1
|
Topcu KSB, Cacan E. Twist1 Regulates the Immune Checkpoint VISTA and Promotes the Proliferation, Migration and Progression of Pancreatic Cancer Cells. J Cell Mol Med 2025; 29:e70586. [PMID: 40344465 PMCID: PMC12061639 DOI: 10.1111/jcmm.70586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/20/2025] [Accepted: 04/28/2025] [Indexed: 05/11/2025] Open
Abstract
Pancreatic cancer is one of the deadliest malignant tumours worldwide. Despite the developments in the treatments of pancreatic cancer, survival rates remain at a low level, and the mechanisms underlying the aggressive course of the cancer are not fully understood. VISTA is an immune checkpoint and has recently become a significant target in cancer treatment; however, the roles of VISTA in the development of pancreatic cancer have largely remained unknown. Histone deacetylase inhibitors (HDACi) have been reported to reverse the epithelial-mesenchymal transition (EMT) and may enhance the efficacy of anti-PD-1 therapy. The PD-L1/PD-1 immune checkpoint targeted by this therapy shares structural similarity with VISTA. Moreover, combination therapy of vorinostat and anti-PD-1 has been shown to significantly reduce tumour growth by suppressing the transcription factor c-Myc. Therefore, in this study, we aim to investigate the genes that are associated with EMT and explore the potential mechanism involving Twist1, a proto-oncogene, and VISTA in pancreatic cancer. We also sought to determine the synergistic effects of an HDACi, vorinostat, in combination with Twist1-siRNA on VISTA expression in pancreatic cancer cells' viability and proliferation. Our results revealed that Twist1 blockade in combination with vorinostat in pancreatic cancer cells suppresses EMT-associated genes and the immune checkpoint VISTA compared to treatments administered alone. As a result, identifying the genes associated with EMT in pancreatic cancer and understanding the role of Twist1 in this process is a crucial step to contribute to the identification of new targets for pancreatic cancer treatment and the improvement of existing treatment strategies.
Collapse
Affiliation(s)
- Kubra Sena Bas Topcu
- Department of Molecular Biology and Genetics, Faculty of ScienceBartin UniversityBartinTürkiye
- Department of Molecular Biology and Genetics, Faculty of art and ScienceTokat Gaziosmanpasa UniversityTokatTürkiye
| | - Ercan Cacan
- Department of Molecular Biology and Genetics, Faculty of art and ScienceTokat Gaziosmanpasa UniversityTokatTürkiye
| |
Collapse
|
2
|
Sivapragasam N, Maurya A, Tiwari S, Dwivedy AK, Jain S, Thorakkattu P, Koirala P, Nirmal N. Edible Berries- An Update on Nutritional Composition and Health Benefits- Part III. Curr Nutr Rep 2025; 14:11. [PMID: 39753793 DOI: 10.1007/s13668-024-00606-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2024] [Indexed: 01/14/2025]
Abstract
PURPOSE OF REVIEW The diverse polyphenolic components present in these berries are responsible for their functional properties in human health. Hence, there is an increasing demand for research in berry bioactive components to understand the mechanism of action in alleviating and preventing diseases. Therefore, in this last part-III of the review series, mulberry, raspberry, salmonberry, Saskatoonberry, and strawberry are discussed in terms of their bioactive components and corresponding substantial health benefits. RECENT FINDINGS The aforementioned berries provide essential and nonessential amino acids, vitamins, minerals, and various phenolic compounds. Similar to the other reported berries, these berries possess good antioxidant, anti-inflammatory, antimicrobial, antidiabetic, and neuroprotective effects. The bioactive components present in the berries are crucial for the overall well-being of humans and hence consumption of berries mentioned in part-III as well as part-I and part-II possesses substantial health benefits, particularly cognitive and cardio health.
Collapse
Affiliation(s)
- Nilushni Sivapragasam
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, 15551, Al Ain, United Arab Emirates
| | - Akash Maurya
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shikha Tiwari
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Abhishek Kumar Dwivedy
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Surangna Jain
- Department of Food Science, University of Tennessee, Knoxville, USA
| | - Priyamvada Thorakkattu
- Department of Animal Sciences and Industry/ Food Science Institute, Kansas State University, Manhattan, KS, 66506, USA
| | - Pankaj Koirala
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Nakhon Pathom, 73170, Salaya, Thailand
| | - Nilesh Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Nakhon Pathom, 73170, Salaya, Thailand.
