1
|
Karaca AC, Boostani S, Assadpour E, Tan C, Zhang F, Jafari SM. Pickering emulsions stabilized by prolamin-based proteins as innovative carriers of bioactive compounds. Adv Colloid Interface Sci 2024; 333:103246. [PMID: 39208623 DOI: 10.1016/j.cis.2024.103246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024]
Abstract
Pickering emulsions (PEs) can be used as efficient carriers for encapsulation and controlled release of different bioactive compounds. Recent research has revealed the potential of prolamins in development of nanoparticle- and emulsion-based carriers which can improve the stability and bioavailability of bioactive compounds. Prolamin-based particles have been effectively used as stabilizers of various PEs including single PEs, high internal phase PEs, multiple PEs, novel triphasic PEs, and PE gels due to their tunable self-assembly behaviors. Prolamin particles can be fabricated via different techniques including anti-solvent precipitation, dissolution followed by pH adjustment, heating, and ion induced aggregation. Particles fabricated from prolamins alone or in combination with other hydrocolloids or polyphenols have also been used for stabilization of different PEs which were shown to be effective carriers for food bioactives, providing improved stability and functionality. This article covers the recent advances in various PEs stabilized by prolamin particles as innovative carriers for bioactive ingredients. Strategies applied for fabrication of prolamin particles and prolamin-based carriers are discussed. Emerging techno-functional applications of prolamin-based PEs and possible challenges are also highlighted.
Collapse
Affiliation(s)
- Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Sareh Boostani
- Shiraz Pharmaceutical Products Technology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Chen Tan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
2
|
Li SF, Hu TG, Wu H. Development of quercetin-loaded electrospun nanofibers through shellac coating on gelatin: Characterization, colon-targeted delivery, and anticancer activity. Int J Biol Macromol 2024; 277:134204. [PMID: 39069044 DOI: 10.1016/j.ijbiomac.2024.134204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/02/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Quercetin possesses multiple biological activities. To achieve efficient colon-specific release of quercetin, new composite nanofibers were developed by coating pH-responsive shellac on hydrophilic gelatin through coaxial electrospinning. These composite nanofibers contained bead-like structures. The encapsulation efficiency (87.6-98.5 %) and loading capacity (1.4-4.1 %) varied with increasing the initial quercetin addition amount (2.5-7.5 %). FTIR, XRD, and TGA results showed that the quercetin was successfully encapsulated in composite nanofibers in an amorphous state, with interactions occurring among quercetin, gelatin, and shellac. Composite nanofibers had pH-responsive surface wettability due to the shellac coating. In vitro digestion experiments showed that these composite nanofibers were highly stable in the upper gastrointestinal tract, with quercetin release ranging from 4.75 % to 12.54 %. In vivo organ distribution and pharmacokinetic studies demonstrated that quercetin could be sustainably released in the colon after oral administration of composite nanofibers. Besides, the enhanced anticancer activity of composite nanofibers was confirmed against HCT-116 cells by analyzing their effect on cell viability, cell cycle, and apoptosis. Overall, these novel composite nanofibers could deliver efficiently quercetin to the colon and achieve its sustained release, thus potential to regulate colon health. This system is also helpful in delivering other bioactives to the colon and exerting their functional effects.
Collapse
Affiliation(s)
- Shu-Fang Li
- School of Food Science and Engineering, South China University of Technology, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510641, China
| | - Teng-Gen Hu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510640, China
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510641, China.
| |
Collapse
|
3
|
Wang S, Li J, Wang P, Zhang M, Liu S, Wang R, Li Y, Ren F, Fang B. Improvement in the Sustained-Release Performance of Electrospun Zein Nanofibers via Crosslinking Using Glutaraldehyde Vapors. Foods 2024; 13:1583. [PMID: 38790885 PMCID: PMC11121536 DOI: 10.3390/foods13101583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Volatile active ingredients in biopolymer nanofibers are prone to burst and uncontrolled release. In this study, we used electrospinning and crosslinking to design a new sustained-release active packaging containing zein and eugenol (EU). Vapor-phase glutaraldehyde (GTA) was used as the crosslinker. Characterization of the crosslinked zein nanofibers was conducted via scanning electron microscopy (SEM), mechanical properties, water resistance, and Fourier transform infrared (FT-IR) spectroscopy. It was observed that crosslinked zein nanofibers did not lose their fiber shape, but the diameter of the fibers increased. By increasing the crosslink time, the mechanical properties and water resistance of the crosslinked zein nanofibers were greatly improved. The FT-IR results demonstrated the formation of chemical bonds between free amino groups in zein molecules and aldehyde groups in GTA molecules. EU was added to the zein nanofibers, and the corresponding release behavior in PBS was investigated using the dialysis membrane method. With an increase in crosslink time, the release rate of EU from crosslinked zein nanofibers decreased. This study demonstrates the potential of crosslinking by GTA vapors on the controlled release of the zein encapsulation structure containing EU. Such sustainable-release nanofibers have promising potential for the design of fortified foods or as active and smart food packaging.
Collapse
Affiliation(s)
- Shumin Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (S.W.); (P.W.); (S.L.); (R.W.); (Y.L.); (F.R.)
| | - Jingyu Li
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (J.L.); (M.Z.)
| | - Pengjie Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (S.W.); (P.W.); (S.L.); (R.W.); (Y.L.); (F.R.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Ming Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (J.L.); (M.Z.)
| | - Siyuan Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (S.W.); (P.W.); (S.L.); (R.W.); (Y.L.); (F.R.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Ran Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (S.W.); (P.W.); (S.L.); (R.W.); (Y.L.); (F.R.)
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (S.W.); (P.W.); (S.L.); (R.W.); (Y.L.); (F.R.)
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (S.W.); (P.W.); (S.L.); (R.W.); (Y.L.); (F.R.)
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (S.W.); (P.W.); (S.L.); (R.W.); (Y.L.); (F.R.)
| |
Collapse
|
4
|
Huang X, Du L, Li Z, Yang Z, Xue J, Shi J, Tingting S, Zhai X, Zhang J, Capanoglu E, Zhang N, Sun W, Zou X. Lactobacillus bulgaricus-loaded and chia mucilage-rich gum arabic/pullulan nanofiber film: An effective antibacterial film for the preservation of fresh beef. Int J Biol Macromol 2024; 266:131000. [PMID: 38521333 DOI: 10.1016/j.ijbiomac.2024.131000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
In recent years, the development of probiotic film by incorporating probiotics into edible polymers has attracted significant research attention in the field of active packaging. However, the influence of the external environment substantially reduces the vitality of probiotics, limiting their application. Therefore, to improve the probiotic activity, this study devised a novel nanofiber film incorporating chia mucilage protection solution (CPS), gum arabic (GA), pullulan (PUL), and Lactobacillus bulgaricus (LB). SEM images indicated the successful preparation of the nanofiber film incorporating LB. CPS incorporation significantly improved the survival ability of LB, with a live cell count reaching 7.62 log CFU/g after 28 days of storage at 4 °C - an increase of 1 log CFU/g compared to the fiber film without CPS. The results showed that the fiber film containing LB inhibited Escherichia coli and Staphylococcus aureus. Finally, the novel probiotic nanofiber film was applied to beef. The results showed that the shelf life of the beef during the experiments was extended for 2 days at 4 °C. Therefore, the novel probiotic film containing LB was suitable for meat preservation.
