1
|
Yang Y, Kilmartin PA. Advancing anthocyanin extraction: Optimising solvent, preservation, and microwave techniques for enhanced recovery from merlot grape marc. Food Chem 2025; 472:142648. [PMID: 39862609 DOI: 10.1016/j.foodchem.2024.142648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/09/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025]
Abstract
Grape marc, a by-product of winemaking, is a rich source of bioactive compounds, yet efficient extraction methods suitable for industrial application remain underexplored. This study presents an integrated, three-stage approach to optimise the extraction of anthocyanins, phenolics, and tannins from Merlot grape marc. In the first stage, 12 solvents were evaluated using conventional solvent extraction, with 50 % ethanol (EtOH) acidified with hydrochloric acid (HCl) achieving the highest anthocyanin recovery after eight extraction cycles (0.66 g/kg of grape marc), followed by formic acid (0.59 g/kg) and citric acid (0.58 g/kg) treatments. The second stage assessed drying methods across eight temperatures combined with a single extraction cycle using 50 % EtOH HCl, identifying 70 °C as the optimal heat-drying condition (1.23 g/kg total anthocyanins, 0.4 g/kg monomeric anthocyanins). Freeze-drying at -105 °C (TN105) with a prewash step (SRT105) further enhanced anthocyanin yields (2.24 g/kg total anthocyanins, 0.69 g/kg monomeric anthocyanins). In the final stage, microwave-assisted extraction significantly increased recovery, with SRT105-MW in 50 % EtOH HCl yielding 8.07 g/100 g total phenolics, 5.76 g/100 g tannins, 3.7 g/kg total anthocyanins, and 2.8 g/kg monomeric anthocyanins. This optimised method preserved anthocyanin composition, including malvidin- and peonidin-3-glucosides (585 and 560 mg/kg, respectively), along with cyanidin-, delphinidin-, and petunidin-3-glucosides (463, 360, and 257 mg/kg, respectively), as well as 66-99 mg/kg of acylated and 37-60 mg/kg of coumaroylated anthocyanins. Citric acid (50 % EtOH CA) demonstrated potential as a sustainable alternative, achieving ∼90 % of the anthocyanin yield of HCl treatments. These findings offer a practical, scalable framework for industrial anthocyanin recovery, advancing sustainable utilisation of grape marc.
Collapse
Affiliation(s)
- Yi Yang
- Wine Science Programme, School of Chemical Sciences, The University of Auckland | Waipapa Taumata Rau, 23 Symonds Street, Auckland 1010, New Zealand.
| | - Paul A Kilmartin
- Wine Science Programme, School of Chemical Sciences, The University of Auckland | Waipapa Taumata Rau, 23 Symonds Street, Auckland 1010, New Zealand.
| |
Collapse
|
2
|
Lopes JDC, Madureira J, Margaça FMA, Cabo Verde S. Grape Pomace: A Review of Its Bioactive Phenolic Compounds, Health Benefits, and Applications. Molecules 2025; 30:362. [PMID: 39860231 PMCID: PMC11767471 DOI: 10.3390/molecules30020362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
The wine industry generates high amounts of waste, posing current environmental and economic sustainability challenges. Grape pomace, mainly composed of seeds, skins, and stalks, contains significant amounts of bioactive compounds and constitutes the main solid residue of this industry. Various strategies are being explored for its valorization, from a circular economy perspective. This review provides an updated overview of the composition of grape pomace from winemaking, highlighting sustainable methodologies for extracting phenolic compounds and their potential health benefits, including antioxidant, antimicrobial, antidiabetic, cardioprotective, antiproliferative, anti-aging, and gut health properties. Furthermore, this review explores the potential applications of this agro-industrial waste and its extractable compounds across the food, cosmetic, and pharmaceutical sectors.
Collapse
Affiliation(s)
- Janice da Conceição Lopes
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139.7, 2695-066 Bobadela LRS, Portugal; (J.d.C.L.); (J.M.); (F.M.A.M.)
| | - Joana Madureira
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139.7, 2695-066 Bobadela LRS, Portugal; (J.d.C.L.); (J.M.); (F.M.A.M.)
- Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139.7, 2695-066 Bobadela LRS, Portugal
| | - Fernanda M. A. Margaça
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139.7, 2695-066 Bobadela LRS, Portugal; (J.d.C.L.); (J.M.); (F.M.A.M.)
- Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139.7, 2695-066 Bobadela LRS, Portugal
| | - Sandra Cabo Verde
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139.7, 2695-066 Bobadela LRS, Portugal; (J.d.C.L.); (J.M.); (F.M.A.M.)
- Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139.7, 2695-066 Bobadela LRS, Portugal
| |
Collapse
|
3
|
Córdova A, Catalán S, Carrasco V, Farias FO, Trentin J, López J, Salazar F, Mussagy CU. Sustainable assessment of ultrasound-assisted extraction of anthocyanins with bio-based solvents for upgrading grape pomace Cabernet Sauvignon derived from a winemaking process. ULTRASONICS SONOCHEMISTRY 2025; 112:107201. [PMID: 39705982 PMCID: PMC11718338 DOI: 10.1016/j.ultsonch.2024.107201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
This work assessed the efficiency and sustainability of ultrasound-assisted extraction (UAE) of anthocyanins from grape pomace using bio-based solvents: Ethanol, Isopropanol, Propylene-glycol, and Ethylene-glycol at different concentrations (50 and 100 % v/v) and temperatures (25 °C and 50 °C). Higher ultrasonic intensities (UI) were obtained at 50 °C and 50 % v/v by decreasing solvents viscosities. Under these conditions, anthocyanin extractions were performed with different combinations of solvent to liquid ratio (SLR) at 1:10 and 1:50 g/mL, and UI (3.9 and 13.9 W/cm2). Samples were taken from 0 to 40 min. Ultrasound induced a fast extraction of anthocyanins: a plateau was reached at 5 min and the continuation of the sonication only provoked a marginal increase which is transferred in lower Productivity (Pr) rand higher energy consumptions. The COSMO-SAC model validated solute-solvent interactions, providing robust predictive insights where ethanol showed the highest anthocyanin extraction and productivities (1.094 kg/hL). However, propylene-glycol showed the highest eco-scale scores (∼ 80) within the range defined as "Excellent" and antioxidant capacity (2758.34 ± 6.26 μmol TE/g DM) regardless of the UI, and with very low energy consumption when the extraction was performed at 3.9 W/cm2 and SLR of 1:10 g/mL. These results show that integration of UAE and bio-based solvents presented a sustainable and efficient method for valorizing wine making by-products, with significant improvements with respect to the conventional extraction, thus promoting eco-friendly practices for the food industry, and supporting the circular economy.
Collapse
Affiliation(s)
- Andrés Córdova
- School of Food Engineering, Pontificia Universidad Católica de Valparaíso, Waddington 716, Playa Ancha, Valparaíso 2360100, Chile.
| | - Sebastián Catalán
- School of Food Engineering, Pontificia Universidad Católica de Valparaíso, Waddington 716, Playa Ancha, Valparaíso 2360100, Chile
| | - Vinka Carrasco
- School of Food Engineering, Pontificia Universidad Católica de Valparaíso, Waddington 716, Playa Ancha, Valparaíso 2360100, Chile
| | - Fabiane O Farias
- Department of Chemical Engineering, Polytechnique Center, Federal University of Paraná, Curitiba, Brazil
| | - Julia Trentin
- Department of Chemical Engineering, Polytechnique Center, Federal University of Paraná, Curitiba, Brazil
| | - Jessica López
- School of Food Engineering, Pontificia Universidad Católica de Valparaíso, Waddington 716, Playa Ancha, Valparaíso 2360100, Chile
| | - Fernando Salazar
- School of Food Engineering, Pontificia Universidad Católica de Valparaíso, Waddington 716, Playa Ancha, Valparaíso 2360100, Chile
| | - Cassamo U Mussagy
- School of Agronomy, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile.
| |
Collapse
|
4
|
Wang C, You Y, Huang W, Zhan J. The high-value and sustainable utilization of grape pomace: A review. Food Chem X 2024; 24:101845. [PMID: 39386151 PMCID: PMC11462180 DOI: 10.1016/j.fochx.2024.101845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
A large portion of global grape production has been utilized for wine production, accompanied by tremendous pressure to dispose grape pomace. To achieve circular economy, the high-value recycling of grape pomace must be considered. The social level barriers to circular economy promotion are also important constraints, like the acceptability of upcycled products. The main components of grape pomace and their utilization are summarized, and critical reviews of green extraction methods analyzed the key points of grape pomace recycling process to achieve the goal of sustainability in the production process, culminating in discussions of the factors affecting the acceptability of upcycled products. Grape pomace bioactive substances have higher added value. To realize its green extraction, various emerging technologies need to be made a comprehensive choice. Nevertheless, the acceptability of upcycled products is influenced by personal, context and product factors, optimizing them is essential to remove the constraints of circular economy development.
