1
|
Schwartz M, de Beer D, Marais J. The potential of red-fleshed apples for cider production. Compr Rev Food Sci Food Saf 2025; 24:e70167. [PMID: 40183642 PMCID: PMC11970353 DOI: 10.1111/1541-4337.70167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 04/05/2025]
Abstract
Cider quality is influenced by numerous factors relating to the apples used during production. While extensive research has been done to explore the phenolic content, sensory quality, and storage stability of various apple products, the domain of fermented apple products, such as ciders, remains underrepresented. Red-fleshed apples (RFAs) have naturally high concentrations of phenolic compounds, which indicate their potential in the production of novel cider products. However, a knowledge gap remains regarding the application of RFAs in cider production and how their physicochemical and sensory properties are changed during processing. This review is the first to comprehensively investigate whether and to what extent apple categories (dessert, cider, and RFAs) differ regarding their physicochemical and sensory properties from harvest throughout cider processing. Furthermore, it highlights the importance of a holistic understanding of apple characteristics, encompassing both traditional and RFA varieties in the context of cider production. The findings offer valuable insights for stakeholders aiming to enhance product quality, providing a foundation for future studies on optimizing processing methods for a diverse and appealing range of ciders.
Collapse
Affiliation(s)
- Marbi Schwartz
- Department of Food ScienceStellenbosch UniversityStellenboschSouth Africa
- Sensory DepartmentHEINEKEN BeveragesStellenboschSouth Africa
| | - Dalene de Beer
- Department of Food ScienceStellenbosch UniversityStellenboschSouth Africa
- Plant Bioactives Group, Post‐Harvest and Agro‐Processing TechnologiesAgricultural Research Council (Infruitec‐Nietvoorbij)StellenboschSouth Africa
| | - Jeannine Marais
- Department of Food ScienceStellenbosch UniversityStellenboschSouth Africa
| |
Collapse
|
2
|
Anh TTQ, An NT, Thuy DTB. Characterization of Red Dragon Fruit Wine Fermented with a Newly Identified Yeast Strain Saccharomyces cerevisiae M7. Food Technol Biotechnol 2025; 63:4-13. [PMID: 40322290 PMCID: PMC12044296 DOI: 10.17113/ftb.63.01.25.8784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/08/2024] [Indexed: 05/08/2025] Open
Abstract
Research background Dragon fruit (Hylocereus spp.) has been known to be a rich source of bioactive compounds, such as anthocyanins, betacyanin, betaxanthin and other phenolic substances, and it has a nutritional profile suitable to produce wine with functional properties. The aim of this study is to characterize the wine fermentation from red dragon fruit juice by a newly identified yeast strain. Experimental approach Yeast strains from banh men, a Vietnamese traditional alcoholic fermentation starter, were screened for ethanol production using thermally pretreated red dragon fruit juice. The most potent candidate was identified by the DNA sequencing method and subjected to an optimization study using a one-factor-at-a-time approach to optimize the conditions for red dragon fruit wine fermentation. Results and conclusions Results showed that thermal pretreatment of the red dragon fruit juice at 70 °C for 10 min resulted in a higher amount of phenols and antioxidants than at other pretreatment temperatures. Among the four isolates, M7 was the strongest alcohol fermenter, which was then identified as Saccharomyces cerevisiae using a DNA sequencing method. The optimal conditions for wine fermentation from red dragon fruit juice by S. cerevisiae M7 included a pitching rate of 108 CFU/mL, an initial sucrose content of 18 % (m/V), an initial pH=4.5, fermentation temperature of 30 °C and a fermentation time of 6 days. Under these conditions, the wine fermented by S. cerevisiae M7 had an ethanol volume fraction of (12.1±0.2) %, the concentration of total phenolics expressed as gallic acid equivalents (37.8±0.4), anthocyanins expressed as cyanidin 3-glucoside equivalents (11.2±0.3), betacyanin (65.2±0.8) and betaxanthin (60.5±1.3) mg/L and antioxidant activity measured by DPPH scavenging capacity of (65.4±0.4) %. Novelty and scientific contribution This study used a novel yeast strain Saccharomyces cerevisiae M7 for fermentation. In addition, the results of the study provide new data such as the optimal parameters and the accumulation of bioactive compounds (phenols, anthocyanins and betalains) related to the fermentation of red dragon fruit wine.
Collapse
Affiliation(s)
- Tran Thanh Quynh Anh
- Faculty of Engineering and Food Technology, Hue University of Agriculture and Forestry, Hue University, 102 Phung Hung, 49116 Hue, Vietnam
| | - Nguyen Tien An
- Faculty of Agriculture and Forestry, Dalat University, 01 Phu Dong Thien Vuong, 66106 Dalat, Vietnam
| | - Do Thi Bich Thuy
- Institute of Research and Development, Duy Tan University, 254 Nguyen Van Linh, 50312 Da Nang, Vietnam
- School of Engineering and Technology, Duy Tan University, 254 Nguyen Van Linh, 50312 Da Nang, Vietnam
| |
Collapse
|
3
|
Wu Y, Li Y, Liang H, Zhang S, Lin X, Ji C. Enhancing cider quality through co-fermentation with acid protease and esterase-producing Metschnikowia species and Saccharomyces cerevisiae. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1003-1011. [PMID: 39271473 DOI: 10.1002/jsfa.13891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 08/28/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND To date, cider production has primarily relied on Saccharomyces cerevisiae. Introducing novel non-Saccharomyces yeasts can enhance the diversity of cider properties. Among these, the Metschnikowia genus stands out for its ability to produce hydrolytic enzymes that may impact the sensorial and technological properties of cider. This study focused on evaluating the impact of three Metschnikowia species - Metschnikowia koreensis (Mk), M. reukaufii (Mr), and M. pulcherrima (Mp) - which exhibit acid protease and esterase activity, on the quality enhancement of cider. RESULTS The research findings indicate that the overall quality of cider produced through co-fermentation with these species surpassed that of cider fermented with mono-fermentation of S. cerevisiae (Sc). The cider fermented with the Sc + Mk combination exhibited the lowest levels of harsh-tasting malic acid and higher levels of softer lactic acid. Sensory array analysis also demonstrated that the Sc + Mk fermented cider exhibited high sensor response values for compounds contributing to a complex overall olfactory composition and richness. Furthermore, the Sc + Mk fermented cider exhibited the highest total quantity and variety of volatile organic compounds (VOCs). Specifically, the concentrations of phenethyl alcohol, 3-methyl-1-butanol, ethyl octanoate, and decanoic acid were notably elevated in comparison with other groups. CONCLUSION This study illustrates that Metschnikowia species, particularly M. koreensis, show significant potential as starters for cider due to their various technological properties, including acidity modulation, aroma enhancement, and color improvement. The findings of this study provide a foundation for improving cider quality by co-fermenting S. cerevisiae with innovative starter cultures. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuzheng Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Yuening Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Huipeng Liang
- Institute of Technology, China Resources Beer (Holdings) Company Limited, Beijing, P.R. China
| | - Sufang Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Xinping Lin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Chaofan Ji
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| |
Collapse
|
4
|
Yuan K, Li X, Zeng Y, Liu C, Zhu Y, Hu J, Sun J, Bai W. Chemical stability of carboxylpyranocyanidin-3-O-glucoside under β-glucosidase treatment and description of their interaction. Food Chem 2024; 447:138840. [PMID: 38458128 DOI: 10.1016/j.foodchem.2024.138840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/10/2024]
Abstract
Anthocyanins are susceptible to degradation by β-glycosidase, resulting in color loss. This study analyzed the impact of β-glycosidase on carboxylpyranocyanidin-3-O-glucoside (Carboxyl-pycy-3-gluc) and its precursor cyanidin-3-O-glucoside (Cy-3-gluc). Carboxyl-pycy-3-gluc exhibited enhanced stability upon treatment with β-glucosidase. Ultraviolet-visible and circular dichroism spectroscopy revealed slight changes in the microenvironment and secondary structure of β-glycosidase when carboxyl-pycy-3-gluc was present. The fluorescence experiment indicated that anthocyanins quench the fluorescence of β-glycosidase through static quenching via hydrophobic interactions. Molecular docking of six types of carboxylpyranoanthocyanins and their precursors with β-glycosidase revealed that carboxylpyranoanthocyanins exhibited lower binding affinity than their precursors, consistent with the enzyme kinetic experiment results. The incorporation carboxyl-pycy-3-gluc into Sanhua Plum Juice and Wine endowed them with vivid and stable coloration. The study illustrated that carboxyl-pycy-3-gluc exhibits low binding affinity with β-glycosidase, thereby maintaining stability and confirming its potential as a colorant.
