1
|
Dario PP, Yamashita LHD, Salome KS, Kosinski GL, Justen GA, da S Rampon D, Lazarin-Bidoia D, Nakamura CV, Rosa FA, Montes D'Oca MG. Synthesis and in vitro antiprotozoal evaluation of novel Knoevenagel hydroxychloroquine derivatives. RSC Med Chem 2025:d4md00884g. [PMID: 40162204 PMCID: PMC11951163 DOI: 10.1039/d4md00884g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/17/2025] [Indexed: 04/02/2025] Open
Abstract
Leishmaniasis and Chagas diseases affect millions of people, particularly in developing countries, with conventional treatments proving unsatisfactory due to increasing drug resistance and high toxicity. Therefore, there is an urgent need for new drugs to combat neglected tropical diseases (NTDs). In this study, we synthesized 15 new Knoevenagel adducts derived from hydroxychloroquine and evaluated their antiprotozoal activity against Leishmania infantum, L. amazonensis, and Trypanosoma cruzi. The new adducts exhibited low toxicity in epithelial LLC-MK2 cells and J774A.1 macrophages. The Knoevenagel adducts derived from meta- and para-chloro benzaldehyde demonstrated antiprotozoal activity against T. cruzi epimastigotes, though with a lower selective index (SI) compared to the standard drug benznidazole. However, the adducts derived from isovaleraldehyde and ortho-, meta-, and para-chloro benzaldehyde showed SI values ranging from 10.97 to 8.11 against L. amazonensis, similar to amphotericin B (AmpB, SI = 9.37), with no statistically significant difference (p > 0.05). These same compounds inhibited L. infantum promastigotes, but with less activity compared to AmpB. These results suggest that Knoevenagel adducts derived from hydroxychloroquine may serve as selective antileishmanial agents.
Collapse
Affiliation(s)
- Priscila P Dario
- Chemistry Department, Kolbe Laboratory of Organic Synthesis, Federal University of Paraná- UFPR Curitiba PR Brazil
| | - Luis H D Yamashita
- Health Sciences Department, Laboratory of Technological Innovation in Pharmaceutical and Cosmetic Development (LITFaC), State University of Maringá - UEM Maringá PR Brazil
| | - Kahlil S Salome
- Chemistry Department, NMR Laboratory, Federal University of Paraná - UFPR Curitiba PR Brazil
| | - Gabriel L Kosinski
- Chemistry Department, Kolbe Laboratory of Organic Synthesis, Federal University of Paraná- UFPR Curitiba PR Brazil
| | - Guilherme A Justen
- Chemistry Department, Kolbe Laboratory of Organic Synthesis, Federal University of Paraná- UFPR Curitiba PR Brazil
| | - Daniel da S Rampon
- Chemistry Department, Kolbe Laboratory of Organic Synthesis, Federal University of Paraná- UFPR Curitiba PR Brazil
| | - Danielle Lazarin-Bidoia
- Health Sciences Department, Laboratory of Technological Innovation in Pharmaceutical and Cosmetic Development (LITFaC), State University of Maringá - UEM Maringá PR Brazil
| | - Celso V Nakamura
- Health Sciences Department, Laboratory of Technological Innovation in Pharmaceutical and Cosmetic Development (LITFaC), State University of Maringá - UEM Maringá PR Brazil
| | - Fernanda A Rosa
- Health Sciences Department, Laboratory of Technological Innovation in Pharmaceutical and Cosmetic Development (LITFaC), State University of Maringá - UEM Maringá PR Brazil
| | - Marcelo G Montes D'Oca
- Chemistry Department, Kolbe Laboratory of Organic Synthesis, Federal University of Paraná- UFPR Curitiba PR Brazil
| |
Collapse
|
2
|
Nieto-Meneses R, Castillo R, Hernández-Campos A, Nogueda-Torres B, López-Villegas EO, Moreno-Rodríguez A, Matadamas-Martínez F, Yépez-Mulia L. Characterization of the Effect of N-(2-Methoxyphenyl)-1-methyl-1 H-benzimidazol-2-amine, Compound 8, against Leishmania mexicana and Its In Vivo Leishmanicidal Activity. Int J Mol Sci 2024; 25:659. [PMID: 38203832 PMCID: PMC10779428 DOI: 10.3390/ijms25010659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/22/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024] Open
Abstract
Chemotherapy currently available for leishmaniasis treatment has many adverse side effects and drug resistance. Therefore, the identification of new targets and the development of new drugs are urgently needed. Previously, we reported the synthesis of a N-(2-methoxyphenyl)-1-methyl-1H-benzimidazol-2-amine, named compound 8, with an IC50 value in the micromolar range against L. mexicana, it also inhibited 68.27% the activity of recombinant L. mexicana arginase. Herein, we report studies carried out to characterize the mechanism of action of compound 8, as well as its in vivo leishmanicidal activity. It was shown in our ultrastructural studies that compound 8 induces several changes, such as membrane blebbing, the presence of autophagosomes, membrane detachment and mitochondrial and kinetoplast disorganization, among others. Compound 8 triggers the production of ROS and parasite apoptosis. It reduced 71% of the parasite load of L. mexicana in an experimental model of cutaneous leishmaniasis in comparison with a control. Altogether, the data obtained suggest the potential use of compound 8 in the treatment of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Rocío Nieto-Meneses
- Departamento de Parasitología, ENCB-Instituto Politécnico Nacional, Mexico City 11340, Mexico; (R.N.-M.); (B.N.-T.)
