1
|
Chen RP, Soren AD, Yadav AK. Anthelmintic evaluation of three ayurvedic formulations: a transmission electron microscopy study in Raillietina sp. (Cestoda). J Parasit Dis 2023; 47:837-842. [PMID: 38009143 PMCID: PMC10667176 DOI: 10.1007/s12639-023-01630-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/17/2023] [Indexed: 11/28/2023] Open
Abstract
Ayurveda is one of the ancient traditional medicine systems in India. However, several Ayurvedic medicines lack scientific evidence about their efficacy. This study reports the in vitro anthelmintic effects of three common Ayurvedic formulations, Krimimudgar Ras, Kriminol, and Birangasav on a poultry cestode Raillietina sp., using transmission electron microscopy (TEM). Adult cestodes were exposed to different concentrations of Ayurvedic formulations and the paralyzed parasites from the highest concentration (50 mg/mL) of Ayurvedic formulations, the reference anthelmintic praziquantel (PZQ) together with control were picked up and processed for TEM. The TEM studies of control cestode parasites revealed a normal arrangement of microthrix layer, basal lamina, longitudinal muscle layer, and a normal nucleus and mitochondria. Importantly, the cestodes that were exposed to 50 mg/mL concentration of Krimimudgar Ras revealed the most prominent ultrastructural alterations in the body of parasites in the form of a disrupted microthrix layer, basal lamina, muscle layer and mitochondria. The nucleus also appeared dense and irregular in shape with scattered chromatin and disrupted nuclear membrane. Kriminol-treated worms revealed considerably less damage, whereas Birangasav-treated worms revealed destructive effects in microthrix layer, nucleus and mitochondria. Through the findings of the present study, it can be concluded that of the three common Ayurvedic formulations studied, Krimimudgar Ras causes maximum degree of internal alterations in cestode parasites and thus may be considered as a good anthelmintic agent.
Collapse
Affiliation(s)
- Risa Parkordor Chen
- Department of Zoology, North-Eastern Hill University, Shillong, 793022 India
| | - Amar Deep Soren
- Department of Zoology, B. Borooah College, Guwahati, 781007 India
| | - Arun K. Yadav
- Department of Zoology, North-Eastern Hill University, Shillong, 793022 India
| |
Collapse
|
2
|
Does in Vitro and in Vivo Exposure To Medicinal Herbs Cause Structural Cuticular Changes in Haemonchus Contortus? Helminthologia 2022; 59:265-274. [PMID: 36694832 PMCID: PMC9831516 DOI: 10.2478/helm-2022-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/30/2022] [Indexed: 12/23/2022] Open
Abstract
The health and production of small ruminants in constantly menaced by parasitic infections, especially those caused by the blood-sucking gastrointestinal nematode Haemonchus contortus. The aim of this study was to assess the structural cuticular changes in adult H. contortus induced by the use of extracts from local medicinal plants and to examine their ovicidal activity. Previous studies have confirmed the beneficial effect of herbal mixtures in preventing haemonchosis in lambs by lowering fecal egg production and improving immunocompetence. We exposed adult H. contortus to Herbmix (a mixture of medicinal plants) under in vivo and in vitro conditions for observation by scanning electron microscopy (SEM). For the in vivo observations, adult worms were isolated from the abomasa of experimentally infected lambs from a Herbmix group and a control group. Surface structure did not differ significantly between the exposed and control groups. The ovicidal activity of an aqueous Herbmix extract was assessed in vitro, establishing the inhibition of hatching with an ED50 of 6.52 mg/mL. Adult worms for in vitro examination were isolated from experimentally infected lambs and incubated in Herbmix aqueous extracts for 24 h. SEM observations indicated that none of the worms had prominent ultrastructural changes on their cuticles. This study suggests that previously demonstrated antiparasitic effects of medicinal plants did not negatively affect adult parasites by damaging their external structures.
Collapse
|
3
|
Evaluation of antioxidant activity of extracts from Leucosidea sericea. HERBA POLONICA 2022. [DOI: 10.2478/hepo-2022-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Introduction:
Leucosidea sericea finds applications in the treatment of herpes and HIV.