Collapse
Affiliation(s)
- Kailan Yuan
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China
| | - Yingyu Zeng
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China
| | - Chuqi Liu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China
| | - Yuanqin Zhu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China
| | - Jun Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
5
|
Tan J, Ji M, Gong J, Chitrakar B. The formation of volatiles in fruit wine process and its impact on wine quality. Appl Microbiol Biotechnol 2024; 108:420. [PMID: 39017989 PMCID: PMC11254978 DOI: 10.1007/s00253-024-13084-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 07/18/2024]
Abstract
Fruit wine is one of the oldest fermented beverages made from non-grape fruits. Owing to the differences in fruit varieties, growing regions, climates, and harvesting seasons, the nutritional compositions of fruits (sugars, organic acids, etc.) are different. Therefore, the fermentation process and microorganisms involved are varied for a particular fruit selected for wine production, resulting in differences in volatile compound formation, which ultimately determine the quality of fruit wine. This article reviews the effects of various factors involved in fruit wine making, especially the particular modifications differing from the grape winemaking process and the selected strains suitable for the specific fruit wine fermentation, on the formation of volatile compounds, flavor and aroma profiles, and quality characteristics of the wine thus produced. KEY POINTS: • The volatile profile and fruit wine quality are affected by enological parameters. • The composition and content of nutrients in fruit must impact volatile profiles. • Yeast and LAB are the key determining factors of the volatile profiles of fruit wines.
Collapse
Affiliation(s)
- Jianxin Tan
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, People's Republic of China.
| | - Mingyue Ji
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Jiangang Gong
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Bimal Chitrakar
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, People's Republic of China.
| |
Collapse
|
6
|
Cosme F, Nunes FM, Filipe-Ribeiro L. Winemaking: Advanced Technology and Flavor Research. Foods 2024; 13:1937. [PMID: 38928878 PMCID: PMC11203223 DOI: 10.3390/foods13121937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Beginning in ancient times, human societies around the world continue to produce fermented beverages from locally available sugar sources [...].
Collapse
Affiliation(s)
- Fernanda Cosme
- Biology and Environment Department, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
| | - Fernando M. Nunes
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Chemistry Department, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Luís Filipe-Ribeiro
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
| |
Collapse
|
7
|
Bezerra M, Ribeiro M, Cosme F, Nunes FM. Overview of the distinctive characteristics of strawberry, raspberry, and blueberry in berries, berry wines, and berry spirits. Compr Rev Food Sci Food Saf 2024; 23:e13354. [PMID: 38682687 DOI: 10.1111/1541-4337.13354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 05/01/2024]
Abstract
Red berries have gained popularity as functional and nutritious food due to their health benefits, leading to increased consumer demand and higher production, totaling over 11,000 ktons for strawberries, raspberries, and blueberries combined in 2021. Nutritionally, strawberries, raspberries, and blueberries present high levels of vitamin C (9.7-58.8 mg/100 g dry weight [dw]), folates (6-24 µg/100 g dw), and minerals (96-228 mg/100 g dw). Due to their perishable nature, producers have utilized alcoholic fermentation to extend their shelf life, not only increasing the lifespan of red berries but also attracting consumers through the production of novel beverages. Strawberry, blueberry, and raspberry wines possess low alcohol (5.5-11.1% v/v), high acidity (3.2-17.6 g/L), and interesting bioactive molecules such as phenolic compounds, carotenoids, polysaccharides, and melatonin. Distillation holds tremendous potential for reducing food waste by creating red berry spirits of exceptional quality. Although research on red berry spirits is still in the early stages, future studies should focus on their production and characterization. By incorporating these factors, the production chain would become more sustainable, profitable, and efficient by reducing food waste, capitalizing on consumer acceptance, and leveraging the natural health-promoting characteristics of these products. Therefore, this review aims to provide a comprehensive overview of the characteristics of strawberry, blueberry, and red raspberry in berries, wines, and spirits, with a focus on their chemical composition and production methods.
Collapse
Affiliation(s)
- Mário Bezerra
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Miguel Ribeiro
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Genetics and Biotechnology Department, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Fernanda Cosme
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Biology and Environment Department, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Fernando M Nunes
- Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Chemistry Department, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| |
Collapse
|
8
|
Zhou J, Tang C, Zou S, Lei L, Wu Y, Yang W, Harindintwali JD, Zhang J, Zeng W, Deng D, Zhao M, Yu X, Liu X, Qiu S, Arneborg N. Enhancement of pyranoanthocyanin formation in blueberry wine with non-Saccharomyces yeasts. Food Chem 2024; 438:137956. [PMID: 37989022 DOI: 10.1016/j.foodchem.2023.137956] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023]
Abstract
The development of blueberry wine provides an alternative method for maintaining the nutritional value and extending the shelf life of blueberries. However, anthocyanin loss and off-flavor compound generation during fermentation impair blueberry wine color and quality. Hydroxycinnamate decarboxylase from yeast can catalyze the conversion of hydroxycinnamic acids to vinylphenols, which later may condense with anthocyanins to form more stable vinylphenolic pyranoanthocyanins. In this study, 10 non-Saccharomyces yeasts from Daqu that showed hydroxycinnamate decarboxylase activity were screened. Among the 10 strains, Wickerhamomyces anomalus Y5 showed the highest consumption (34.59%) of the total tested phenolic acids and almost no H2S production. Furthermore, Y5 seemed to produce four vinylphenol pyranoanthocyanins (cyanidin-3-O-galactoside/glucoside-4-vinylcatechol, cyanidin-3-O-galactoside/glucoside-4-vinylsyringol, malvidin-4-vinylguaiacol, and malvidin-4-vinylcatechol) during blueberry wine fermentation, which may improve the color stability of blueberry wine. These findings provide new insights for improving the quality of blueberry wine using non-Saccharomyces yeasts.
Collapse
Affiliation(s)
- Jianli Zhou
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Chuqi Tang
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Shuliang Zou
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, 1 Caiguan Road, Guiyang 550003, China
| | - Liangbo Lei
- Kweichow Moutai Distillery Co., Ltd., Renhuai, Guizhou 564501, China
| | - Yuangen Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Wenhua Yang
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jean Damascene Harindintwali
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jiang Zhang
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Wenwen Zeng
- Kweichow Moutai (Group) Ecological Agriculture Industry Development Co., Ltd, Danzhai 557500, China
| | - Dan Deng
- Kweichow Moutai (Group) Ecological Agriculture Industry Development Co., Ltd, Danzhai 557500, China
| | - Manman Zhao
- Kweichow Moutai (Group) Ecological Agriculture Industry Development Co., Ltd, Danzhai 557500, China
| | - Xiaobin Yu
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xiaobo Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, Jiangsu, China
| | - Shuyi Qiu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China.
| | - Nils Arneborg
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark.
| |
Collapse
|
9
|
Wang Y, Fu Y, Zhang Q, Zhu Y, Yang Q, Bian C, Zhao LL, Chen Q, Bi HJ, Yang XH, Gao XL. Enhancement of ester biosynthesis in blueberry wines through co-fermentation via cell-cell contact between Torulaspora delbrueckii and Saccharomyces cerevisiae. Food Res Int 2024; 179:114029. [PMID: 38342548 DOI: 10.1016/j.foodres.2024.114029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/13/2024]
Abstract
This study investigated the effects of co-fermentation of T. delbrueckii and S. cerevisiae on the volatile composition and sensory characteristics of blueberry wines. Mixed fermentation led to higher levels of terpenes, higher alcohols, and esters compared to wines fermented with each yeast individually. Conversely, when T. delbrueckii were physically separated from S. cerevisiae in the double-compartment fermenter, contrasting outcomes emerged. The stronger fruity aroma induced by mixed fermentation were linked to higher ester concentrations, including isoamyl acetate, ethyl isovalerate, ethyl hexanoate, and diethyl succinate. The enhanced esters in mixed fermentation can be attributed to the upregulated alcohol acyltransferase activity and the expressions of ACC1, FAS2, ELO1 and ATF1 genes in late fermentation stage via the cell-cell contact between T. delbrueckii and S. cerevisiae. These findings can deepen the understanding of the interaction between non-Saccharomyces and S. cerevisiae in ester production, assisting wineries in effectively controlling wine aroma through mixed fermentations.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Yu Fu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qi Zhang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yue Zhu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qin Yang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chen Bian
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Lu-Lu Zhao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qi Chen
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Hai-Jun Bi
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiao-Hui Yang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xue-Ling Gao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
10
|
Fu Y, Gao Y, Yang M, Chen J, Zhu C, Tang J, Chen L, Cai Z. Effects of Non-Saccharomyces Yeasts and Their Pairwise Combinations in Co-Fermentation with Saccharomyces cerevisiae on the Quality of Chunjian Citrus Wine. Molecules 2024; 29:1028. [PMID: 38474538 DOI: 10.3390/molecules29051028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Non-Saccharomyces (NSc) yeasts have great potential in improving wine qualities. In this study, two NSc and two Saccharomyces cerevisiae (Sc) samples were tested on their performance of mono-inoculated and composite culture in the fermentation of Chunjian citrus wine. The cell count, Brix degree, total sugar, total acidity, alcohol level, pH value, color intensity (CI), and tonality were determined to evaluate the contribution of NSc to the quality of citrus wine in the mixed fermentation. Volatile compounds were analyzed by HS-SPME-GC-MS, and sensory evaluation was carried out. During the 9-day fermentation, the mixed-culture wine exhibited a higher cell concentration than the pure culture. After the fermentation, mixed-culture wine specifically decreased the concentrations of unfavorable volatile compounds, such as isobutanol and octanoic acid, and increased favorable volatile compounds, including ethyl octanoate, ethyl decanoate, and phenylethyl acetate. The quality category of the citrus wine was improved compared with the Sc mono-inoculated wines, mainly in regard to aroma, retention, and sweetness. The study shows that the mixed fermentation of NSc and Sc has positive impacts on reducing alcohol level and total acidity and increasing CI. The present work demonstrates that the mixed fermentation of NSc and Sc has enormous beneficial impacts on improving the quality of citrus wine.