Collapse
Affiliation(s)
- Xiaowei Huang
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, 128 North Railway Street, Gulou District, Nanjing 210023, China
| | - Liuzi Du
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Zhihua Li
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| | - Zhikun Yang
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Jin Xue
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Jiyong Shi
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, 128 North Railway Street, Gulou District, Nanjing 210023, China
| | - Shen Tingting
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Xiaodong Zhai
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Junjun Zhang
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Esra Capanoglu
- Istanbul Technical University (ITU), Faculty of Chemical & Metallurgical Engineering, Food Engineering Department, Maslak, Istanbul, Turkey
| | - Ning Zhang
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Wei Sun
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, School of Agricultural Equipment Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, 128 North Railway Street, Gulou District, Nanjing 210023, China.
| |
Collapse
|
5
|
Lei Y, Lee Y. Nanoencapsulation and delivery of bioactive ingredients using zein nanocarriers: approaches, characterization, applications, and perspectives. Food Sci Biotechnol 2024; 33:1037-1057. [PMID: 38440671 PMCID: PMC10908974 DOI: 10.1007/s10068-023-01489-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/06/2023] [Accepted: 11/19/2023] [Indexed: 03/06/2024] Open
Abstract
Zein has garnered widespread attention as a versatile material for nanosized delivery systems due to its unique self-assembly properties, amphiphilicity, and biocompatibility characteristics. This review provides an overview of current approaches, characterizations, applications, and perspectives of nanoencapsulation and delivery of bioactive ingredients within zein-based nanocarriers. Various nanoencapsulation strategies for bioactive ingredients using various types of zein-based nanocarrier structures, including nanoparticles, nanofibers, nanoemulsions, and nanogels, are discussed in detail. Factors affecting the stability of zein nanocarriers and characterization methods of bioactive-loaded zein nanocarrier structures are highlighted. Additionally, current applications of zein nanocarriers loaded with bioactive ingredients are summarized. This review will serve as a guide for the selection of appropriate nanoencapsulation techniques within zein nanocarriers and a comprehensive understanding of zein-based nanocarriers for specific applications in the food, pharmaceutical, cosmetic, and agricultural industries. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01489-6.
Collapse
Affiliation(s)
- Yanlin Lei
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Youngsoo Lee
- Department of Biological Systems Engineering, Washington State University at Pullman, Pullman, WA 203, L.J. Smith Hall, 1935 E. Grimes Way99164-6120 USA
| |
Collapse
|
6
|
Zhang Z, Huang Y, Wang R, Dong R, Li T, Gu Q, Li P. Utilizing chitosan and pullulan for the encapsulation of Lactiplantibacillus plantarum ZJ316 to enhance its vitality in the gastrointestinal tract. Int J Biol Macromol 2024; 260:129624. [PMID: 38262550 DOI: 10.1016/j.ijbiomac.2024.129624] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/25/2024]
Abstract
Lactiplantibacillus plantarum ZJ316 has demonstrated effective alleviation of gastritis and colitis, making it crucial to improve its viability within the gastrointestinal tract. In this study, Chitosan (CS) and pullulan (PUL) encapsulated nanofibers of ZJ316 were prepared using electrospinning, considering both the synergistic effects of prebiotics and probiotics and their protective effects. We found that increasing the CS ratio resulted in elevated conductivity of the polymer solution, while decreasing viscosity and pH. Scanning electron microscopy showed that at a CS: PUL ratio of 1:135, polymer filaments were difficult to form, and nanofiber diameter decreased with higher CS content. X-ray diffraction analysis confirmed the miscibility of CS and PUL, while ATR-FTIR demonstrated the presence of hydrogen bonding interactions between the two materials. Thermal analysis indicated that an increased CS concentration improved the thermal stability of the nanofibers. Based on these findings, the optimal CS:PUL ratio for electrospinning was determined to be 1:60. Encapsulation of ZJ316 in the nanofibers significantly enhanced its survival rate in simulated gastrointestinal fluid compared to free bacteria, with survival rates of 87.24 % (gastric) and 79.71 % (intestinal), respectively. This study provides valuable insights for the development of probiotic functional foods.
Collapse
Affiliation(s)
- Zihao Zhang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yingjie Huang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Ruonan Wang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Ruomeng Dong
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Tiantian Li
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Qing Gu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.; Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou 310018, China
| | - Ping Li
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.; Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou 310018, China..
| |
Collapse
|
7
|
Asghari-Varzaneh E, Sharifian-Mobarakeh S, Shekarchizadeh H. Enhancing hamburger shelf life and quality using gallic acid encapsulated in gelatin/tragacanth gum complex coacervate. Heliyon 2024; 10:e24917. [PMID: 38304846 PMCID: PMC10830573 DOI: 10.1016/j.heliyon.2024.e24917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/03/2024] Open
Abstract
Considering mitigating oxidative degradation and inhibiting microbial proliferation in meat products, incorporating antioxidant and antimicrobial materials is critical to enhance shelf life, maintain quality, and ensure food safety. So, this study aimed to investigate the antimicrobial and antioxidant effects of encapsulated gallic acid on the quality of hamburgers during 30 days of storage. Gallic acid was microencapsulated in tragacanth gum/gelatin complex coacervate, and its encapsulation efficiency was optimized by the response surface method. The optimized encapsulation conditions were 1:4 polymer ratio (tragacanth to gelatin ratio); total polymer content, 0.9 %; pH, 3.5; and gallic acid content, 0.88 %, resulting in a 98 % encapsulation efficiency. The microcapsules were characterized using various techniques, including scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and differential scanning calorimetry. 400 ppm encapsulated gallic acid was added to the hamburger formulation, and various microbial properties, chemical analysis (peroxide value (POV) and thiobarbituric acid (TBA)), and sensory properties of the hamburgers were evaluated during storage. Results showed that gallic acid in the hamburgers decreased lipid oxidation from 0.126 to 0.103 mg MAD/kg in the TBA test and 12.73 to 11.03 meq/kg in the POV test during one month of storage. Also, phenolic compounds could prevent the growth and proliferation of spoilage microorganisms by damaging the microorganism cell walls and changing the metabolic processes. So, the amounts of total count and yeast and mold in the treated sample were lower than in the control sample. Significantly, adding encapsulated gallic acid did not negatively affect the flavor or overall evaluation of the samples. Overall, these findings suggested that encapsulated gallic acid is a suitable candidate to maintain chemical, microbial, and sensory characteristics of hamburgers over time.
Collapse
Affiliation(s)
- Elham Asghari-Varzaneh
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156–83111, Iran
| | - Safourasadat Sharifian-Mobarakeh
- Department of Food Science and Technology, College of Agriculture, Islamic Azad University, Branch of Isfahan (Khorasgan), 81595158, Iran
| | - Hajar Shekarchizadeh
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156–83111, Iran
| |
Collapse
|
8
|
Li SF, Hu TG, Wu H. Fabrication of colon-targeted ethyl cellulose/gelatin hybrid nanofibers: Regulation of quercetin release and its anticancer activity. Int J Biol Macromol 2023; 253:127175. [PMID: 37783248 DOI: 10.1016/j.ijbiomac.2023.127175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
A colon-targeted delivery system that can efficiently deliver and release quercetin is essential to improve its bioavailability. We previously found that hydrophobic ethyl cellulose (EC) nanofibers could efficiently deliver quercetin to colon, but the release of quercetin was limited. To address this problem, hydrophilic gelatin (GN) was used as a regulator, and quercetin-loaded nanofibers with different mass ratios of EC to GN (3:1, 1:1, 1:2, 1:3) were fabricated by electrospinning. All nanofibers had a cylindrical morphology and high encapsulation efficiency (over 94 %), and there existed molecular interactions among quercetin, EC, and GN. The high GN content reduced the thermal stability of nanofibers but increased their surface wettability. Besides, these nanofibers had good stability in acidic and aqueous foods. Importantly, the release of quercetin in the simulated gastrointestinal fluid was <3 %. The addition of GN was beneficial to the release of quercetin in colon, and nanofibers with EC to GN being 1:3 had a more preferable release performance. The anticancer activity of nanofibers against HCT-116 cells was proved by inhibiting cell viability through the induction of apoptosis. Therefore, these nanofibers are potential carriers for efficient colon-targeted delivery of bioactive compounds in the food industry.