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias-UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Rafael Castillo
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (R.C.); (A.H.-C.)
| | - Alicia Hernández-Campos
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (R.C.); (A.H.-C.)
| | - Benjamín Nogueda-Torres
- Departamento de Parasitología, ENCB-Instituto Politécnico Nacional, Mexico City 11340, Mexico; (R.N.-M.); (B.N.-T.)
| | | | - Adriana Moreno-Rodríguez
- Facultad de Ciencias Químicas, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico;
| | - Félix Matadamas-Martínez
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias-UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Lilián Yépez-Mulia
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias-UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| |
Collapse
|
3
|
Francesconi V, Rizzo M, Schenone S, Carbone A, Tonelli M. State-of-the-art Review on the Antiparasitic Activity of Benzimidazolebased Derivatives: Facing Malaria, Leishmaniasis, and Trypanosomiasis. Curr Med Chem 2024; 31:1955-1982. [PMID: 37718524 PMCID: PMC11071657 DOI: 10.2174/0929867331666230915093928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/19/2023] [Accepted: 08/27/2023] [Indexed: 09/19/2023]
Abstract
Protozoan parasites represent a significant risk for public health worldwide, afflicting particularly people in more vulnerable categories and cause large morbidity and heavy economic impact. Traditional drugs are limited by their toxicity, low efficacy, route of administration, and cost, reflecting their low priority in global health management. Moreover, the drug resistance phenomenon threatens the positive therapy outcome. This scenario claims the need of addressing more adequate therapies. Among the diverse strategies implemented, the medicinal chemistry efforts have also focused their attention on the benzimidazole nucleus as a promising pharmacophore for the generation of new drug candidates. Hence, the present review provides a global insight into recent progress in benzimidazole-based derivatives drug discovery against important protozoan diseases, such as malaria, leishmaniasis and trypanosomiasis. The more relevant chemical features and structure-activity relationship studies of these molecules are discussed for the purpose of paving the way towards the development of more viable drugs for the treatment of these parasitic infections.
Collapse
Affiliation(s)
- Valeria Francesconi
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, Genoa, 16132, Italy
| | - Marco Rizzo
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, Genoa, 16132, Italy
| | - Silvia Schenone
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, Genoa, 16132, Italy
| | - Anna Carbone
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, Genoa, 16132, Italy
| | - Michele Tonelli
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, Genoa, 16132, Italy
| |
Collapse
|
4
|
Chung NT, Dung VC, Duc DX. Recent achievements in the synthesis of benzimidazole derivatives. RSC Adv 2023; 13:32734-32771. [PMID: 37942457 PMCID: PMC10628531 DOI: 10.1039/d3ra05960j] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/21/2023] [Indexed: 11/10/2023] Open
Abstract
Benzimidazoles are a class of heterocyclic compounds in which a benzene ring is fused to the 4 and 5 positions of an imidazole ring. Benzimidazole refers to the parent compound, while benzimidazoles are a class of heterocyclic compounds having similar ring structures, but different substituents. Benzimidazole derivatives possess a wide range of bioactivities including antimicrobial, anthelmintic, antiviral, anticancer, and antihypertensive activities. Many compounds possessing a benzimidazole skeleton have been employed as drugs in the market. The application of benzimidazoles in other fields has also been documented. The synthesis of benzimidazole derivatives has attracted much attention from chemists and numerous articles on the synthesis of this class of heterocyclic compound have been reported over the years. The condensation between 1,2-benzenediamine and aldehydes has received intensive interest, while many novel methods have been developed. In this article, we will give a comprehensive review of studies on the synthesis of benzimidazole, which date back to 2013. We have also tried to describe reaction mechanisms as much as we can. The work might be useful for chemists who work in the synthesis of heterocycles or drug chemistry.
