1
|
Fraterrigo Garofalo S, Mallen V, Fino D. Extraction of carotenoids from tomato pomace using deep eutectic solvents composed of short and medium-chain fatty acids and menthol. Food Chem 2025; 484:144342. [PMID: 40273866 DOI: 10.1016/j.foodchem.2025.144342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/18/2025] [Accepted: 04/13/2025] [Indexed: 04/26/2025]
Abstract
Tomatoes are rich in carotenoids, which remain in significant quantities in tomato pomace and can be sustainably extracted. This study aimed to develop a method for extracting carotenoids from tomato pomace using deep eutectic solvents composed of menthol and fatty acids (butyric, hexanoic, caprylic, lauric, and palmitic), as an alternative to toxic and polluting organic solvents. Preliminary screening identified the most effective deep eutectic solvent, while design of experiment and a kinetic study optimized the extraction process. Under optimal conditions, the DES extracted approximately 300 μg/g of carotenoids on a dry weight basis. HPLC analysis of the extract quantified 24 μg/g ± 5 of β-carotene and 52 μg/g ± 2 of lycopene. The menthol-butyric acid DES outperformed conventional organic solvents, emphasizing its sustainability and efficiency.
Collapse
Affiliation(s)
- Silvia Fraterrigo Garofalo
- Department of Applied Science and Technology (DISAT), Polytechnic of Turin, Corso Duca Degli Abruzzi 24, Torino (TO) 10129, Italy.
| | - Veronica Mallen
- Department of Applied Science and Technology (DISAT), Polytechnic of Turin, Corso Duca Degli Abruzzi 24, Torino (TO) 10129, Italy
| | - Debora Fino
- Department of Applied Science and Technology (DISAT), Polytechnic of Turin, Corso Duca Degli Abruzzi 24, Torino (TO) 10129, Italy
| |
Collapse
|
2
|
Mazzocchi E, Usai G, Agostino V, Fraterrigo Garofalo S, Pinton E, Pirri CF, Menin B, Cordara A. Combination of Exhaust Gas Fermentation Effluent and Dairy Wastewater for Microalgae Production: Effect on Growth and FAME Composition of Chlorella sorokiniana. Microorganisms 2025; 13:961. [PMID: 40431134 PMCID: PMC12114567 DOI: 10.3390/microorganisms13050961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/12/2025] [Accepted: 04/16/2025] [Indexed: 05/29/2025] Open
Abstract
Microalgae cultivation in wastewater is a promising strategy for reducing nutrient loads and generating biomass that can be further exploited. Although microalgae grown under such conditions are not suitable for high-value applications, the resulting biomass can still be valuable for uses such as biofuels, biofertilizers, or animal feed. In this study, Chlorella sorokiniana was cultivated in dairy wastewater and, to the best of our knowledge, for the first time in a spent effluent from gas fermentation, to assess its potential as a sustainable growth medium. Growth kinetics and biomass productivity were evaluated at different dilution ratios, and it was found that high concentrations of ammonium and hexanol in undiluted effluents were inhibitory, while an optimized 50:50 dilution led to the highest biomass accumulation (1.96 g L-1) and productivity (0.5 g L-1 d-1) of C. sorokiniana. This strategy significantly reduced the nitrogen (100%), phosphate (100%), sulfate (68%), and carbon (61%) contents, demonstrating effective bioremediation activity. Furthermore, the fatty acid profile revealed an increased polyunsaturated fatty acid fraction, enhancing the potential of C. sorokiniana biomass as a feed supplement. Overall, contributing to the circular bioeconomy, this approach is scalable and cost-effective, reducing freshwater and chemical dependency in microalgae biomass production.
Collapse
Affiliation(s)
- Elena Mazzocchi
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, 10129 Turin, Piemonte, Italy; (E.M.); (V.A.); (E.P.); (C.F.P.); (B.M.); (A.C.)
- Department of Applied Science and Technology—DISAT, Politecnico di Torino, 10129 Turin, Piemonte, Italy;
| | - Giulia Usai
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, 10129 Turin, Piemonte, Italy; (E.M.); (V.A.); (E.P.); (C.F.P.); (B.M.); (A.C.)
| | - Valeria Agostino
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, 10129 Turin, Piemonte, Italy; (E.M.); (V.A.); (E.P.); (C.F.P.); (B.M.); (A.C.)
| | - Silvia Fraterrigo Garofalo
- Department of Applied Science and Technology—DISAT, Politecnico di Torino, 10129 Turin, Piemonte, Italy;
| | - Eugenio Pinton
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, 10129 Turin, Piemonte, Italy; (E.M.); (V.A.); (E.P.); (C.F.P.); (B.M.); (A.C.)
