1
|
Wendo WD, Thongrin T, Tangkawattana P, Sukon P, Suttiprapa S, Saichua P, Suyapoh W, Tangkawattana S. Goblet cell metaplasia and mucin alterations in biliary epithelial cells during Opisthorchis viverrini infection in rodent models: Insights into host susceptibility and defense mechanisms. Vet World 2025; 18:534-546. [PMID: 40342755 PMCID: PMC12056906 DOI: 10.14202/vetworld.2025.534-546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/23/2025] [Indexed: 05/11/2025] Open
Abstract
Background and Aim Chronic Opisthorchis viverrini (OV) infection induces significant biliary changes and is a major risk factor for cholangiocarcinoma. However, the role of goblet cell metaplasia (GCM) and mucin dynamics in host defense and parasite persistence remains poorly understood. This study aims to characterize biliary histological changes, particularly mucin types, and compare responses between susceptible (hamsters) and non-susceptible (mice) hosts during early to chronic OV infection. Materials and Methods Thirty-five male golden Syrian hamsters and 35 male BALB/c mice were divided into infected and control groups. Infected animals received 50 OV metacercariae through gastric intubation and were sacrificed on days 1, 2, 7, 14, 28, and 56 post-infection. Histological, histochemical (Alcian Blue, periodic Acid-Schiff, and high iron diamine), and immunohistochemical (Bromodeoxyuridine [BrdU]) analyses were performed to assess mucin production, GCM, and bile duct proliferation. Results Mice demonstrated an early, robust biliary response with pronounced hyperplasia and GCM characterized by acid mucin overproduction during the acute phase (days 1-28). Conversely, hamsters exhibited delayed biliary proliferation and GCM, with predominant sulfated mucins appearing during the chronic phase (days 28-56). BrdU immunoreactivity indicated earlier and stronger bile duct epithelial proliferation in mice, correlating with worm clearance by day 28. In hamsters, mucosal changes supported worm survival, as evidenced by continued parasite presence and egg production. Statistical analyses confirmed significant differences in mucin types and hyperplasia between species across infection stages. Conclusion Distinct mucosal responses in hamsters and mice reflect their susceptibility to OV infection. Acid mucins in mice facilitate worm expulsion, while sulfated mucins in hamsters appear to promote parasite persistence. These findings highlight the dual roles of mucins in host defense and parasite survival, providing insight into mechanisms underlying susceptibility and resistance in OV infections.
Collapse
Affiliation(s)
- Woro Danur Wendo
- Graduate School, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Theerayut Thongrin
- Graduate School, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Prasarn Tangkawattana
- Department of Anatomy, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Peerapol Sukon
- Department of Anatomy, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sutas Suttiprapa
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Prasert Saichua
- Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Watcharapol Suyapoh
- Department of Veterinary Science, Faculty of Veterinary Science, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Sirikachorn Tangkawattana
- Department of Pathobiology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
2
|
Mules TC, Vacca F, Cait A, Yumnam B, Schmidt A, Lavender B, Maclean K, Noble SL, Gasser O, Camberis M, Le Gros G, Inns S. A Small Intestinal Helminth Infection Alters Colonic Mucus and Shapes the Colonic Mucus Microbiome. Int J Mol Sci 2024; 25:12015. [PMID: 39596084 PMCID: PMC11593901 DOI: 10.3390/ijms252212015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Infecting humans with controlled doses of small intestinal helminths, such as human hookworm, is proposed as a therapy for the colonic inflammatory disease ulcerative colitis. Strengthening the colonic mucus barrier is a potential mechanism by which small intestinal helminths could treat ulcerative colitis. In this study, we compare C57BL/6 mice infected with the small intestinal helminth Heligmosomoides polygyrus and uninfected controls to investigate changes in colonic mucus. Histology, gene expression, and immunofluorescent analysis demonstrate that this helminth induces goblet cell hyperplasia, and an upregulation of mucin sialylation, and goblet-cell-derived functional proteins resistin-like molecule-beta (RELM-β) and trefoil factors (TFFs), in the colon. Using IL-13 knockout mice, we reveal that these changes are predominantly IL-13-dependent. The assessment of the colonic mucus microbiome demonstrates that H. polygyrus infection increases the abundance of Ruminococcus gnavus, a commensal bacterium capable of utilising sialic acid as an energy source. This study also investigates a human cohort experimentally challenged with human hookworm. It demonstrates that TFF blood levels increase in individuals chronically infected with small intestinal helminths, highlighting a conserved mucus response between humans and mice. Overall, small intestinal helminths modify colonic mucus, highlighting this as a plausible mechanism by which human hookworm therapy could treat ulcerative colitis.
