita T, Dedmon LC, Boehmler DJ, Jiang CS, Zeledon EV, Cross JR, Vosshall LB. Differential mosquito attraction to humans is associated with skin-derived carboxylic acid levels. Cell 2022; 185:4099-4116.e13. [PMID: 36261039 PMCID: PMC10069481 DOI: 10.1016/j.cell.2022.09.034] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 08/06/2022] [Accepted: 09/23/2022] [Indexed: 01/26/2023]
Abstract
Some people are more attractive to mosquitoes than others, but the mechanistic basis of this phenomenon is poorly understood. We tested mosquito attraction to human skin odor and identified people who are exceptionally attractive or unattractive to mosquitoes. These differences were stable over several years. Chemical analysis revealed that highly attractive people produce significantly more carboxylic acids in their skin emanations. Mutant mosquitoes lacking the chemosensory co-receptors Ir8a, Ir25a, or Ir76b were severely impaired in attraction to human scent, but retained the ability to differentiate highly and weakly attractive people. The link between elevated carboxylic acids in "mosquito-magnet" human skin odor and phenotypes of genetic mutations in carboxylic acid receptors suggests that such compounds contribute to differential mosquito attraction. Understanding why some humans are more attractive than others provides insights into what skin odorants are most important to the mosquito and could inform the development of more effective repellents.
Collapse
Affiliation(s)
- Maria Elena De Obaldia
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA.
| | - Takeshi Morita
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Laura C Dedmon
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Daniel J Boehmler
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Caroline S Jiang
- Center for Clinical and Translational Science, The Rockefeller University, New York, NY 10065, USA
| | - Emely V Zeledon
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Justin R Cross
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Leslie B Vosshall
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA; Kavli Neural Systems Institute, New York, NY 10065, USA.
| |
Collapse
|
6
|
Khan SA, Ombugadu A, Ahmad S. Host-seeking behavior and fecundity of the female Aedes aegypti to human blood types. PEST MANAGEMENT SCIENCE 2022; 78:321-328. [PMID: 34505747 DOI: 10.1002/ps.6635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Mosquitoes express different degrees of preference towards hosts depending on behavioral, ecological, and physiological factors. These preferences have implications for mosquito-borne disease risk. This study investigated the effect of human blood groups on the behavior and fecundity of the female Aedes aegypti (Diptera: Culicidae) from March 2018 to August 2019. In laboratory tests, mosquitoes were fed artificial membrane feeders on A, AB, B, and O blood groups. The level of attraction to different blood groups was tested under controlled conditions with a wind tunnel bioassay. RESULTS The responses of Ae. aegypti to the blood groups treatments in the five-choice tunnel chambers showed a significant preference (Kruskal-Wallis (2 = 85.772, df = 4, P < 0.0001) for favor blood group B. Also, the response of Ae. aegypti to olfactory cues (filth) derived from a pool of volunteers cutting across the blood groups showed a similar preference for pattern towards the blood group B. The percentage rate of digestibility in Ae. aegypti was highest in those fed on blood group O, while individuals fed on the AB blood group had the lowest digestion rate. Thus, the rate of digestibility highly varied significantly (P < 0.0001) between blood groups. Overall, Ae. aegypti fed on blood group B had the highest average feeding rate, number of females with eggs, and fecundity level, which showed a significant difference (P < 0.0001) on preferred. CONCLUSION This study provides novel insight into the ABO host choice of Ae. aegypti and reinforces the need for personal protection against dengue virus transmission in light of the increased risk of exposure for individuals with B blood type. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shahmshad Ahmed Khan
- Laboratory o Apiculture, Department of Entomology, Faculty of Crop and Food Sciences, Pir Mehr Ali Shah (PMAS) Arid Agriculture University, Rawalpindi, Pakistan
| | - Akwashiki Ombugadu
- Department of Zoology, Faculty of Science, Federal University of Lafia, Lafia, Nigeria
| | - Saboor Ahmad
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Ghanbarnejad A, Turki H, Yaseri M, Raeisi A, Rahimi-Foroushani A. Spatial Modelling of Malaria in South of Iran in Line with the Implementation of the Malaria Elimination Program: A Bayesian Poisson-Gamma Random Field Model. J Arthropod Borne Dis 2021; 15:108-125. [PMID: 34277860 PMCID: PMC8271232 DOI: 10.18502/jad.v15i1.6490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 03/30/2021] [Indexed: 12/07/2022] Open
Abstract
Background: Malaria is the third most important infectious disease in the world. WHO propose programs for controlling and elimination of the disease. Malaria elimination program has begun in first phase in Iran from 2010. Climate factors play an important role in transmission and occurrence of malaria infection. The main goal is to investigate the spatial distribution of incidence of malaria during April 2011 to March 2018 in Hormozgan Province and its association with climate covariates. Methods: The data included 882 confirmed cases gathered from CDC in Hormozgan University of Medical Sciences. A Poisson-Gamma Random field model with Bayesian approach was used for modeling the data and produces the smoothed standardized incidence rate (SIR). Results: The SIR for malaria ranged from 0 (Abu Musa and Haji Abad districts) to 280.57 (Bandar–e-Jask). Based on model, temperature (RR= 2.29; 95% credible interval: (1.92–2.78)) and humidity (RR= 1.04; 95% credible interval: (1.03–1.06)) had positive effect on malaria incidence, but rainfall (RR= 0.92; 95% credible interval: (0.90–0.95)) had negative impact. Also, smoothed map represent hot spots in the east of the province and in Qeshm Island. Conclusion: Based on the analysis of the study results, it was found that the ecological conditions of the region (temperature, humidity and rainfall) and population displacement play an important role in the incidence of malaria. Therefore, the malaria surveillance system should continue to be active in the region, focusing on high-risk areas of malaria.