Collapse
Affiliation(s)
- Changsen Wang
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China. Tsinghua East Road 17, Haidian District, Beijing 100083, China
| | - Yilin You
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China. Tsinghua East Road 17, Haidian District, Beijing 100083, China
| | - Weidong Huang
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China. Tsinghua East Road 17, Haidian District, Beijing 100083, China
| | - Jicheng Zhan
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China. Tsinghua East Road 17, Haidian District, Beijing 100083, China
| |
Collapse
|
5
|
Bas-Bellver C, Barrera C, Seguí L. Impact of Thermophysical and Biological Pretreatments on Antioxidant Properties and Phenolic Profile of Broccoli Stem Products. Foods 2024; 13:3585. [PMID: 39594002 PMCID: PMC11593915 DOI: 10.3390/foods13223585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Fruit and vegetable industrialisation is a major contributor to food waste; thus, its integral transformation into functional powders has gained attention. Pretreatments can be incorporated into valorisation processes to generate structural or biochemical changes that improve powders' characteristics. This study deepens into the impact of biological (fermentation, FERM) and thermophysical (autoclaving, AUTO; microwaves, MW; ultrasound, US; and pasteurisation, PAST) pretreatments, combined with dehydration (hot air-drying, HAD; or freeze-drying, FD) on the characteristics of powdered products obtained from broccoli stems. The impact of pretreatments on physicochemical (moisture, water activity, total soluble solids) and antioxidant properties (phenols, flavonoids, antioxidant capacity by ABTS and DPPH) on residue and powdered products was studied, together with their impact on plant tissue structure (Cryo-SEM) and the powders' phenolic profile (HPLC). Probiotic viability was also determined on the fermented samples. The pretreatments applied, particularly the ultrasound, improved the antioxidant properties of the broccoli stems compared to the unpretreated samples, in line with microscopic observations. Dehydration did also improve the antioxidant attributes of the broccoli wastes, especially drying at 60 °C. However, pretreatments combined with dehydration did not generally lead to an improvement in the antioxidant properties of the powders. Probiotic properties were preserved in the freeze-dried products (>107 CFU/g). In conclusion, pretreatments may be applied to enhance the antioxidant attributes of broccoli wastes, but not necessarily that of dried powdered products.
Collapse
Affiliation(s)
| | | | - Lucía Seguí
- Institute of Food Engineering—FoodUPV, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain; (C.B.-B.); (C.B.)
| |
Collapse
|
6
|
Đurović S, Nikolić B, Pisinov B, Mijin D, Knežević-Jugović Z. Microwave Irradiation as a Powerful Tool for Isolating Isoflavones from Soybean Flour. Molecules 2024; 29:4685. [PMID: 39407613 PMCID: PMC11477798 DOI: 10.3390/molecules29194685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/08/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
The use of microwave irradiation energy for isolating bioactive compounds from plant materials has gained popularity due to its ability to penetrate cells and facilitate extraction of intracellular materials, with the added benefits of minimal or no use of organic solvents. This is particularly significant due to the possibility of using extracts in the food and pharmaceutical industries. The aim of this work is to examine the effect of microwave irradiation on the extraction of three of the most important isoflavones from soybean flour, glycitin, genistin, and daidzin, as well as their aglycones, glycitein, genistein, and daidzein. By varying the extraction time, temperature, and microwave power, we have established the optimal parameters (irradiation power of 75 W for 5 min) for the most efficient extraction of individual isoflavones. Compared to conventional maceration and ultrasound-assisted extraction, the total phenol content of the extracts increased from 3.66 to 9.16 mg GAE/g dw and from 4.67 to 9.16 mg GAE/g dw, respectively. The total flavonoid content increased from 0.38 to 0.83 mg CE/g dw and from 0.48 to 0.83 mg CE/g dw, and the antioxidant activity increased from 96.54 to 185.04 µmol TE/g dw and from 158.57 to 185.04 µmol TE/g dw, but also from 21.97 to 37.16 µmol Fe2+/g dw and from 30.13 to 37.16 µmol Fe2+/g dw. The positive correlation between microwave extraction and increased levels of total phenols, flavonoids, and antioxidant activity demonstrates the method's effectiveness in producing bioactive compounds. Considering the growing recognition of glycitein's potential role in medical and pharmaceutical applications, microwave-assisted extraction under optimized conditions has proven highly efficient.
Collapse
Affiliation(s)
- Sanja Đurović
- Institute for Plant Protection and Environment, Teodora Drajzera 9, 11040 Belgrade, Serbia; (S.Đ.); (B.N.); (B.P.)
| | - Bogdan Nikolić
- Institute for Plant Protection and Environment, Teodora Drajzera 9, 11040 Belgrade, Serbia; (S.Đ.); (B.N.); (B.P.)
| | - Boris Pisinov
- Institute for Plant Protection and Environment, Teodora Drajzera 9, 11040 Belgrade, Serbia; (S.Đ.); (B.N.); (B.P.)
| | - Dušan Mijin
- Department of Organic Chemistry, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| | - Zorica Knežević-Jugović
- Department of Biotechnology and Biochemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| |
Collapse
|
7
|
Peña-Portillo GC, Acuña-Nelson SM, Bastías-Montes JM. From Waste to Wealth: Exploring the Bioactive Potential of Wine By-Products-A Review. Antioxidants (Basel) 2024; 13:992. [PMID: 39199237 PMCID: PMC11351921 DOI: 10.3390/antiox13080992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
The present paper explores the biological potential of bioactive compounds present in wine industry wastes, highlighting their valorization to promote sustainability and circular economy. Wine by-products, such as grape pomace and vine shoots, contain a high concentration of polyphenols, flavonoids, anthocyanins and other phytochemicals with antioxidant, anti-inflammatory and anticarcinogenic properties. Both conventional extraction methods, such as solid-liquid extraction, and emerging technologies, including enzyme-assisted extraction, ultrasound-assisted extraction, supercritical fluid extraction, microwave-assisted extraction, pressurized liquid extraction, high-hydrostatic-pressure extraction, and deep natural solvent-assisted extraction (NaDES), are discussed. In addition, the preservation of polyphenolic extracts by microencapsulation, a key technique to improve the stability and bioavailability of bioactive compounds, is addressed. The combination of advanced extraction methods and innovative preservation techniques offers a promising perspective for the valorization of bioactive compounds from wine residues, driving sustainability and innovation in the industry.