Collapse
Affiliation(s)
- Yu Fu
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610225, China
| | - Yueyue Gao
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610225, China
| | - Ming Yang
- Sichuan Sports College Rehabilitation Research Center, Chengdu 610093, China
| | - Juan Chen
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610225, China
| | - Chenglin Zhu
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610225, China
| | - Junni Tang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610225, China
| | - Lianhong Chen
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610225, China
| | - Zijian Cai
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610225, China
| |
Collapse
|
11
|
Gu Q, Li Y, Lou Y, Zhao Y, Feng X, Li P, Laaksonen O, Yang B, Capozzi V, Liu S. Selecting autochthonous lactic acid bacteria for co-inoculation in Chinese bayberry wine production: Stress response, starter cultures application and volatilomic study. Food Res Int 2024; 178:113976. [PMID: 38309882 DOI: 10.1016/j.foodres.2024.113976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 02/05/2024]
Abstract
This study focused on isolating and characterising autochthonous lactic acid bacteria (LAB) from spontaneously fermented Chinese bayberry (CB) and their potential application in CB wine fermentation in co-inoculation with yeast starter cultures. Numerous LAB, including Lactiplantibacillus (Lp.) plantarum (9), Limosilactobacillus (Lb.) fermentum (6), Lactococcus (Lc.) lactis (3), Enterococcus (Ec.) hirae (1), Leuconostoc (Le.) mesenteroides (1), and Weissella (Ws.) cibaria (1), were isolated and identified. The isolated strains Lp. plantarum ZFM710 and ZFM715, together with Lb. fermentum ZFM720 and ZFM722, adapted well to unfavourable fermentation environment, including ethanol, osmolality, and acidity stresses, were selected for producing CB wine by co-inoculation with Saccharomyces cerevisiae. During fermentation, the presence of LAB promoted the development of S. cerevisiae, while the population dynamics of LAB in different groups at different stages showed strain-specific differences. Fermentation trials involving LAB yielded a lower ethanol concentration except for Lp. plantarum ZFM715. Compared to the pure S. cerevisiae fermented sample, the addition of LAB led to a clear modulation in organic acid composition. Lb. fermentum strains in co-fermentation led to significant decreases in each classified group of aroma compounds, while Lp. plantarum ZFM715 significantly increased the complexity and intensity of aroma compounds, as well as the intensities of fruity and floral notes. The study selects interesting strains for the design of starter cultures for use in CB wine production, underlining the interest in the selection of autochthonous LAB in fruit wines, with the aim of improving the adaptation of bacteria to specific environmental conditions and shaping the unique traits of the finished products.
Collapse
Affiliation(s)
- Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Yixian Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Ying Lou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Yan Zhao
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Xujie Feng
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China
| | - Oskar Laaksonen
- Food Science, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Baoru Yang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China; Food Science, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Vittorio Capozzi
- Institute of Sciences of Food Production, National Research Council, c/o CS-DAT, Via Michele Protano, 71121 Foggia, Italy
| | - Shuxun Liu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
12
|
Aneh AP, Ngwasiri PN, Ambindei WA, Wingang MC, Ngwabie NM, Ngassoum MB. Enzyme assisted juice extraction from Dacryodes macrophylla as a potential bio-resource for wine production. Heliyon 2023; 9:e16443. [PMID: 37292320 PMCID: PMC10245165 DOI: 10.1016/j.heliyon.2023.e16443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 04/21/2023] [Accepted: 05/16/2023] [Indexed: 06/10/2023] Open
Abstract
Atom fruit (Dacryodes macrophylla) is a Non-timber Forest Product (NTFP) that comprises a large seed, thick pulp, and a thin hard outer covering. The structural component of its cell wall and thick pulp make it difficult in extracting the juice. Also, Dacryodes macrophylla fruit is greatly underutilized, therefore the need to process and transform it into other value-added products. This work aims to enzymatically extract juice from Dacryodes macrophylla fruit with the aid of pectinase, ferment and test the acceptability of wine produced from this extract. The enzyme and non-enzyme treatments were carried out under the same conditions and their physicochemical properties such as pH, juice yield, total soluble solids, and Vitamin C were compared. A central composite design was used for the optimization of the processing factors for the enzyme extraction process. Enzyme treatment had a great impact on the juice yield (%) and Total soluble solids (TSS) (0Brix) of samples as it was as high as 81 ± 0.7% and 10.6 ± 0.02 0Brix whereas, that of the non-enzyme treatments were 46 ± 0.7% and 9.5 ± 0.02 0Brix respectively. However, the Vitamin C content of enzyme-treated juice decreased to 11.32 ± 0.13 mg/ml as compared to that of the non-enzyme-treated juice sample (15.7 ± 0.04 mg/ml). The optimum processing condition in the extraction of juice from the atom fruit was 1.84% enzyme concentration, 49.02 ֯C Incubation temperature, and 43.58 min Incubation time. During wine processing within 14 days of primary fermentation, the pH of the must decreased from 3.42 ± 0.07 to 3.26 ± 0.07 whereas the Titratable acidity (TA) increased from 0.16 ± 0.05 to 0.51 ± 0.0. The wine produced from Dacryodes macrophylla fruit showed promising results as its sensorial scores for all attributes including color, clarity, flavor, mouthfeel, alcoholic burn after taste and overall acceptability were all above 5. Thus, enzymes can be used to improve the juice yield of Dacryodes macrophylla fruit and hence, can be a potential bioresource for wine production.
Collapse
Affiliation(s)
- Aneh Phillins Aneh
- Department of Nutrition, Food and Bioresource Technology, College of Technology, The University of Bamenda, P.O. Box 39, Bambili-Bamenda, Cameroon
| | - Pride Ndasi Ngwasiri
- Department of Nutrition, Food and Bioresource Technology, College of Technology, The University of Bamenda, P.O. Box 39, Bambili-Bamenda, Cameroon
| | - Wilson Agwanande Ambindei
- Department of Process Engineering, ENSAI, University of Ngaoundere, P.O. Box 455, Ngaoundere, Cameroon
| | - Makebe Calister Wingang
- Department of Chemical and Biological EngineeringNational Higher Polytechnic Institute, The University of Bamenda, P.O. Box 39, Bambili-Bamenda, Cameroon
| | - Ngwa Martin Ngwabie
- Department of Agriculture and Environmental Engineering, College of Technology, The University of Bamenda, P.O. Box 39, Bambili-Bamenda, Cameroon
| | - Martin Benoit Ngassoum
- Department of Applied Chemistry, ENSAI, University of Ngaoundere, P.O. Box 455, Ngaoundere, Cameroon
| |
Collapse
|
13
|
Zhu Y, Su Q, Jiao J, Kelanne N, Kortesniemi M, Xu X, Zhu B, Laaksonen O. Exploring the Sensory Properties and Preferences of Fruit Wines Based on an Online Survey and Partial Projective Mapping. Foods 2023; 12:foods12091844. [PMID: 37174382 PMCID: PMC10178241 DOI: 10.3390/foods12091844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/15/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Non-grapefruits with unique sensory properties and potential health benefits provide added value to fruit wine production. This study aimed to explore consumers' fruit wine preferences and descriptors for the varied fruit wines. First, 234 consumers participated in an online survey concerning their preferences for different wines (grape, blueberry, hawthorn, goji, Rosa roxburghii, and apricot). In addition, their attitudes towards general health interests, food neophobia, alcoholic drinks, and sweetness were collected. Grape wine and blueberry wine were the most favored wines, and goji wine was the least liked fruit wine sample. Moreover, 89 consumers were invited to evaluate 10 commercial fruit wines by using partial projective mapping based on appearance, aroma, and flavor (including taste and mouthfeel) to obtain a comprehensive sensory characterization. Multifactor analysis results showed that consumers could differentiate the fruit wines. Participants preferred fruit wines with "sweet", "sour", and "balanced fragrance", whereas "bitter", "astringent", "deep appearance", and "medicinal fragrance" were not preferred. Attitudes toward health, food neophobia, alcohol, and sweetness had less influence than taste and aroma (sensory attributes) on the preferences for fruit wine products. More frequent self-reported wine usage resulted in higher consumption frequency and liking ratings compared to non-users. Overall, the main factors influencing consumer preference for fruit wines were the sensory characteristics of the products, especially the taste.