Collapse
Affiliation(s)
- Shu-Fang Li
- School of Food Science and Engineering, South China University of Technology, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Teng-Gen Hu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China.
| |
Collapse
|
9
|
Wang Z, Zhou D, Liu D, Zhu B. Food-grade encapsulated polyphenols: recent advances as novel additives in foodstuffs. Crit Rev Food Sci Nutr 2023; 63:11545-11560. [PMID: 35776082 DOI: 10.1080/10408398.2022.2094338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A growing inclination among consumers toward the consumption of natural products has propelled the usage of natural compounds as novel additives. Polyphenols are among the most popular candidates of natural food additives with multiple functionalities and bioactivities but are limited by instability. In this regard, a series of food-grade encapsulated polyphenols has been tailored for incorporating into food formulations as novel additives, which could better satisfy the complicated industry processing. This review seeks to present the most recent discussions regarding their application status in diverse foodstuffs as novel additives, involving functionalities, action mechanisms, and relevant encapsulation technologies. The scientific findings confirm that such novel additives show positive effects on physicochemical, sensory, and nutritional properties as well as the shelf life of diverse food matrices. However, poor heat resistance is still the major defect that restricts their application in thermal processes. Future research should focus on the evaluation of the compatibility and applicability of encapsulated polyphenols in real food processes as well as track and deepen their molecular action mechanisms in the context of complex foodstuffs. Innovation of existing encapsulation technologies should also be concerned in the future to bridge the gap between lab and scale-up production.
Collapse
Affiliation(s)
- Zonghan Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Hangzhou, Zhejiang, China
- National Engineering Research Center of Seafood, Dalian, China
| | - Dayong Zhou
- National Engineering Research Center of Seafood, Dalian, China
- College of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Hangzhou, Zhejiang, China
- Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou, China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, Dalian, China
- College of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
10
|
Ullah S, Hashmi M, Shi J, Kim IS. Fabrication of Electrospun PVA/Zein/Gelatin Based Active Packaging for Quality Maintenance of Different Food Items. Polymers (Basel) 2023; 15:2538. [PMID: 37299339 PMCID: PMC10255895 DOI: 10.3390/polym15112538] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
In this research, electrospun PVA/Zein/Gelatin based tri-component active food packaging has been fabricated to enhance the shelf life of food by assuring the food quality (freshness, taste, brittleness, color, etc.) for longer. Electrospinning imparts good morphological properties along with breathability in nanofibrous mats. Electrospun active food packaging has been characterized to investigate the morphological, thermal, mechanical, chemical, antibacterial and antioxidant properties. Results of all tests indicated that the PVA/Zein/Gelatin nanofiber sheet possessed good morphology, thermal stability, mechanical strength, good antibacterial properties along with excellent antioxidant properties, which makes it the most suitable food packaging for increasing the shelf life of different food items like sweet potatoes, potatoes and kimchi. Shelf life of sweet potatoes and potatoes was observed for a period of 50 days, and shelf life of the kimchi was observed for a period of 30 days. It was concluded that nanofibrous food packaging may enhance the shelf life of fruit and vegetables because of their better breathability and antioxidant properties.
Collapse
Affiliation(s)
- Sana Ullah
- Nano Fusion Technology Research Group, Interdisciplinary Cluster for Cutting Edge Technologies, Institute of Fiber Engineering (IFES), Shinshu University, Ueda Campus, Ueda 386-8567, Nagano, Japan;
- Institute of Inorganic Chemistry I, Helmholtz Institute of Ulm (HIU), Ulm University, Helmholtzstrasse 11, 89081 Ulm, Baden Württemberg, Germany
| | - Motahira Hashmi
- Nano Fusion Technology Research Group, Interdisciplinary Cluster for Cutting Edge Technologies, Institute of Fiber Engineering (IFES), Shinshu University, Ueda Campus, Ueda 386-8567, Nagano, Japan;
| | - Jian Shi
- Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Nagano, Japan;
| | - Ick Soo Kim
- Nano Fusion Technology Research Group, Interdisciplinary Cluster for Cutting Edge Technologies, Institute of Fiber Engineering (IFES), Shinshu University, Ueda Campus, Ueda 386-8567, Nagano, Japan;
| |
Collapse
|
11
|
Tan Y, Zi Y, Peng J, Shi C, Zheng Y, Zhong J. Gelatin as a bioactive nanodelivery system for functional food applications. Food Chem 2023; 423:136265. [PMID: 37167667 DOI: 10.1016/j.foodchem.2023.136265] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/01/2023] [Accepted: 04/26/2023] [Indexed: 05/13/2023]
Abstract
Gelatin has long been used as an encapsulant agent in the pharmaceutical and biomedical industries because of its low cost, wide availability, biocompatibility, and degradability. However, the exploitation of gelatin for nanodelivery application is not fully achieved in the functional food filed. In this review article, we highlight the latest work being performed for gelatin-based nanocarriers, including polyelectrolyte complexes, nanoemulsions, nanoliposomes, nanogels, and nanofibers. Specifically, we discuss the applications and challenges of these nanocarriers for stabilization and controlled release of bioactive compounds. To achieve better efficacy, gelatin is frequently used in combination with other biomaterials such as polysaccharides. The fabrication and synergistic effects of the newly developed gelatin composite nanocarriers are also present.
Collapse
Affiliation(s)
- Yang Tan
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ye Zi
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jiawei Peng
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Cuiping Shi
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yulu Zheng
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jian Zhong
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
12
|
Biopolymer- and Lipid-Based Carriers for the Delivery of Plant-Based Ingredients. Pharmaceutics 2023; 15:pharmaceutics15030927. [PMID: 36986788 PMCID: PMC10051097 DOI: 10.3390/pharmaceutics15030927] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Natural ingredients are gaining increasing attention from manufacturers following consumers’ concerns about the excessive use of synthetic ingredients. However, the use of natural extracts or molecules to achieve desirable qualities throughout the shelf life of foodstuff and, upon consumption, in the relevant biological environment is severely limited by their poor performance, especially with respect to solubility, stability against environmental conditions during product manufacturing, storage, and bioavailability upon consumption. Nanoencapsulation can be seen as an attractive approach with which to overcome these challenges. Among the different nanoencapsulation systems, lipids and biopolymer-based nanocarriers have emerged as the most effective ones because of their intrinsic low toxicity following their formulation with biocompatible and biodegradable materials. The present review aims to provide a survey of the recent advances in nanoscale carriers, formulated with biopolymers or lipids, for the encapsulation of natural compounds and plant extracts.
Collapse
|
13
|
Hadidi M, Tan C, Assadpour E, Kharazmi MS, Jafari SM. Emerging plant proteins as nanocarriers of bioactive compounds. J Control Release 2023; 355:327-342. [PMID: 36731801 DOI: 10.1016/j.jconrel.2023.01.069] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
The high prevalence of chronic illnesses, including cancer, diabetes, obesity, and cardiovascular diseases has become a growing concern for modern society. Recently, various bioactive compounds (bioactives) are shown to have a diversity of health-beneficial impacts on a wide range of disorders. But the application of these bioactives in food and pharmaceutical formulations is limited due to their poor water solubility and low bioaccessibility/bioavailability. Plant proteins are green alternatives for designing biopolymeric nanoparticles as appropriate nanocarriers thanks to their amphiphilic nature compatible with many bioactives and unique functional properties. Recently, emerging plant proteins (EPPs) are employed as nanocarriers for protection and targeted delivery of bioactives and also improving their stability and shelf-life. EPPs could enhance the solubility, stability, and bioavailability of bioactives by different types of delivery systems. In addition, the use of EPPs in combination with other biopolymers like polysaccharides was found to make a favorable wall material for food bioactives. This review article covers the various sources and importance of EPPs along with different encapsulation techniques of bioactives. Characterization of EPPs for encapsulation is also investigated. Furthermore, the focus is on the application of EPPs as nanocarriers for food bioactives.