Collapse
Affiliation(s)
- Nguyen Thi Chung
- Department of Chemistry, Institute of Education, Vinh University 182 Le Duan Street Nghe An 430000 Vietnam
| | - Vo Cong Dung
- Centre for Education Accreditation, Vinh University 182 Le Duan Street Nghe An 430000 Vietnam
| | - Dau Xuan Duc
- Department of Chemistry, Institute of Education, Vinh University 182 Le Duan Street Nghe An 430000 Vietnam
| |
Collapse
|
5
|
Virtual Screening of Benzimidazole Derivatives as Potential Triose Phosphate Isomerase Inhibitors with Biological Activity against Leishmania mexicana. Pharmaceuticals (Basel) 2023; 16:ph16030390. [PMID: 36986489 PMCID: PMC10058926 DOI: 10.3390/ph16030390] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Leishmania mexicana (L. mexicana) is a causal agent of cutaneous leishmaniasis (CL), a “Neglected disease”, for which the search for new drugs is a priority. Benzimidazole is a scaffold used to develop antiparasitic drugs; therefore, it is interesting molecule against L. mexicana. In this work, a ligand-based virtual screening (LBVS) of the ZINC15 database was performed. Subsequently, molecular docking was used to predict the compounds with potential binding at the dimer interface of triosephosphate isomerase (TIM) of L. mexicana (LmTIM). Compounds were selected on binding patterns, cost, and commercial availability for in vitro assays against L. mexicana blood promastigotes. The compounds were analyzed by molecular dynamics simulation on LmTIM and its homologous human TIM. Finally, the physicochemical and pharmacokinetic properties were determined in silico. A total of 175 molecules with docking scores between −10.8 and −9.0 Kcal/mol were obtained. Compound E2 showed the best leishmanicidal activity (IC50 = 4.04 µM) with a value similar to the reference drug pentamidine (IC50 = 2.23 µM). Molecular dynamics analysis predicted low affinity for human TIM. Furthermore, the pharmacokinetic and toxicological properties of the compounds were suitable for developing new leishmanicidal agents.
Collapse
|
6
|
Padilla-Martínez II, Cruz A, García-Báez EV, Rosales-Hernández MC, Mendieta Wejebe JE. N-substitution Reactions of 2-Aminobenzimidazoles to Access Pharmacophores. Curr Org Synth 2023; 20:177-219. [PMID: 35272598 DOI: 10.2174/1570179419666220310124223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/22/2021] [Accepted: 12/31/2021] [Indexed: 11/22/2022]
Abstract
Benzimidazole (BI) and its derivatives are interesting molecules in medicinal chemistry because several of these compounds have a diversity of biological activities and some of them are even used in clinical applications. In view of the importance of these compounds, synthetic chemists are still interested in finding new procedures for the synthesis of these classes of compounds. Astemizole (antihistaminic), Omeprazole (antiulcerative), and Rabendazole (fungicide) are important examples of compounds used in medicinal chemistry containing BI nuclei. It is interesting to observe that several of these compounds contain 2-aminobenzimidazole (2ABI) as the base nucleus. The structures of 2ABI derivatives are interesting because they have a planar delocalized structure with a cyclic guanidine group, which have three nitrogen atoms with free lone pairs and labile hydrogen atoms. The 10-π electron system of the aromatic BI ring conjugated with the nitrogen lone pair of the hexocyclic amino group, making these heterocycles to have an amphoteric character. Synthetic chemists have used 2ABI as a building block to produce BI derivatives as medicinally important molecules. In view of the importance of the BIs, and because no review was found in the literature about this topic, we reviewed and summarized the procedures related to the recent methodologies used in the N-substitution reactions of 2ABIs by using aliphatic and aromatic halogenides, dihalogenides, acid chlorides, alkylsulfonic chlorides, carboxylic acids, esters, ethyl chloroformates, anhydrides, SMe-isothioureas, alcohols, alkyl cyanates, thiocyanates, carbon disulfide and aldehydes or ketones to form Schiff bases. The use of diazotized 2ABI as intermediate to obtain 2-diazoBIs was included to produce Nsubstituted 2ABIs of pharmacological interest. Some commentaries about their biological activity were included.