Collapse
Affiliation(s)
| | - Sergio-Miguel Acuña-Nelson
- Departamento de Ingeniería en Alimentos, Universidad del Bío-Bío, Avenida Andrés Bello 720, Chillán 3780000, Chile; (G.-C.P.-P.); (J.-M.B.-M.)
| | | |
Collapse
|
8
|
Melo FDO, Ferreira VC, Barbero GF, Carrera C, Ferreira EDS, Umsza-Guez MA. Extraction of Bioactive Compounds from Wine Lees: A Systematic and Bibliometric Review. Foods 2024; 13:2060. [PMID: 38998566 PMCID: PMC11241285 DOI: 10.3390/foods13132060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
The extraction of bioactive compounds from wine lees involves a variety of methods, the selection of which is crucial to ensure optimal yields. This systematic review, following PRISMA guidelines and utilizing the Web of Science database, aimed to examine the current state of this field, providing insights for future investigations. The search employed strategies with truncation techniques and Boolean operators, followed by a three-step screening using well-defined eligibility criteria. A bibliometric analysis was conducted to identify authors, affiliations, countries/regions, and research trends. Thirty references were selected for analysis, with Spain standing out as the main source of research on the topic. The majority of studies (66%) focused on the extraction of bioactive compounds from alcoholic fermentation lees, while 33% were directed towards malolactic fermentation lees. Binary mixtures (ethanol-water) were the predominant solvents, with ultrasound being the most used extraction method (31.3%), providing the highest average yields (288.6%) for the various evaluated compounds, especially flavonoids. The potential of wine lees as a source of bioactive compounds is highlighted, along with the need for further research exploring alternative extraction technologies and the combination of methods. Additionally, the importance of "in vitro" and "in vivo" tests to assess the bioactive potential of lees, as well as the use of computational tools to optimize extraction and identify the molecules responsible for bioactive activity, is emphasized.
Collapse
Affiliation(s)
- Filipe de Oliveira Melo
- Food Science Postgraduate Program, Faculty of Pharmacy, Federal University of Bahia, Salvador 40170-100, Brazil; (F.d.O.M.); (E.d.S.F.)
| | - Vanessa Cosme Ferreira
- School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas 13083-862, Brazil;
| | - Gerardo Fernandez Barbero
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, 11510 Puerto Real, Spain; (G.F.B.); (C.C.)
| | - Ceferino Carrera
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), Wine and Agrifood Research Institute (IVAGRO), University of Cadiz, 11510 Puerto Real, Spain; (G.F.B.); (C.C.)
| | - Ederlan de Souza Ferreira
- Food Science Postgraduate Program, Faculty of Pharmacy, Federal University of Bahia, Salvador 40170-100, Brazil; (F.d.O.M.); (E.d.S.F.)
| | - Marcelo Andrés Umsza-Guez
- Food Science Postgraduate Program, Faculty of Pharmacy, Federal University of Bahia, Salvador 40170-100, Brazil; (F.d.O.M.); (E.d.S.F.)
| |
Collapse
|
9
|
Hasan M, Tripathi K, Harun M, Krishnan V, Kaushik R, Chawla G, Shakil NA, Verma M, Dahuja A, Sachdev A, Lorezo JM, Kumar M. Unravelling the effect of extraction on anthocyanin functionality and prebiotic potential. Heliyon 2024; 10:e31780. [PMID: 38867956 PMCID: PMC11167309 DOI: 10.1016/j.heliyon.2024.e31780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 05/01/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024] Open
Abstract
Anthocyanins, considered as prebiotic ingredients for functional foods, were extracted from black soybean (BS), black grape (BG), black carrot (BCPm), and black rice (BR) using conventional solvent extraction (CSE) and microwave-assisted extraction (MAE). The study employed a split-plot design with CSE and MAE as main plot factors and anthocyanin extracts (AEs) as subplot factors. Anthocyanins were evaluated for stability (polymeric color, degradation index) and functionality (antioxidant capacity). Prebiotic potential on Lactobacillus rhamnosus, Lactobacillus acidophilus, Weissella confusa was assessed in fermented soymilk. MAE showed higher extraction yield than CSE in BG (3-fold), BS (2-fold), BCPm (1.2-fold), and BR (1.6-fold). Black grape (1255.76 mg/L) and black soybean (976.5 mg/L) had highest anthocyanin with better stability, functionality, and prebiotic potential. The SCFA concentration (propionic acid and butyric acid) increased significantly in BG fortified-fermented soymilk. Overall, anthocyanin-enriched soymilk exhibited higher prebiotic potential, with MAE as the superior extraction method for anthocyanin functionality and stability.
Collapse
Affiliation(s)
- Muzaffar Hasan
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi-110012, India
- Centre of Excellence for Soybean Processing and Utilisation, ICAR-Central Institute of Agricultural Engineering, Bhopal-462038, India
| | - Kailashpati Tripathi
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi-110012, India
| | - Mohd Harun
- Division of Design of Experiments, ICAR-Indian Agricultural Statistics Research Institute, New Delhi-110012, India
| | - Veda Krishnan
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi-110012, India
| | - Rajeev Kaushik
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi-110012, India
| | - Gautam Chawla
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi-110012, India
| | - Najam A. Shakil
- Division of Design of Experiments, ICAR-Indian Agricultural Statistics Research Institute, New Delhi-110012, India
| | - M.K. Verma
- Division of Fruits and Horticulture Technology, ICAR-Indian Agricultural Research Institute, New Delhi-110012, India
| | - Anil Dahuja
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi-110012, India
| | - Archana Sachdev
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi-110012, India
| | - Jose M. Lorezo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Avd. Galicia n° 4, San Cibrao das Viñas, 32900, Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ouren-se, Spain
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR—Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| |
Collapse
|
10
|
Gumustepe L, Kurt N, Aydın E, Ozkan G. Comparison of ohmic heating- and microwave-assisted extraction techniques for avocado leaves valorization: Optimization and impact on the phenolic compounds and bioactivities. Food Sci Nutr 2023; 11:5609-5620. [PMID: 37701208 PMCID: PMC10494651 DOI: 10.1002/fsn3.3556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 09/14/2023] Open
Abstract
Avocado tree pruning activities generate a substantial amount of residual biomass, which includes different parts of the plant, such as leaves, twigs, branches, and small fruits. This study aimed to investigate the impact of different green extraction methods of microwave-assisted extraction (MAE) and ohmic heating-assisted extraction (OHAE) for the phenolic extraction of avocado leaves based on a statistical approach, central composite design (CCD), and response surface methodology (RSM). Water was preferred using as an environmentally and health-friendly solvent for both methods. The phenolic composition, antioxidant activity, and antidiabetic potential of the extracts were identified and comparatively assessed. The developed models exhibited a high degree of reliability with optimal conditions for OHAE and MAE, which were determined as 9.38 V/cm voltage gradient, 6 min extraction time, at 60°C, 5 min, and 1 g dried leaf/100 mL water. Epicatechin was identified as the primary phenolic compound in OHAE extracts, while chlorogenic acid was the dominant compound in MAE extracts. The extracts obtained from OHAE and MAE were tested for their ability to inhibit α-glucosidase activity, with IC50 (mg/mL) values of 0.85 and 1.14, respectively. The DPPH radicals scavenging activity (IC50 mg/L) of OHAE and MAE were detected as 2.96 and 3.41, respectively. In conclusion, both methods yielded extracts rich in polyphenols that displayed high antioxidant activity, but OHAE was found to be superior to MAE in terms of TPC, DPPH, and antidiabetic activities. The results of this study have the potential to make significant contributions toward promoting the principles of a circular economy by facilitating the valorization of the avocado pruning waste.