Collapse
Affiliation(s)
- Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Chen Tan
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
14
|
C NK, M. N. P, Hassim MT, Song JI. Development of Self-Healing Carbon/Epoxy Composites with Optimized PAN/PVDF Core-Shell Nanofibers as Healing Carriers. ACS OMEGA 2022; 7:42396-42407. [PMID: 36440110 PMCID: PMC9685786 DOI: 10.1021/acsomega.2c05496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Two-component self-healing carbon/epoxy composites were fabricated by incorporating healing agents between to carbon fiber laminates via the vacuum bagging method. Vinyl ester (VE), cobalt naphthalene (CN), and methyl ethyl ketone peroxide (MEKP) were encapsulated in a polyacrylonitrile (PAN)/Poly(vinylidene fluoride) (PVDF) shell via co-axial electrospinning. Varying nanofiber compositions were fabricated, namely, 10, 20, 30, and 40% PAN in PVDF nanofibers. The 20% PAN fibers were finalized as the shell material owing to their superior tensile properties and surface morphology. The behavior of the PAN/PVDF nanofibers encapsulating the healing agents was studied via Fourier-transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), and thermogravimetric analysis (TGA) to affirm the presence of the healing agents. Mechanical analysis in the presence of core-shell nanofibers indicated an enhancement of 7 and 5% in flexural strength and Izod impact strength, respectively. Three-point bending tests confirmed the autonomous healing characteristics of these nanofibers, which retained 62% of their initial strength after 24 h. FESEM and energy dispersive X-ray (EDX) analyses of the fracture surface confirmed that the resin was released from the nanofibers, restoring the initial properties of the composites.
Collapse
Affiliation(s)
- Naga Kumar C
- Department
of Mechanical Engineering, Changwon National
University, Changwon 51140, Gyeongsangnam, South Korea
| | - Prabhakar M. N.
- The
Research Institute of Mechatronics, Changwon
National University, Changwon 51140, Gyeongsangnam, South Korea
| | - Mohamad Tarmizie Hassim
- Department
of Smart Manufacturing Engineering, Changwon
National University, Changwon 51140, Gyeongsangnam, South Korea
| | - Jung-il Song
- Department
of Mechanical Engineering, Changwon National
University, Changwon 51140, Gyeongsangnam, South Korea
| |
Collapse
|
15
|
Mahmood K, Kamilah H, Karim AA, Ariffin F. Enhancing the functional properties of fish gelatin mats by dual encapsulation of essential oils in β-cyclodextrins/fish gelatin matrix via coaxial electrospinning. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Electrospun functional polymeric nanofibers for active food packaging: A review. Food Chem 2022; 391:133239. [DOI: 10.1016/j.foodchem.2022.133239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/27/2022] [Accepted: 05/15/2022] [Indexed: 12/13/2022]
|
17
|
Fabrication and Characterization of Electrospun Fish Gelatin Mats Doped with Essential Oils and β-Cyclodextrins for Food Packaging Applications. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09759-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Li S, Shi W, Wang X, Hu X, Li S, Zhang Y. The preparation and characterization of electrospun gelatin nanofibers containing chitosan/eugenol-sulfobutyl-β-cyclodextrin nanoparticles. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Jiang W, Zhao P, Song W, Wang M, Yu DG. Electrospun Zein/Polyoxyethylene Core-Sheath Ultrathin Fibers and Their Antibacterial Food Packaging Applications. Biomolecules 2022; 12:1110. [PMID: 36009003 PMCID: PMC9405609 DOI: 10.3390/biom12081110] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 02/06/2023] Open
Abstract
The purpose of this work is to develop a novel ultrathin fibrous membrane with a core-sheath structure as antibacterial food packaging film. Coaxial electrospinning was exploited to create the core-sheath structure, by which the delivery regulation of the active substance was achieved. Resveratrol (RE) and silver nanoparticles (AgNPs) were loaded into electrospun zein/polyethylene oxide ultrathin fibers to ensure a synergistic antibacterial performance. Under the assessments of a scanning electron microscope and transmission electron microscope, the ultrathin fiber was demonstrated to have a fine linear morphology, smooth surface and obvious core-sheath structure. X-ray diffraction and Fourier transform infrared analyses showed that RE and AgNPs coexisted in the ultrathin fibers and had good compatibility with the polymeric matrices. The water contact angle experiments were conducted to evaluate the hydrophilicity and hygroscopicity of the fibers. In vitro dissolution tests revealed that RE was released in a sustained manner. In the antibacterial experiments against Staphylococcus aureus and Escherichia coli, the diameters of the inhibition zone of the fiber were 8.89 ± 0.09 mm and 7.26 ± 0.10 mm, respectively. Finally, cherry tomatoes were selected as the packaging object and packed with fiber films. In a practical application, the fiber films effectively reduced the bacteria and decreased the quality loss of cherry tomatoes, thereby prolonging the fresh-keeping period of cherry tomatoes to 12 days. Following the protocols reported here, many new food packaging films can be similarly developed in the future.
Collapse
Affiliation(s)
- Wenlai Jiang
- School of Materials & Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Ping Zhao
- School of Materials & Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Wenliang Song
- School of Materials & Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Menglong Wang
- School of Materials & Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials & Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| |
Collapse
|
20
|
Martin A, Nyman JN, Reinholdt R, Cai J, Schaedel AL, van der Plas MJA, Malmsten M, Rades T, Heinz A. In Situ Transformation of Electrospun Nanofibers into Nanofiber-Reinforced Hydrogels. NANOMATERIALS 2022; 12:nano12142437. [PMID: 35889661 PMCID: PMC9318765 DOI: 10.3390/nano12142437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022]
Abstract
Nanofiber-reinforced hydrogels have recently gained attention in biomedical engineering. Such three-dimensional scaffolds show the mechanical strength and toughness of fibers while benefiting from the cooling and absorbing properties of hydrogels as well as a large pore size, potentially aiding cell migration. While many of such systems are prepared by complicated processes where fibers are produced separately to later be embedded in a hydrogel, we here provide proof of concept for a one-step solution. In more detail, we produced core-shell nanofibers from the natural proteins zein and gelatin by coaxial electrospinning. Upon hydration, the nanofibers were capable of directly transforming into a nanofiber-reinforced hydrogel, where the nanofibrous structure was retained by the zein core, while the gelatin-based shell turned into a hydrogel matrix. Our nanofiber-hydrogel composite showed swelling to ~800% of its original volume and water uptake of up to ~2500% in weight. The physical integrity of the nanofiber-reinforced hydrogel was found to be significantly improved in comparison to a hydrogel system without nanofibers. Additionally, tetracycline hydrochloride was incorporated into the fibers as an antimicrobial agent, and antimicrobial activity against Staphylococcus aureus and Escherichia coli was confirmed.
Collapse
Affiliation(s)
- Alma Martin
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark; (A.M.); (J.N.N.); (R.R.); (J.C.); (A.-L.S.); (M.J.A.v.d.P.); (M.M.); (T.R.)
- School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Jenny Natalie Nyman
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark; (A.M.); (J.N.N.); (R.R.); (J.C.); (A.-L.S.); (M.J.A.v.d.P.); (M.M.); (T.R.)
| | - Rikke Reinholdt
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark; (A.M.); (J.N.N.); (R.R.); (J.C.); (A.-L.S.); (M.J.A.v.d.P.); (M.M.); (T.R.)
| | - Jun Cai
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark; (A.M.); (J.N.N.); (R.R.); (J.C.); (A.-L.S.); (M.J.A.v.d.P.); (M.M.); (T.R.)
| | - Anna-Lena Schaedel
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark; (A.M.); (J.N.N.); (R.R.); (J.C.); (A.-L.S.); (M.J.A.v.d.P.); (M.M.); (T.R.)
| | - Mariena J. A. van der Plas
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark; (A.M.); (J.N.N.); (R.R.); (J.C.); (A.-L.S.); (M.J.A.v.d.P.); (M.M.); (T.R.)