| |
Collapse
|
3
|
Ferraz APCR, Figueiredo PDO, Yoshida NC. Black Mulberry ( Morus nigra L.): A Review of Attributes as an Anticancer Agent to Encourage Pharmaceutical Development. Adv Pharmacol Pharm Sci 2024; 2024:3784092. [PMID: 39529942 PMCID: PMC11554416 DOI: 10.1155/2024/3784092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/06/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024] Open
Abstract
Recent considerations of natural sources as potential anticancer agents have arisen due to the origins of numerous drugs commonly used in chemotherapy. Plant-based drugs, in particular, have attracted attention for offering the advantage of low adverse effects. Among these, the black mulberry plant (Morus nigra L.) stands out as a natural source of polyphenols, widely used to treat metabolic dysfunctions and confer benefits on human health. This study explores the potential of this plant as an anticancer agent, examining its effectiveness based on the type of application of the plant extracts or isolated substances, extraction methods, and its potential biological effects on cancer cells. Consequently, this study contributes to a better understanding of the distribution of phytochemicals in M. nigra and their applications in the context of cancer field. Among the compounds found in black mulberry are flavonoids, chlorogenic acid, cryptochlorogenic acid, and protocatechuic acid, along with cyanidin-3-O-glucoside as the main anthocyanin on the fruit. The phytochemicals derived from M. nigra exhibit antinociceptive and antimicrobial activities, while also showing protective effects, such as antioxidant properties that underline their potential as anticancer agents. The black mulberry's roots, stem bark, pulp, and leaves are particularly rich sources of anti-inflammatory compounds. Ethanol and methanol extraction methods appear to be the most effective in cancer management, offering compounds that facilitate the integration of apoptosis induction, cell growth inhibition, and cytotoxicity modulation. These results collectively represent the salient biological attributes that positioned black mulberry as a promising anticancer agent. Therefore, these findings highlight the multifaceted potential of M. nigra as an anticancer agent, making a compelling case for further research to advance prospects in the medical field.
Collapse
Affiliation(s)
| | | | - Nídia Cristiane Yoshida
- Federal University of Mato Grosso do Sul (UFMS), Institute of Chemistry, INQUI, Campo Grande 79074-460/549, Brazil
| |
Collapse
|
4
|
Sharifee F, Asadpour L, Shariati S, Salehzadeh A. Facilitation of infectious and non-infectious wound healing using Morus nigra fruit extract ointment: An in vitro and in vivo study. Int Immunopharmacol 2024; 134:112230. [PMID: 38744171 DOI: 10.1016/j.intimp.2024.112230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/24/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
Accelerating wound healing, as well as preventing infection and scar formation are among the most important medical challenges. This study aims to examine the antimicrobial, immunomodulatory, and anticancer properties of Morus nigra. The antimicrobial activities of ripe and unripe M. nigra fruit (MNF) extracts were tested. HPLC was employed to measure the components in the extract. Oserin ointment was made with 8 % extract. To test the ointment, 48 Wistar rats were randomly assigned into eight groups. The ointment was used daily by treating the wounds. Tissue histology and wound healing were assessed over nine days. Comparative evaluation of wound healing was conducted by analyzing TGF-β, TNF-α, and IL-1 mRNA levels. Finally, cytotoxic effects on AGS cancer and NIH-3 T3 fibroblast cells were examined. The ANOVA test and Prsim program were used for statistical analysis. Unripe MNF extract had good antimicrobial properties in standard and nosocomial strains. The most abundant compound in the extract was ascorbic acid (0.0441 mg/10 mg extract), followed by naringenin and gallic acid. In all groups treated with MNF extract ointment, a significant reduction in wound area was observed compared to other groups (p < 0.05). After six days of treatment, the microbial load was uncountable. In the microscopic studies of the wounds, a significant increase was observed in fibroblasts, angiogenesis, and in neutrophils in the first days as well as a decrease in the final days. The treatment caused a significant decline in the expression of IL-1 and TNF-α genes, as well as an increase in the expression of TGF-β (p < 0.05). This extract had no significant cytotoxic effects on human fibroblast cells (p > 0.05). In general, it can be concluded that the unripe MNF extract ointment can be a suitable option for the treatment of infectious and non-infectious skin wounds.
Collapse
Affiliation(s)
- Farhad Sharifee
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Leila Asadpour
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran.
| | - Shahab Shariati
- Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Ali Salehzadeh
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| |
Collapse
|
5
|
Rumpa MM, Maier C. TRPV1-Dependent Antiproliferative Activity of Dioecious Maclura pomifera Extracts in Estrogen Receptor-Positive Breast Cancer Cell Lines Involves Multiple Apoptotic Pathways. Int J Mol Sci 2024; 25:5258. [PMID: 38791297 PMCID: PMC11120667 DOI: 10.3390/ijms25105258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Globally, breast cancer is a significant cause of mortality. Recent research focused on identifying compounds regulating the transient receptor potential vanilloid 1 (TRPV1) ion channel activity for the possibility of developing cancer therapeutics. In this study, the antiproliferative properties and mechanisms of action through TRPV1 of Maclura pomifera, a dioecious tree native to the south-central USA, have been investigated. Male and female extracts of spring branch tissues and leaves (500 µg/mL) significantly reduced the viability of MCF-7 and T47D cells by 75-80%. M. pomifera extracts induced apoptosis by triggering intracellular calcium overload via TRPV1. Blocking TRPV1 with the capsazepine antagonist and pretreating cells with the BAPTA-AM chelator boosted cell viability, revealing that M. pomifera phytochemicals activate TRPV1. Both male and female M. pomifera extracts initiated apoptosis through multiple pathways, the mitochondrial, ERK-induced, and endoplasmic reticulum-stress-mediated apoptotic pathways, demonstrated by the expression of activated caspase 3, caspase 9, caspase 8, FADD, FAS, ATF4, and CHOP, the overexpression of phosphorylated PERK and ERK proteins, and the reduction of BCL-2 levels. In addition, AKT and pAKT protein expressions were reduced in female M. pomifera-treated cells, revealing that female plant extract also inhibits PI3K/Akt signaling pathways. These results suggest that phytochemicals in M. pomifera extracts could be promising for developing breast cancer therapeutics.