Collapse
Affiliation(s)
- Itzia I Padilla-Martínez
- Laboratorio de Química Supramolecular y Nanociencias, Instituto Politécnico Nacional UPIBI, Av. Acueducto s/n, Barrio la Laguna Ticomán, Ciudad de México, 07340, Mexico
| | - Alejandro Cruz
- Laboratorio de Química Supramolecular y Nanociencias, Instituto Politécnico Nacional UPIBI, Av. Acueducto s/n, Barrio la Laguna Ticomán, Ciudad de México, 07340, Mexico
| | - Efrén V García-Báez
- Laboratorio de Química Supramolecular y Nanociencias, Instituto Politécnico Nacional UPIBI, Av. Acueducto s/n, Barrio la Laguna Ticomán, Ciudad de México, 07340, Mexico
| | - Martha C Rosales-Hernández
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Distrito Federal 11340, México
| | - Jessica E Mendieta Wejebe
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Distrito Federal 11340, México
| |
Collapse
|
7
|
Bahreini MS, Iraji A, Edraki N, Monfared AA, Asgari Q. Synthesis and anti-Toxoplasma activity of indole-triazole compounds on tachyzoites of RH strain. Ann Med Surg (Lond) 2022; 74:103245. [PMID: 35079376 PMCID: PMC8777237 DOI: 10.1016/j.amsu.2022.103245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/26/2021] [Accepted: 01/06/2022] [Indexed: 12/02/2022] Open
Abstract
Background Conventional treatment for toxoplasmosis have severe side effects and the inability to completely eradicate the disease. Therefore, the acquisition of new anti-Toxoplasma drugs has always been of interest among researchers. In the present study, we prepare a new indole-triazole derivatives and evaluated their potential anti-parasitic activity against tachyzoites of Toxoplasma RH strain. Materials and methods In this study, after synthesis of the two new compounds of indole-triazole, the effect of their different concentrations (2–1024 μg/ml) were determined on Toxoplasma tachyzoites using flow cytometry. Furthermore, tachyzoites were exposed to different concentrations of compounds (4, 16, 64, 265, 1024 μg/ml) for 1.5 h and their infectivity were evaluated in BALB/c mice. Results The flow cytometry results indicated the benzyl derivative of indole-triazole in various concentrations had a lethal effect on tachyzoites between 11.93% and 89.66%, while the naphthalene derivative had a lethality of 26.63%–66.82%. The infectivity analysis showed that the survival time of mice at concentrations of 1024 μg/ml and 512 μg/ml of benzyl derivatives was significantly increased (P = 0.008 and P = 0.016, respectively), compared to that in the negative control group. Furthermore, survival time of mice was statistically significant at the concentration of 1024 μg/ml for naphthyl derivative (P = 0.012). Conclusion Findings of the current study suggested indole triazole compounds, based on their structure and enzymes targeting, have a considerable effect on tachyzoites of T. gondii RH strain and can be considered as a new anti-Toxoplasma agent. The Benzyl and Naphtyl derivatives of Indol-triazol have dose dependently effect on tachyzoites of T.gondii RH strain. The placement of naphthyl next to indole-triazole have dose dependently effects on Toxoplasma tachyzoites. The benzyl derivative of Indole triazole showed an ability of over 80% in eliminating Toxoplasma tachyzoites.
Collapse
|
8
|
Muller J, Attia R, Zedet A, Girard C, Pudlo M. An Update on Arginase Inhibitors and Inhibitory Assays. Mini Rev Med Chem 2021; 22:1963-1976. [PMID: 34967285 DOI: 10.2174/1389557522666211229105703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 11/22/2022]
Abstract
Arginase, which converts arginine into ornithine and urea, is a promising therapeutic target. Arginase is involved in cardiovascular diseases, parasitic infections and, through a critical role in immunity, in some cancers. There is a need to develop effective arginase inhibitors and therefore efforts to identify and optimize new inhibitors are increasing. Several methods of evaluating arginase activity are available, but few directly measure the product. Radiometric assays need to separate urea and dying reactions require acidic conditions and sometimes heating. Hence, there are a variety of different approaches available, and each approach has its own limits and benefits. In this review, we provide an update on arginase inhibitors, followed by a discussion on available arginase assays and alternative methods, with a focus on the intrinsic biases and parameters that are likely to impact results.