- Division of Dermatology and Venereology, Department of Clinical Sciences Lund, Lund University, S-22184 Lund, Sweden
| | - Martin Malmsten
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark; (A.M.); (J.N.N.); (R.R.); (J.C.); (A.-L.S.); (M.J.A.v.d.P.); (M.M.); (T.R.)
- Department of Physical Chemistry, Lund University, 22100 Lund, Sweden
| | - Thomas Rades
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark; (A.M.); (J.N.N.); (R.R.); (J.C.); (A.-L.S.); (M.J.A.v.d.P.); (M.M.); (T.R.)
| | - Andrea Heinz
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark; (A.M.); (J.N.N.); (R.R.); (J.C.); (A.-L.S.); (M.J.A.v.d.P.); (M.M.); (T.R.)
- Correspondence:
| |
Collapse
|
21
|
Electrospinning as a Promising Process to Preserve the Quality and Safety of Meat and Meat Products. COATINGS 2022. [DOI: 10.3390/coatings12050644] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fresh and processed meat products are staple foods worldwide. However, these products are considered perishable foods and their deterioration depends partly on the inner and external properties of meat. Beyond conventional meat preservation approaches, electrospinning has emerged as a novel effective alternative to develop active and intelligent packaging. Thus, this review aims to discuss the advantages and shortcomings of electrospinning application for quality and safety preservation of meat and processed meat products. Electrospun fibres are very versatile, and their features can be modulated to deliver functional properties such as antioxidant and antimicrobial effects resulting in shelf-life extension and in some cases product quality improvement. Compared to conventional processes, electrospun fibres provide advantages such as casting and coating in the fabrication of active systems, indicators, and sensors. The approaches for improving, stabilizing, and controlling the release of active compounds and highly sensitive, rapid, and reliable responsiveness, under changes in real-time are still challenging for innovative packaging development. Despite their advantages, the active and intelligent electrospun fibres for meat packaging are still restricted to research and not yet widely used for commercial products. Industrial validation of lab-scale achievements of electrospinning might boost their commercialisation. Safety must be addressed by evaluating the impact of electrospun fibres migration from package to foods on human health. This information will contribute into filling knowledge gaps and sustain clear regulations.
Collapse
|
22
|
Fast-dissolving antioxidant nanofibers based on Spirulina protein concentrate and gelatin developed using needleless electrospinning. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Preparation of pectin-based nanofibers encapsulating Lactobacillus rhamnosus 1.0320 by electrospinning. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107216] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Mahmood K, Kamilah H, Alias AK, Ariffin F, Mohammadi Nafchi A. Functionalization of electrospun fish gelatin mats with bioactive agents: Comparative effect on morphology, thermo-mechanical, antioxidant, antimicrobial properties, and bread shelf stability. Food Sci Nutr 2022; 10:584-596. [PMID: 35154694 PMCID: PMC8825724 DOI: 10.1002/fsn3.2676] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 01/20/2023] Open
Abstract
In the current study, fish gelatin-based nanofiber mats were embedded with different bioactive agents (BAs) such as cinnamaldehyde (CEO), limonene (LEO), and eugenol (EEO) at 1, 3, and 5% via electrospinning, and their effects on the morphological, structural, mechanical, thermal, antioxidant, antimicrobial, and bread packaging properties of the mats were evaluated. The gelatin mats presented different physicochemical properties due to the inherent differences in the chemical structure of the added BAs and their interaction with the gelatin chains. The conductivity, surface tension, and viscosity of gelatin dopes changed with the presence of the BAs, yet the electrospun nanofibers showed defect-free uniform morphology as confirmed by electron microscopy, with no significant change in the chemical structure of gelatin. The melting temperature of gelatin mats remained in the range of 187-197°C. The mats presented lower tensile strength and elongation at break by the addition of BAs compared with the pristine gelatin mat. The highest radical scavenging (90%) was yielded by mats with EEO, while mats with CEO depicted better antibacterial activity with an inhibition zone of 18.83 mm. However, a dose-dependent increase in the antifungal properties was noticed for all the mats. The mats retained almost 50% of BAs after 60 days of storage at 45% relative humidity. Electrospun gelatin mats inhibited the aerobic bacteria (81%) and yeast and molds (61%) in preservative-free bread after 10 days of storage.
Collapse
Affiliation(s)
- Kaiser Mahmood
- Food Technology DivisionSchool of Industrial TechnologyUniversiti Sains MalaysiaPenangMalaysia
| | - Hanisah Kamilah
- Department of Crop Science, Faculty of Agriculture and ForestryUniversiti Putra MalaysiaBintulu Sarawak CampusBintuluMalaysia
- Halal Products Research InstituteUniversiti Putra MalaysiaSerdangMalaysia
| | - Abd Karim Alias
- Food Technology DivisionSchool of Industrial TechnologyUniversiti Sains MalaysiaPenangMalaysia
| | - Fazilah Ariffin
- Food Technology DivisionSchool of Industrial TechnologyUniversiti Sains MalaysiaPenangMalaysia
| | - Abdorreza Mohammadi Nafchi
- Food Technology DivisionSchool of Industrial TechnologyUniversiti Sains MalaysiaPenangMalaysia
- Department of Food Science and Technology, Damghan BranchIslamic Azad UniversityDamghanIran
| |
Collapse
|
25
|
Salević A, Stojanović D, Lević S, Pantić M, Đorđević V, Pešić R, Bugarski B, Pavlović V, Uskoković P, Nedović V. The Structuring of Sage (Salvia officinalis L.) Extract-Incorporating Edible Zein-Based Materials with Antioxidant and Antibacterial Functionality by Solvent Casting versus Electrospinning. Foods 2022; 11:foods11030390. [PMID: 35159540 PMCID: PMC8834357 DOI: 10.3390/foods11030390] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
In this study, in order to develop zein-based, edible, functional food-contact materials in different forms incorporating sage extract (10, 20, and 30%), solvent casting and electrospinning were employed. The study aimed to assess the effects of the applied techniques and the extract’s incorporation on the materials’ properties. The solvent casting generated continuous and compact films, where the extract’s incorporation provided more homogenous surfaces. The electrospinning resulted in non-woven mats composed of ribbon-like fibers in the range of 1.275–1.829 µm, while the extract’s incorporation provided thinner and branched fibers. The results indicated the compatibility between the materials’ constituents, and efficient and homogenous extract incorporation within the zein matrices, with more probable interactions occurring during the solvent casting. All of the formulations had a high dry matter content, whereas the mats and the formulations incorporating the extract had higher solubility and swelling in water. The films and mats presented similar DPPH• and ABTS•+ radical scavenging abilities, while the influence on Staphylococcus aureus and Salmonella enterica subsp. enterica serovar Typhimurium bacteria, and the growth inhibition, were complex. The antioxidant and antibacterial activity of the materials were more potent after the extract’s incorporation. Overall, the results highlight the potential of the developed edible materials for use as food-contact materials with active/bioactive functionality.
Collapse
Affiliation(s)
- Ana Salević
- Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (A.S.); (S.L.); (M.P.); (V.P.)
| | - Dušica Stojanović
- Department of Materials Science and Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (D.S.); (P.U.)
| | - Steva Lević
- Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (A.S.); (S.L.); (M.P.); (V.P.)
| | - Milena Pantić
- Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (A.S.); (S.L.); (M.P.); (V.P.)
| | - Verica Đorđević
- Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (V.Đ.); (R.P.); (B.B.)
| | - Radojica Pešić
- Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (V.Đ.); (R.P.); (B.B.)
| | - Branko Bugarski
- Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (V.Đ.); (R.P.); (B.B.)
| | - Vladimir Pavlović
- Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (A.S.); (S.L.); (M.P.); (V.P.)
| | - Petar Uskoković
- Department of Materials Science and Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (D.S.); (P.U.)
| | - Viktor Nedović
- Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (A.S.); (S.L.); (M.P.); (V.P.)