Collapse
Affiliation(s)
- Yuxuan Zhu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Qingyu Su
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Jingfang Jiao
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Niina Kelanne
- Food Sciences, Department of Life Technologies, University of Turku, 20500 Turku, Finland
| | - Maaria Kortesniemi
- Food Sciences, Department of Life Technologies, University of Turku, 20500 Turku, Finland
| | - Xiaoqing Xu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Baoqing Zhu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Oskar Laaksonen
- Food Sciences, Department of Life Technologies, University of Turku, 20500 Turku, Finland
| |
Collapse
|
14
|
Santos IL, Rodrigues AMDC, Amante ER, Silva LHMD. Soursop ( Annona muricata) Properties and Perspectives for Integral Valorization. Foods 2023; 12:foods12071448. [PMID: 37048268 PMCID: PMC10093693 DOI: 10.3390/foods12071448] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 04/14/2023] Open
Abstract
The increased international interest in the properties of soursop (Annona muricata) alerts us to the sustainability of productive chain by-products, which are rich in phytochemicals and other properties justifying their industrial application in addition to reducing the environmental impact and generating income. Chemical characteristics of soursop by-products are widely known in the scientific community; this fruit has several therapeutic effects, especially its leaves, enabling it to be used by the pharmaceutical industry. Damaged and non-standard fruits (due to falling and crushing) (30-50%), seeds (3-8.5%), peels (7-20%), and leaves, although they constitute discarded waste, can be considered as by-products. There are other less cited parts of the plant that also have phytochemical components, such as the columella and the epidermis of the stem and root. Tropical countries are examples of producers where soursop is marketed as fresh fruit or frozen pulp, and the valorization of all parts of the fruit could represent important environmental and economic perspectives. Based on the chemical composition of the fruit as well as its by-products and leaves, this work discusses proposals for the valorization of these materials. Soursop powder, bioactive compounds, oil, biochar, biodiesel, bio-oil, and other products based on published studies are presented in this work, offering new ideas for opportunities for the regions and consumers that produce soursop.
Collapse
Affiliation(s)
- Ivone Lima Santos
- Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos (PPGCTA) [Graduate Program in Science and Food Technology], Universidade Federal do Pará (UFPA), Belém 66075-110, Pará, Brazil
| | - Antonio Manoel da Cruz Rodrigues
- Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos (PPGCTA) [Graduate Program in Science and Food Technology], Universidade Federal do Pará (UFPA), Belém 66075-110, Pará, Brazil
| | - Edna Regina Amante
- Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos (PPGCTA) [Graduate Program in Science and Food Technology], Universidade Federal do Pará (UFPA), Belém 66075-110, Pará, Brazil
| | - Luiza Helena Meller da Silva
- Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos (PPGCTA) [Graduate Program in Science and Food Technology], Universidade Federal do Pará (UFPA), Belém 66075-110, Pará, Brazil
| |
Collapse
|
15
|
Optimization of the Brewing Process and Analysis of Antioxidant Activity and Flavor of Elderberry Wine. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Fruit wines have high nutritional value and good palatability. However, fruit wine made from a single fruit type does not have good enough flavor and nutritional quality. Therefore, flavorsome fruit wines made from a variety of fruits should be developed as a matter of urgency. In this study, the raw material of elderberry wine was used to explore the production technology of mixed juice wines; the fruits selected were apple, lychee, pear, blueberry, and elderberry. We utilized a single-factor experiment and the response surface method (RSM) approach to optimize the fermentation procedures; the results show that the solid–liquid ratio was 1:7.5, the amount of yeast inoculation was 0.68 g/L, the fermentation temperature was 20 °C, and the added sugar content was 120 g/L. Under these process conditions, a verification test was carried out in a 35 L fermenter. The results showed that the alcohol content, residual sugar content, total acidity, total phenol content, and total flavonoid content of the elderberry wine were, respectively, 7.73% vol, 8.32 g/L, 9.78 g/L, 8.73 mg/mL, and 1.6 mg/mL. In total, 33 volatile components were identified in the resulting elderberry wine. It achieved a harmonious aroma and fruit flavor, a homogeneous and transparent liquid phase, a pleasant taste, and a sensory evaluation score of 95. The antioxidant activity experiments showed that elderberry had a certain antioxidant capacity, and that fermented elderberries had significantly higher antioxidant ability than unfermented ones.
Collapse
|
16
|
Yang Z, Yuan L, Zhu H, Jiang J, Yang H, Li L. Small RNA profiling reveals the involvement of microRNA-mediated gene regulation in response to symbiosis in raspberry. Front Microbiol 2022; 13:1082494. [PMID: 36620006 PMCID: PMC9810812 DOI: 10.3389/fmicb.2022.1082494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Dark septate endophytes (DSEs) can form reciprocal symbioses with most terrestrial plants, providing them with mineral nutrients in exchange for photosynthetic products. Although the mechanism of plant-DSEs is well understood at the transcriptional level, little is known about their post-transcriptional regulation, and microRNAs (miRNAs) for the symbiotic process of DSE infestation of raspberry have not been identified. In this study, we comprehensively identified the miRNAs of DSE-infested raspberry symbiosis using Illumina sequencing. A total of 361 known miRNAs and 95 novel miRNAs were identified in the roots. Similar to other dicotyledons, most of the identified raspberry miRNAs were 21 nt in length. Thirty-seven miRNAs were differentially expressed during colonization after inoculation with Phialocephala fortinii F5, suggesting a possible role for these miRNAs in the symbiotic process. Notably, two miRNAs (miR171h and miR396) previously reported to be responsive to symbiotic processes in alfalfa also had altered expression during raspberry symbiosis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses suggests that miRNAs are mainly involved in regulatory mechanisms, such as biological processes, cellular metabolic processes, biosynthesis of secondary metabolites, plant-pathogen interactions, and phytohormone signaling pathways. This study revealed the potential conservation of miRNA-mediated post-transcriptional regulation in symbiotic processes among plants and provides some novel miRNAs for understanding the regulatory mechanisms of DSE-raspberry symbiosis.
Collapse
Affiliation(s)
- Zhiyu Yang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China,College of Life Science, Northeast Forestry University, Harbin, China
| | - Lianmei Yuan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China,College of Life Science, Northeast Forestry University, Harbin, China
| | - Haifeng Zhu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China,College of Life Science, Northeast Forestry University, Harbin, China
| | - Jing Jiang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China,College of Life Science, Northeast Forestry University, Harbin, China
| | - Hongyi Yang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China,College of Life Science, Northeast Forestry University, Harbin, China,*Correspondence: Hongyi Yang,
| | - Lili Li
- Institute of Forestry Science of Heilongjiang Province, Harbin, China,Lili Li,
| |
Collapse
|
17
|
Effect of Lactobacillus plantarum and Lactobacillus acidophilus fermentation on antioxidant activity and metabolomic profiles of loquat juice. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Liu R, Liu Y, Zhu Y, Kortesniemi M, Zhu B, Li H. Aromatic Characteristics of Passion Fruit Wines Measured by E-Nose, GC-Quadrupole MS, GC-Orbitrap-MS and Sensory Evaluation. Foods 2022; 11:foods11233789. [PMID: 36496598 PMCID: PMC9735701 DOI: 10.3390/foods11233789] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
This study investigated the volatile composition and aromatic features of passion fruit wines using a combination of gas chromatography-quadrupole mass spectrometry (GC-qMS), gas chromatography-Orbitrap-mass spectrometry (GC-Orbitrap-MS), electronic nose (E-nose) and sensory evaluation. The results showed that these passion fruit wines possessed different aromatic features confirmed by E-nose. Seventeen sulfur compounds and seventy-eight volatiles were detected in these passion fruit wines using GC-Orbitrap-MS and GC-qMS, respectively. Forty-four volatiles significantly contributed to the overall wine aroma. These wines possessed passion fruit, mango, green apple, lemon and floral aromas confirmed by sensory evaluation. The partial least squares regression analysis indicated that sulfides, esters and terpenes, and terpenes mainly correlated to the passion fruit, mango and green apple aroma, respectively. Sulfur compounds significantly affected the aroma of passion fruit wine. The findings in this study could provide useful insight toward the quality control of passion fruit wine.