Collapse
Affiliation(s)
- Thomas C. Mules
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
- Department of Medicine, University of Otago, 23A Mein St., Newtown, Wellington 6242, New Zealand
| | - Francesco Vacca
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
| | - Alissa Cait
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
| | - Bibek Yumnam
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
| | - Alfonso Schmidt
- Hugh Green Technology Centre, Malaghan Institute of Medical Research, Wellington 6012, New Zealand
| | - Brittany Lavender
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
| | - Kate Maclean
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
| | - Sophia-Louise Noble
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
| | - Olivier Gasser
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
| | - Mali Camberis
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
| | - Graham Le Gros
- Malaghan Institute of Medical Research, Kelburn, Wellington 6012, New Zealand
| | - Stephen Inns
- Department of Medicine, University of Otago, 23A Mein St., Newtown, Wellington 6242, New Zealand
| |
Collapse
|
3
|
Tsubokawa D, Kawashima R, Ichikawa T. Structural Elucidation of Sialylated O-Glycan Alditols Obtained from Mucins by Mass Spectrometry. Methods Mol Biol 2024; 2763:209-221. [PMID: 38347413 DOI: 10.1007/978-1-0716-3670-1_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Acidic O-glycans having sialic acid and/or sulfate residue are abundantly expressed in intestinal mucins. However, structural elucidation of acidic O-glycans is a laborious and time-consuming task due to their large structural variations. Here, we describe a methodology of structural elucidation for sialylated O-glycan alditols from intestinal mucins using tandem mass spectroscopy. Methylesterification and mild periodate oxidation of sialylated O-glycan alditols assist mass analysis. This description includes the purification process of O-glycan alditols for structural analysis.
Collapse
Affiliation(s)
- Daigo Tsubokawa
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Japan
| | - Rei Kawashima
- Department of Biochemistry, Kitasato University School of Allied Health Science, Sagamihara, Japan
| | - Takafumi Ichikawa
- Department of Biochemistry, Kitasato University School of Allied Health Science, Sagamihara, Japan.
| |
Collapse
|
4
|
Mules TC, Inns S, Le Gros G. Helminths' therapeutic potential to treat intestinal barrier dysfunction. Allergy 2023; 78:2892-2905. [PMID: 37449458 DOI: 10.1111/all.15812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/20/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023]
Abstract
The intestinal barrier is a dynamic multi-layered structure which can adapt to environmental changes within the intestinal lumen. It has the complex task of allowing nutrient absorption while limiting entry of harmful microbes and microbial antigens present in the intestinal lumen. Excessive entry of microbial antigens via microbial translocation due to 'intestinal barrier dysfunction' is hypothesised to contribute to the increasing incidence of allergic, autoimmune and metabolic diseases, a concept referred to as the 'epithelial barrier theory'. Helminths reside in the intestinal tract are in intimate contact with the mucosal surfaces and induce a range of local immunological changes which affect the layers of the intestinal barrier. Helminths are proposed to prevent, or even treat, many of the diseases implicated in the epithelial barrier theory. This review will focus on the effect of helminths on intestinal barrier function and explore whether this could explain the proposed health benefits delivered by helminths.
Collapse
Affiliation(s)
- Thomas C Mules
- Malaghan Institute of Medical Research, Wellington, New Zealand
- University of Otago, Wellington, New Zealand
| | | | - Graham Le Gros
- Malaghan Institute of Medical Research, Wellington, New Zealand
| |
Collapse
|
5
|
Brosschot TP, Reynolds LA. The impact of a helminth-modified microbiome on host immunity. Mucosal Immunol 2018; 11:1039-1046. [PMID: 29453411 DOI: 10.1038/s41385-018-0008-5] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 02/04/2023]
Abstract
Intestinal helminths have well-characterized modulatory effects on mammalian immune pathways. Ongoing helminth infection has been associated with both the suppression of allergies and an altered susceptibility to microbial infections. Enteric helminths share a niche with the intestinal microbiota, and the presence of helminths alters the microbiota composition and the metabolic signature of the host. Recent studies have demonstrated that the helminth-modified intestinal microbiome has the capacity to modify host immune responses even in the absence of live helminth infection. This article discusses the mechanisms by which helminths modify the intestinal microbiome of mammals, and reviews the evidence for a helminth-modified microbiome directly influencing host immunity during infectious and inflammatory diseases. Understanding the multifaceted mechanisms that underpin helminth immunomodulation will pave the way for novel therapies to combat infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Tara P Brosschot
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Lisa A Reynolds
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8P 5C2, Canada.