- Correspondence: ; Tel.: +381-11-441-3154
| |
Collapse
|
26
|
Nanofiber Systems as Herbal Bioactive Compounds Carriers: Current Applications in Healthcare. Pharmaceutics 2022; 14:pharmaceutics14010191. [PMID: 35057087 PMCID: PMC8781881 DOI: 10.3390/pharmaceutics14010191] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/31/2022] Open
Abstract
Nanofibers have emerged as a potential novel platform due to their physicochemical properties for healthcare applications. Nanofibers’ advantages rely on their high specific surface-area-to-volume and highly porous mesh. Their peculiar assembly allows cell accommodation, nutrient infiltration, gas exchange, waste excretion, high drug release rate, and stable structure. This review provided comprehensive information on the design and development of natural-based polymer nanofibers with the incorporation of herbal medicines for the treatment of common diseases and their in vivo studies. Natural and synthetic polymers have been widely used for the fabrication of nanofibers capable of mimicking extracellular matrix structure. Among them, natural polymers are preferred because of their biocompatibility, biodegradability, and similarity with extracellular matrix proteins. Herbal bioactive compounds from natural extracts have raised special interest due to their prominent beneficial properties in healthcare. Nanofiber properties allow these systems to serve as bioactive compound carriers to generate functional matrices with antimicrobial, anti-inflammatory, antioxidant, antiseptic, anti-viral, and other properties which have been studied in vitro and in vivo, mostly to prove their wound healing capacity and anti-inflammation properties.
Collapse
|
27
|
Lyu X, Wang X, Wang Q, Ma X, Chen S, Xiao J. Encapsulation of sea buckthorn (Hippophae rhamnoides L.) leaf extract via an electrohydrodynamic method. Food Chem 2021; 365:130481. [PMID: 34237566 DOI: 10.1016/j.foodchem.2021.130481] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/09/2021] [Accepted: 06/24/2021] [Indexed: 02/08/2023]
Abstract
Polyphenols from the leaves of sea buckthorn (Hippophae rhamnoides L.) are nutritious and bioactive substances that can be used as nutritional supplements. To improve their stability and bioaccessibility in vivo, chemical extracts of sea buckthorn leaves were, for the first time, encapsulated using electrohydrodynamic technology. The microcapsules were characterized using scanning electron microscopy, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. The extract and microcapsules were evaluated for total phenols and flavonoids, total antioxidant activity, and their inhibitory effects on metabolic syndrome-related enzymes (α-glucosidase, α-amylase, and pancreatic lipase) under in vitro simulated digestion. The results indicated that the extract was successfully encapsulated; encapsulation protected polyphenols and flavonoids from degradation and increase their bioaccessibility in the intestine. The antioxidant activity and the inhibition of metabolic syndrome-related enzymes were better reserved after encapsulation. Our findings will help in promoting the potential of sea buckthorn as a nutritional supplement and expanding its commercial use.
Collapse
Affiliation(s)
- Xingang Lyu
- College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Xiao Wang
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Qilei Wang
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Xueying Ma
- Food Chemistry and Food Development, University of Turku, FI-20014 Turku, Finland
| | - Suolian Chen
- Inner Mongolia Tianjiao Industrial Group Co. Ltd., Ordos 017000, China
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China; Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain.
| |
Collapse
|
28
|
Mayer S, Tallawi M, De Luca I, Calarco A, Reinhardt N, Gray LA, Drechsler K, Moeini A, Germann N. Antimicrobial and physicochemical characterization of 2,3-dialdehyde cellulose-based wound dressings systems. Carbohydr Polym 2021; 272:118506. [PMID: 34420752 DOI: 10.1016/j.carbpol.2021.118506] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/18/2021] [Accepted: 07/26/2021] [Indexed: 01/13/2023]
Abstract
Biobased and biodegradable films were prepared by physically mixing 2,3-dialdehyde cellulose (DAC) with two other biopolymers, zein and gelatin, in three different proportions. The antimicrobial activities of the composite blends against Gram-positive and Gram-negative bacteria increase with the increase of DAC content. Cell viability tests on mammalian cells showed that the materials were not cytotoxic. In addition, DAC and gelatin were able to promote thermal degradation of the blends. However, DAC increased the stiffness and decreased the glass transition temperature of the blends, while gelatin was able to decrease the stiffness of the film. Morphological analysis showed the effect of DAC on the surface smoothness of the blends. The contact angle confirmed that all blends were within the range of hydrophilic materials. Although all the blends showed impressive performance for wound dressing application, the blend with gelatin might be more suitable for this purpose due to its better mechanical performance and antibacterial activity.
Collapse
Affiliation(s)
- Sophie Mayer
- Fluid Dynamics of Complex Biosystems, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Marwa Tallawi
- Fluid Dynamics of Complex Biosystems, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Ilenia De Luca
- Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Anna Calarco
- Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Nikita Reinhardt
- Chair of Carbon Composites, Department of Aerospace and Geodesy, Technical University of Munich, 85478 Garching, Germany
| | - Luciano Avila Gray
- Chair of Carbon Composites, Department of Aerospace and Geodesy, Technical University of Munich, 85478 Garching, Germany
| | - Klaus Drechsler
- Chair of Carbon Composites, Department of Aerospace and Geodesy, Technical University of Munich, 85478 Garching, Germany
| | - Arash Moeini
- Fluid Dynamics of Complex Biosystems, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Natalie Germann
- Fluid Dynamics of Complex Biosystems, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany.
| |
Collapse
|
29
|
|
30
|
Munteanu BS, Vasile C. Encapsulation of Natural Bioactive Compounds by Electrospinning-Applications in Food Storage and Safety. Polymers (Basel) 2021; 13:3771. [PMID: 34771329 PMCID: PMC8588354 DOI: 10.3390/polym13213771] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/18/2022] Open
Abstract
Packaging is used to protect foods from environmental influences and microbial contamination to maintain the quality and safety of commercial food products, to avoid their spoilage and to extend their shelf life. In this respect, bioactive packaging is developing to additionally provides antibacterial and antioxidant activity with the same goals i.e., extending the shelf life while ensuring safety of the food products. New solutions are designed using natural antimicrobial and antioxidant agents such as essential oils, some polysaccharides, natural inorganic nanoparticles (nanoclays, oxides, metals as silver) incorporated/encapsulated into appropriate carriers in order to be used in food packaging. Electrospinning/electrospraying are receiving attention as encapsulation methods due to their cost-effectiveness, versatility and scalability. The electrospun nanofibers and electro-sprayed nanoparticles can preserve the functionality and protect the encapsulated bioactive compounds (BC). In this review are summarized recent results regarding applications of nanostructured suitable materials containing essential oils for food safety.