Objective: The aim of the current study was to evaluate the antioxidant activity and determine the total flavonoid contents (TFCs) and total phenolic contents (TPCs) of hexane, chloroform, ethyl acetate, acetone and methanol crude extracts obtained from leaves and stem-bark of L. sericea.
Methods: Maceration and hot solvent extraction methods were used to obtain various crude extracts. DPPH and ferric reducing power assays were used to evaluate the antioxidant activity. Colorimetric aluminium chloride and Folin-Ciocalteu methods were used to determine the TFCs and TPCs, respectively.
Results: The methanol leaf extract showed highest radical scavenging activity of 82.00±0.93% at a concentration of 3000 µg/ml followed by ethyl acetate leaf extract and methanol stem-bark extract with 79.40±5.21 and 75.16±1.15%, respectively. Acetone stem-bark extract showed highest ferric reducing power of 0.539±0.004 at 700 nm at a concentration of 100 µg/ml followed by hexane leaf extract and hexane stem-bark extract with 0.474±0.014 and 0.437±0.013 at 700 nm, respectively. Ethyl acetate stem-bark extract showed highest TFCs of 655.6±0.1111 mg QE/g of DW of the extract followed by acetone stem-bark extract with 450.0±0.00711 mg QE/g of DW of the extract. Acetone stem-bark extract showed highest TPCs of 891.9±0.657 mg TAE/g of the DW of extract followed by methanol stem-bark extract with 878.3±0.029 mg TAE/g of DW of the extract.
Conclusion: The antioxidant activity of various solvent extracts from leaves and stem-bark of L. sericea was evaluated. L. sericea could be a source of potent antioxidants.
Collapse
|
4
|
Agrimonia pilosa: A Phytochemical and Pharmacological Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3742208. [PMID: 35529922 PMCID: PMC9076299 DOI: 10.1155/2022/3742208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/20/2022] [Accepted: 03/31/2022] [Indexed: 12/02/2022]
Abstract
Agrimonia pilosa Ledeb., which belongs to Agrimonia and Rosaceae, is used in traditional Chinese medicine. It exhibits excellent medicinal properties and has been used to treat various diseases, such as tumors, trichomoniasis, vaginitis, diarrhea, and dysentery. Phytochemical studies have revealed that Agrimonia has over 100 secondary metabolites that can be categorized into six classes, i.e., flavonoids, isocoumarins, triterpenes, phloroglucinol derivatives, tannins, and organic acids. This review summarizes recently published literature on the chemical structures of 90 bioactive compounds that have been identified in A. pilosa and examines their pharmacological properties, including their antitumor, anti-inflammatory, antioxidant, antibacterial, and antidiabetic properties, as well as the potential development of parasitic resistance to these chemicals. This review highlights existing knowledge gap and serves as a basis for developing novel preparations of A. pilosa with medicinal value.
Collapse
|
5
|
Impact of Sainfoin ( Onobrychis viciifolia) Pellets on Parasitological Status, Antibody Responses, and Antioxidant Parameters in Lambs Infected with Haemonchus contortus. Pathogens 2022; 11:pathogens11030301. [PMID: 35335625 PMCID: PMC8954349 DOI: 10.3390/pathogens11030301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/15/2022] [Accepted: 02/24/2022] [Indexed: 11/17/2022] Open
Abstract
Our study analyzed the parasitological status, antibody responses, and antioxidant parameters of lambs experimentally infected with a gastrointestinal nematode during the consumption of sainfoin pellets (SFPs) for 14 d. Twenty-four lambs infected with Haemonchus contortus were separated into two groups: untreated animals (control) and animals treated with SFPs (600 g dry matter/d). SFP treatment began on day (D) 30 post-infection. The number of eggs per gram (EPG) of feces was quantified on D18, D23, D26, D30, D33, D37, D40, and D44. The mean reductions in EPG on D40 and D44 were 33.6 and 36.7%, respectively. The number of abomasal worms was lower for the SFP than the control group (p < 0.05). SFP treatment did not significantly affect either the total or the local antibody response (p > 0.05). The blood activity of glutathione peroxidase was affected by the treatment (p < 0.022). Adult worms were selected for scanning electron microscopy after necropsy, but surface structures of adult H. contortus females did not differ between the groups. The treatment of lambs with SFPs directly affected the dynamics of infection, probably indirectly by mobilizing the antioxidant defensive system and antibody response thus improving animal resistance.