Collapse
Affiliation(s)
- Lale Gumustepe
- Department of Food Engineering, Faculty of EngineeringSuleyman Demirel UniversityIspartaTurkey
| | - Nevriye Kurt
- Department of Food Engineering, Faculty of EngineeringSuleyman Demirel UniversityIspartaTurkey
| | - Ebru Aydın
- Department of Food Engineering, Faculty of EngineeringSuleyman Demirel UniversityIspartaTurkey
| | - Gulcan Ozkan
- Department of Food Engineering, Faculty of EngineeringSuleyman Demirel UniversityIspartaTurkey
| |
Collapse
|
11
|
Guler A. Effects of different maceration techniques on the colour, polyphenols and antioxidant capacity of grape juice. Food Chem 2023; 404:134603. [PMID: 36444021 DOI: 10.1016/j.foodchem.2022.134603] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022]
Abstract
This study investigated the effects of different maceration techniques on the colour parameters, phenolic content and antioxidant activity of grape juice. Maceration techniques influenced colour parameters, and a* and Hue ranged from -0.77 to 0.55 and 60.90 to 104.40, respectively. The microwave and microwave and sonication combination increased the total monomeric anthocyanin, phenolic and flavonoid contents. Malvidin 3-O-glucoside increased more than twofold, and delphinidin 3-O-glucoside and cyanidin 3-O-glucoside increased one fold according to the enzymatic method in the microwave treatments. The microwave technique was the most effective technique for antioxidant capacity, but sonication, cold and thermosonication results were lower than enzymatic treatment. The microwave and microwave and sonication enhanced the polyphenols with strong antioxidant power, such as catechin from 0.87 to 37.40 and trans-resveratrol from 0.09 to 0.23 mg/100 g, by comparison with the enzymatic technique. The findings suggested these two techniques were the most effective techniques for maceration.
Collapse
Affiliation(s)
- Ali Guler
- Viticulture Research Institute, Manisa, Türkiye.
| |
Collapse
|
12
|
Abbasi-Parizad P, Scarafoni A, Pilu R, Scaglia B, De Nisi P, Adani F. The recovery from agro-industrial wastes provides different profiles of anti-inflammatory polyphenols for tailored applications. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.996562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Food and agro-industrial processing produce a great amount of side-stream and waste materials that are excellent sources of functional bioactive molecules such as phenolic compounds that recover them can be beneficial not only for food sustainability but also to human for many industrial applications such as flavor compounds and therapeutic applications such as antimicrobial and anti-inflammatory. The treatments and extraction techniques have major effects on the recovery of bioactive compounds. Along with the conventional extraction methods, numerous innovative techniques have been evolved and have been optimized to facilitate bioactive extraction more efficiently and sustainably. In this work, we have summarized the state-of-the-art technological approaches concerning novel extraction methods applied for five most produced crops in Italy; Grape Pomace (GP), Tomato Pomace (TP), Olive Pomace (OP), Citrus Pomace (CP), and Spent Coffee Grounds (SCG), presenting the extraction yield and the main class of phenolic classes, with the focus on their biological activity as an anti-inflammatory in vitro and in vivo studies via describing their molecular mechanism of action.
Collapse
|
13
|
Macías-Garbett R, Sosa-Hernández JE, Iqbal HMN, Contreras-Esquivel JC, Chen WN, Melchor-Martínez EM, Parra-Saldívar R. Combined Pulsed Electric Field and Microwave-Assisted Extraction as a Green Method for the Recovery of Antioxidant Compounds with Electroactive Potential from Coffee Agro-Waste. PLANTS 2022; 11:plants11182362. [PMID: 36145763 PMCID: PMC9505628 DOI: 10.3390/plants11182362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 12/03/2022]
Abstract
Coffee agro-waste is a potential source of polyphenols with antioxidant activity and application in the food and cosmetic trades. The usage of these byproducts persists as a challenge in the industrial landscape due to their high content of purported toxic substances hindering management. This study presents a green extractive process using pulsed electric field (PEF) and microwave assisted extraction (MAE) to recover polyphenols from coffee parchment and two varieties of pulp, posing quick processing times and the use of water as the only solvent. The performance of this process with regard to the bioactivity was assessed through the Folin-Ciocalteu assay, total flavonoid content, DPPH, ABTS and FRAP antioxidant tests. The phenolic composition of the extracts was also determined through HPLC-MS and quantified through HPLC-DAD. When compared to treatment controls, PEF + MAE treated samples presented enhanced yields of total phenolic content and radical scavenging activity in all analyzed residues (Tukey test significance: 95%). The chromatographic studies reveal the presence of caffeic acid on the three analyzed by-products. The HPLC-DAD caffeic acid quantification validated that a combination of MAE + PEF treatment in yellow coffee pulp had the highest caffeic acid concentration of all studied extraction methods.
Collapse
Affiliation(s)
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | | | - Wei Ning Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Elda M. Melchor-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
- Correspondence: (E.M.M.-M.); (R.P.-S.)
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
- Correspondence: (E.M.M.-M.); (R.P.-S.)
| |
Collapse
|
14
|
Effects of Zedo gum edible coating enriched with microwave-agitated bed extracted bioactive compounds from lemon verbena leaves on oxidative stability of Oncorhynchus mykiss. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01516-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Brunetti L, Leuci R, Colonna MA, Carrieri R, Celentano FE, Bozzo G, Loiodice F, Selvaggi M, Tufarelli V, Piemontese L. Food Industry Byproducts as Starting Material for Innovative, Green Feed Formulation: A Sustainable Alternative for Poultry Feeding. Molecules 2022; 27:4735. [PMID: 35897911 PMCID: PMC9332232 DOI: 10.3390/molecules27154735] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022] Open
Abstract
Rising global populations and enhanced standards of living in so-called developing countries have led to an increased demand of food, in particular meat, worldwide. While increasing the production of broiler meat could be a potential solution to this problem, broiler meat is plagued by health concerns, such as the development of antimicrobial resistance and lower meat quality. For this reason, the supplementation of poultry feed with vitamins and antioxidant compounds, such as polyphenols, has become an attractive prospect for research in this sector. Such supplements could be obtained by extraction of agricultural byproducts (in particular, grape pomaces and artichoke leaves and bracts), thus contributing to reductions in the total amount of waste biomass produced by the agricultural industry. In this review, the effects of poultry feed supplementation with bioactive extracts from grape pomace (skins and/or seeds), as well as extracts from artichoke leaves and bracts, were explored. Moreover, the various methods that have been employed to obtain extracts from these and other agricultural byproducts were listed and described, with a particular focus on novel, eco-friendly extraction methods (using, for example, innovative and biocompatible solvents like Deep Eutectic Solvents (DESs)) that could reduce the costs and energy consumption of these procedures, with similar or higher yields compared to standard methods.
Collapse
Affiliation(s)
- Leonardo Brunetti
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (L.B.); (R.L.); (R.C.); (F.L.)
| | - Rosalba Leuci
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (L.B.); (R.L.); (R.C.); (F.L.)
| | - Maria Antonietta Colonna
- Department of Agricultural and Environmental Science (DISAAT), University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (M.A.C.); (M.S.)
| | - Rossana Carrieri
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (L.B.); (R.L.); (R.C.); (F.L.)
| | | | - Giancarlo Bozzo
- Department of Veterinary Medicine, University of Bari Aldo Moro, Strada Provinciale per Casamassima, km 3, 70010 Valenzano, Italy;
| | - Fulvio Loiodice
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (L.B.); (R.L.); (R.C.); (F.L.)
| | - Maria Selvaggi
- Department of Agricultural and Environmental Science (DISAAT), University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (M.A.C.); (M.S.)
| | - Vincenzo Tufarelli
- Department of DETO, Section of Veterinary Science and Animal Production, University of Study of Bari “Aldo Moro”, Strada Provinciale per Casamassima, km 3, 70010 Valenzano, Italy;
| | - Luca Piemontese
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (L.B.); (R.L.); (R.C.); (F.L.)
| |
Collapse
|
16
|
Tagkouli D, Tsiaka T, Kritsi E, Soković M, Sinanoglou VJ, Lantzouraki DZ, Zoumpoulakis P. Towards the Optimization of Microwave-Assisted Extraction and the Assessment of Chemical Profile, Antioxidant and Antimicrobial Activity of Wine Lees Extracts. Molecules 2022; 27:molecules27072189. [PMID: 35408586 PMCID: PMC9000764 DOI: 10.3390/molecules27072189] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023] Open
Abstract
Wine lees, a sub-exploited byproduct of vinification, is considered a rich source of bioactive compounds, such as (poly)phenols, anthocyanins and tannins. Thus, the effective and rapid recovery of these biomolecules and the assessment of the bioactive properties of wine lees extracts is of utmost importance. Towards this direction, microwave-assisted extraction (MAE) factors (i.e., extraction time, microwave power and solvent/material ratio) were optimized using experimental design models in order to maximize the (poly)phenolic yield of the extracts. After optimizing the MAE process, the total phenolic content (TPC) as well as the antiradical, antioxidant and antimicrobial activity of the extracts were evaluated. Furthermore, Fourier transform infrared spectroscopy (FTIR) was employed to investigate the chemical profile of wine lees extracts. Red varieties exhibited higher biological activity than white varieties. The geographical origin and fermentation stage were also considered as critical factors. The white variety Moschofilero presented the highest antioxidant, antiradical and antimicrobial activity, while Merlot and Agiorgitiko samples showed noteworthy activities among red varieties. Moreover, IR spectra confirmed the presence of sugars, amino acids, organic acids and aromatic compounds. Thus, an efficient, rapid and eco-friendly process was proposed for further valorization of wine lees extracts.