Collapse
Affiliation(s)
| | - Cornelia Vasile
- Laboratory of Physical Chemistry of Polymers, “P. Poni” Institute of Macromolecular Chemistry, Romanian Academy, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
31
|
Arapey sweet potato peel waste as renewable source of antioxidant: extraction, nanoencapsulation and nanoadditive potential in films. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-020-02346-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Improving functionality, bioavailability, nutraceutical and sensory attributes of fortified foods using phenolics-loaded nanocarriers as natural ingredients. Food Res Int 2020; 137:109555. [DOI: 10.1016/j.foodres.2020.109555] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/11/2020] [Accepted: 07/12/2020] [Indexed: 02/06/2023]
|
33
|
Solaberrieta I, Jiménez A, Cacciotti I, Garrigós MC. Encapsulation of Bioactive Compounds from Aloe Vera Agrowastes in Electrospun Poly (Ethylene Oxide) Nanofibers. Polymers (Basel) 2020; 12:E1323. [PMID: 32531945 PMCID: PMC7361710 DOI: 10.3390/polym12061323] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/18/2022] Open
Abstract
Aloe Vera is an ancient medicinal plant especially known for its beneficial properties for human health, due to its bioactive compounds. In this study, nanofibers with antioxidant activity were successfully obtained by electrospinning technique with the addition of a natural Aloe Vera skin extract (AVE) (at 0, 5, 10 and 20 wt% loadings) in poly(ethylene oxide) (PEO) solutions. The successful incorporation of AVE into PEO was evidenced by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (ATR-FTIR), thermogravimetric analysis (TGA) and antioxidant activity by 2,2-diphenyl-1-picrylhydrazyl radical scavenging (DPPH), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging (ABTS) and ferric reducing power (FRAP) assays. The incorporation of AVE introduced some changes in the PEO/AVE nanofibers morphology showing bimodal diameter distributions for AVE contents in the range 10-20 wt%. Some decrease in thermal stability with AVE addition, in terms of decomposition onset temperature, was also observed and it was more evident at high loading AVE contents (10 and 20 wt%). High encapsulation efficiencies of 92%, 76% and 105% according to DPPH, FRAP and ABTS assays, respectively, were obtained at 5 wt% AVE content, retaining AVE its antioxidant capacity in the PEO/AVE electrospun nanofibers. The results suggested that the obtained nanofibers could be promising materials for their application in active food packaging to decrease oxidation of packaged food during storage.
Collapse
Affiliation(s)
- Ignacio Solaberrieta
- Department of Analytical Chemistry, Nutrition & Food Sciences, University of Alicante, San Vicente del Raspeig, ES-03690 Alicante, Spain; (I.S.); (A.J.)
| | - Alfonso Jiménez
- Department of Analytical Chemistry, Nutrition & Food Sciences, University of Alicante, San Vicente del Raspeig, ES-03690 Alicante, Spain; (I.S.); (A.J.)
| | - Ilaria Cacciotti
- Department of Engineering, University of Rome “Niccolò Cusano”, INSTM RU, Via Don Carlo Gnocchi 3, 00166 Rome, Italy
| | - Maria Carmen Garrigós
- Department of Analytical Chemistry, Nutrition & Food Sciences, University of Alicante, San Vicente del Raspeig, ES-03690 Alicante, Spain; (I.S.); (A.J.)
| |
Collapse
|
34
|
Falsafi SR, Rostamabadi H, Assadpour E, Jafari SM. Morphology and microstructural analysis of bioactive-loaded micro/nanocarriers via microscopy techniques; CLSM/SEM/TEM/AFM. Adv Colloid Interface Sci 2020; 280:102166. [PMID: 32387755 DOI: 10.1016/j.cis.2020.102166] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022]
Abstract
Efficient characterization of the physicochemical attributes of bioactive-loaded micro/nano-vehicles is crucial for the successful product development. The introduction of outstanding science-based strategies and techniques makes it possible to realize how the characteristics of the formulation ingredients affect the structural and (bio)functional properties of the final bioactive-loaded carriers. The important points to be solved, at a microscopic level, are investigating how the features of the formulation ingredients affect the morphology, surface, size, dispersity, as well as the particulate interactions within bioactive-comprising nano/micro-delivery systems. This review presents a detailed description concerning the application of advanced microscopy techniques, i.e., confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) in characterizing the attributes of nano/microcarriers for the efficient delivery of bioactive compounds. Furthermore, the fundamental principles of these approaches, instrumentation, specific applications, and the strategy to choose the most proper technique for different carriers has been discussed.
Collapse
|
35
|
Zhang C, Li Y, Wang P, Zhang H. Electrospinning of nanofibers: Potentials and perspectives for active food packaging. Compr Rev Food Sci Food Saf 2020; 19:479-502. [DOI: 10.1111/1541-4337.12536] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/20/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Cen Zhang
- College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou China
| | - Yang Li
- College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou China
| | - Peng Wang
- College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou China
| | - Hui Zhang
- College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou China
- Zhejiang Key Laboratory for Agro‐Food ProcessingZhejiang University Hangzhou China
- Ningbo Research InstituteZhejiang University Ningbo China
| |
Collapse
|
36
|
Application of different biopolymers for nanoencapsulation of antioxidants via electrohydrodynamic processes. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.06.015] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
37
|
Faki R, Gursoy O, Yilmaz Y. Effect of Electrospinning Process on Total Antioxidant Activity of Electrospun Nanofibers Containing Grape Seed Extract. OPEN CHEM 2019. [DOI: 10.1515/chem-2019-0098] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractElectrospinning is a common technique used for the production of nanofibers, and it is based on the fact that the electrically charged liquid polymer is positioned in a continuous fiber form on a grounded surface. Grape seed is rich in phenolic compounds and can be used as a dietary supplement or as a natural antioxidant source in diet. In this study, grape seed extract of Burdur Dimrit variety (Vitis vinifera L.) was electrospun with gelatin, polyvinyl alcohol (PVA) and PVA/β-cyclodextrin polymers to produce nanofibers with antioxidant activity. The aim of this study was to determine the effect of the electrospinning process on the total antioxidant activity and total phenolic contents of electrospun polymers with grape seed extracts. Total antioxidant activity of samples (by ABTS and DPPH assays) and total phenolic contents (Folin–Ciocalteu method) were determined before and after the electrospinning process of polymers with grape seed extract. Electrospinning with gelatin polymer decreased the antioxidant activity (ABTS assay) of nanofibers containing grape seed extract by 65% and their total phenolic contents by 7%. However, electrospinning treatment with PVA and PVA/β-cyclodextrin had no effect on the total antioxidant activity (ABTS and DPPH) and total phenolic substance contents of grape seed extract nanofibers.
Collapse
Affiliation(s)
- Rabia Faki
- Burdur Mehmet Akif Ersoy University, Graduate School of Natural and Applied Sciences, Division of Food Engineering, Istiklal Campus, 15030, Burdur, Turkey
| | - Oguz Gursoy
- Burdur Mehmet Akif Ersoy University, Faculty of Engineering and Architecture, Department of Food Engineering, Istiklal Campus, 15030, Burdur, Turkey
| | - Yusuf Yilmaz
- Burdur Mehmet Akif Ersoy University, Faculty of Engineering and Architecture, Department of Food Engineering, Istiklal Campus, 15030, Burdur, Turkey
| |
Collapse
|
38
|
Ricaurte L, Tello-Camacho E, Quintanilla-Carvajal MX. Hydrolysed Gelatin-Derived, Solvent-Free, Electrospun Nanofibres for Edible Applications: Physical, Chemical and Thermal Behaviour. FOOD BIOPHYS 2019. [DOI: 10.1007/s11483-019-09608-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Khan MF, Abutaha N, Nasr FA, Alqahtani AS, Noman OM, Wadaan MAM. Bitter gourd (Momordica charantia) possess developmental toxicity as revealed by screening the seeds and fruit extracts in zebrafish embryos. Altern Ther Health Med 2019; 19:184. [PMID: 31340810 PMCID: PMC6657154 DOI: 10.1186/s12906-019-2599-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/16/2019] [Indexed: 01/17/2023]
Abstract
Background Bitter gourd (Momordica charantia) has attracted the focus of researchers owing to its excellent anti-diabetic action. The beneficial effect of Momordica charantia on heart has been reported by in vitro and in vivo studies. However the developmental toxicity or potential risk of M. charantia on fetus heart development is largely unknown. Hence this study was designed to find out the developmental toxicity of M. charantia using zebrafish (Danio rerio) embryos. Methods The crude extracts were prepared from fruit and seeds of M. charantia. The Zebrafish embryos were exposed to serial dilution of each of the crude extract. The biologically active fractions were fractionated by C18 column using high pressure liquid chromatography. Fourier-transform infrared spectroscopy and gas chromatography coupled with mass spectrophotometry was done to identify chemical constituents in fruit and seed extract of M. charantia. Results The seed extract of M. charantia was lethal with LD50 values of 50 μg/ml to zebrafish embryos and multiple anomalies were observed in zebrafish embryos at sub-lethal concentration. However, the fruit extract was much safe and exposing the zebrafish embryos even to 200 μg/ml did not result any lethality. The fruit extract induced severe cardiac hypertrophy in treated embryos. The time window treatment showed that M. charantia perturbed the cardiac myoblast specification process in treated zebrafish embryos. The Fourier-transform infrared spectroscopy analyses revealed diverse chemical group in the active fruit fraction and five new type of compounds were identified in the crude seeds extract of M. charantia by gas chromatography and mass spectrophotometry. Conclusion The teratogenicity of seeds extract and cardiac toxicity by the fruit extract of M. charantia warned that the supplementation made from the fruit and seeds of M. charantia should be used with much care in pregnant diabetic patients to avoid possible damage to developing fetus. Electronic supplementary material The online version of this article (10.1186/s12906-019-2599-0) contains supplementary material, which is available to authorized users.