Collapse
Affiliation(s)
| | - Camelia Maier
- Division of Biology, School of the Sciences, Texas Woman’s University, Denton, TX 76204, USA;
| |
Collapse
|
6
|
Martins MS, Rodrigues M, Flores-Félix JD, Garcia-Viguera C, Moreno DA, Alves G, Silva LR, Gonçalves AC. The Effect of Phenolic-Rich Extracts of Rubus fruticosus, R. ulmifolius and Morus nigra on Oxidative Stress and Caco-2 Inhibition Growth. Nutrients 2024; 16:1361. [PMID: 38732606 PMCID: PMC11085810 DOI: 10.3390/nu16091361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Currently, a clear interest has been given to berries due to their richness in active metabolites, including anthocyanins and non-coloured phenolics. Therefore, the main aim of the present work is to investigate the phenolic profile, antioxidant abilities, and antiproliferative effects on normal human dermal fibroblasts (NHDF) and human colon carcinoma cell line (Caco-2) cells of phenolic-rich extracts from three red fruits highly appreciated by consumers: two species of blackberries (Rubus fruticosus and Rubus ulmifolius) and one species of mulberry (Morus nigra). A total of 19 different phenolics were identified and quantified by HPLC-DAD-ESI/MSn and HPLC-DAD, respectively. Focusing on the biological potential of the phenolic-rich extracts, all of them revealed notable scavenging abilities. Concerning the antiproliferative properties, R. fruticosus presented a cytotoxic selectivity for Caco-2 cells compared to NHDF cells. To deeper explore the biological potential, combinations with positive controls (ascorbic acid and 5-fluorouracil) were also conducted. Finally, the obtained data are another piece of evidence that the combination of phenolic-rich extracts from natural plants with positive controls may reduce clinical therapy costs and the possible toxicity of chemical drugs.
Collapse
Affiliation(s)
- Mariana S. Martins
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (M.S.M.); (M.R.); (J.D.F.-F.); (G.A.)
| | - Márcio Rodrigues
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (M.S.M.); (M.R.); (J.D.F.-F.); (G.A.)
- Research Unit for Inland Development, Polytechnic Institute of Guarda (UDI-IPG), 6300-654 Guarda, Portugal
| | - José David Flores-Félix
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (M.S.M.); (M.R.); (J.D.F.-F.); (G.A.)
- Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain
| | - Cristina Garcia-Viguera
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), Department Food Science and Technology, CSIC, CEBAS, Campus Universitario 25, Espinardo, 30100 Murcia, Spain; (C.G.-V.); (D.A.M.)
| | - Diego A. Moreno
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), Department Food Science and Technology, CSIC, CEBAS, Campus Universitario 25, Espinardo, 30100 Murcia, Spain; (C.G.-V.); (D.A.M.)
| | - Gilberto Alves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (M.S.M.); (M.R.); (J.D.F.-F.); (G.A.)
| | - Luís R. Silva
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (M.S.M.); (M.R.); (J.D.F.-F.); (G.A.)
- SPRINT—Sport Physical Activity and Health Research & Innovation Center, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
- CERES, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Ana C. Gonçalves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal; (M.S.M.); (M.R.); (J.D.F.-F.); (G.A.)
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
7
|
Maimaitiyiming R, Zhang H, Wang J, Wang L, Zhao L, Liu B, Chen K, Aihaiti A. A Novel Strategy for Mixed Jam Evaluation: Apparent Indicator, Sensory, Metabolomic, and GC-IMS Analysis. Foods 2024; 13:1104. [PMID: 38611408 PMCID: PMC11011859 DOI: 10.3390/foods13071104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Jam is a popular traditional and modern food product for daily consumption. However, the benefits of mixed jams over single-fruit jams have not been thoroughly explored, with analyses limited to superficial indices. In this study, Xinjiang special Morus nigra L. and Prunus domestica L. were used as raw materials to prepare single-fruit and mixed jams, and their differences in antioxidants, organoleptic qualities, pH, texture, and color were analyzed. The dynamics of metabolites before and after thermal processing were assessed using untargeted metabolomics. The results indicate that the main metabolites were flavonoids, terpenoids, amino acids, phenolic acids, and carbohydrates. Flavonoid metabolites changed significantly after thermal processing, with 40 up-regulated and 13 down-regulated. During storage, polyphenols were the prominent differential metabolites, with fifty-four down-regulated and one up-regulated. Volatile aroma components were analyzed using gas chromatography-ion mobility spectrometry (GC-IMS); the aroma components E-2-hexenal, E-2-pentenal, 3-methylbutanal, 1-penten-3-ol, tetrahydro-linalool, 1-penten-3-one, hexyl propionate, isoamyl acetate, α-pinene, and propionic acid in mixed jam were significantly higher than in single-fruit jam. In this study, untargeted metabolomics and GC-IMS were used to provide a more comprehensive and in-depth evaluation system for jam analysis.