Collapse
Affiliation(s)
- Dimitra Tagkouli
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vas. Constantinou Ave., 11635 Athens, Greece; (D.T.); (T.T.)
| | - Thalia Tsiaka
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vas. Constantinou Ave., 11635 Athens, Greece; (D.T.); (T.T.)
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (E.K.); (V.J.S.)
| | - Eftichia Kritsi
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (E.K.); (V.J.S.)
| | - Marina Soković
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia;
| | - Vassilia J. Sinanoglou
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (E.K.); (V.J.S.)
| | - Dimitra Z. Lantzouraki
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vas. Constantinou Ave., 11635 Athens, Greece; (D.T.); (T.T.)
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (E.K.); (V.J.S.)
- Correspondence: (D.Z.L.); (P.Z.)
| | - Panagiotis Zoumpoulakis
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece; (E.K.); (V.J.S.)
- Correspondence: (D.Z.L.); (P.Z.)
| |
Collapse
|
17
|
Taghian Dinani S, van der Goot AJ. Challenges and solutions of extracting value-added ingredients from fruit and vegetable by-products: a review. Crit Rev Food Sci Nutr 2022; 63:7749-7771. [PMID: 35275755 DOI: 10.1080/10408398.2022.2049692] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Every year, huge amounts of fruit and vegetable by-products in the food processing factories are produced. These by-products have great potential to be used for different targets especially the extraction of value-added ingredients. The target of this study is to review the challenges of extraction of value-added ingredients from fruit and vegetable by-products on the industrial scale and to describe current trends in solving these problems. In addition, some strategies such as multi-component extraction as well as application of fermentation before or after the extraction process, and production of biofuel, organic fertilizers, animal feeds, etc. on final residues after extraction of value-added ingredients are discussed in this review paper. In fact, simultaneous extraction of different value-added ingredients from fruit and vegetable by-products can increase the extraction efficiency and reduce the cost of value-added ingredients as well as the final volume of these by-products. After extraction of value-added ingredients, the residues can be used to produce biofuels, or they can be used to produce organic fertilizers, animal feeds, etc. Therefore, the application of several appropriate strategies to treat the fruit and vegetable by-products can increase their application, protect the environment, and improve the food economy.
Collapse
Affiliation(s)
| | - Atze Jan van der Goot
- Food Process Engineering, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
18
|
Kumar M, Suhag R, Hasan M, Dhumal S, Radha, Pandiselvam R, Senapathy M, Sampathrajan V, Punia S, Sayed AAS, Singh S, Kennedy JF. Black soybean ( Glycine max (L.) Merr.): paving the way toward new nutraceutical. Crit Rev Food Sci Nutr 2022; 63:6208-6234. [PMID: 35139704 DOI: 10.1080/10408398.2022.2029825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Black soybean (BS) is a nutritious legume that is high in proteins, essential amino acids, dietary fiber, vitamins, minerals, anthocyanins, phenolic acids, isoflavones, and flavones. Traditional approaches for extracting BS bioactive compounds are commonly employed because they are simple and inexpensive, but they use toxic solvents and have lower yields. As a result, new extraction techniques have been developed, such as microwave, ultrasound, and enzyme-assisted extraction. Modern approaches are less harmful to the environment, are faster, and produce higher yields. The major anthocyanin in the BS seed coat was discovered as cyanidin-3-O-glucoside, accounting for nearly 75% of the total anthocyanins. BS and its seed coat also contains phenolic acids (p-hydroxybenzoic, gallic, vanillin, syringic acid), isoflavones (daidzein, glycitein and genistein), flavones, flavonols, flavanones, and flavanols. Bioactive compounds present in BS exhibit antioxidant, anti-cancerous, anti-diabetic, anti-obesity, anti-inflammatory, cardio and neuroprotective activities. The characterization and biological activity investigation of these bioactive compounds has provided researchers and food manufacturers with valuable information for developing functional food products and nutraceutical ingredients. In this review, the nutritional makeup of BS is reviewed, and the paper seeks to provide an insight of bioactive compound extraction methods as well as bioactive compounds identified by various researchers. The biological activities of BS extracts and their potential applications in food products (noodles), biodegradable films (pH sensitive film), and therapeutic applications (wound healing and anti-inflammation) are also discussed in the study. Therefore, BS have enormous potential for use in developing functional foods and nutraceutical components. This is the first review of its sort to describe and explain various extraction methodologies and characterization of bioactives, as well as their biological activity recorded in diverse works of literature, making it possible for food manufacturers and scientists to get a quick overview.
Collapse
Affiliation(s)
- Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, India
| | - Rajat Suhag
- National Institute of Food Technology Entrepreneurship and Management, Sonipat, India
| | - Muzaffar Hasan
- Agro Produce Processing Division, ICAR-Central Institute of Agricultural Engineering, Bhopal, India
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - R Pandiselvam
- Division of Physiology, Biochemistry and Post-Harvest Technology, ICAR - Central Plantation Crops Research Institute (CPCRI), Kasaragod, India
| | - Marisennayya Senapathy
- Department of Rural Development and Agricultural Extension, College of Agriculture, Wolaita Sodo University, Wolaita Sodo, Ethiopia
| | | | - Sneh Punia
- Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, India
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC, USA
| | - Ali A S Sayed
- Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, India
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Surinder Singh
- Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, India
- Dr. S.S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh, India
| | - John F Kennedy
- Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, India
- Chembiotech Laboratories, Advanced Science and Technology Institute, Kyrewood House, Worcs, UK
| |
Collapse
|
19
|
Castro-Muñoz R, Díaz-Montes E, Gontarek-Castro E, Boczkaj G, Galanakis CM. A comprehensive review on current and emerging technologies toward the valorization of bio-based wastes and by products from foods. Compr Rev Food Sci Food Saf 2021; 21:46-105. [PMID: 34957673 DOI: 10.1111/1541-4337.12894] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 10/25/2021] [Accepted: 11/06/2021] [Indexed: 01/07/2023]
Abstract
Industries in the agro-food sector are the largest generators of waste in the world. Agro-food wastes and by products originate from the natural process of senescence, pretreatment, handling, and manufacturing processes of food and beverage products. Notably, most of the wastes are produced with the transformation of raw materials (such as fruits, vegetables, plants, tubers, cereals, and dairy products) into different processed foods (e.g., jams, sauces, and canned fruits/vegetables), dairy derivatives (e.g., cheese and yogurt), and alcoholic (e.g., wine and beer) and nonalcoholic beverages (e.g., juices and soft drinks). Current research is committed not only to the usage of agro-food wastes and by products as a potential source of high-value bioactive compounds (e.g., phenolic compounds, anthocyanins, and organic acids) but also to the implementation of emerging and innovative technologies that can compete with conventional extraction methods for the efficient extraction of such biomolecules from the residues. Herein, specific valorization technologies, such as membrane-based processes, microwave, ultrasound, pulsed electric-assisted extraction, supercritical/subcritical fluids, and pressurized liquids, have emerged as advanced techniques in extracting various added-value biomolecules, showing multiple advantages (improved extraction yields, reduced process time, and protection to the bioactive properties of the compounds). Hence, this comprehensive review aims to analyze the ongoing research on applying such techniques in valorization protocols. A last-five-year review, together with a featured analysis of the relevant findings in the field, is provided.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, San Antonio Buenavista, Toluca de Lerdo, Mexico.,Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdansk, Poland