Collapse
Affiliation(s)
- Ruojin Liu
- Beijing Key Laboratory of Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yaran Liu
- Beijing Key Laboratory of Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yuxuan Zhu
- Beijing Key Laboratory of Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Maaria Kortesniemi
- Food Sciences, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Baoqing Zhu
- Beijing Key Laboratory of Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Correspondence: (B.Z.); (H.L.); Tel.: +86-10-6233-8221 (B.Z.); +86-10-68984890 (H.L.)
| | - Hehe Li
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: (B.Z.); (H.L.); Tel.: +86-10-6233-8221 (B.Z.); +86-10-68984890 (H.L.)
| |
Collapse
|
19
|
Rios-Corripio G, la Peña MMD, Welti-Chanes J, Guerrero-Beltrán JÁ. Pulsed electric field processing of a pomegranate (Punica granatum L.) fermented beverage. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Chemical and Sensory Characteristics of Fruit Juice and Fruit Fermented Beverages and Their Consumer Acceptance. BEVERAGES 2022. [DOI: 10.3390/beverages8020033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent social, economic, and technological evolutions have impacted consumption habits. The new consumer is more rational, more connected and demanding with products, more concerned with the management of the family budget, with the health, origin, and sustainability of food. The food industry over the last few years has shown remarkable technological and scientific evolution, with an impact on the development and innovation of new products using non-thermal processing. Non-thermal processing technologies involve methods by which fruit juices receive microbiological inactivation and enzymatic denaturation with or without the direct application of low heat, thereby lessening the adverse effects on the nutritional, bioactive, and flavor compounds of the treated fruit juices, extending their shelf-life. The recognition of the nutritional and protective values of fruit juices and fermented fruit beverages is evident and is attributed to the presence of different bioactive compounds, protecting against chronic and metabolic diseases. Fermentation maintains the fruit's safety, nutrition, and shelf life and the development of new products. This review aims to summarize the chemical and sensory characteristics of fruit juices and fermented fruit drinks, the fermentation process, its benefits, and its effects.
Collapse
|
21
|
Role of Antimicrobial Drug in the Development of Potential Therapeutics. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2500613. [PMID: 35571735 PMCID: PMC9098294 DOI: 10.1155/2022/2500613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 12/17/2022]
Abstract
Population of the world run into several health-related emergencies among mankind and humans as it creates a challenge for the evolution of novel drug discoveries. One such can be the emergence of multidrug-resistant (MDR) strains in both hospital and community settings, which have been due to an inappropriate use and inadequate control of antibiotics that has led to the foremost human health concerns with a high impact on the global economy. So far, there has been application of two strategies for the development of anti-infective agents either by classical antibiotics that have been derived for their synthetic analogs with increased efficacy or screening natural compounds along with the synthetic compound libraries for the antimicrobial activities. However, need for newer treatment options for infectious diseases has led research to develop new generation of antimicrobial activity to further lessen the spread of antibiotic resistance. Currently, the principles aim to find novel mode of actions or products to target the specific sites and virulence factors in pathogens by a series of better understanding of physiology and molecular aspects of the microbial resistance, mechanism of infection process, and gene-pathogenicity relationship. The design various novel strategies tends to provide us a path for the development of various antimicrobial therapies that intends to have a broader and wider antimicrobial spectrum that helps to combat MDR strains worldwide. The development of antimicrobial peptides, metabolites derived from plants, microbes, phage-based antimicrobial agents, use of metal nanoparticles, and role of CRISPR have led to an exceptional strategies in designing and developing the next-generation antimicrobials. These novel strategies might help to combat the seriousness of the infection rates and control the health crisis system.
Collapse
|
22
|
Liu Y, Qian X, Xing J, Li N, Li J, Su Q, Chen Y, Zhang B, Zhu B. Accurate Determination of 12 Lactones and 11 Volatile Phenols in Nongrape Wines through Headspace-Solid-Phase Microextraction (HS-SPME) Combined with High-Resolution Gas Chromatography-Orbitrap Mass Spectrometry (GC-Orbitrap-MS). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1971-1983. [PMID: 35112570 DOI: 10.1021/acs.jafc.1c06981] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This paper clarifies the contribution of lactones and volatile phenols to the aroma of nongrape wine. A target method for the simultaneous determination of these two kinds of volatiles in nongrape wines was developed using headspace-solid-phase microextraction (HS-SPME) combined with high-resolution gas chromatography-Orbitrap mass spectrometry (GC-Orbitrap-MS). A high-resolution mass spectrometry database including 12 lactones and 11 volatile phenols was established for qualitative accuracy. Different matrix-matched calibration standards should be prepared for specific samples due to the matrix effects. The method was successfully validated and applied in three nongrape wines. Hawthorn wine contained more lactones (δ/γ-hexalactone, δ/γ-nonalactone, δ/γ-decalactone, γ-undecalactone, δ/γ-dodecalactone, C10 massoia lactone, and whiskey lactone), while blueberry wine contained more volatile phenols (especially 4-vinylguaiacol and 4-ethylguiaiacol). Goji berry wines contained certain concentrations of δ-nonalactone, γ-nonalactone, δ-hexalactone, and 3-ethyl phenol. This study demonstrated that HS-SPME-GC-Orbitrap-MS can be applied for the accurate quantification of trace aroma compounds such as lactones and volatile phenols in fruit wines.
Collapse
Affiliation(s)
- Yaran Liu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xu Qian
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | | | - Na Li
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Junlong Li
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Qingyu Su
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yixin Chen
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Bolin Zhang
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Baoqing Zhu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
23
|
Unveiling the physicochemical properties and chemical profile of artisanal jabuticaba wines by bromatological and NMR-based metabolomics approaches. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
24
|
Martín-Gómez J, García-Martínez T, Varo MÁ, Mérida J, Serratosa MP. Phenolic compounds, antioxidant activity and color in the fermentation of mixed blueberry and grape juice with different yeasts. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Zhong W, Liu S, Yang H, Li E. Effect of selected yeast on physicochemical and oenological properties of blueberry wine fermented with citrate-degrading Pichia fermentans. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Cardinali F, Osimani A, Milanović V, Garofalo C, Aquilanti L. Innovative Fermented Beverages Made with Red Rice, Barley, and Buckwheat. Foods 2021; 10:613. [PMID: 33805698 PMCID: PMC8000499 DOI: 10.3390/foods10030613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/03/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022] Open
Abstract
The increase in food intolerances, allergies, and food-based lifestyle choices has dramatically increased the consumer demand for healthy foods characterized by pleasant sensory traits. In such a context, innovative cereal-based beverages are characterized by high nutritional value, pleasant palatability, and potential healthy properties. In the present study, a pool of 23 lactic acid bacteria strains was preliminary assayed as monocultures for the fermentation of three ad hoc formulated cereal- (red rice and barley) and pseudocereal (buckwheat) -based substrates. Eight strains with the best performance in terms of acidification rate were selected for the formulation of three multiple strain cultures to be further exploited for the manufacture of laboratory-scale prototypes of fermented beverages. The compositional and microbiological features of the three experimental beverages highlighted their high biological value for further exploitation.
Collapse
Affiliation(s)
| | - Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari, ed Ambientali (D3A), Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (F.C.); (V.M.); (C.G.); (L.A.)
| | | | | | | |
Collapse
|
27
|
Yin H, Deng Y, Zhao J, Zhang L, Yu J, Deng Y. Improving Oxidative Stability and Sensory Properties of Ale Beer by Enrichment with Dried Red Raspberries ( Rubus idaeus L.). JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2021. [DOI: 10.1080/03610470.2020.1864801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Hua Yin
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd, Qingdao, People’s Republic of China
| | - Yuan Deng
- Animal Products Processing Laboratory, Hunan Institute of Animal and Veterinary Science, Changsha, People’s Republic of China
| | - Junfeng Zhao
- College of Food Science and Engineering, Henan University of Science and Technology, Luoyang, People’s Republic of China
| | - Lehong Zhang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, People’s Republic of China
| | - Junhong Yu
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd, Qingdao, People’s Republic of China
| | - Yang Deng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, People’s Republic of China
| |
Collapse
|
28
|
Chandra P, Enespa, Singh R, Arora PK. Microbial lipases and their industrial applications: a comprehensive review. Microb Cell Fact 2020; 19:169. [PMID: 32847584 PMCID: PMC7449042 DOI: 10.1186/s12934-020-01428-8] [Citation(s) in RCA: 328] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
Lipases are very versatile enzymes, and produced the attention of the several industrial processes. Lipase can be achieved from several sources, animal, vegetable, and microbiological. The uses of microbial lipase market is estimated to be USD 425.0 Million in 2018 and it is projected to reach USD 590.2 Million by 2023, growing at a CAGR of 6.8% from 2018. Microbial lipases (EC 3.1.1.3) catalyze the hydrolysis of long chain triglycerides. The microbial origins of lipase enzymes are logically dynamic and proficient also have an extensive range of industrial uses with the manufacturing of altered molecules. The unique lipase (triacylglycerol acyl hydrolase) enzymes catalyzed the hydrolysis, esterification and alcoholysis reactions. Immobilization has made the use of microbial lipases accomplish its best performance and hence suitable for several reactions and need to enhance aroma to the immobilization processes. Immobilized enzymes depend on the immobilization technique and the carrier type. The choice of the carrier concerns usually the biocompatibility, chemical and thermal stability, and insolubility under reaction conditions, capability of easy rejuvenation and reusability, as well as cost proficiency. Bacillus spp., Achromobacter spp., Alcaligenes spp., Arthrobacter spp., Pseudomonos spp., of bacteria and Penicillium spp., Fusarium spp., Aspergillus spp., of fungi are screened large scale for lipase production. Lipases as multipurpose biological catalyst has given a favorable vision in meeting the needs for several industries such as biodiesel, foods and drinks, leather, textile, detergents, pharmaceuticals and medicals. This review represents a discussion on microbial sources of lipases, immobilization methods increased productivity at market profitability and reduce logistical liability on the environment and user.