Collapse
Affiliation(s)
- Amin Ghanbarnejad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Habibollah Turki
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mehdi Yaseri
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Raeisi
- Departments of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Center for Communicable Diseases Control, Ministry of Health and Medical Education, Tehran, Iran
| | - Abbas Rahimi-Foroushani
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Edalat H, Mahmoudi M, Sedaghat MM, Moosa-Kazemi SH, Kheirandish S. Ecology of Malaria Vectors in an Endemic Area, Southeast of Iran. J Arthropod Borne Dis 2020; 14:325-343. [PMID: 33954207 PMCID: PMC8053069 DOI: 10.18502/jad.v14i4.5270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 11/12/2020] [Indexed: 12/07/2022] Open
Abstract
Background: Malaria has long been regarded as one of the most important public health issues in Iran. Although the country is now in the elimination phase, some endemic foci of malaria are still present in the southeastern areas of the country. In some endemic foci, there are no data on the malaria vectors. To fill this gap, the present study was designed to provide basic entomological data on malaria vectors in the southeastern areas of Iran. Methods: Adult and larval stages of Anopheles mosquitoes were collected by using different catch methods. Resistance of the main malaria vector in the study area to selected insecticides was evaluated using diagnostic doses advised by the World Health Organization in 2013–2014. Results: A total of 3288 larvae and 1055 adult Anopheles mosquitoes were collected, and identified as: Anopheles stephensi (32.1%), Anopheles culicifacies s.l. (23.4%), Anopheles dthali (23.2%), Anopheles superpictus s.l. (12.7%), and Anopheles fluviatilis s.l. (8.6%). Anopheles stephensi was the most predominant mosquito species collected indoors at the study area, with two peaks of activity in May and November. This species was found to be resistant to DDT 4%, tolerant to malathion 5% and susceptible to other tested insecticides. Conclusion: All the five malaria vectors endemic to the south of Iran were collected and identified in the study area. Our findings on the ecology and resting/feeding habitats of these malaria vectors provide information useful for planning vector control program in this malarious area.
Collapse
Affiliation(s)
- Hamideh Edalat
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehran Mahmoudi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Sedaghat
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hassan Moosa-Kazemi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sedigheh Kheirandish
- Oral and Maxillofacial Pathology, School of Dentistry, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
9
|
Talebzadeh F, Oshaghi MA, Akbarzadeh K, Panahi-Moghadam S. Molecular Species Identification of Six Forensically Important Iranian Flesh Flies (Diptera). J Arthropod Borne Dis 2020; 14:416-424. [PMID: 33954215 PMCID: PMC8053068 DOI: 10.18502/jad.v14i4.5279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 12/22/2020] [Indexed: 11/24/2022] Open
Abstract
Background: Flesh flies (Diptera: Sarcophagidae) are considered as myiasis agents and important evidences in forensic investigations. However, their use has been restricted because, at all larval stages and female adults, morphological species identification is difficult or very challenging. This study investigated to test utility of mitochondrial cytochrome oxidase subunit I (mt-COI) sequences for differentiation of six forensically important Iranian flesh flies namely, Sarcophaga crassipalpis, S. flagellifera, S. hirtipes, S. aegyptica, S. africa and S. argyrostoma. Methods: Male specimens were morphologically identified to species level and then the genomic DNA of the flies were extracted and subjected to polymerase chain reaction (PCR) against mt-COI gene. The PCR products were sequenced and the obtained sequences were analyzed for the species specific restriction fragment length polymorphisms (RFLPs). Results: Rate of genetic variation between species was 6–10% which was enough to find restriction enzymes (RE) that were able to produce species-specific RFLP profiles. Combinations of three REs: BsrFI, RsaI and HinfI, provided diagnostic bands for identification of the six Sarcophaga species. Conclusion: The results of this study showed that molecular markers such as RFLPs enhancing the use of evidence from flesh flies in forensic investigation. However, lack proper restriction sites in the COI region inhibited introduction of a single restriction enzyme for easy species identification. It is recommended to apply larger part of DNA such as combination of COI and COII genes to provide better RFLP markers for species identification of flesh flies.