Collapse
Affiliation(s)
- Ruxianguli Maimaitiyiming
- School of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (R.M.); (H.Z.); (J.W.); (L.W.); (L.Z.), (B.L.)
| | - Huimin Zhang
- School of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (R.M.); (H.Z.); (J.W.); (L.W.); (L.Z.), (B.L.)
| | - Jiayi Wang
- School of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (R.M.); (H.Z.); (J.W.); (L.W.); (L.Z.), (B.L.)
| | - Liang Wang
- School of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (R.M.); (H.Z.); (J.W.); (L.W.); (L.Z.), (B.L.)
| | - Lei Zhao
- School of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (R.M.); (H.Z.); (J.W.); (L.W.); (L.Z.), (B.L.)
| | - Bingze Liu
- School of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (R.M.); (H.Z.); (J.W.); (L.W.); (L.Z.), (B.L.)
| | - Keping Chen
- Xinjiang Huize Food Limited Liability Company, Urumqi 830046, China;
| | - Aihemaitijiang Aihaiti
- School of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (R.M.); (H.Z.); (J.W.); (L.W.); (L.Z.), (B.L.)
| |
Collapse
|
8
|
Ozturk Öztürk DA, Erden Y, Tekin S. Central MOTS-c infusion affects reproductive hormones in obese and non-obese rats. Neurosci Lett 2024; 826:137722. [PMID: 38462167 DOI: 10.1016/j.neulet.2024.137722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
MOTS-c, a mitochondrial-derived peptide, acts as a systemic hormone and MOTS-c level is inversely correlated with markers of obesity. Obesity is a risk factor for male reproductive physiology and is expressed as an important cause of infertility. In this study, we aimed to determine the effects of MOTS-c, which has been proven in the hypothalamus and testicles, on the actors involved in the reproductive axis. In the study, 80 male Wistar-Albino rats were divided into two main groups, obese and non-obese (n = 40). Rats in the first main group were fed with fatty diet feed and obesity was induced. The second main group was fed with normal diet feed. Each main group was divided into 4 subgroups (Control, Sham, 10 and 100 µM MOTS-c). The lateral ventricles of the animals in the treatment groups were infused with 10 and 100 µM MOTS-c (solvent in Sham group) for 14 days. At the end of the experiment, hypothalamic Gonadotropin-Releasing Hormone (GnRH) gene expression level, serum testosterone, Luteinizing hormone (LH) and Follicle stimulating hormone (FSH) levels were determined. MOTS-c infusion caused an increase in GnRH mRNA, protein expression levels and serum testosterone, LH and FSH levels in obese and non-obese rats (p < 0.05). MOTS-c administration more significantly upregulated hormone levels in non-obese rats (p < 0.05). MOTS-c administration increases these hormones, suggesting that MOTS-c may stimulate the reproductive axis. Our results reveal that MOTS-c plays a role in the central regulation of reproduction, as well as causes increased LH, FSH and testosterone release.
Collapse
Affiliation(s)
| | - Yavuz Erden
- Department of Molecular Biology and Genetics, Faculty of Science, Bartin University, Bartin, Turkey.
| | - Suat Tekin
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya, Turkey.
| |
Collapse
|
9
|
Alves LP, Dos Santos WM, de Souza ML, Rolim LA, Rolim-Neto PJ. Herbal Technological Prospects of Morus nigra L.: A Systematic Patent Analysis Review. Recent Pat Biotechnol 2024; 18:241-256. [PMID: 37605394 DOI: 10.2174/1872208317666230821102411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/18/2023] [Accepted: 07/14/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Morus nigra L. is a plant with significant potential for drug development due to the presence of numerous bioactive compounds in its various parts. OBJECTIVES This article aims to compile the technological perspectives of Morus nigra L. towards drug development and therapeutic indications based on registered patents in databases. METHODS The study analyzed patents published within the last five years, focusing on products derived from different parts of the Morus nigra L. plant. Patent databases such as the European Patent Office (EPO), the United States Patent and Trademark Office (USPTO), the World Intellectual Property Organization (WIPO), and the National Institute of Industrial Property Databases (INPI) were examined. RESULTS A total of 45 patents were categorized by country of origin, type of applicant, extraction method, and therapeutic indications. China had the highest number of patent filings (43.48%), and private companies were the primary technology patent holders (38.64%). Noteworthy extraction methods included ultrasound-assisted extraction, decoction, infusion, and maceration. The most utilized plant parts were leaves (44.44%), followed by fruits (35.56%), root bark (15.56%), and stems (4.44%). The main therapeutic indications identified were the treatment of hyperglycemia and dyslipidemia (43.33%), along with digestive problems, cosmetics, nutrition, and cleaning applications. CONCLUSION The study of patents covers discoveries and advancements often absent in scientific articles, making a review focused on this advanced information crucial for expanding existing scientific knowledge. Even if some therapies have been explored previously, patents can reveal innovative approaches and fresh perspectives that contribute to sustained scientific progress.