| |
Collapse
|
6
|
Leung JM, Graham AL, Knowles SCL. Parasite-Microbiota Interactions With the Vertebrate Gut: Synthesis Through an Ecological Lens. Front Microbiol 2018; 9:843. [PMID: 29867790 PMCID: PMC5960673 DOI: 10.3389/fmicb.2018.00843] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/12/2018] [Indexed: 12/14/2022] Open
Abstract
The vertebrate gut teems with a large, diverse, and dynamic bacterial community that has pervasive effects on gut physiology, metabolism, and immunity. Under natural conditions, these microbes share their habitat with a similarly dynamic community of eukaryotes (helminths, protozoa, and fungi), many of which are well-known parasites. Both parasites and the prokaryotic microbiota can dramatically alter the physical and immune landscape of the gut, creating ample opportunities for them to interact. Such interactions may critically alter infection outcomes and affect overall host health and disease. For instance, parasite infection can change how a host interacts with its bacterial flora, either driving or protecting against dysbiosis and inflammatory disease. Conversely, the microbiota can alter a parasite's colonization success, replication, and virulence, shifting it along the parasitism-mutualism spectrum. The mechanisms and consequences of these interactions are just starting to be elucidated in an emergent transdisciplinary area at the boundary of microbiology and parasitology. However, heterogeneity in experimental designs, host and parasite species, and a largely phenomenological and taxonomic approach to synthesizing the literature have meant that common themes across studies remain elusive. Here, we use an ecological perspective to review the literature on interactions between the prokaryotic microbiota and eukaryotic parasites in the vertebrate gut. Using knowledge about parasite biology and ecology, we discuss mechanisms by which they may interact with gut microbes, the consequences of such interactions for host health, and how understanding parasite-microbiota interactions may lead to novel approaches in disease control.
Collapse
Affiliation(s)
- Jacqueline M Leung
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, United States
| | - Andrea L Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, United States
| | | |
Collapse
|
7
|
Sharpe C, Thornton DJ, Grencis RK. A sticky end for gastrointestinal helminths; the role of the mucus barrier. Parasite Immunol 2018; 40:e12517. [PMID: 29355990 PMCID: PMC5900928 DOI: 10.1111/pim.12517] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 01/15/2018] [Indexed: 12/20/2022]
Abstract
Gastrointestinal (GI) nematodes are a group of successful multicellular parasites that have evolved to coexist within the intestinal niche of multiple species. It is estimated that over 10% of the world's population are chronically infected by GI nematodes, making this group of parasitic nematodes a major burden to global health. Despite the large number of affected individuals, there are few effective treatments to eradicate these infections. Research into GI nematode infections has primarily focused on defining the immunological and pathological consequences on host protection. One important but neglected aspect of host protection is mucus, and the concept that mucus is just a simple barrier is no longer tenable. In fact, mucus is a highly regulated and dynamic-secreted matrix, underpinned by a physical hydrated network of highly glycosylated mucins, which is increasingly recognized to have a key protective role against GI nematode infections. Unravelling the complex interplay between mucins, the underlying epithelium and immune cells during infection are a major challenge and are required to fully define the protective role of the mucus barrier. This review summarizes the current state of knowledge on mucins and the mucus barrier during GI nematode infections, with particular focus on murine models of infection.
Collapse
Affiliation(s)
- C Sharpe
- Manchester Immunology Group, Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - D J Thornton
- Manchester Immunology Group, Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - R K Grencis
- Manchester Immunology Group, Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| |
Collapse
|
8
|
Tsubokawa D, Ishiwata K, Goso Y, Nakamura T, Hatta T, Ishihara K, Kanuka H, Tsuji N. Interleukin-13/interleukin-4 receptor pathway is crucial for production of Sd a-sialomucin in mouse small intestinal mucosa by Nippostrongylus brasiliensis infection. Parasitol Int 2017; 66:731-734. [PMID: 28802865 DOI: 10.1016/j.parint.2017.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/26/2017] [Accepted: 08/08/2017] [Indexed: 11/25/2022]
Abstract
Mucin is a major component of mucus in gastrointestinal mucosa. Increase of specific sialomucins having Sda blood group antigen, NeuAcα2-3(GalNAcβ1-4)Galβ1-4GlcNAcβ-, is considered to be associated with expulsion of the parasitic intestinal nematode Nippostrongylus brasiliensis. In this study, we examined the relationship between interleukin (IL)-13 pathway and expression of Sda-sialomucins in small intestinal mucosa with N. brasiliensis infection. Nematode infection induced marked increases in small intestinal mucins that reacted with anti-Sda antibody in wild type (wt) mice. However, this increase due to infection was supressed in IL-4 receptor α deficient (IL-4Rα-/-) mice, which lack both IL-4 and IL-13 signaling via IL-4R, and severe combined immunodeficient (SCID) mice, which have defects in B- and T-lymphocytes. Analysis using tandem mass spectroscopy showed that Sda-glycans were not expressed in small intestinal mucins in IL-4Rα-/- and SCID mice after infection despite the appearance of Sda-glycans in the infected wt mice. Inoculation of recombinant IL-13 into the infected SCID mice restored expression of Sda-glycan. Our results suggest that the IL-13/IL-4R axis is important for the production of Sda-sialomucins in the host intestinal mucosa with parasitic nematode infection.