- Department of Agricultural, Forest and Food Sciences—DISAFA, University of Turin, 10095 Grugliasco, Piemonte, Italy
| | - Candido Fabrizio Pirri
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, 10129 Turin, Piemonte, Italy; (E.M.); (V.A.); (E.P.); (C.F.P.); (B.M.); (A.C.)
- Department of Applied Science and Technology—DISAT, Politecnico di Torino, 10129 Turin, Piemonte, Italy;
| | - Barbara Menin
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, 10129 Turin, Piemonte, Italy; (E.M.); (V.A.); (E.P.); (C.F.P.); (B.M.); (A.C.)
- Institute of Agricultural Biology and Biotechnology, National Council of Research IBBA-CNR, 20133 Milan, Lombardia, Italy
| | - Alessandro Cordara
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, 10129 Turin, Piemonte, Italy; (E.M.); (V.A.); (E.P.); (C.F.P.); (B.M.); (A.C.)
- Department of Environment, Land and Infrastructure Engineering—DIATI, Politecnico di Torino, 10129 Turin, Piemonte, Italy
| |
Collapse
|
3
|
Gill JM, Hussain SM, Ali S, Ghafoor A, Adrees M, Nazish N, Naeem A, Naeem E, Alshehri MA, Rashid E. Fish waste biorefinery: A novel approach to promote industrial sustainability. BIORESOURCE TECHNOLOGY 2025; 419:132050. [PMID: 39793671 DOI: 10.1016/j.biortech.2025.132050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/15/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
In pursuit of sustainability and resource efficiency, concept of the circular economy has emerged as a promising framework for industries worldwide. The global fish processing industry generates a significant amount of waste, posing environmental challenges and economic inefficiencies. The substantial volume of fish waste generated globally along with its environmental impact highlights the urgent need to adopt sustainable practices. However, there is significant transformative potential in leveraging fish processing waste to generate industrial value. There are numerous applications of fish processing waste such as extraction of enzymes, protein hydrolysates, collagen, and gelatin. Moreover, the capacity of fish waste to generate chitin, fish oil, and biofuels foresees a future for sustainable resource management. However, it is also necessary to emphasize the need for innovation, and cross-sector collaboration to unlock this potential. While challenges lie ahead, this review explores transformative power of circular economy in reshaping the fisheries industry towards more sustainable future.
Collapse
Affiliation(s)
- Javaeria Maqsood Gill
- Fish Nutrition Lab, Department of Zoology, Government College University Faisalabad, Punjab 38000, Pakistan
| | - Syed Makhdoom Hussain
- Fish Nutrition Lab, Department of Zoology, Government College University Faisalabad, Punjab 38000, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, Punjab 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Abdul Ghafoor
- Center for Water and Environmental Studies, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
| | - Muhammad Adrees
- Department of Environmental Sciences, Government College University, Faisalabad, Punjab 38000, Pakistan
| | - Nadia Nazish
- Department of Zoology, University of Sialkot, Sialkot, Punjab 51040, Pakistan
| | - Adan Naeem
- Fish Nutrition Lab, Department of Zoology, Government College University Faisalabad, Punjab 38000, Pakistan
| | - Eman Naeem
- Fish Nutrition Lab, Department of Zoology, Government College University Faisalabad, Punjab 38000, Pakistan
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Eram Rashid
- Fish Nutrition Lab, Department of Zoology, Government College University Faisalabad, Punjab 38000, Pakistan
| |
Collapse
|
4
|
Zhao YQ, Li ZP, Dong SC, Wang H, Zhao YM, Dong LY, Zhao ZY, Wang XH. Preparation of micron-sized benzamidine-modified magnetic agarose beads for trypsin purification from fish viscera. Talanta 2024; 280:126745. [PMID: 39180874 DOI: 10.1016/j.talanta.2024.126745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/09/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
The effective method for trypsin purification should be established because trypsin has important economic value. In this work, a novel and simple strategy was proposed for fabricating micron-sized magnetic Fe3O4@agarose-benzamidine beads (MABB) with benzamidine as a ligand, which can efficiently and selectively capture trypsin. The micro-sized MABB, with clear spherical core-shell structure and average particle size of 6.6 μm, showed excellent suspension ability and magnetic responsiveness in aqueous solution. The adsorption capacity and selectivity of MABB towards target trypsin were significantly better than those of non-target lysozyme. According to the Langmuir equation, the maximum adsorption capacity of MABB for trypsin was 1946 mg g-1 at 