Collapse
Affiliation(s)
- Larissa Pereira Alves
- Laboratory of Drug Technology, Department of Pharmaceutical Sciences, Federal University of Pernambuco. Av. Prof.Artur de Sá - Cidade Universitária, Recife, Pernambuco, Brazil
| | - Widson Michael Dos Santos
- Laboratory of Drug Technology, Department of Pharmaceutical Sciences, Federal University of Pernambuco. Av. Prof.Artur de Sá - Cidade Universitária, Recife, Pernambuco, Brazil
| | - Myla Lôbo de Souza
- Laboratory of Drug Technology, Department of Pharmaceutical Sciences, Federal University of Pernambuco. Av. Prof.Artur de Sá - Cidade Universitária, Recife, Pernambuco, Brazil
| | - Larissa Araújo Rolim
- Drug, Medicine and Food Analytical Center, College of Pharmaceutical Sciences, Federal University of Vale do São Francisco, Av. José de Sá Maniçoba, Petrolina, Pernambuco, Brazil
| | - Pedro José Rolim-Neto
- Laboratory of Drug Technology, Department of Pharmaceutical Sciences, Federal University of Pernambuco. Av. Prof.Artur de Sá - Cidade Universitária, Recife, Pernambuco, Brazil
| |
Collapse
|
10
|
Wani MY, Ganie NA, Wani DM, Wani AW, Dar SQ, Khan AH, A Khan N, Manzar MS, Dehghani MH. The phenolic components extracted from mulberry fruits as bioactive compounds against cancer: A review. Phytother Res 2023; 37:1136-1152. [PMID: 36592613 DOI: 10.1002/ptr.7713] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 11/02/2022] [Accepted: 11/26/2022] [Indexed: 01/03/2023]
Abstract
In Asia, mulberry has long been used to treat various infectious and internal ailments as a traditional medication. The compounds found in it have the potential to improve human health. Because there is no approved and defined evaluation procedure, it has not been formally or scientifically recognized. As a result of these investigations, a new frontier in traditional Chinese medicine has opened up, with the possibility of modernization, for the interaction between active components of mulberry and their biological activities. These studies have used current biotechnological technologies. For ages, mulberry has been used as an herbal remedy in Asia to cure various diseases and internal disorders. It has a high concentration of bioactive chemicals that benefit human health. The most abundant phenolic components extracted from white mulberry leaves are flavonoids (Kuwanons, Moracinflavans, Moragrols, and Morkotins), phenolic acids, alkaloids, and so forth. Flavonoids, benzofurans, chalcones, and alkaloids have been discovered to have cytotoxic effects on human cancer cell lines. There is growing evidence that mulberry fruits can potentially prevent cancer and other aging-related disorders due to their high concentration of bioactive polyphenolic-rich compounds and macro and micronutrients. Anthocyanins are rapidly absorbed after eating, arriving in the plasmalemma within 15-50 min and entirely removed after 6-8 hr. Due to a lack of an approved and consistent technique for its examination, it has yet to be formally or scientifically recognized. The mulberry plant is commercially grown for silkworm rearing, and less attention is paid to its bioactive molecules, which have a lot of applications in human health. This review paper discusses the phenolic compounds of white mulberry and black mulberry in detail concerning their role in cancer prevention.
Collapse
Affiliation(s)
- Mohd Younus Wani
- College of Temperate Sericulture, Mirgund, SKUAST-Kashmir, Shalimar, India
| | - N A Ganie
- College of Temperate Sericulture, Mirgund, SKUAST-Kashmir, Shalimar, India
| | - D M Wani
- Division of Entomology, SKUAST-Kashmir, Shalimar, India
| | - Ab Waheed Wani
- Division of Fruit Science, SKUAST-Kashmir, Shalimar, India
| | - S Q Dar
- Division of Fruit Science, SKUAST-Kashmir, Shalimar, India
| | - Afzal Husain Khan
- Civil Engineering Department, College of Engineering, Jazan University, Jizan, Saudi Arabia
| | - Nadeem A Khan
- Civil Engineering Department, Mewat Engineering College, New Delhi, India
| | - Mohammad Saood Manzar
- Department of Environmental Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Institute for Environmental Research, Center for Solid Waste Research, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Sericultural By-Products: The Potential for Alternative Therapy in Cancer Drug Design. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020850. [PMID: 36677907 PMCID: PMC9861160 DOI: 10.3390/molecules28020850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
Major progress has been made in cancer research; however, cancer remains one of the most important health-related burdens. Sericulture importance is no longer limited to the textile industry, but its by-products, such as silk fibroin or mulberry, exhibit great impact in the cancer research area. Fibroin, the pivotal compound that is found in silk, owns superior biocompatibility and biodegradability, representing one of the most important biomaterials. Numerous studies have reported its successful use as a drug delivery system, and it is currently used to develop three-dimensional tumor models that lead to a better understanding of cancer biology and play a great role in the development of novel antitumoral strategies. Moreover, sericin's cytotoxic effect on various tumoral cell lines has been reported, but also, it has been used as a nanocarrier for target therapeutic agents. On the other hand, mulberry compounds include various bioactive elements that are well known for their antitumoral activities, such as polyphenols or anthocyanins. In this review, the latest progress of using sericultural by-products in cancer therapy is discussed by highlighting their notable impact in developing novel effective drug strategies.