Collapse
|
6
|
Abstract
Trimeric acylphloroglucinols (T-ACPLs) are a subclass of the large class of acylphloroglucinols—derivatives of 1,3,5-trihydroxybenzene containing an R–C=O group. T-ACPL molecules contain three acylphloroglucinol moieties linked by methylene bridges. Many of them are present in natural sources and exhibit biological activities, often better than the corresponding activities of monomeric acylphloroglucinols. All the stable conformers of T-ACPLs contain seven intramolecular hydrogen bonds, which constitute the dominant stabilising factors. A total of 38 different T-ACPLs, including both naturally occurring and model molecules, have been calculated at the HF and DFT/B3LYP levels. The DFT/B3LYP calculations were carried out both without and with Grimme’s dispersion correction, to highlight the dispersion (and, therefore, also electron correlation) effects for these molecules. The roles of dispersion are evaluated considering the effects of Grimme’s correction on the estimation of the conformers’ energies, the description of the characteristics of the individual hydrogen bonds, the conformers’ geometries and other molecular properties. Overall, the results offer a comprehensive overview of the conformational preferences of T-ACPL molecules, their intramolecular hydrogen bond patterns, and the correlation effects on their properties.
Collapse
|
7
|
Khan F, Kang MG, Jo DM, Chandika P, Jung WK, Kang HW, Kim YM. Phloroglucinol-Gold and -Zinc Oxide Nanoparticles: Antibiofilm and Antivirulence Activities towards Pseudomonasaeruginosa PAO1. Mar Drugs 2021; 19:601. [PMID: 34822472 PMCID: PMC8624799 DOI: 10.3390/md19110601] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 12/23/2022] Open
Abstract
With the advancement of nanotechnology, several nanoparticles have been synthesized as antimicrobial agents by utilizing biologically derived materials. In most cases, the materials used for the synthesis of nanoparticles from natural sources are extracts. Natural extracts contain a wide range of bioactive components, making it difficult to pinpoint the exact component responsible for nanoparticle synthesis. Furthermore, the bioactive component present in the extract changes according to numerous environmental factors. As a result, the current work intended to synthesize gold (AuNPs) and zinc oxide (ZnONPs) nanoparticles using pure phloroglucinol (PG). The synthesized PG-AuNPs and PG-ZnONPs were characterized using a UV-Vis absorption spectrophotometer, FTIR, DLS, FE-TEM, zeta potential, EDS, and energy-dispersive X-ray diffraction. The characterized PG-AuNPs and PG-ZnONPs have been employed to combat the pathogenesis of Pseudomonas aeruginosa. P. aeruginosa is recognized as one of the most prevalent pathogens responsible for the common cause of nosocomial infection in humans. Antimicrobial resistance in P. aeruginosa has been linked to the development of recalcitrant phenotypic characteristics, such as biofilm, which has been identified as one of the major obstacles to antimicrobial therapy. Furthermore, P. aeruginosa generates various virulence factors that are a major cause of chronic infection. These PG-AuNPs and PG-ZnONPs significantly inhibit early stage biofilm and eradicate mature biofilm. Furthermore, these NPs reduce P. aeruginosa virulence factors such as pyoverdine, pyocyanin, protease, rhamnolipid, and hemolytic capabilities. In addition, these NPs significantly reduce P. aeruginosa swarming, swimming, and twitching motility. PG-AuNPs and PG-ZnONPs can be used as control agents for infections caused by the biofilm-forming human pathogenic bacterium P. aeruginosa.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea; (F.K.); (W.-K.J.)
| | - Min-Gyun Kang
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea; (M.-G.K.); (D.-M.J.)
| | - Du-Min Jo
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea; (M.-G.K.); (D.-M.J.)
| | - Pathum Chandika
- Department of Biomedical Engineering and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Korea;
| | - Won-Kyo Jung
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea; (F.K.); (W.-K.J.)