Collapse
|
40
|
López de Dicastillo C, López‐Carballo G, Gavara R, Muriel Galet V, Guarda A, Galotto MJ. Improving polyphenolic thermal stability ofAristotelia Chilensisfruit extract by encapsulation within electrospun cyclodextrin capsules. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Carol López de Dicastillo
- Food Packaging Laboratory (Laben‐Chile), Department of Science and Food Technology, Faculty of Technology University of Santiago de Chile Santiago Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA) Santiago Chile
| | - Gracia López‐Carballo
- Packaging Lab, Institute of Agrochemistry and Food Technology IATA‐CSIC Valencia Spain
| | - Rafael Gavara
- Packaging Lab, Institute of Agrochemistry and Food Technology IATA‐CSIC Valencia Spain
| | - Virginia Muriel Galet
- Food Packaging Laboratory (Laben‐Chile), Department of Science and Food Technology, Faculty of Technology University of Santiago de Chile Santiago Chile
| | - Abel Guarda
- Food Packaging Laboratory (Laben‐Chile), Department of Science and Food Technology, Faculty of Technology University of Santiago de Chile Santiago Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA) Santiago Chile
| | - María José Galotto
- Food Packaging Laboratory (Laben‐Chile), Department of Science and Food Technology, Faculty of Technology University of Santiago de Chile Santiago Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA) Santiago Chile
| |
Collapse
|
41
|
Use of electrospinning technique to produce nanofibres for food industries: A perspective from regulations to characterisations. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.01.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
42
|
Wutticharoenmongkol P, Hannirojram P, Nuthong P. Gallic acid-loaded electrospun cellulose acetate nanofibers as potential wound dressing materials. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4547] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Pornchita Hannirojram
- Department of Chemical Engineering, Faculty of Engineering; Thammasat University; Pathumthani Thailand 12120
| | - Pimchanok Nuthong
- Department of Chemical Engineering, Faculty of Engineering; Thammasat University; Pathumthani Thailand 12120
| |
Collapse
|
43
|
Pisoschi AM, Pop A, Cimpeanu C, Turcuş V, Predoi G, Iordache F. Nanoencapsulation techniques for compounds and products with antioxidant and antimicrobial activity - A critical view. Eur J Med Chem 2018; 157:1326-1345. [DOI: 10.1016/j.ejmech.2018.08.076] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 12/20/2022]
|
44
|
Li L, Wang H, Chen M, Jiang S, Jiang S, Li X, Wang Q. Butylated hydroxyanisole encapsulated in gelatin fiber mats: Volatile release kinetics, functional effectiveness and application to strawberry preservation. Food Chem 2018; 269:142-149. [PMID: 30100416 DOI: 10.1016/j.foodchem.2018.06.150] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/26/2018] [Accepted: 06/30/2018] [Indexed: 10/28/2022]
Abstract
Butylated hydroxyanisole (BHA) encapsulated in gelatin (GA) (GA-BHA) fiber mats were fabricated via electrospinning technique and applied to strawberry preservation. The volatile release kinetics and functional effectiveness of the mats were investigated. BHA was high efficiently encapsulated in GA fibers and the antioxidant activity of BHA could be well protected. The encapsulation of BHA enhanced the stability of GA and favored structure transition of GA from random coil and β-turns to α-helix and β-sheet. The GA-BHA mats showed good antibacterial activity against Staphylococcus aureus, and the predominant volatile release mechanism of BHA from mats was Fickian diffusion. Furthermore, the mats also showed broad-spectrum antifungal activity against four mould genera (Rhizopus sp., Mucor sp., Aspergillus sp. and Penicillium sp.). The shelf-life of strawberry can be prolonged effectively in the presence of GA-BHA mats during storage. Results suggested that the GA-BHA mats may have a great potential in active food packaging.
Collapse
Affiliation(s)
- Linlin Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, PR China
| | - Hualin Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, PR China; Anhui Institute of Agro-Products Intensive Processing Technology, 230009 Hefei, Anhui, PR China.
| | - Minmin Chen
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, PR China
| | - Suwei Jiang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, PR China
| | - Shaotong Jiang
- School of Food Science and Engineering, Hefei University of Technology, 230009 Hefei, Anhui, PR China; Anhui Institute of Agro-Products Intensive Processing Technology, 230009 Hefei, Anhui, PR China
| | - Xingjiang Li
- School of Food Science and Engineering, Hefei University of Technology, 230009 Hefei, Anhui, PR China.
| | - Qiaoyun Wang
- School of Food Science and Engineering, Hefei University of Technology, 230009 Hefei, Anhui, PR China
| |
Collapse
|
45
|
Darbasizadeh B, Motasadizadeh H, Foroughi-Nia B, Farhadnejad H. Tripolyphosphate-crosslinked chitosan/poly (ethylene oxide) electrospun nanofibrous mats as a floating gastro-retentive delivery system for ranitidine hydrochloride. J Pharm Biomed Anal 2018; 153:63-75. [DOI: 10.1016/j.jpba.2018.02.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 12/18/2022]
|
46
|
Modifying an Active Compound's Release Kinetic Using a Supercritical Impregnation Process to Incorporate an Active Agent into PLA Electrospun Mats. Polymers (Basel) 2018; 10:polym10050479. [PMID: 30966513 PMCID: PMC6415505 DOI: 10.3390/polym10050479] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 01/15/2023] Open
Abstract
The main objective of this work was to study the release of cinnamaldehyde (CIN) from electrospun poly lactic acid (e-PLA) mats obtained through two techniques: (i) direct incorporation of active compound during the electrospinning process (e-PLA-CIN); and (ii) supercritical carbon dioxide (scCO2) impregnation of CIN within electrospun PLA mats (e-PLA/CINimp). The development and characterization of both of these active electrospun mats were investigated with the main purpose of modifying the release kinetic of this active compound. Morphological, structural, and thermal properties of these materials were also studied, and control mats e-PLA and e-PLACO2 were developed in order to understand the effect of electrospinning and scCO2 impregnation, respectively, on PLA properties. Both strategies of incorporation of this active compound into PLA matrix resulted in different morphologies that influenced chemical and physical properties of these composites and in different release kinetics of CIN. The electrospinning and scCO2 impregnation processes and the presence of CIN altered PLA thermal and structural properties when compared to an extruded PLA material. The incorporation of CIN through scCO2 impregnation resulted in higher release rate and lower diffusion coefficients when compared to active electrospun mats with CIN incorporated during the electrospinning process.
Collapse
|