25 °C, and the adsorption should be a physical sorption process. Furthermore, the initial adsorption rate and half equilibrium time of MABB toward trypsin were 787.4 mg g-1 min-1 and 0.71 min, respectively. To prove the practicability, MABB-based magnetic solid-phase extraction (MSPE) was proposed, and the related parameters were optimized in detail to improve the purification efficiency. With Tris-HCl buffer (50 mM, 10 mM CaCl2, pH 8.0) as extraction buffer, Tris-HCl buffer (50 mM, 100 mM CaCl2, pH 8.0) as rinsing buffer, acidic eluent (0.01 M HCl, 0.5 M NaCl, pH 2.0) as eluent buffer and alkaline buffer (1 M Tris-HCl buffer, pH 10.0) as neutralization solution, the MABB-based MSPE was successfully used for trypsin purification from the viscera of grass carp (Ctenopharyngodon idella). The molecular weight of purified trypsin was determined as approximate 23 kDa through sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The purified trypsin was highly active from 30 °C to 60 °C, with an optimum temperature of 50 °C, and was tolerant to pH variation, exhibiting 85 % of maximum enzyme activity from pH 7.0 to 10.0. The results demonstrated that the proposed MABB-based MSPE could effectively purify trypsin and ensure the biological activity of purified trypsin. Therefore, we believe that the novel MABB could be applicable for efficient purification of trypsin from complex biological systems.
Collapse
Affiliation(s)
- Ya-Qi Zhao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; NHC Key Laboratory of Hormones and Development / Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital / Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Zhi-Peng Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Shi-Chao Dong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Hao Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yi-Mei Zhao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; NHC Key Laboratory of Hormones and Development / Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital / Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Lin-Yi Dong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| | - Zhen-Yu Zhao
- NHC Key Laboratory of Hormones and Development / Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital / Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China.
| | - Xian-Hua Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
5
|
Yusoff MA, Mohammadi P, Ahmad F, Sanusi NA, Hosseinzadeh-Bandbafha H, Vatanparast H, Aghbashlo M, Tabatabaei M. Valorization of seafood waste: a review of life cycle assessment studies in biorefinery applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175810. [PMID: 39197788 DOI: 10.1016/j.scitotenv.2024.175810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/24/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
The escalating challenges posed by seafood waste generated by the fishing and aquaculture industries underscore the urgent need for innovative solutions that promote both environmental conservation and economic viability within the seafood sector. Seafood waste biorefinery emerges as a promising solution, offering the potential to transform waste materials into valuable products. However, it is essential to recognize that seafood waste biorefinery operations also entail environmental impacts that warrant careful consideration. Environmental assessment tools like Life Cycle Assessment (LCA) provide a valuable framework for assessing these impacts comprehensively. This review critically examines LCA studies in seafood waste biorefinery, focusing on key concepts, emerging technologies, and potential product avenues. Despite the growing body of research in this area, direct comparisons between published studies prove challenging due to discrepancies in feedstocks, processing techniques, value-added products, and LCA methodologies. Nevertheless, the findings consistently demonstrate significant reductions in environmental impacts achieved through seafood waste biorefinery processes. The selection of technologies significantly influences both product quality and sustainability measures. High energy consumption, including diesel fuel consumption in fishing vessels and electricity consumption in processing steps, should be carefully considered and reduced to mitigate associated environmental impacts. In conclusion, while seafood waste biorefinery processes hold significant promise for providing environmental and economic benefits, substantial challenges remain. This review provides invaluable insights for researchers, policymakers, and stakeholders, emphasizing the importance of continuous interdisciplinary collaboration and methodological standardization to advance sustainable waste management practices in the seafood industry.