Collapse
|
12
|
Cheng J, Wang Y, Song J, Liu Y, Ji W, He L, Wei H, Hu C, Jiang Y, Xing Y, Huang X, Ding H, He Q. Characterization, immunostimulatory and antitumor activities of a β-galactoglucofurannan from cultivated Sanghuangporus vaninii under forest. Front Nutr 2022; 9:1058131. [PMID: 36618684 PMCID: PMC9812957 DOI: 10.3389/fnut.2022.1058131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
A biomacromolecule, named as β-galactoglucofurannan (SVPS2), was isolated from the cultivated parts of Sanghuangporus vaninii under the forest. Its primary and advanced structure was analyzed by a series of techniques including GC-MS, methylation, NMR, MALS as well as AFM. The results indicated that SVPS2 was a kind of 1, 5-linked β-Glucofurannan consisting of β-glucose, β-galactose and α-fucose with 23.4 KDa. It exhibited a single-stranded chain with an average height of 0.72 nm in saline solution. The immunostimulation test indicated SVPS2 could facilitate the initiation of the immune reaction and promote the secretion of cytokines in vitro. Moreover, SVPS2 could mediate the apoptosis of HT-29 cells by blocking them in S phase. Western blot assay revealed an upregulation of Bax, Cytochrome c and cleaved caspase-3 by SVPS2, accompanied by a downregulation of Bcl-2. These results collectively demonstrate that antitumor mechanism of SVPS2 may be associated with enhancing immune response and inducing apoptosis of tumor cells in vitro. Therefore, SVPS2 might be utilized as a promising therapeutic agent against colon cancer and functional food with immunomodulatory activity.
Collapse
Affiliation(s)
- Junwen Cheng
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China
| | - Yanbin Wang
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China
| | - Jiling Song
- Institute of Horticulture, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Yu Liu
- Institute of Biochemistry, College of Life Sciences, Institute of Biochemistry, Zhejiang University, Hangzhou, China
| | - Weiwei Ji
- Huzhou Liangxi Forest Park Management Office, Huzhou, China
| | - Liang He
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China,*Correspondence: Liang He ✉
| | - Hailong Wei
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China,Hailong Wei ✉
| | - Chuanjiu Hu
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China
| | - Yihan Jiang
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China,School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Yiqi Xing
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China,School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Xubo Huang
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China
| | - Hongmei Ding
- Center of Forecasting and Analysis, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qinghai He
- Key Laboratory of Biological and Chemical Utilization of Zhejiang Forest Resources, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China
| |
Collapse
|
13
|
Maqsood M, Anam Saeed R, Sahar A, Khan MI. Mulberry plant as a source of functional food with therapeutic and nutritional applications: A review. J Food Biochem 2022; 46:e14263. [PMID: 35642132 DOI: 10.1111/jfbc.14263] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/26/2022] [Accepted: 05/10/2022] [Indexed: 12/29/2022]
Abstract
Medicinal plants from the family Moraceae have diverse applications in agriculture, cosmetics, food, and the pharmaceutical industry. Their extensive spectrum of pharmacological activity for treating numerous inflammatory illnesses, cancer, cardiovascular diseases, and gastrointestinal problems reflects their biological and therapeutic value. This article summarizes the molecular mechanisms related to the biological implications of mulberry extracts, fractions, and isolated bioactive compounds from different parts in various health-related ailments. Additionally, the food industry and animal nutrition applications are summarized. Phytochemicals such as steroids, saponins, alkaloids, glycosides, polysaccharides, and phenolic compounds including terpenoids, flavonoids, anthocyanins, and tannins are found in this medicinal plant. The aqueous, ethanolic, and methanolic extracts, as well as bioactive compounds, have anti-oxidative, hypoglycemic, nephroprotective, antimicrobial, neuroprotective, anti-mutagenic, hepatoprotective, anthelmintic, immune-modulatory, cardioprotective, and skin protecting activities. Mulberry supplementation in food products improves the stability of phenolics, sensory properties, antioxidant activity, and antimicrobial properties. Mulberry leaves in animal feed increase the nutrient digestibility, growth parameters, antimicrobial, and antioxidant properties. PRACTICAL APPLICATIONS: This review summarized the in vivo and in vitro biological activities of the mulberry and isolated constituents in various health conditions. In addition, the food uses such as antioxidant potential, antimicrobial, and physicochemical properties were discussed. Furthermore, in vivo studies revealed mulberry as a significant protein source and its flavonoids as potential animal foliage.