- Department of Biomedical Engineering and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Korea;
| | - Hyun Wook Kang
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Korea;
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea; (F.K.); (W.-K.J.)
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea; (M.-G.K.); (D.-M.J.)
| |
Collapse
|
8
|
Biosynthesis, Characterization, and Biological Activities of Procyanidin Capped Silver Nanoparticles. J Funct Biomater 2020; 11:jfb11030066. [PMID: 32961705 PMCID: PMC7564108 DOI: 10.3390/jfb11030066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 01/06/2023] Open
Abstract
In this study, procyanidin dimers and Leucosidea sericea total extract (LSTE) were employed in the synthesis of silver nanoparticles (AgNPs) and characterized by ultraviolet-visible (UV-Visible) spectroscopy, high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), X-ray diffraction (XRD), and dynamic light scattering (DLS) techniques. AgNPs of about 2–7 nm were obtained. DLS and stability evaluations confirmed that the AgNPs/procyanidins conjugates were stable. The formed nanoparticles exhibited good inhibitory activities against the two enzymes studied. The IC50 values against the amylase enzyme were 14.92 ± 1.0, 13.24 ± 0.2, and 19.13 ± 0.8 µg/mL for AgNPs coordinated with LSTE, F1, and F2, respectively. The corresponding values for the glucosidase enzyme were 21.48 ± 0.9, 18.76 ± 1.0, and 8.75 ± 0.7 µg/mL. The antioxidant activities were comparable to those of the intact fractions. The AgNPs also demonstrated bacterial inhibitory activities against six bacterial species. While the minimum inhibitory concentrations (MIC) of F1-AgNPs against Pseudomonas aeruginosa and Staphylococcus aureus were 31.25 and 15.63 µg/mL respectively, those of LSTE-AgNPs and F2-AgNPs against these organisms were both 62.50 µg/mL. The F1-AgNPs demonstrated a better bactericidal effect and may be useful in food packaging. This research also showed the involvement of the procyanidins as reducing and capping agents in the formation of stable AgNPs with potential biological applications.
Collapse
|
9
|
Baihaqi ZA, Widiyono I, Nurcahyo W. In vitro anthelmintic activity of aqueous and ethanol extracts of Paraserianthes falcataria bark waste against Haemonchus contortus obtained from a local slaughterhouse in Indonesia. Vet World 2020; 13:1549-1554. [PMID: 33061226 PMCID: PMC7522953 DOI: 10.14202/vetworld.2020.1549-1554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/12/2020] [Indexed: 11/16/2022] Open
Abstract
AIM This study was conducted to determine the anthelmintic activity of aqueous and ethanol extracts of Paraserianthes falcataria bark against Haemonchus contortus. MATERIALS AND METHODS Ethanol extract of bark (E.E.B.) waste and aqueous extract of bark (A.E.B.) waste of P. falcataria (at concentrations 0, 0.2, 0.4, 0.8, 1, 2.5, and 5%) and albendazole (2 mg/ml) as the positive control were placed in separate Petri dishes (50 mm). Twenty H. contortus worms were placed in Petri dishes and incubated at 37°C for 0.5, 1, 2, 3, 4, 5, 6, and 12 h. Mortality of each worm was ensured by pressing the body of the worm with a pair of tweezers and keeping it in lukewarm water for 5 min before declaring it dead. Mortality is defined as amount of death individuals and time of mortality of each worm was recorded. The parasites were then observed using scanning electron microscopy (SEM) at an accelerating voltage of 15 Kv. Statistical analysis was performed using SPSS 21.0 software, two-way ANOVA followed by Tukey's test to detect significant differences (p<0.05). The result was expressed as the mean ± standard deviation. RESULTS The E.E.B. and A.E.B. of P. falcataria contained active compounds, such as tannin, alkaloid, flavonoid, saponin, steroid, and triterpenoid. E.E.B. had a higher content of phenol, while A.E.B. had a higher content of flavonoid. In this study, P. falcataria showed a significant effect (p=0.00) on H. contortus in vitro. E.E.B. (0.8%) was able to exterminate H. contortus completely after 6 h, more effective than A.E.B. (5%) while the positive control requires (2 mg/ml) after 2 h. SEM analysis of the worm treated with E.E.B. and A.E.B. showed damaged cuticle structure. CONCLUSION The aqueous and ethanol extracts of P. falcataria bark waste demonstrated anthelmintic activity against H. contortus.