Collapse
Affiliation(s)
- Prem Chandra
- Food Microbiology & Toxicology, Department of Microbiology, School for Biomedical and Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, Uttar Pradesh 226025 India
| | - Enespa
- Department of Plant Pathology, School for Agriculture, SMPDC, University of Lucknow, Lucknow, 226007 U.P. India
| | - Ranjan Singh
- Department of Environmental Science, School for Environmental Science, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, U.P. India
| | - Pankaj Kumar Arora
- Department of Microbiology, School for Biomedical and Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, U.P. India
| |
Collapse
|
29
|
Gâtlan AM, Gutt G, Naghiu A. Capitalization of sea buckthorn waste by fermentation: Optimization of industrial process of obtaining a novel refreshing drink. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Anca Mihaela Gâtlan
- Food Engineering Faculty “Ștefan cel Mare” University of Suceava Suceava Romania
| | - Gheorghe Gutt
- Food Engineering Faculty “Ștefan cel Mare” University of Suceava Suceava Romania
| | - Anca Naghiu
- Research Institute for Analytical Instrumentation Cluj‐Napoca Romania
| |
Collapse
|
30
|
Liu S, Marsol-Vall A, Laaksonen O, Kortesniemi M, Yang B. Characterization and Quantification of Nonanthocyanin Phenolic Compounds in White and Blue Bilberry ( Vaccinium myrtillus) Juices and Wines Using UHPLC-DAD-ESI-QTOF-MS and UHPLC-DAD. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7734-7744. [PMID: 32609509 PMCID: PMC7497633 DOI: 10.1021/acs.jafc.0c02842] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 05/22/2023]
Abstract
The nonanthocyanin phenolic compounds in juice and wine produced from fruits of white bilberry, a nonpigmented mutant of Vaccinium myrtillus, and blue bilberry (pigmented variety) were analyzed using liquid chromatography with a diode array detector (LC-DAD) and LC-DAD-electrospray ionization-quadrapole/time of flight hybrid mass spectrometry (ESI-QTOF-MS). On the basis of elution order, UV-vis spectra, accurate mass data, and fragmentation pattern and standards, 42 compounds including 22 phenolic acids, 15 flavonols, and 5 flavan-3-ols, were identified in juices and wines prepared from the two bilberry varieties. The levels of most individual nonanthocyanin phenolic compounds in white bilberry products were significantly lower than those in pigmented ones. In bilberry juices, phenolic acids were the most predominant, accounting for approximately 80% of total phenolic content, with p-coumaroyl monotropeins and caffeic acid hexoside being the major phenolic acids. After fermentation, the total contents of phenolic acids, flavonols, and nonanthocyanin phenolic compounds significantly increased, while the content of total flavan-3-ols decreased significantly. p-Coumaroyl monotropeins still dominated in the wine products, while caffeic acid content showed dramatic elevation with the significant drop of caffeic acid hexoside.
Collapse
|
31
|
Kaipara R, Rajakumar B. Photooxidation Reactions of Ethyl 2-Methylpropionate (E2MP) and Ethyl 2,2-Dimethylpropionate (E22DMP) Initiated by OH Radicals: An Experimental and Computational Study. J Phys Chem A 2020; 124:2768-2784. [PMID: 32207979 DOI: 10.1021/acs.jpca.0c00903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The relative rate (RR) technique was used for the measurement of OH-initiated photooxidation reactions of ethyl 2-methylpropionate (E2MP) and ethyl 2,2-dimethylpropionate (E22DMP) in the temperature range of 268-363 K at 760 Torr. In addition to this, the thermodynamic and kinetic parameters for the title reactions were theoretically investigated using CCSD(T)/cc-pVTZ//M06-2X/6-311++G(2d,2p) level of theory in the temperature range of 200-400 K using canonical variational transition state theory (CVT) in combination with small curvature tunneling (SCT) method. The rate coefficients at (298 ± 2) K were measured to be kE2MP+OH = (2.71 ± 0.79) × 10-12 cm3 molecule-1 s-1 and kE22DMP+OH = (2.58 ± 0.80) × 10-12 cm3 molecule-1 s-1. The degradation mechanisms for the title reactions were investigated in the presence of O2 using gas chromatography with mass spectrometry (GC-MS) and gas chromatography with infrared spectroscopy (GC-IR). From the recognized products, the possible product degradation mechanisms were predicted. In addition to this, the atmospheric lifetimes (ALs), lifetime-corrected radiative forcing (RF), global warming potential (GWPs) and photochemical ozone creation potentials (POCPs) were calculated to further understand the environmental impact of these molecules on the Earth's troposphere.
Collapse
Affiliation(s)
- Revathy Kaipara
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, India
| | - B Rajakumar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, India
| |
Collapse
|
32
|
Ho CW, Lazim A, Fazry S, Hussain Zaki UKH, Massa S, Lim SJ. Alcoholic fermentation of soursop (Annona muricata) juice via an alternative fermentation technique. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:1012-1021. [PMID: 31646636 DOI: 10.1002/jsfa.10103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Wines are produced via the alcoholic fermentation of suitable substrates, usually sugar (sugar cane, grapes) and carbohydrates (wheat, grain). However, conventional alcoholic fermentation is limited by the inhibition of yeast by ethanol produced, usually at approximately 13-14%. Aside from that, soursop fruit is a very nutritious fruit, although it is highly perishable, and thus produces a lot of wastage. Therefore, the present study aimed to produce fermented soursop juice (soursop wine), using combination of two starter cultures, namely mushroom (Pleurotus pulmonarius) and yeast (Saccharomyces cerevisiae), as well as to determine the effects of fermentation on the physicochemical and antioxidant activities of fermented soursop juice. Optimisation of four factors (pH, temperature, time and culture ratio) using response surface methodology were performed to maximise ethanol production. RESULTS The optimised values for alcoholic fermentation were pH 4.99, 28.29 °C, 131 h and a 0.42 culture ratio (42:58, P. pulmonarius mycelia:S. cerevisiae) with a predicted ethanol concentration of 22.25%. Through a verification test, soursop wine with 22.29 ± 0.52% ethanol was produced. The antioxidant activities (1,1-diphenyl-2-picrylhydrazyl and ferric reducing antioxidant power) showed a significant (P < 0.05) increase from the soursop juice to soursop wine. CONCLUSION The alternative fermentation technique using yeast and mushroom has successfully been optimised, with an increased ethanol production in soursop wine and higher antioxidant activities. Ultimately, this finding has high potential for application in the brewing industry to enhance the fermentation process, as well as in the development of an innovative niche product, reducing wastage by converting the highly-perishable fruit into wine with a more stable and longer shelf-life. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chin Wai Ho
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Azwan Lazim
- Department of Chemistry, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Shazrul Fazry
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
- Tasik Chini Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Umi Kalsum Hj Hussain Zaki
- Food Designing Programme, Food Science & Technology Research Centre, Malaysian Agricultural Research and Development Institute, MARDI Headquarters, Persiaran MARDI-UPM, Serdang, Malaysia
| | - Salvatore Massa
- Department of Agricultural Food and Environmental Science (SAFE), University of Foggia, Foggia, Italy
| | - Seng Joe Lim
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| |
Collapse
|
33
|
Comparison of fermentation behaviors and properties of raspberry wines by spontaneous and controlled alcoholic fermentations. Food Res Int 2020; 128:108801. [DOI: 10.1016/j.foodres.2019.108801] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/12/2019] [Accepted: 11/01/2019] [Indexed: 11/22/2022]
|
34
|
Zhang J, Kilmartin PA, Peng Y, Chen X, Quek SY. Identification of Key Aroma Compounds in Cranberry Juices as Influenced by Vinification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:279-291. [PMID: 31802659 DOI: 10.1021/acs.jafc.9b07165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study aimed to identify the key aroma-active volatiles in cranberry wines through three vinification methods (White, Red and Thermo) using GC-MS/O to identify the important aroma compounds. A total of 70 compounds were detected, with 67 in wines and 61 in juices. The esters was the most diversified class, while alcohols and acids were the most abundant, especially 3-methylbutanol, methylbutyric acid, and benzoic acid. The volatile profiles of cranberry wines are distinctive from their source juices. Most alcohols, esters, and acids are fermentation-derived, while terpenes, phenols, aldehydes and ketones are varietal. The Red vinification retained the most varietal volatiles from the must, while the White and Thermo vinifications produced more volatiles during fermentation. Thermovinification reduced the yield of benzoic acid and its derivatives after fermentation. Olfactory analysis identified 47 aroma-active compounds, among which 41 were considered as the major aroma contributors (ethyl benzoate had the highest modified detection frequency).