Collapse
Affiliation(s)
- Fahimeh Talebzadeh
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Oshaghi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamran Akbarzadeh
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Panahi-Moghadam
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
10
|
Jafari S, Oshaghi MA, Akbarzadeh K, Abai MR, Koosha M, Mohtarami F. Identification of Forensically Important Flesh Flies Using the Cytochrome C Oxidase Subunits I and II Genes. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:1253-1259. [PMID: 31121043 DOI: 10.1093/jme/tjz063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Indexed: 06/09/2023]
Abstract
Forensically important flesh flies (Diptera: Sarcophagidae) often are not morphologically distinguishable, especially at the immature stage. In addition, female flies are quite similar in general morphology, making accurate identifications difficult. DNA-based technologies, particularly mitochondrial DNA (mtDNA), have been used for species-level identification. The cytochrome oxidase subunits I and II (COI-COII) sequences of Iranian Sarcophagidae are still unavailable in GenBank. In this study as many as 648 (540 males and 106 females) fly specimens from family Sarcophagidae, representing 10 sarcophagid species, including eight forensically important species were collected from seven locations in five Iranian provinces. Of these, 150 male specimens were identified based on both morphology of male genitalia and DNA sequencing analysis. Sequence data from the COI-COII regions for 10 flesh fly species collected in Iran were generated for the first time. Digestion of COI-COII region by restriction enzymes RsaI, EcoRV, and HinfI provided distinct restriction fragment length polymorphism profiles among the species and can serve as molecular markers for species determination. Phylogenetic analysis represented that the COI-COII sequences are helpful for delimitation of sarcophagid species and implementation in forensic entomology. However, the application of the COI-COII fragment as a species identifier requires great caution and additional species and markers should be studied to ensure accurate species identification in the future.
Collapse
Affiliation(s)
- Samin Jafari
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Oshaghi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamran Akbarzadeh
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Abai
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Koosha
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mohtarami
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Anjomruz M, Oshaghi MA, Pourfatollah AA, Sedaghat MM, Raeisi A, Vatandoost H, Khamesipour A, Abai MR, Mohtarami F, Akbarzadeh K, Rafie F, Besharati M. Preferential feeding success of laboratory reared Anopheles stephensi mosquitoes according to ABO blood group status. Acta Trop 2014; 140:118-23. [PMID: 25151045 DOI: 10.1016/j.actatropica.2014.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 11/24/2022]
Abstract
Recent epidemiological evidences revealed a higher rate of O blood group in the residents of malaria-endemic areas suggesting that groups A, B, and AB associated with a higher disease severity and fatality. Also recent data showed the low prevalence of AB group within the malaria-endemic residents in south of Iran and India. The aim of this study was to determine the ABO blood groups preference of Anopheles stephensi which is the main malaria vector in Iran, southwest Asia, and India. An. stephensi mosquitoes were fed either artificially on A/B/O/AB membrane blood feeders or directly on human volunteer hands and forearms of A/B/O/AB groups in a cage under lab conditions. Phenotype and genotype analyzes of 450-blood-fed mosquito specimens using agglutination and multiplex-allele-specific PCR revealed a significant blood preference of An. stephensi to AB group (40%) than other groups of A (24%), B (21%), and O (15%) in combination of both experiments. High preference of An. stephensi to AB group might increase malaria infection and fatality in this blood group and resulted in low frequency of AB group in the residents of malaria endemic areas. The data suggested that malaria vectors, like parasites may have selection pressure on human genotypes.
Collapse
|