| | - Elsa Díaz-Montes
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Barrio La Laguna Ticoman, Ciudad de México, Mexico
| | - Emilia Gontarek-Castro
- Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdansk, Poland
| | - Grzegorz Boczkaj
- Gdansk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdansk, Poland
| | - Charis M Galanakis
- Research and Innovation Department, Galanakis Laboratories, Chania, Greece.,Food Waste Recovery Group, ISEKI Food Association, Vienna, Austria
| |
Collapse
|
20
|
Lucarini M, Durazzo A, Bernini R, Campo M, Vita C, Souto EB, Lombardi-Boccia G, Ramadan MF, Santini A, Romani A. Fruit Wastes as a Valuable Source of Value-Added Compounds: A Collaborative Perspective. Molecules 2021; 26:6338. [PMID: 34770747 PMCID: PMC8586962 DOI: 10.3390/molecules26216338] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/26/2021] [Accepted: 10/13/2021] [Indexed: 01/06/2023] Open
Abstract
The by-products/wastes from agro-food and in particular the fruit industry represents from one side an issue since they cannot be disposed as such for their impact on the environment but they need to be treated as a waste. However, on the other side, they are a source of bioactive healthy useful compounds which can be recovered and be the starting material for other products in the view of sustainability and a circular economy addressing the global goal of "zero waste" in the environment. An updated view of the state of art of the research on fruit wastes is here given under this perspective. The topic is defined as follows: (i) literature quantitative analysis of fruit waste/by-products, with particular regards to linkage with health; (ii) an updated view of conventional and innovative extraction procedures; (iii) high-value added compounds obtained from fruit waste and associated biological properties; (iv) fruit wastes presence and relevance in updated databases. Nowadays, the investigation of the main components and related bioactivities of fruit wastes is being continuously explored throughout integrated and multidisciplinary approaches towards the exploitation of emerging fields of application which may allow to create economic, environmental, and social value in the design of an eco-friendly approach of the fruit wastes.
Collapse
Affiliation(s)
- Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy;
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy;
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy;
| | - Margherita Campo
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement Technology and Analysis)-DiSIA, Department of Statistics, Computer Science, Applications “G. Parenti”, University of Florence, Via U. Schiff, 6-50019 Sesto Fiorentino, 50121 Florence, Italy; (M.C.); (A.R.)
| | - Chiara Vita
- QuMAP-PIN S.c.r.l.-Polo Universitario “Città di Prato” Servizi didattici e scientifici per l’Università di Firenze, Piazza Giovanni Ciardi, 25-59100 Prato, Italy;
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | - Mohamed Fawzy Ramadan
- Agricultural Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt;
- Deanship of Scientific Research, Umm Al-Qura University, Makkah 24231, Saudi Arabia
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Annalisa Romani
- PHYTOLAB (Pharmaceutical, Cosmetic, Food Supplement Technology and Analysis)-DiSIA, Department of Statistics, Computer Science, Applications “G. Parenti”, University of Florence, Via U. Schiff, 6-50019 Sesto Fiorentino, 50121 Florence, Italy; (M.C.); (A.R.)
| |
Collapse
|
21
|
Novel extraction methods and potential applications of polyphenols in fruit waste: a review. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00901-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Development of an innovative rotating spiral heat exchanger with integrated microwave module for the olive oil industry. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Álvarez A, Terreros S, Cocero MJ, Mato RB. Microwave Pretreatment for the Extraction of Anthocyanins from Saffron Flowers: Assessment of Product Quality. Antioxidants (Basel) 2021; 10:antiox10071054. [PMID: 34210009 PMCID: PMC8300621 DOI: 10.3390/antiox10071054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/15/2021] [Accepted: 06/25/2021] [Indexed: 11/24/2022] Open
Abstract
The potential of saffron flowers as a source of polyphenols, and in particular anthocyanins, for the extraction of bioactive compounds and the production of a cyanic colorant was analyzed. A microwave pretreatment, prior to the conventional solid–liquid extraction process, was proposed as a feasible intensification step. The effectiveness of microwave pretreatment was assessed in terms of increased yield and improved quality of the final product. The operational variables studied were the pretreatment temperature (60–120 °C) and the solid–liquid ratio (0.30–0.50 g/mL). It was found that the addition of the microwave pretreatment to the conventional process allowed one to reduce extraction time by up to 12 times and to greatly improve the characteristics of the final product, using microwave energy densities as low as 0.16–0.54 kJ/mL. The extract quality was evaluated in terms of polyphenol richness (25% increase), product composition (80% of the anthocyanins was delphinidin), antioxidant capacity (boosted by the pretreatment) and color (variations in red and blue hue depending on conditions). To conclude, a microwave pretreatment in which the material is heated to a temperature of 65 °C with a solvent ratio of 0.30 g/mL was selected as the optimum to maximize process efficiency and product quality.
Collapse
|
24
|
Moro KIB, Bender ABB, da Silva LP, Penna NG. Green Extraction Methods and Microencapsulation Technologies of Phenolic Compounds From Grape Pomace: A Review. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02665-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
25
|
Othman SNS, Mustapa AN, Ku Hamid KH. Extraction of polyphenols from Clinacanthus nutans Lindau ( C. nutans) by vacuum solvent-free microwave extraction (V-SFME). CHEM ENG COMMUN 2021. [DOI: 10.1080/00986445.2020.1727452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Siti N. S Othman
- Faculty of Chemical Engineering, Universiti Teknologi MARA, Selangor, Malaysia
| | - Ana N. Mustapa
- Faculty of Chemical Engineering, Universiti Teknologi MARA, Selangor, Malaysia
| | - Ku Halim Ku Hamid
- Faculty of Chemical Engineering, Universiti Teknologi MARA, Selangor, Malaysia
| |
Collapse
|
26
|
Ummat V, Sivagnanam SP, Rajauria G, O'Donnell C, Tiwari BK. Advances in pre-treatment techniques and green extraction technologies for bioactives from seaweeds. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Hu AJ, Hao ST, Zheng J, Chen L, Sun PP. Multi-Frequency Ultrasonic Extraction of Anthocyanins from Blueberry Pomace and Evaluation of Its Antioxidant Activity. J AOAC Int 2020; 104:811-817. [DOI: 10.1093/jaoacint/qsaa150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/14/2020] [Accepted: 10/18/2020] [Indexed: 12/20/2022]
Abstract
Abstract
Background
A large amount of blueberry pomace is discarded and wasted.
Objective
To make full use of blueberry pomace and extract anthocyanins.
Method
Multi-frequency ultrasound was used to extract anthocyanins from blueberry pomace. The effects of different extraction conditions on the anthocyanin yields were studied. The antioxidant activity of anthocyanins was evaluated, and the main anthocyanin components were identified by HPLC-electrospray ionization (ESI)-MS/MS.
Results
The optimal anthocyanin extraction conditions were as follows: dual-frequency ultrasound of 40 + 80 kHz, ultrasonic power of 350 W, extraction temperature of 50°C, and extraction time of 40 min. Compared with single frequency (25 kHz) and tri-frequency ultrasound (25 + 40 + 80 kHz), the anthocyanin yield with dual-frequency ultrasound increased by 15.26% and 5.45% respectively. Furthermore, the antioxidant activities (DPPH, hydroxyl radical scavenging ability, and reducing power) of anthocyanins extracted with dual-frequency ultrasound were all higher than those without ultrasound. Seven kinds of anthocyanins were identified by HPLC-ESI-MS/MS.