Collapse
Affiliation(s)
- Jingying Zhang
- School of Chemical Sciences , The University of Auckland , Auckland 1010 , New Zealand
| | - Paul A Kilmartin
- School of Chemical Sciences , The University of Auckland , Auckland 1010 , New Zealand
| | - Yaoyao Peng
- School of Chemical Sciences , The University of Auckland , Auckland 1010 , New Zealand
| | - Xiao Chen
- School of Chemical Sciences , The University of Auckland , Auckland 1010 , New Zealand
| | - Siew-Young Quek
- School of Chemical Sciences , The University of Auckland , Auckland 1010 , New Zealand
- Riddet Institute , New Zealand Centre of Research Excellence in Food Research , Palmerston North 4474 , New Zealand
| |
Collapse
|
35
|
Ganatsios V, Terpou A, Gialleli AI, Kanellaki M, Bekatorou A, Koutinas AA. A ready-to-use freeze-dried juice and immobilized yeast mixture for low temperature sour cherry (Prunus cerasus) wine making. FOOD AND BIOPRODUCTS PROCESSING 2019. [DOI: 10.1016/j.fbp.2019.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Wei J, Zhang Y, Yuan Y, Dai L, Yue T. Characteristic fruit wine production via reciprocal selection of juice and non-Saccharomyces species. Food Microbiol 2019; 79:66-74. [DOI: 10.1016/j.fm.2018.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 11/16/2018] [Accepted: 11/23/2018] [Indexed: 01/19/2023]
|
37
|
Innovative Alcoholic Drinks Obtained by Co-Fermenting Grape Must and Fruit Juice. Metabolites 2019; 9:metabo9050086. [PMID: 31052321 PMCID: PMC6571751 DOI: 10.3390/metabo9050086] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 04/26/2019] [Accepted: 04/27/2019] [Indexed: 11/23/2022] Open
Abstract
In this study, Cabernet Sauvignon and Chardonnay musts, and fruit juices from cherry, kiwi, peach, and strawberry were co-fermented with Saccharomyces cerevisiae EC1118 and Torulaspora delbrueckii UMY196 at two different proportions (80:20 (v/v) and 60:40 (v/v)). The most pleasant fruit-based drink was obtained with Cabernet Sauvignon must and kiwi juice in a proportion of 60:40 and fermented with T. delbrueckii. This beverage was produced in higher volume to simulate a scale-up, and the aromatic profile, sensory description, and consumer acceptability were determined. The most powerful odorants of the kiwi-based drink were ethyl octanoate, phenylethanal, ethyl hexanoate, vinyl-guaiacol, benzaldehyde, and nonanal, for which the odor activity values were 21.1, 3.3, 2.6, 2.2, 1.9, and 1.6, respectively. These findings were in accordance with the sensory analysis, since the emerged descriptors were fruity (ethyl octanoate), honey and floral (phenylethanal), apple and peach (ethyl hexanoate), and citrus (nonanal). The consumers judged the kiwi-based drink acceptable (67%) and 39% of them would buy it. The reliable fermentation of a grape must/fruit juice was demonstrated. The kiwi-based drink represents an innovative and pleasant beverage with a positive impact on sustainability as its production can limit the loss of fresh fruits, as well as contribute to the enological field.
Collapse
|
38
|
Pandeya A, Rayamajhi S, Pokhrel P, Giri B. Evaluation of secondary metabolites, antioxidant activity, and color parameters of Nepali wines. Food Sci Nutr 2018; 6:2252-2263. [PMID: 30510725 PMCID: PMC6261160 DOI: 10.1002/fsn3.794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/12/2018] [Accepted: 07/14/2018] [Indexed: 11/21/2022] Open
Abstract
We evaluated the quality of wines produced in Nepal in terms of phenolic, flavonoid, anthocyanin and tannin content, antioxidant capacity, and color parameters using spectrophotometric methods. The total phenolic content, total flavonoid content, and total antioxidant activities in Nepali wines ranged from 85.5 to 960.0 (mean = 360.5 ± 268.7) mg/L GAE, 40.9-551.3 (mean = 188.9 ± 161.5) mg/L QE, and 66.6-905.0 (mean = 332.8 ± 296.5) mg/L AAE, respectively. These parameters were significantly higher in red wines compared to white wines. The phenolic and flavonoid content showed strong correlation with each other as well as with antioxidant activities. Additional parameters measured included various color parameters and carbohydrates. The wine color showed strong correlation with phenol, flavonoid, and antioxidant activity, whereas this correlation was not significant with anthocyanin content. Multivariate analysis was carried out to better describe and discriminate the wine samples. Finally, we compared Nepali wines with wines from other countries.
Collapse
Affiliation(s)
- Ankit Pandeya
- Center for Analytical SciencesKathmandu Institute of Applied SciencesKathmanduNepal
- Present address:
Department of ChemistryUniversity of KentuckyLexingtonKentucky
| | - Sagar Rayamajhi
- Center for Analytical SciencesKathmandu Institute of Applied SciencesKathmanduNepal
- Present address:
Department of ChemistryKansas State UniversityManhattanKansas
| | - Pravin Pokhrel
- Center for Analytical SciencesKathmandu Institute of Applied SciencesKathmanduNepal
| | - Basant Giri
- Center for Analytical SciencesKathmandu Institute of Applied SciencesKathmanduNepal
| |
Collapse
|
39
|
Liu S, Laaksonen O, Kortesniemi M, Kalpio M, Yang B. Chemical composition of bilberry wine fermented with non-Saccharomyces yeasts (Torulaspora delbrueckii and Schizosaccharomyces pombe) and Saccharomyces cerevisiae in pure, sequential and mixed fermentations. Food Chem 2018; 266:262-274. [DOI: 10.1016/j.foodchem.2018.06.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/02/2018] [Accepted: 06/03/2018] [Indexed: 01/05/2023]
|
40
|
Affiliation(s)
- Choothaweep Palakawong
- Faculty of Agricultural Technology, Department of Food Technology Rajabhat Maha Sarakham University Maha Sarakham Thailand
| | - Pascal Delaquis
- Agriculture and Agri‐Food Canada Summerland Research and Development Centre Summerland British Columbia Canada
| |
Collapse
|
41
|
Characterisation of single-variety still ciders produced with dessert apples in the Italian Alps. JOURNAL OF THE INSTITUTE OF BREWING 2018. [DOI: 10.1002/jib.510] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
42
|
de Souza AC, Fernandes AC, Silva MS, Schwan RF, Dias DR. Antioxidant activities of tropical fruit wines. JOURNAL OF THE INSTITUTE OF BREWING 2018. [DOI: 10.1002/jib.511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Monique S. Silva
- Department of Biology; Federal University of Lavras (UFLA); Brazil
| | - Rosane F. Schwan
- Department of Biology; Federal University of Lavras (UFLA); Brazil
| | - Disney R. Dias
- Department of Food Science; Federal University of Lavras (UFLA); Brazil
| |
Collapse
|
43
|
Characterization of home-made and regional fruit wines by evaluation of correlation between selected chemical parameters. Microchem J 2018. [DOI: 10.1016/j.microc.2018.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
VenuGopal KS, Cherita C, Anu-Appaiah KA. Augmentation of chemical and organoleptic properties in Syzygium cumini wine by incorporation of grape seeds during vinification. Food Chem 2018; 242:98-105. [PMID: 29037742 DOI: 10.1016/j.foodchem.2017.09.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/01/2017] [Accepted: 09/05/2017] [Indexed: 02/03/2023]
Abstract
The role of grape seed tannins on improving organoleptic properties and its involvement in color stabilization in red wine are well established. The addition of grape seeds as the source of condensed tannins in fruit wine may provide a solution for its color instability and improvement of sensory attributes. Syzgium cumini is traditionally known for its therapeutic properties. In the current study, the influence of yeasts and grape seed addition during fermentation on the chromatic, phenolic and sensory attributes of the wine was accessed. Grape seed addition improved the color characteristics of wine and increased overall phenolic composition. Analysis by HPLC revealed 6 major anthocyanins, among which 3, 5-diglucoside form of delphidin and petunidin was found to be the major components. Cluster and PLSR analysis explained the impact of seed addition on the yeasts, as well as on the perception of panelists, with bitterness and astringency as the dominating attributes.
Collapse
Affiliation(s)
- K S VenuGopal
- Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India
| | - Chris Cherita
- Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India
| | - K A Anu-Appaiah
- Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India.
| |
Collapse
|
45
|
Srikanta AH, Kumar A, Sukhdeo SV, Peddha MS, Govindaswamy V. The antioxidant effect of mulberry and jamun fruit wines by ameliorating oxidative stress in streptozotocin-induced diabetic Wistar rats. Food Funct 2018; 7:4422-4431. [PMID: 27711821 DOI: 10.1039/c6fo00372a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Polyphenols act by scavenging reactive oxygen species during oxidative stress and hence are useful in the treatment of metabolic disorders including diabetes. This study describes the effect of polyphenol rich mulberry and jamun wines fed to streptozotocin-induced diabetic rats. To male adult Wistar rats, divided into groups (n = 10 per group) intraperitoneal injection was administered with streptozotocin at 38 mg per kg body weight for inducing diabetes. After confirmation of diabetes, rats divided into groups were fed each day with 5.7 milliliter per kg body weight of mulberry, jamun, white and red grape wines for 6 weeks. One group of animals received resveratrol at 20 mg per kg body weight. After six weeks of treatment, blood glucose, urinary profile, lipid profile, plasma, liver, kidney, brain and eye antioxidant enzyme activities, lipid peroxidation, non-esterified fatty acids (NEFA) and hepatic glutathione (GSH) content were determined. Though wine and resveratrol feeding did not improve the glycemic status of diabetic rats, increases in antioxidant enzymes and GSH content accompanied by reduced NEFA and lipid peroxidation were observed. The kidneys and brains of resveratrol fed rats showed significant reduction in malondialdehyde equivalents, exhibited an improved antioxidant status of tissues and an increased glutathione content. The findings suggested that the wines can ameliorate the consequences of diabetes due to their antioxidants.