Collapse
Affiliation(s)
- Daigo Tsubokawa
- Department of Parasitology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374, Japan
| | - Kenji Ishiwata
- Department of Tropical Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Yukinobu Goso
- Department of Biochemistry, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374, Japan
| | - Takeshi Nakamura
- Department of Parasitology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374, Japan
| | - Takeshi Hatta
- Department of Parasitology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374, Japan
| | - Kazuhiko Ishihara
- Kitasato Junior College of Health and Hygienic Sciences, 500 Kurotsuchishinden Minamiuonuma, Niigata 949-7241, Japan
| | - Hirotaka Kanuka
- Department of Tropical Medicine, The Jikei University School of Medicine, 3-25-8, Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Naotoshi Tsuji
- Department of Parasitology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374, Japan.
| |
Collapse
|
9
|
Reynolds LA, Finlay BB, Maizels RM. Cohabitation in the Intestine: Interactions among Helminth Parasites, Bacterial Microbiota, and Host Immunity. THE JOURNAL OF IMMUNOLOGY 2016; 195:4059-66. [PMID: 26477048 DOI: 10.4049/jimmunol.1501432] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Both intestinal helminth parasites and certain bacterial microbiota species have been credited with strong immunomodulatory effects. Recent studies reported that the presence of helminth infection alters the composition of the bacterial intestinal microbiota and, conversely, that the presence and composition of the bacterial microbiota affect helminth colonization and persistence within mammalian hosts. This article reviews recent findings on these reciprocal relationships, in both human populations and mouse models, at the level of potential mechanistic pathways and the implications these bear for immunomodulatory effects on allergic and autoimmune disorders. Understanding the multidirectional complex interactions among intestinal microbes, helminth parasites, and the host immune system allows for a more holistic approach when using probiotics, prebiotics, synbiotics, antibiotics, and anthelmintics, as well as when designing treatments for autoimmune and allergic conditions.
Collapse
Affiliation(s)
- Lisa A Reynolds
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - B Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; and
| | - Rick M Maizels
- Centre for Immunity, Infection, and Evolution, Institute of Immunology and Infection Research, Ashworth Laboratories, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| |
Collapse
|
10
|
Tsubokawa D, Sugiyama H, Mikami F, Shibata K, Shibahara T, Fukuda K, Takamiya S, Yamasaki H, Nakamura T, Tsuji N. Collection methods of trematode eggs using experimental animal models. Parasitol Int 2016; 65:584-587. [PMID: 26792074 DOI: 10.1016/j.parint.2016.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/19/2015] [Accepted: 01/10/2016] [Indexed: 11/30/2022]
Abstract
Although observing the eggs of human parasitic helminth is essential for medical education in parasitology, opportunities for collection of the eggs are limited. Collection of the eggs using experimental animal models is needed for a sustainable supply. The metacercariae of three trematode species, Paragonimus westermani, Clonorchis sinensis and Metagonimus yokogawai, were collected from the second intermediate hosts: freshwater crabs and fishes, which were obtained using online shopping in Japan, and inoculated to experimental animal rat and dog. Consequently, eggs of the three trematode species were obtained abundantly from the feces of the animals. The eggs are being used for student training in several Japanese universities. In this article, we introduce the collection procedures for trematode eggs.
Collapse
Affiliation(s)
- Daigo Tsubokawa
- Department of Parasitology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374, Japan
| | - Hiromu Sugiyama
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Fusako Mikami
- Department of Parasitology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374, Japan
| | - Katsumasa Shibata
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Toshiyuki Shibahara
- Department of Animal Risk Management, Faculty of Risk and Crisis Management, Chiba Institute of Science, 15-8 Shiomi, Choshi, Chiba 288-0025, Japan
| | - Koichi Fukuda
- Center for Laboratory Animal Science, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Shinzaburo Takamiya
- Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hiroshi Yamasaki
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Takeshi Nakamura
- Department of Parasitology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374, Japan
| | - Naotoshi Tsuji
- Department of Parasitology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa 252-0374, Japan.
| |
Collapse
|