Collapse
Affiliation(s)
- Maria Maqsood
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Raakia Anam Saeed
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Amna Sahar
- Department of Food Engineering, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Issa Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
14
|
Maqsood M, Khan MI, Sharif MK, Faisal MN. Phytochemical characterization of Morus nigra fruit ultrasound-assisted ethanolic extract for its cardioprotective potential. J Food Biochem 2022; 46:e14335. [PMID: 35848720 DOI: 10.1111/jfbc.14335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/13/2022] [Accepted: 07/04/2022] [Indexed: 12/29/2022]
Abstract
The current work investigated the phytochemical profile of ultrasound-assisted ethanolic extract of Morus nigra (M. nigra) fruit. FTIR analysis of M. nigra fruit extract revealed the presence of alcohols (O-H), alkanes (C-H stretch), alkenes (C=C), and alkynes (C≡C). The HPLC analysis quantified the quercetin, gallic acid, vanillic acid, chlorogenic acid, syringic acid, cinnamic acid, sinapic acid, and kaempferol. Furthermore, the cardioprotective activity of ethanolic extract of M. nigra fruit was investigated. Cholesterol supplementation (2%) in the daily diet and exposure to cigarette smoke (2 cigarettes twice a day) were to induce hypertension in rats. The experimental animals were categorized into four groups: G0 (negative control), G1 (positive control), G2 (standard drug), and G3 (M. nigra fruit). The fruit extract administration at 300 mg/kg BW/day orally for 2 months significantly (p < .001) enhanced the activities of serum and cardiac tissue antioxidants in hypertensive rats. Meanwhile, the fruit extract reduced the elevated serum lipid profile while significantly increasing the high-density lipoproteins in G3 than G1 and G2. The increase in blood pressure, liver transaminases, and serum lactate dehydrogenase also reduced significantly in M. nigra fruit extract-treated rats. Histopathological findings revealed mild normalization of cardiac myocytes with central nuclei, branching, and cross-striations. Consequently, the M. nigra fruit extract exerted the cardioprotective potential via increasing the antioxidant enzymes and reducing the lipids, lactate dehydrogenase, liver transaminases, and blood pressure. The therapeutic potential of M. nigra fruit can be due to flavonols and phenolic acids. PRACTICAL APPLICATIONS: The present work quantified the Morus nigra fruit phytochemicals and its significant role in reducing lipid markers and blood pressure and improving antioxidant status in rats fed a hypercholesterolemic diet and exposed to cigarette smoke. Conclusively, the inclusion of M. nigra fruit in daily diet could improve the cardiac health of the individuals. Furthermore, the therapeutic potential of M. nigra fruit and its isolated constituents in modulating the gene expression against cardiac problems can explore after clinical trials and standardization in higher animals.
Collapse
Affiliation(s)
- Maria Maqsood
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Issa Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Mian Kamran Sharif
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Naeem Faisal
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
15
|
Capsanthin induces death in human prostate cancer cell lines by inducing DNA damage. THE EUROBIOTECH JOURNAL 2022. [DOI: 10.2478/ebtj-2022-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
There is a relationship between a person’s diet and the development and prevention of some cancers. Carotenoids are found as various natural pigments in many fruits and vegetables. Studies on carotenoids and their potential roles in carcinogenesis are increasing in importance day by day. In this study, we aimed to determine the cytotoxic and genotoxic effects of capsanthin, a carotenoid compound, in human prostate cancer cell lines.
After different concentrations of capsanthin were applied to human prostate cancer cell lines (LNCaP and PC-3), the effects of the compound on cell viability were determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test. The single-cell gel electrophoresis (Comet) assay was then used to reveal the genotoxic effects of probable cytotoxic dosages on cell DNA. After the treatments, apoptotic cell death levels were determined by Tunel staining. At high concentrations, capsanthin dramatically reduced PC-3 and LNCaP cell viability (p<0.05). In addition, capsanthin caused DNA damage and apoptotic cell death in the prostate cancer cells. The results show that capsanthin reduces cell viability by causing genotoxicity in prostate cancer cells.
Collapse
|
16
|
Hao J, Gao Y, Xue J, Yang Y, Yin J, Wu T, Zhang M. Phytochemicals, Pharmacological Effects and Molecular Mechanisms of Mulberry. Foods 2022; 11:1170. [PMID: 35454757 PMCID: PMC9028580 DOI: 10.3390/foods11081170] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
There are numerous varieties of mulberry, and each has high medicinal value and is regarded as a promising source of traditional medicines and functional foods. Nevertheless, the nutrients and uses of mulberry differ from species (Morus alba L., Morus nigra L. and Morus rubra L.). Phenolic compounds are prominent among the biologically active ingredients in mulberry, especially flavonoids, anthocyanins and phenolic acids. Epidemiologic studies suggest that mulberry contains a rich, effective chemical composition and a wide range of biological activity, such as antioxidant, anti-inflammatory, anti-tumor and so on. However, compared with other berries, there has been a lack of systematic research on mulberry, and this hinders its further expansion as a functional fruit. The main purpose of this review is to provide the latest data regarding the effective chemical constituents and pharmacological effects of mulberry to support its further therapeutic potential and health functions.