Collapse
Affiliation(s)
- Akshatha Hosahalli Srikanta
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysore, India.
| | - Anbarasu Kumar
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysore, India.
| | - Shinde Vijay Sukhdeo
- Animal House Facility, CSIR-Central Food Technological Research Institute, Mysore, India
| | | | - Vijayalakshmi Govindaswamy
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysore, India.
| |
Collapse
|
46
|
Behrends A, Weber F. Influence of Different Fermentation Strategies on the Phenolic Profile of Bilberry Wine (Vaccinium myrtillus L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7483-7490. [PMID: 28749662 DOI: 10.1021/acs.jafc.7b02268] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Polyphenol rich and especially anthocyanin rich berries like bilberries (Vaccinium myrtillus L.) and derived products such as wine have enjoyed increasing popularity. During winemaking and aging, the phenolic profile undergoes distinct changes, a phenomenon that has been well investigated in grape wine but not in bilberry wine. The present study determined the influence of different fermentation strategies including various pre- and postfermentative heating and cooling concepts on the phenolic profile of bilberry wine. Besides significant differences in total anthocyanin and tannin concentrations, the different fermentation strategies resulted in distinguishable anthocyanin profiles. A very fast aging manifested by a rapid decrease in monomeric anthocyanins of up to 98% during a 12 week storage and a coincident formation of polymeric pigments and pyranoanthocyanins was observed. Several well-known processes associated with production and aging of wine were much more pronounced in bilberry wine compared to grape wine.
Collapse
Affiliation(s)
- Annika Behrends
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn , Römerstrasse 164, D-53117 Bonn, Germany
| | - Fabian Weber
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn , Römerstrasse 164, D-53117 Bonn, Germany
| |
Collapse
|
47
|
Ouyang X, Zhu B, Liu R, Gao Q, Lin G, Wu J, Hu Z, Zhang B. Comparison of volatile composition and color attributes of mulberry wine fermented by different commercial yeasts. J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiaoyu Ouyang
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food ScienceCollege of Biological Sciences and Biotechnology, Beijing Forestry UniversityBeijing 100083 People's Republic of China
| | - Baoqing Zhu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food ScienceCollege of Biological Sciences and Biotechnology, Beijing Forestry UniversityBeijing 100083 People's Republic of China
| | - Ruojin Liu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food ScienceCollege of Biological Sciences and Biotechnology, Beijing Forestry UniversityBeijing 100083 People's Republic of China
| | - Qiong Gao
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food ScienceCollege of Biological Sciences and Biotechnology, Beijing Forestry UniversityBeijing 100083 People's Republic of China
| | - Guo Lin
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food ScienceCollege of Biological Sciences and Biotechnology, Beijing Forestry UniversityBeijing 100083 People's Republic of China
| | - Jiabao Wu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food ScienceCollege of Biological Sciences and Biotechnology, Beijing Forestry UniversityBeijing 100083 People's Republic of China
| | - Zeying Hu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food ScienceCollege of Biological Sciences and Biotechnology, Beijing Forestry UniversityBeijing 100083 People's Republic of China
| | - Bolin Zhang
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food ScienceCollege of Biological Sciences and Biotechnology, Beijing Forestry UniversityBeijing 100083 People's Republic of China
| |
Collapse
|
48
|
Ouyang X, Yuan G, Ren J, Wang L, Wang M, Li Y, Zhang B, Zhu B. Aromatic compounds and organoleptic features of fermented wolfberry wine: Effects of maceration time. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2016.1233435] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Xiaoyu Ouyang
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Haidian, Beijing, China
| | - Guanshen Yuan
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Haidian, Beijing, China
| | - Jie Ren
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Haidian, Beijing, China
| | - Liying Wang
- Department of Research and Development, Ningxia Senmiao Goji Technology Development Co. Ltd., Yinchuan, Ningxia, China
| | - Mengze Wang
- Department of Research and Development, Ningxia Senmiao Goji Technology Development Co. Ltd., Yinchuan, Ningxia, China
| | - Yonghua Li
- Department of Research and Development, Ningxia Senmiao Goji Technology Development Co. Ltd., Yinchuan, Ningxia, China
| | - Bolin Zhang
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Haidian, Beijing, China
| | - Baoqing Zhu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Biotechnology, Beijing Forestry University, Haidian, Beijing, China
| |
Collapse
|
49
|
Wang SY, Li YQ, Li T, Yang HY, Ren J, Zhang BL, Zhu BQ. Dibasic Ammonium Phosphate Application Enhances Aromatic Compound Concentration in Bog Bilberry Syrup Wine. Molecules 2016; 22:molecules22010052. [PMID: 28036078 PMCID: PMC6155706 DOI: 10.3390/molecules22010052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 12/16/2016] [Accepted: 12/25/2016] [Indexed: 11/16/2022] Open
Abstract
A nitrogen deficiency always causes bog bilberry syrup wine to have a poor sensory feature. This study investigated the effect of nitrogen source addition on volatile compounds during bog bilberry syrup wine fermentation. The syrup was supplemented with 60, 90, 120 or 150 mg/L dibasic ammonium phosphate (DAP) before fermentation. Results showed that an increase of DAP amounts accelerated fermentation rate, increased alcohol content, and decreased sugar level. Total phenol and total flavonoid content were also enhanced with the increase of DAP amounts. A total of 91 volatile compounds were detected in the wine and their concentrations were significantly enhanced with the increase of DAP. Ethyl acetate, isoamyl acetate, phenethyl acetate, ethyl butanoate, ethyl hexanoate, ethyl octanoate, ethyl decanoate, isobutanol, isoamyl alcohol, levo-2,3-butanediol, 2-phenylethanol, meso-2,3-butanediol, isobutyric acid, hexanoic acid, and octanoic acid exhibited a significant increase of their odor activity value (OAV) with the increase of DAP amounts. Bog bilberry syrup wine possessed fruity, fatty, and caramel flavors as its major aroma, whereas a balsamic note was the least present. The increase of DAP amounts significantly improved the global aroma attributes, thereby indicating that DAP supplementation could promote wine fermentation performance and enhance the sensory quality of bog bilberry syrup wine.
Collapse
Affiliation(s)
- Shao-Yang Wang
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 10083, China.
| | - Yi-Qing Li
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 10083, China.
| | - Teng Li
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 10083, China.
| | - Hang-Yu Yang
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 10083, China.
| | - Jie Ren
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 10083, China.
| | - Bo-Lin Zhang
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 10083, China.
| | - Bao-Qing Zhu
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 10083, China.
| |
Collapse
|
50
|
Ouyang X, Wang S, Yuan G, Liu Y, Gu P, Zhang B, Zhu B. Comparison of amino acids, biogenic amines and ammonium ion of wines made of different types of fruits. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaoyu Ouyang
- Beijing Key Laboratory of Forestry Food Processing and Safety; Department of Food Science; College of Biological Sciences and Biotechnology; Beijing Forestry University; Beijing 100083 China
| | - Shaoyang Wang
- Beijing Key Laboratory of Forestry Food Processing and Safety; Department of Food Science; College of Biological Sciences and Biotechnology; Beijing Forestry University; Beijing 100083 China
| | - Guanshen Yuan
- Beijing Key Laboratory of Forestry Food Processing and Safety; Department of Food Science; College of Biological Sciences and Biotechnology; Beijing Forestry University; Beijing 100083 China
| | - Yaran Liu
- Beijing Key Laboratory of Forestry Food Processing and Safety; Department of Food Science; College of Biological Sciences and Biotechnology; Beijing Forestry University; Beijing 100083 China
| | - Pan Gu
- Beijing Key Laboratory of Forestry Food Processing and Safety; Department of Food Science; College of Biological Sciences and Biotechnology; Beijing Forestry University; Beijing 100083 China
| | - Bolin Zhang
- Beijing Key Laboratory of Forestry Food Processing and Safety; Department of Food Science; College of Biological Sciences and Biotechnology; Beijing Forestry University; Beijing 100083 China
| | - Baoqing Zhu
- Beijing Key Laboratory of Forestry Food Processing and Safety; Department of Food Science; College of Biological Sciences and Biotechnology; Beijing Forestry University; Beijing 100083 China
| |
Collapse
|