Collapse
Affiliation(s)
- Jason Muller
- PEPITE EA4267, Université de Bourgogne Franche-Comté, F-25030 Besançon, France
| | - Rym Attia
- PEPITE EA4267, Université de Bourgogne Franche-Comté, F-25030 Besançon, France
| | - Andy Zedet
- PEPITE EA4267, Université de Bourgogne Franche-Comté, F-25030 Besançon, France
| | - Corine Girard
- PEPITE EA4267, Université de Bourgogne Franche-Comté, F-25030 Besançon, France
| | - Marc Pudlo
- PEPITE EA4267, Université de Bourgogne Franche-Comté, F-25030 Besançon, France
| |
Collapse
|
9
|
Betancourt-Conde I, Avitia-Domínguez C, Hernández-Campos A, Castillo R, Yépez-Mulia L, Oria-Hernández J, Méndez ST, Sierra-Campos E, Valdez-Solana M, Martínez-Caballero S, Hermoso JA, Romo-Mancillas A, Téllez-Valencia A. Benzimidazole Derivatives as New and Selective Inhibitors of Arginase from Leishmania mexicana with Biological Activity against Promastigotes and Amastigotes. Int J Mol Sci 2021; 22:ijms222413613. [PMID: 34948408 PMCID: PMC8705706 DOI: 10.3390/ijms222413613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/16/2022] Open
Abstract
Leishmaniasis is a disease caused by parasites of the Leishmania genus that affects 98 countries worldwide, 2 million of new cases occur each year and more than 350 million people are at risk. The use of the actual treatments is limited due to toxicity concerns and the apparition of resistance strains. Therefore, there is an urgent necessity to find new drugs for the treatment of this disease. In this context, enzymes from the polyamine biosynthesis pathway, such as arginase, have been considered a good target. In the present work, a chemical library of benzimidazole derivatives was studied performing computational, enzyme kinetics, biological activity, and cytotoxic effect characterization, as well as in silico ADME-Tox predictions, to find new inhibitors for arginase from Leishmania mexicana (LmARG). The results show that the two most potent inhibitors (compounds 1 and 2) have an I50 values of 52 μM and 82 μM, respectively. Moreover, assays with human arginase 1 (HsARG) show that both compounds are selective for LmARG. According to molecular dynamics simulation studies these inhibitors interact with important residues for enzyme catalysis. Biological activity assays demonstrate that both compounds have activity against promastigote and amastigote, and low cytotoxic effect in murine macrophages. Finally, in silico prediction of their ADME-Tox properties suggest that these inhibitors support the characteristics to be considered drug candidates. Altogether, the results reported in our study suggest that the benzimidazole derivatives are an excellent starting point for design new drugs against leishmanisis.
Collapse
Affiliation(s)
- Irene Betancourt-Conde
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango, Av. Universidad y Fanny Anitúa S/N, Durango 34000, Mexico;
| | - Claudia Avitia-Domínguez
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango, Av. Universidad y Fanny Anitúa S/N, Durango 34000, Mexico;
- Correspondence: (C.A.-D.); (A.T.-V.); Tel.: +52-618-812-1687 (A.T.-V.)
| | - Alicia Hernández-Campos
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.H.-C.); (R.C.)
| | - Rafael Castillo
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.H.-C.); (R.C.)
| | - Lilián Yépez-Mulia
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Unidad Médica de Alta Especialidad-Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - Jesús Oria-Hernández
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (J.O.-H.); (S.T.M.)
| | - Sara T. Méndez
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (J.O.-H.); (S.T.M.)
| | - Erick Sierra-Campos
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Artículo 123 S/N Fracc. Filadelfia, Gómez Palacio 35010, Mexico; (E.S.-C.); (M.V.-S.)
| | - Mónica Valdez-Solana
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Av. Artículo 123 S/N Fracc. Filadelfia, Gómez Palacio 35010, Mexico; (E.S.-C.); (M.V.-S.)
| | - Siseth Martínez-Caballero
- Departamento de Cristalografía y Biología Estructural, Instituto Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain; (S.M.-C.); (J.A.H.)
| | - Juan A. Hermoso
- Departamento de Cristalografía y Biología Estructural, Instituto Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain; (S.M.-C.); (J.A.H.)
| | - Antonio Romo-Mancillas
- Laboratorio de Diseño Asistido por Computadora y Síntesis de Fármacos, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico;
| | - Alfredo Téllez-Valencia
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango, Av. Universidad y Fanny Anitúa S/N, Durango 34000, Mexico;
- Correspondence: (C.A.-D.); (A.T.-V.); Tel.: +52-618-812-1687 (A.T.-V.)
| |
Collapse
|
10
|
Brishty SR, Hossain MJ, Khandaker MU, Faruque MRI, Osman H, Rahman SMA. A Comprehensive Account on Recent Progress in Pharmacological Activities of Benzimidazole Derivatives. Front Pharmacol 2021; 12:762807. [PMID: 34803707 PMCID: PMC8597275 DOI: 10.3389/fphar.2021.762807] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022] Open
Abstract
Nowadays, nitrogenous heterocyclic molecules have attracted a great deal of interest among medicinal chemists. Among these potential heterocyclic drugs, benzimidazole scaffolds are considerably prevalent. Due to their isostructural pharmacophore of naturally occurring active biomolecules, benzimidazole derivatives have significant importance as chemotherapeutic agents in diverse clinical conditions. Researchers have synthesized plenty of benzimidazole derivatives in the last decades, amidst a large share of these compounds exerted excellent bioactivity against many ailments with outstanding bioavailability, safety, and stability profiles. In this comprehensive review, we have summarized the bioactivity of the benzimidazole derivatives reported in recent literature (2012-2021) with their available structure-activity relationship. Compounds bearing benzimidazole nucleus possess broad-spectrum pharmacological properties ranging from common antibacterial effects to the world's most virulent diseases. Several promising therapeutic candidates are undergoing human trials, and some of these are going to be approved for clinical use. However, notable challenges, such as drug resistance, costly and tedious synthetic methods, little structural information of receptors, lack of advanced software, and so on, are still viable to be overcome for further research.