Collapse
Affiliation(s)
- Mohd Azman Yusoff
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Pouya Mohammadi
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Fisal Ahmad
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Nur Azura Sanusi
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Faculty of Business, Economics and Social Development, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| | - Homa Hosseinzadeh-Bandbafha
- Department of Agricultural Machinery, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Hassan Vatanparast
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| | - Mortaza Aghbashlo
- Department of Agricultural Machinery, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Department of Biomaterials, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India.
| |
Collapse
|
6
|
Domínguez H, Iñarra B, Labidi J, Bald C. Optimization of the autolysis of rainbow trout viscera for amino acid release using response surface methodology. OPEN RESEARCH EUROPE 2024; 4:141. [PMID: 39588296 PMCID: PMC11587235 DOI: 10.12688/openreseurope.17646.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/07/2024] [Indexed: 11/27/2024]
Abstract
Background Due to the huge amounts of their production in Europe, their environmental impact, and the difficulty in processing them, there is a clear necessity for the valorization of rainbow trout viscera. Considering that the production of fishmeal with viscera can be problematic, and in order to make viscera more profitable, the production of fish protein hydrolysates has been considered. Although silage and enzymatic hydrolysis are the most common methods for obtaining hydrolysates, autolysis has emerged as an alternative method that uses endogenous enzymes of the viscera. Methods Considering the stability and characteristics of the enzymes, a factorial design was carried out using three variables: pH, temperature, and water content. The design resulted in 15 experiments, and the results were analyzed using response surface methodology. The optimum parameters were validated by comparing the predicted outcomes with experimental results. Additionally, a kinetics study was conducted to shorten the autolysis time. Results from autolysis were compared with those from silage and enzymatic hydrolysis in a previous study. Results The optimal conditions for achieving the highest degree of hydrolysis and yield of free amino acids (FAAs) per 100 g of viscera and per total protein were determined to be a pH of 8, a temperature of 40 °C, and a water content of 6.85%. The pH and content of the added water were found to be significant variables during autolysis ( p < 0.05). The kinetic study showed that 7 h was still required to be effective. Conclusions Autolysis achieved a lower degree of hydrolysis than silage; however, as it solubilized more protein, the global yield of free amino acids per 100 g of viscera was slightly higher. It was concluded that endogenous alkaline proteases could be used in an autolytic process to obtain a free amino acid-rich hydrolysate from trout viscera.
Collapse
Affiliation(s)
- Haizea Domínguez
- Food Research, AZTI Foundation, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - Bruno Iñarra
- Food Research, AZTI Foundation, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - Jalel Labidi
- Biorefinery and Processes Research Group, University of the Basque Country, Donostia-San Sebastian, Gipuzkoa, 20018, Spain
| | - Carlos Bald
- Food Research, AZTI Foundation, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| |
Collapse
|
7
|
Jimenez-Champi D, Romero-Orejon FL, Muñoz AM, Ramos-Escudero F. The Revalorization of Fishery By-Products: Types, Bioactive Compounds, and Food Applications. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:6624083. [PMID: 39105167 PMCID: PMC11300074 DOI: 10.1155/2024/6624083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/17/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024]
Abstract
Recently, fish consumption has been increasing; subsequently, the number of by-products has also increased. However, generated residues are frequently discarded, and an appropriate management is necessary to properly use all fish by-products. Fishery by-products are well known for their content of bioactive compounds, such as unsaturated fatty acids, amino acids, minerals, peptides, enzymes, gelatin, collagen, and chitin. Several studies have reported that fishery by-products could provide significant properties, including antioxidant, antihypertensive, antimicrobial, anti-inflammatory, and antiobesity. Consequently, fish discards are of considerable interest to different industrial sectors, including food, nutraceuticals, medical, and pharmacology. In the food industry, the interest in using fishery by-products is focused on hydrolysates as food additives, collagen and gelatin as protein sources, chitin and chitosan to form edible films to protect food during storage, and oils as a source of Omega-3 and useful as antioxidants. Although different studies reported good results with the use of these by-products, identifying new applications in the food sector, as well as industrial applications, remains necessary.