Conclusions
Dual-frequency ultrasound had a higher extraction yield than single frequency ultrasound, tri-frequency ultrasound, and no ultrasound.
Highlights
Dual-frequency ultrasonic technology provides an effective approach for improving the extraction yield of anthocyanins from blueberry pomace.
Collapse
Affiliation(s)
- Ai-Jun Hu
- Tianjin University of Science & Technology, College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Tianjin 300457, P. R. China
| | - Shu-Ting Hao
- Tianjin University of Science & Technology, College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Tianjin 300457, P. R. China
| | - Jie Zheng
- Tianjin University of Science & Technology, College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Tianjin 300457, P. R. China
| | - Lin Chen
- Tianjin University of Science & Technology, College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Tianjin 300457, P. R. China
| | - Peng-Peng Sun
- Tianjin University of Science & Technology, College of Food Science and Engineering, State Key Laboratory of Food Nutrition and Safety, Tianjin 300457, P. R. China
| |
Collapse
|
28
|
Iuga M, Mironeasa S. Potential of grape byproducts as functional ingredients in baked goods and pasta. Compr Rev Food Sci Food Saf 2020; 19:2473-2505. [PMID: 33336974 DOI: 10.1111/1541-4337.12597] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/14/2020] [Accepted: 06/10/2020] [Indexed: 12/23/2022]
Abstract
Wine making industry generates high quantities of valuable byproducts that can be used to enhance foods in order to diminish the environmental impact and to obtain more economic benefits. Grape byproducts are rich in phenolic compounds and dietary fiber, which make them suitable to improve the nutritional value of bakery, pastry, and pasta products. The viscoelastic behavior of dough and the textural and the sensory characteristics of baked goods and pasta containing grape byproducts depend on the addition level and particle size. Thus, an optimal dose of a finer grape byproducts flour must be found in order to minimize the negative effects such as low loaf volume and undesirable sensory and textural characteristics they may have on the final product quality. In the same time, an enrichment of the nutritional and functional value of the product by increasing the fiber and antioxidant compounds contents is desired. The aim of this review was to summarize the effects of the chemical components of grape byproducts on the nutritional, functional, rheological, textural, physical, and sensory characteristics of the baked goods and pasta. Further researches about the impact of foods enriched with grape byproducts on the human health, about molecular interactions between components, and about the effects of grape pomace compounds on the shelf life of baked goods and pasta are recommended.
Collapse
Affiliation(s)
- Mădălina Iuga
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, Suceava, Romania
| | - Silvia Mironeasa
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, Suceava, Romania
| |
Collapse
|
29
|
Latest developments in polyphenol recovery and purification from plant by-products: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.03.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
da Rocha CB, Noreña CPZ. Microwave-Assisted Extraction and Ultrasound-Assisted Extraction of Bioactive Compounds from Grape Pomace. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2020. [DOI: 10.1515/ijfe-2019-0191] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe grape pomace is a by-product from the industrial processing of grape juice, which can be used as a source of bioactive compounds. The aim of this study was to separate the phenolic compounds from grape pomace using an acidic aqueous solution with 2 % citric acid as a solvent, using both ultrasound-assisted extraction, with powers of 250, 350 and 450 W and times of 5, 10 and 15 min, and microwave-assisted extraction using powers of 600, 800 and 1,000 W and times of 5, 7 and 10 min. The results showed that for both methods of extraction, the contents of total phenolic compounds and antioxidant activity by ABTS and DPPH increased with time, and microwave at 1,000 W for 10 min corresponded to the best extraction condition. However, the contents of phenolic compounds and antioxidant activity were lower than exhaustive extraction using acidified methanol solution.
Collapse
Affiliation(s)
- Cassiano Brown da Rocha
- Instituto de Ciência e Tecnologia de Alimentos, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Prédio 43212, Campus do Vale, CEP 91501-970, Porto Alegre90040-060, RS, Brazil
| | - Caciano Pelayo Zapata Noreña
- Instituto de Ciência e Tecnologia de Alimentos, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Prédio 43212, Campus do Vale, CEP 91501-970, Porto Alegre90040-060, RS, Brazil
| |
Collapse
|
31
|
Görgüç A, Özer P, Yılmaz FM. Microwave‐assisted enzymatic extraction of plant protein with antioxidant compounds from the food waste sesame bran: Comparative optimization study and identification of metabolomics using LC/Q‐TOF/MS. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14304] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Ahmet Görgüç
- Engineering Faculty, Food Engineering Department Aydın Adnan Menderes University Efeler Turkey
| | - Pınar Özer
- Engineering Faculty, Food Engineering Department Aydın Adnan Menderes University Efeler Turkey
| | - Fatih Mehmet Yılmaz
- Engineering Faculty, Food Engineering Department Aydın Adnan Menderes University Efeler Turkey
| |
Collapse
|
32
|
Matos MS, Romero-Díez R, Álvarez A, Bronze MR, Rodríguez-Rojo S, Mato RB, Cocero MJ, Matias AA. Polyphenol-Rich Extracts Obtained from Winemaking Waste Streams as Natural Ingredients with Cosmeceutical Potential. Antioxidants (Basel) 2019; 8:antiox8090355. [PMID: 31480581 PMCID: PMC6770854 DOI: 10.3390/antiox8090355] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/19/2019] [Accepted: 08/23/2019] [Indexed: 11/16/2022] Open
Abstract
Phenolics present in grapes have been explored as cosmeceutical principles, due to their antioxidant activity and ability to inhibit enzymes relevant for skin ageing. The winemaking process generates large amounts of waste, and the recovery of bioactive compounds from residues and their further incorporation in cosmetics represents a promising market opportunity for wine producers and may contribute to a sustainable development of the sector. The extracts obtained from grape marc and wine lees, using solid-liquid (SL) extraction with and without microwave (MW) pretreatment of the raw material, were characterized in terms of antioxidant activity through chemical (ORAC/HOSC/HORAC) and cell-based (keratinocytes-HaCaT; fibroblasts-HFF) assays. Furthermore, their inhibitory capacity towards specific enzymes involved in skin ageing (elastase; MMP-1; tyrosinase) was evaluated. The total phenolic and anthocyanin contents were determined by colorimetric assays, and HPLC-DAD-MS/MS was performed to identify the main compounds. The MW pretreatment prior to conventional SL extraction led to overall better outcomes. The red wine lees extracts presented the highest phenolic content (3 to 6-fold higher than grape marc extracts) and exhibited the highest antioxidant capacity, being also the most effective inhibitors of elastase, MMP-1 and tyrosinase. The results support that winemaking waste streams are valuable sources of natural ingredients with the potential for cosmeceutical applications.
Collapse
Affiliation(s)
- Melanie S Matos
- Nutraceuticals & Bioactives Process Technology Group, Instituto de Biologia Experimental e Tecnológica (iBET), Av. República, Qta. Do Marquês, Estação Agronómica Nacional, Edifício iBET/ITQB, 2780-157 Oeiras, Portugal
| | - Rut Romero-Díez
- BioEcoUVa, Research Institute on Bioeconomy, High Pressure Processes Group, Department of Chemical Engineering and Environmental Technology, School of Engineering, University of Valladolid (UVa), Sede Mergelina Valladolid, 47011 Castilla y León, Spain
| | - Ana Álvarez
- BioEcoUVa, Research Institute on Bioeconomy, High Pressure Processes Group, Department of Chemical Engineering and Environmental Technology, School of Engineering, University of Valladolid (UVa), Sede Mergelina Valladolid, 47011 Castilla y León, Spain
| | - M R Bronze
- Nutraceuticals & Bioactives Process Technology Group, Instituto de Biologia Experimental e Tecnológica (iBET), Av. República, Qta. Do Marquês, Estação Agronómica Nacional, Edifício iBET/ITQB, 2780-157 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB), Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- Faculty of Pharmacy, University of Lisbon (FFUL), Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - Soraya Rodríguez-Rojo
- BioEcoUVa, Research Institute on Bioeconomy, High Pressure Processes Group, Department of Chemical Engineering and Environmental Technology, School of Engineering, University of Valladolid (UVa), Sede Mergelina Valladolid, 47011 Castilla y León, Spain.