Collapse
Affiliation(s)
- Shejuti Rahman Brishty
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Md. Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway, Malaysia
| | | | - Hamid Osman
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - S. M. Abdur Rahman
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
11
|
Briones Nieva CA, Cid AG, Romero AI, García-Bustos MF, Villegas M, Bermúdez JM. An appraisal of the scientific current situation and new perspectives in the treatment of cutaneous leishmaniasis. Acta Trop 2021; 221:105988. [PMID: 34058160 DOI: 10.1016/j.actatropica.2021.105988] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022]
Abstract
Leishmaniasis is a Neglected Tropical Diseases caused by protozoan parasites of the genus Leishmania. It is a major health problem in many tropical and subtropical regions of the world and can produce three different clinical manifestations, among which cutaneous leishmaniasis has a higher incidence in the world than the other clinical forms. There are no recognized and reliable means of chemoprophylaxis or vaccination against infections with different forms of leishmaniasis. In addition, chemotherapy, unfortunately, remains, in many respects, unsatisfactory. Therefore, there is a continuing and urgent need for new therapies against leishmaniasis that are safe and effective in inducing a long-term cure. This review summarizes the latest advances in currently available treatments and improvements in the development of drug administration. In addition, an analysis of the in vivo assays was performed and the challenges facing promising strategies to treat CL are discussed. The treatment of leishmaniasis will most likely evolve into an approach that uses multiple therapies simultaneously to reduce the possibility of developing drug resistance. There is a continuous effort to discover new drugs to improve the treatment of leishmaniasis, but this is mainly at the level of individual researchers. Undoubtedly, more funding is needed in this area, as well as greater participation of the pharmaceutical industry to focus efforts on the development of chemotherapeutic agents and vaccines for this and other neglected tropical diseases.
Collapse
Affiliation(s)
- C A Briones Nieva
- Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Bolivia 5150, (4400) Salta, Argentina
| | - Alicia Graciela Cid
- Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Bolivia 5150, (4400) Salta, Argentina
| | - Analía Irma Romero
- Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Bolivia 5150, (4400) Salta, Argentina
| | - María Fernanda García-Bustos
- Instituto de Patología Experimental, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas, Salta, Argentina
| | - Mercedes Villegas
- Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Bolivia 5150, (4400) Salta, Argentina
| | - José María Bermúdez
- Instituto de Investigaciones para la Industria Química, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Bolivia 5150, (4400) Salta, Argentina.
| |
Collapse
|
12
|
Tomiotto-Pellissier F, Alves DR, Morais SMD, Bortoleti BTDS, Gonçalves MD, Silva TF, Tavares ER, Yamauchi LM, Costa IN, Marinho ES, Marinho MM, Conchon-Costa I, Miranda-Sapla MM, Pavanelli WR. Caryocar coriaceum Wittm. fruit extracts as Leishmania inhibitors: in-vitro and in-silico approaches. J Biomol Struct Dyn 2021; 40:8040-8055. [PMID: 33769210 DOI: 10.1080/07391102.2021.1905557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Leishmaniasis is a group of neglected diseases caused by parasites of the Leishmania genus. The treatment of Leishmaniasis represents a great challenge, because the available drugs present high toxicity and none of them is fully effective. Caryocar is a botanical genus rich in phenolic compounds, which leaves extracts have already been described by its antileishmanial action. Thus, we investigated the effect of pulp and peel extracts of the Caryocar coriaceum fruit on promastigote and amastigote forms of Leishmania amazonensis. Both extracts had antipromastigote effect after 24, 48, and 72 h, and this effect was by apoptosis-like process induction, with reactive oxygen species (ROS) production, damage to the mitochondria and plasma membrane, and phosphatidylserine exposure. Knowing that the fruit extracts did not alter the viability of macrophages, we observed that the treatment reduced the infection of these cells. Thereafter, in the in vitro infection context, the extracts showed antioxidant proprieties, by reducing NO, ROS, and MDA levels. Besides, both peel and pulp extracts up-regulated Nrf2/HO-1/Ferritin expression and increase the total iron-bound in infected macrophages, which culminates in a depletion of available iron for L. amazonensis replication. In silico, the molecular modeling experiments showed that the three flavonoids presented in the C. coriaceum extracts can act as synergistic inhibitors of Leishmania proteins, and compete for the active site. Also, there is a preference for rutin at the active site due to its greater interaction binding strength.