Collapse
Affiliation(s)
- Junyu Hao
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (J.H.); (J.X.); (J.Y.); (M.Z.)
| | - Yufang Gao
- National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China;
| | - Jiabao Xue
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (J.H.); (J.X.); (J.Y.); (M.Z.)
| | - Yunyun Yang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China;
| | - Jinjin Yin
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (J.H.); (J.X.); (J.Y.); (M.Z.)
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (J.H.); (J.X.); (J.Y.); (M.Z.)
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China; (J.H.); (J.X.); (J.Y.); (M.Z.)
- College of Food Science and Bioengineering, Tianjin Agricultural University, Tianjin 300384, China
| |
Collapse
|
17
|
Effects of meteorin-like hormone on endocrine function of hypothalamo-hypophysial system and peripheral uncoupling proteins in rats. Mol Biol Rep 2022; 49:5919-5925. [PMID: 35332411 DOI: 10.1007/s11033-022-07374-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Meteorin-like hormone (Metrnl) is a peptide secreted from the adipose tissue and modulates the whole-body energy metabolism. Metrnl release into the circulation is influenced by obesity, cold exposure, and exercise. Thyroid hormones also exert many of their effects on metabolism through uncoupling proteins (UCPs). This study aimed to determine effect of Metrnl on hypothalamo-hypophysier-thyroid axis and energy metabolism and reveal the possible involvement of UCPs in this process. METHODS AND RESULTS Fourty male Sprague-Dawley rats were divided into 4 groups with 10 animals in each group: control, sham, 10 and 100 nM Metrnl. Hypothalamus, muscle, white adipose tissue (WAT) and brown adipose tissue (BAT) samples were collected to detect thyrotropin-releasing hormone (TRH), and UCP1 and UCP3 protein levels by western blot analysis. Serum thyroid-stimulating hormone (TSH), triiodothyronine (T3) and thyroxine (T4) hormone levels were determined by enzyme-linked immunosorbent assay. Central infusion of Metrnl caused significant increase in serum TSH, T3 and T4 levels compared to control (p < 0.05). After Metrnl treatment, there were significant increases in TRH in hypothalamus tissue, UCP1 in WAT and BAT; and UCP3 protein in the muscle tissue (p < 0.05). CONCLUSIONS The findings that Metrnl induced increases in the peripheral UCPs and hypothalamus-pituitary-thyroid axis hormones implicate a role for this hormone in body energy homeostasis through UCP-mediated mechanisms.
Collapse
|
18
|
Keskin T, Erden Y, Tekin S. Intracerebroventricular asprosin administration strongly stimulates hypothalamic-pituitary-testicular axis in rats. Mol Cell Endocrinol 2021; 538:111451. [PMID: 34500042 DOI: 10.1016/j.mce.2021.111451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/08/2021] [Accepted: 08/16/2021] [Indexed: 12/17/2022]
Abstract
Asprosin, a protein-based secretary product of white adipose tissue, stimulates appetite hepatic glucose production. It crosses blood-brain barrier and stimulates appetite center and causes sperm chemotaxis but exact role of this endogenous agent is not completely known. This study was conducted to investigate possible effects of central asprosin infusion on the hormones involved in the hypothalamic-pituitary-testicular (HPT) axis and sperm cells. Spraque Dawley male rats were divided into four groups; control, sham, low asprosin (34) and high asprosin (68 nM) groups, (n = 10 for each group). Control group remain intact while a brain infusion kit was placed in the lateral ventricles of the rats in the sham group (artificial cerebrospinal fluid) and asprosin (34 and 68 nM) was infused for 14 days. At the end of the experiment, the hypothalamus, blood, and epididymis tissues of the rats were collected. Gonadotropin-releasing hormone (GnRH) mRNA and tissue protein levels were determined in the hypothalamus tissue by RT-PCR and Western Blot methods. Serum luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone levels were examined using the ELISA method from blood samples and sperm cells were examined in the epididymis tissue. GnRH mRNA and protein expressions of asprosin administered groups were higher than control and sham groups (p < 0.05). Asprosin infusion was also found to increase serum FSH, LH, and testosterone levels (p < 0.05). In addition, sperm density, motility, and progressive movement were observed to increase in asprosin administered groups (p < 0.05). This study suggests that central asprosin stimulate the HPT axis and also epididymis tissue. Our results implicates potential role for asprosin in male infertility.
Collapse
Affiliation(s)
- Tuba Keskin
- Inonu University, Faculty of Medicine, Department of Physiology, Malatya, Turkey
| | - Yavuz Erden
- Bartin University, Faculty of Science, Department of Molecular Biology and Genetics, Bartin, Turkey
| | - Suat Tekin
- Inonu University, Faculty of Medicine, Department of Physiology, Malatya, Turkey.
| |
Collapse
|