| | - Rafael B Mato
- BioEcoUVa, Research Institute on Bioeconomy, High Pressure Processes Group, Department of Chemical Engineering and Environmental Technology, School of Engineering, University of Valladolid (UVa), Sede Mergelina Valladolid, 47011 Castilla y León, Spain
| | - M J Cocero
- BioEcoUVa, Research Institute on Bioeconomy, High Pressure Processes Group, Department of Chemical Engineering and Environmental Technology, School of Engineering, University of Valladolid (UVa), Sede Mergelina Valladolid, 47011 Castilla y León, Spain
| | - Ana A Matias
- Nutraceuticals & Bioactives Process Technology Group, Instituto de Biologia Experimental e Tecnológica (iBET), Av. República, Qta. Do Marquês, Estação Agronómica Nacional, Edifício iBET/ITQB, 2780-157 Oeiras, Portugal.
| |
Collapse
|
33
|
Kumar M, Dahuja A, Sachdev A, Kaur C, Varghese E, Saha S, Sairam KVSS. Evaluation of enzyme and microwave-assisted conditions on extraction of anthocyanins and total phenolics from black soybean (Glycine max L.) seed coat. Int J Biol Macromol 2019; 135:1070-1081. [PMID: 31176863 DOI: 10.1016/j.ijbiomac.2019.06.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/28/2019] [Accepted: 06/05/2019] [Indexed: 01/16/2023]
Abstract
The present study compares three methods viz. microwave-assisted extraction (MAE), enzyme-assisted extraction (EAE) and conventional solvent extraction (CSE) for extraction of polyphenolic compounds from Black Soybean Seed coat (BSSC). Box-Behnken design using response surface methodology (RSM) was employed to investigate and optimize the MAE and EAE for maximum bioactive content, antioxidant activity, colour density and minimum degradation parameters from BSSC. Optimized MAE conditions for BSSC were: microwave power of 569.46 W, extraction time of 262.54 s, solvent to solid ratio of 40:1 and ethanol concentration (59.99). The predicted anthocyanin content was 5021.47 mg/l, close to experimental optimized value of 5094.9 mg/l with minimum values of degradation parameters viz., Polymeric Colour (PC) (0.131 ± 0.01), Browning Index (BI) (0.202 ± 0.02) and Degradation Index (DI) (0.140 ± 0.02). Overall results clearly indicate that MAE is the best suited method for extraction in comparison to EAE and CSE. The phenolic rich extract can be used as an effective functional ingredient in foods.
Collapse
Affiliation(s)
- Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Matunga, Mumbai 400019, India.
| | - Anil Dahuja
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Archana Sachdev
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Charanjit Kaur
- Division of Food Science and Post-Harvest Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Eldho Varghese
- Fishery Resources Assessment Division, ICAR-Central Marine Fisheries Research Institute, Kochi 682 018, India
| | - Supradip Saha
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | | |
Collapse
|
34
|
Garrido T, Gizdavic-Nikolaidis M, Leceta I, Urdanpilleta M, Guerrero P, de la Caba K, Kilmartin PA. Optimizing the extraction process of natural antioxidants from chardonnay grape marc using microwave-assisted extraction. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 88:110-117. [PMID: 31079623 DOI: 10.1016/j.wasman.2019.03.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/01/2019] [Accepted: 03/16/2019] [Indexed: 05/25/2023]
Abstract
The aim of this work was to extract phenolic compounds from Chardonnay grape marc employing a microwave-assisted extraction (MAE). Firstly, the effect of solvent concentration (30-60%), solid mass (1.0-2.0 g) and extraction time (5-15 min) on the recovery of phenolic content and antioxidant capacity was evaluated using a response surface methodology (RSM). The optimal parameters found by RSM were 48% ethanol for the solvent content, 10 min for the extraction time, and 1.77 g for the solid mass. The extraction was carried out at room temperature to increase scaling-up opportunities at industrial level. It was found that the phenolic profile was mainly composed of flavanols, such as procyanidins, catechin and epicatechin. Furthermore, the polyphenols obtained by MAE showed a DPPH· inhibition value of 87 ± 5% and the total phenolic content was 1.21 ± 0.04 mg GAE/mL. Finally, it was observed that the degradation temperature of the extract (≈ 200 °C) was above the temperature commonly used for the manufacture of protein films by thermo-mechanical processes. This highlights the potential use of this extract as a bioactive additive in protein film forming formulations for food and pharmaceutical applications.
Collapse
Affiliation(s)
- Tania Garrido
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Department of Chemical and Environmental Engineering, Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain
| | | | - Itsaso Leceta
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Department of Applied Mathematics, Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Marta Urdanpilleta
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Department of Applied Physics I, Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Pedro Guerrero
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Department of Chemical and Environmental Engineering, Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Koro de la Caba
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Department of Chemical and Environmental Engineering, Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain.
| | - Paul A Kilmartin
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| |
Collapse
|
35
|
Gallo M, Formato A, Giacco R, Riccardi G, Lungo D, Formato G, Amoresano A, Naviglio D. Mathematical optimization of the green extraction of polyphenols from grape peels through a cyclic pressurization process. Heliyon 2019; 5:e01526. [PMID: 31025024 PMCID: PMC6476133 DOI: 10.1016/j.heliyon.2019.e01526] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 02/24/2019] [Accepted: 04/12/2019] [Indexed: 11/29/2022] Open
Abstract
In the current era of high consumption and increasing waste, many products that are believed to be unusable can find a new purpose in the market. For example, the grape peel waste resulting from the production of wine contains numerous bioactive compounds. In reality, grape peels are by-products of winemaking that can be conveniently reused in many different ways, including agronomic use and cosmetic industry applications. Moreover, the by-products can also be used in the energy field as biomass for the production of biogas or in food plants for the production of energy. In this article, to extract polyphenols, grape peels were processed via a cyclically pressurized extraction method known as rapid solid-liquid dynamic extraction (RSLDE), which does not require the use of any organic solvent or include heating or cooling processes that can cause the loss of substances of interest. To better understand the cyclically pressurized extraction process, a numerical simulation was performed to evaluate the exchange between the grape piece solid matrix and water during the extraction process. Furthermore, a finite element model was used to numerically determine the time-dependent concentration distribution at specific times.
Collapse
Affiliation(s)
- Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, via Pansini, 5, 80131, Naples, Italy
| | - Andrea Formato
- Department of Agriculture Science, University of Naples Federico II, via Università, 100, 80055, Portici (Naples), Italy
| | - Rosalba Giacco
- Institute of Food Science, National Research Council (CNR), Avellino, Italy
| | - Gabriele Riccardi
- Department of Clinical Medicine and Surgery, University of Naples Federico II, via Pansini, 5, 80131 Naples, Italy
| | - Delia Lungo
- Institute of Biostructures and Bioimaging, CNR, Naples, Italy
| | - Gaetano Formato
- Department of Agriculture Science, University of Naples Federico II, via Università, 100, 80055, Portici (Naples), Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126, Naples, Italy
| | - Daniele Naviglio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126, Naples, Italy
| |
Collapse
|
36
|
Romero-Díez R, Matos M, Rodrigues L, Bronze MR, Rodríguez-Rojo S, Cocero M, Matias A. Microwave and ultrasound pre-treatments to enhance anthocyanins extraction from different wine lees. Food Chem 2019; 272:258-266. [DOI: 10.1016/j.foodchem.2018.08.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 12/17/2022]
|
37
|
Ultrasound-negative pressure cavitation extraction of phenolic compounds from blueberry leaves and evaluation of its DPPH radical scavenging activity. FOOD AND BIOPRODUCTS PROCESSING 2018. [DOI: 10.1016/j.fbp.2018.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|