Collapse
Affiliation(s)
- Diana Jimenez-Champi
- NutritionHealthFunctional Foods and Nutraceuticals Research UnitUniversidad San Ignacio de Loyola (UNUSAN-USIL), Lima, Peru
| | - Frank L. Romero-Orejon
- NutritionHealthFunctional Foods and Nutraceuticals Research UnitUniversidad San Ignacio de Loyola (UNUSAN-USIL), Lima, Peru
| | - Ana María Muñoz
- NutritionHealthFunctional Foods and Nutraceuticals Research UnitUniversidad San Ignacio de Loyola (UNUSAN-USIL), Lima, Peru
- Food Science and Nutrition InstituteUniversidad San Ignacio de Loyola (ICAN-USIL), Lima, Peru
| | - Fernando Ramos-Escudero
- NutritionHealthFunctional Foods and Nutraceuticals Research UnitUniversidad San Ignacio de Loyola (UNUSAN-USIL), Lima, Peru
- Health Sciences FacultyUniversidad San Ignacio de Loyola, Lima, Peru
| |
Collapse
|
8
|
Wattanathorn J, Thukham-Mee W. Omega-3-Rich Tuna Oil Derived from By-Products of the Canned Tuna Industry Enhances Memory in an Ovariectomized Rat Model of Menopause. Antioxidants (Basel) 2024; 13:637. [PMID: 38929077 PMCID: PMC11201088 DOI: 10.3390/antiox13060637] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
To increase the value of the by-products of the canned tuna industry, the memory enhancement effect and the possible mechanisms of omega-3-rich tuna oil in bilateral ovariectomized (OVX) rats were assessed. Female rats were orally given tuna oil at doses of 140, 200, and 250 mg/kg of body weight (BW) for 28 days before OVX and for 21 days continually after OVX. Memory performance was assessed every week, whereas the parameters regarding mechanisms of action were assessed at the end of the study. All doses of tuna oil enhanced memory, docosahexaenoic acid (DHA) levels, and superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities but decreased cortisol, acetylcholinesterase (AChE), malondialdehyde (MDA), and inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Medium and high doses of tuna oil suppressed monoamine oxidase (MAO) but increased eNOS activity. A high dose of tuna oil suppressed gamma-aminotransferase (GABA-T) but increased glutamic acid decarboxylase (GAD) and sirtuin-1. A medium dose of tuna oil decreased homocysteine (Hcys) and C-reactive protein. No change in telomere or estradiol was observed in this study. Our results suggest the memory-enhancing effect of tuna oil in an OVX rat model of menopause. The main mechanisms may involve a reduction in oxidative stress, inflammation, and neurotransmitter regulation.
Collapse
Affiliation(s)
- Jintanaporn Wattanathorn
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
- Research Institute for High Human Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wipawee Thukham-Mee
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
- Research Institute for High Human Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
9
|
Guo Y, Shao J, Sun J, Wang Z, Jiang B. Optimization of Extraction and Refining Parameters of Oil from Dotted Gizzard Shad ( Konosirus punctatus). Foods 2024; 13:1278. [PMID: 38672950 PMCID: PMC11049165 DOI: 10.3390/foods13081278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
To address the challenges associated with resource inefficiency, low extraction rates, environmental concerns, and high energy consumption in traditional fish oil production from dotted gizzard shad (Konosirus punctatus), a novel approach is needed. This study aimed to develop and evaluate two innovative methods for fish oil extraction and refinement, focusing on their effects on fish oil quality, fatty acid profile, and volatile compound composition throughout the respective processes. The findings of the study revealed that the ethanol-assisted enzymatic extraction method surpassed the conventional enzymatic approach in extraction efficiency, achieving an optimal extraction rate of 74.94% ± 0.45% under optimized process conditions. Moreover, the ethanol-NaOH one-step degumming and deacidification method proved effective in simultaneously removing phospholipids and free fatty acids. Under optimal conditions, a notable reduction in phospholipid content in dotted gizzard shad oil, from 6.80 ± 0.01 mg/g to 1.18 ± 0.01 mg/g, and a substantial decrease in acid value, from 3.31 mg/g to 0.31 mg/g, were observed. In summary, the study analyzed the physicochemical properties, fatty acid composition, and volatile components of fish oil before and after refinement. The refining process was found to preserve the fatty acid composition while efficiently eliminating hydroperoxides and reducing unpleasant odors in the crude oil.
Collapse
Affiliation(s)
- Ying Guo
- College of Science and Technology, Hebei Agricultural University, Cangzhou 061100, China; (Y.G.); (Z.W.); (B.J.)
| | - Juanjuan Shao
- College of Science and Technology, Hebei Agricultural University, Cangzhou 061100, China; (Y.G.); (Z.W.); (B.J.)
| | - Jilu Sun
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China;
| | - Zhen Wang
- College of Science and Technology, Hebei Agricultural University, Cangzhou 061100, China; (Y.G.); (Z.W.); (B.J.)
| | - Baojie Jiang
- College of Science and Technology, Hebei Agricultural University, Cangzhou 061100, China; (Y.G.); (Z.W.); (B.J.)