Collapse
Affiliation(s)
- Zein Ahmad Baihaqi
- Student of Doctoral Program Veterinary Science, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Irkham Widiyono
- Department of Internal Medicine, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Wisnu Nurcahyo
- Department of Parasitology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
10
|
Badeggi UM, Ismail E, Adeloye AO, Botha S, Badmus JA, Marnewick JL, Cupido CN, Hussein AA. Green Synthesis of Gold Nanoparticles Capped with Procyanidins from Leucosidea sericea as Potential Antidiabetic and Antioxidant Agents. Biomolecules 2020; 10:biom10030452. [PMID: 32183213 PMCID: PMC7175165 DOI: 10.3390/biom10030452] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 01/02/2023] Open
Abstract
In this study, procyanidins fractions of dimers and trimers (F1-F2) from the Leucosidea sericea total extract (LSTE) were investigated for their chemical constituents. The total extract and the procyanidins were employed in the synthesis of gold nanoparticles (Au NPs) and fully characterized. Au NPs of 6, 24 and 21 nm were obtained using LSTE, F1 and F2 respectively. Zeta potential and in vitro stability studies confirmed the stability of the particles. The enzymatic activity of LSTE, F1, F2 and their corresponding Au NPs showed strong inhibitory alpha-amylase activity where F1 Au NPs demonstrated the highest with IC50 of 1.88 µg/mL. On the other hand, F2 Au NPs displayed the strongest alpha-glucosidase activity at 4.5 µg/mL. F2 and F2 Au NPs also demonstrated the highest antioxidant activity, 1834.0 ± 4.7 μM AAE/g and 1521.9 ± 3.0 μM TE/g respectively. The study revealed not only the ability of procyanidins dimers (F1 and F2) in forming biostable and bioactive Au NPs but also, a significant enhancement of the natural products activities, which could improve the smart delivery in future biomedical applications.
Collapse
Affiliation(s)
- Umar M. Badeggi
- Chemistry Department, Cape Peninsula University of Technology, Symphony Rd., Bellville 7535, South Africa; (U.M.B.); (E.I.); (A.O.A.)
| | - Enas Ismail
- Chemistry Department, Cape Peninsula University of Technology, Symphony Rd., Bellville 7535, South Africa; (U.M.B.); (E.I.); (A.O.A.)
| | - Adewale O. Adeloye
- Chemistry Department, Cape Peninsula University of Technology, Symphony Rd., Bellville 7535, South Africa; (U.M.B.); (E.I.); (A.O.A.)
| | - Subelia Botha
- Electron Microscope Unit, University of the Western Cape, Bellville 7535, South Africa;
| | - Jelili A. Badmus
- Oxidative Stress Research Centre, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, Symphony Rd., Bellville 7535, South Africa; (J.A.B.); (J.L.M.)
| | - Jeanine L. Marnewick
- Oxidative Stress Research Centre, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, Symphony Rd., Bellville 7535, South Africa; (J.A.B.); (J.L.M.)
| | - Christopher N. Cupido
- Department of Botany, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa;
| | - Ahmed A. Hussein
- Chemistry Department, Cape Peninsula University of Technology, Symphony Rd., Bellville 7535, South Africa; (U.M.B.); (E.I.); (A.O.A.)
- Correspondence: ; Tel.: +27-21-959-6193; Fax: +27-21-959-3055
| |
Collapse
|