Collapse
Affiliation(s)
- Fernanda Tomiotto-Pellissier
- Biosciences and Biotechnology Graduate Program, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, Paraná, Brazil.,Department of Pathology Science, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Daniela Ribeiro Alves
- Department of Natural Sciences, Ceará State University, Fortaleza, Ceará, Brazil.,Theoretical and Electrochemical Chemistry Group, Faculty of Philosophy Dom Aureliano Matos, State University of Ceará, Limoeiro do Norte, Ceará, Brazil
| | | | - Bruna Taciane da Silva Bortoleti
- Biosciences and Biotechnology Graduate Program, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, Paraná, Brazil.,Department of Pathology Science, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Manoela Daiele Gonçalves
- Department of Chemistry, Center of Exact Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Taylon Felipe Silva
- Department of Pathology Science, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Eliandro Reis Tavares
- Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Lucy Megumi Yamauchi
- Department of Microbiology, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Idessania Nazareth Costa
- Department of Pathology Science, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Emmanuel Silva Marinho
- Theoretical and Electrochemical Chemistry Group, Faculty of Philosophy Dom Aureliano Matos, State University of Ceará, Limoeiro do Norte, Ceará, Brazil
| | - Marcia Machado Marinho
- Iguatu Faculty of Education, Science and Letters, State University of Ceará, Iguatu, Ceará, Brazil
| | - Ivete Conchon-Costa
- Department of Pathology Science, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | | | - Wander Rogério Pavanelli
- Biosciences and Biotechnology Graduate Program, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, Paraná, Brazil.,Department of Pathology Science, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
13
|
Serum levels of CC chemokine ligands in cutaneous leishmaniasis patients. J Parasit Dis 2021; 45:153-158. [PMID: 33746400 DOI: 10.1007/s12639-020-01290-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022] Open
Abstract
The crucial functions of chemokine/receptors in numerous parasitic infections, including leishmaniasis, are well documented. This study aimed to assess the serum levels of CC ligand (CCL) 2, CCL5, and CCL11 in cutaneous leishmaniasis (CL) patients. 64 patients, suffering from CL and 100 healthy people were selected, and their blood serum concentrations of CCL2, CCL5, and CCL11 were measured using enzyme-linked immunosorbent assay. The results demonstrated that while the mean serum levels of CCL5 and CCL11 increased significantly in CL patients, the mean serum levels of CCL2 decreased, compared to the control group. Despite the sufficient production of CCL5 and CCL11 in CL patients, they suffered from CCL2 deficiency, as the defense mechanism against parasitic infection. These findings suggest a mechanism that might partially explain the patients' susceptibility to persistent infection and their inability to clear the parasites.
Collapse
|
14
|
Boniface PK, Sano CM, Elizabeth FI. Unveiling the Targets Involved in the Quest of Antileishmanial Leads Using In silico Methods. Curr Drug Targets 2021; 21:681-712. [PMID: 32003668 DOI: 10.2174/1389450121666200128112948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND Leishmaniasis is a neglected tropical disease associated with several clinical manifestations, including cutaneous, mucocutaneous, and visceral forms. As currently available drugs have some limitations (toxicity, resistance, among others), the target-based identification has been an important approach to develop new leads against leishmaniasis. The present study aims to identify targets involved in the pharmacological action of potent antileishmanial compounds. METHODS The literature information regarding molecular interactions of antileishmanial compounds studied over the past half-decade is discussed. The information was obtained from databases such as Wiley, SciFinder, Science Direct, National Library of Medicine, American Chemical Society, Scientific Electronic Library Online, Scopus, Springer, Google Scholar, Web of Science, etc. Results: Numerous in vitro antileishmanial compounds showed affinity and selective interactions with enzymes such as arginase, pteridine reductase 1, trypanothione reductase, pyruvate kinase, among others, which are crucial for the survival and virulence of the Leishmania parasite. CONCLUSION The in-silico activity of small molecules (enzymes, proteins, among others) might be used as pharmacological tools to develop candidate compounds for the treatment of leishmaniasis. As some pharmacologically active compounds may act on more than one target, additional studies of the mechanism (s) of action of potent antileishmanial compounds might help to better understand their pharmacological action. Also, the optimization of promising antileishmanial compounds might improve their biological activity.