| |
Collapse
|
10
|
Wang T, Zhu L, Mei L, Kanda H. Extraction and Separation of Natural Products from Microalgae and Other Natural Sources Using Liquefied Dimethyl Ether, a Green Solvent: A Review. Foods 2024; 13:352. [PMID: 38275719 PMCID: PMC10815339 DOI: 10.3390/foods13020352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/27/2024] Open
Abstract
Microalgae are a sustainable source for the production of biofuels and bioactive compounds. This review discusses significant research on innovative extraction techniques using dimethyl ether (DME) as a green subcritical fluid. DME, which is characterized by its low boiling point and safety as an organic solvent, exhibits remarkable properties that enable high extraction rates of various active compounds, including lipids and bioactive compounds, from high-water-content microalgae without the need for drying. In this review, the superiority of liquefied DME extraction technology for microalgae over conventional methods is discussed in detail. In addition, we elucidate the extraction mechanism of this technology and address its safety for human health and the environment. This review also covers aspects related to extraction equipment, various applications of different extraction processes, and the estimation and trend analysis of the Hansen solubility parameters. In addition, we anticipate a promising trajectory for the expansion of this technology for the extraction of various resources.
Collapse
Affiliation(s)
| | | | | | - Hideki Kanda
- Department of Chemical Systems Engineering, Nagoya University, Furocho, Chikusa, Nagoya 464-8603, Japan
| |
Collapse
|
11
|
Honrado A, Ardila P, Leciñena P, Beltrán JA, Calanche JB. Transforming 'Bonito del Norte' Tuna By-Products into Functional Ingredients for Nutritional Enhancement of Cereal-Based Foods. Foods 2023; 12:4437. [PMID: 38137242 PMCID: PMC10742708 DOI: 10.3390/foods12244437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
The fishing industry produces a significant number of by-products. This study explored two methods of transforming these by-products: fish protein hydrolysate (FPH) and Fishmeal (FM). Physicochemical characterization of these products was conducted and their potential inclusion in biscuits was investigated due to the lack of high biological value protein and polyunsaturated fatty acids of this product. The results identified colour disparities between FPH and FM, with FM displaying lower brightness and a more reddish hue. In FPH, there was also a noticeable decrease in polyunsaturated fatty acids, probably associated with the temperature reached in spray-drying. While the incorporation of these by-products in biscuits was feasible, there were challenges, particularly the fishy taste and rancid odour, which were more pronounced in FM biscuits due to the higher fat content. This correlated with the oxidation indexes, such as TBARS and acidity index. Nonetheless, FPH biscuit attributes like typical colour or flavour received positive feedback, attributed to the Maillard reaction. Scanning electron microscopy revealed microstructural differences, which correlated with the results of hardness and fracturability, probably due to the higher fat content in FM. This study revealed the possibility of nutritionally enriching cookies with ingredients derived from fish by-products. However, it would be necessary to go a step further and study alternatives that allow better preservation of saturated fatty acids.
Collapse
Affiliation(s)
| | | | | | | | - Juan B. Calanche
- Instituto Agroalimentario de Aragón-IA2-(Universidad de Zaragoza-CITA), Miguel Servet 177, 50013 Zaragoza, Spain; (A.H.); (P.A.); (P.L.); (J.A.B.)
| |
Collapse
|
12
|
Naseem S, Imam A, Rayadurga AS, Ray A, Suman SK. Trends in fisheries waste utilization: a valuable resource of nutrients and valorized products for the food industry. Crit Rev Food Sci Nutr 2023; 64:9240-9260. [PMID: 37183680 DOI: 10.1080/10408398.2023.2211167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The rise in fisheries production worldwide has caused a remarkable increase in associated anthropogenic waste. This poses significant concerns due to adverse environmental impacts and economic losses. Owing to its renewability, high abundance, and potential as a rich source of many nutrients and bioactive compounds, strategies have been developed to convert fish waste into different value-added products. Conventional and improved methods have been used for the extraction of biomolecules from fish waste. The extracted fish waste-derived value-added products such as enzymes, peptides, fish oil, etc. have been used to fortify different food products. This review aims to provide an overview of the nature and composition of fish waste, strategies for extracting biomolecules from fish waste, and the potential application of fish waste as a source of calcium and other nutrients in food fortification and animal feed has been discussed. In context to fishery waste mitigation, valorization, and circular bioeconomy approach are gaining momentum, aiming to eliminate waste while producing high-quality value-added food and feed products from fishery discards.
Collapse
Affiliation(s)
- Shifa Naseem
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, Uttarakhand, India
| | - Arfin Imam
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, Uttarakhand, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, India
| | | | - Anjan Ray
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, Uttarakhand, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, India
| | - Sunil Kumar Suman
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun, Uttarakhand, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, India
| |
Collapse
|