Collapse
Affiliation(s)
- Pone K Boniface
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Cinthya M Sano
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Ferreira I Elizabeth
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
15
|
Matadamas-Martínez F, Hernández-Campos A, Téllez-Valencia A, Vázquez-Raygoza A, Comparán-Alarcón S, Yépez-Mulia L, Castillo R. Leishmania mexicana Trypanothione Reductase Inhibitors: Computational and Biological Studies. MOLECULES (BASEL, SWITZERLAND) 2019; 24:molecules24183216. [PMID: 31487860 PMCID: PMC6767256 DOI: 10.3390/molecules24183216] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/24/2019] [Accepted: 08/31/2019] [Indexed: 12/27/2022]
Abstract
Leishmanicidal drugs have many side effects, and drug resistance to all of them has been documented. Therefore, the development of new drugs and the identification of novel therapeutic targets are urgently needed. Leishmania mexicana trypanothione reductase (LmTR), a NADPH-dependent flavoprotein oxidoreductase important to thiol metabolism, is essential for parasite viability. Its absence in the mammalian host makes this enzyme an attractive target for the development of new anti-Leishmania drugs. Herein, a tridimensional model of LmTR was constructed and the molecular docking of 20 molecules from a ZINC database was performed. Five compounds (ZINC04684558, ZINC09642432, ZINC12151998, ZINC14970552, and ZINC11841871) were selected (docking scores -10.27 kcal/mol to -5.29 kcal/mol and structurally different) and evaluated against recombinant LmTR (rLmTR) and L. mexicana promastigote. Additionally, molecular dynamics simulation of LmTR-selected compound complexes was achieved. The five selected compounds inhibited rLmTR activity in the range of 32.9% to 40.1%. The binding of selected compounds to LmTR involving different hydrogen bonds with distinct residues of the molecule monomers A and B is described. Compound ZINC12151998 (docking score -10.27 kcal/mol) inhibited 32.9% the enzyme activity (100 µM) and showed the highest leishmanicidal activity (IC50 = 58 µM) of all the selected compounds. It was more active than glucantime, and although its half-maximal cytotoxicity concentration (CC50 = 53 µM) was higher than that of the other four compounds, it was less cytotoxic than amphotericin B. Therefore, compound ZINC12151998 provides a promising starting point for a hit-to-lead process in our search for new anti-Leishmania drugs that are more potent and less cytotoxic.
Collapse
Affiliation(s)
- Félix Matadamas-Martínez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Unidad Médica de Alta Especialidad-Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Alicia Hernández-Campos
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Alfredo Téllez-Valencia
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango Av. Universidad y Fanny Anitúa S/N, Durango 34000, Mexico
| | - Alejandra Vázquez-Raygoza
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango Av. Universidad y Fanny Anitúa S/N, Durango 34000, Mexico
| | - Sandra Comparán-Alarcón
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Unidad Médica de Alta Especialidad-Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Lilián Yépez-Mulia
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Unidad Médica de Alta Especialidad-Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico.
| | - Rafael Castillo
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| |
Collapse
|
16
|
Insights into the current status of privileged N-heterocycles as antileishmanial agents. Mol Divers 2019; 24:525-569. [DOI: 10.1007/s11030-019-09953-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 04/16/2019] [Indexed: 02/04/2023]
|
17
|
Abstract
INTRODUCTION Parasitic diseases that pose a threat to human life include leishmaniasis - caused by protozoan parasite Leishmania species. Existing drugs have limitations due to deleterious side effects like teratogenicity, high cost and drug resistance. This calls for the need to have an insight into therapeutic aspects of disease. Areas covered: We have identified different drug targets via. molecular, imuunological, metabolic as well as by system biology approaches. We bring these promising drug targets into light so that they can be explored to their maximum. In an effort to bridge the gaps between existing knowledge and prospects of drug discovery, we have compiled interesting studies on drug targets, thereby paving the way for establishment of better therapeutic aspects. Expert opinion: Advancements in technology shed light on many unexplored pathways. Further probing of well established pathways led to the discovery of new drug targets. This review is a comprehensive report on current and emerging drug targets, with emphasis on several metabolic targets, organellar biochemistry, salvage pathways, epigenetics, kinome and more. Identification of new targets can contribute significantly towards strengthening the pipeline for disease elimination.
Collapse
Affiliation(s)
- Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221 005, UP, India
| | - Bhawana Singh
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221 005, UP, India
| |
Collapse
|
18
|
Systematic search for benzimidazole compounds and derivatives with antileishmanial effects. Mol Divers 2018; 22:779-790. [DOI: 10.1007/s11030-018-9830-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 04/26/2018] [Indexed: 10/16/2022]
|